WorldWideScience

Sample records for rat white adipocytes

  1. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    Directory of Open Access Journals (Sweden)

    Juan Suárez

    2014-01-01

    Full Text Available β-adrenergic receptor activation promotes brown adipose tissue (BAT β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα in white adipose tissue (WAT. Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (eWAT was monitored. CL316243 (1 mg/kg and OEA (5 mg/kg co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2. This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs, and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2 and BAT (Fgf21, Prdm16 genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.

  2. File list: His.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.White_adipocytes.bed ...

  3. File list: His.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.White_adipocytes.bed ...

  4. File list: His.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.White_adipocytes.bed ...

  5. File list: His.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.White_adipocytes.bed ...

  6. Retroendocytosis of insulin in rat adipocytes

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1986-01-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of [ 125 I]iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized [ 125 I]iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes

  7. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation

    DEFF Research Database (Denmark)

    Barbatelli, G.; Murano, I.; Madsen, Lise

    2010-01-01

    The origin of brown adipocytes arising in white adipose tissue (WAT) after cold acclimatization is unclear. Here, we demonstrate that several UCP1-immunoreactive brown adipocytes occurring in WAT after cold acclimatization have a mixed morphology (paucilocular adipocytes). These cells also had a ...

  8. The Mechanism of White and Brown Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Hironori Nakagami

    2013-04-01

    Full Text Available Obesity gives vent to many diseases such as type 2 diabetes, hypertension, and hyperlipidemia, being considered as the main causes of mortality and morbidity worldwide. The pathogenesis and pathophysiology of metabolic syndrome can well be understood by studying the molecular mechanisms that control the development and function of adipose tissue. In human body, exist two types of adipose tissue, the white and the brown one, which are reported to play various roles in energy homeostasis. The major and most efficient storage of energy occurs in the form of triglycerides in white adipose tissue while brown adipose tissue actively participates in both basal and inducible energy consumption in the form of thermogenesis. Recent years have observed a rapid and greater interest towards developmental plasticity and therapeutic potential of stromal cells those isolated from adipose tissue. The adipocyte differentiation involves a couple of regulators in the white or brown adipogenesis. Peroxisome proliferators-activated receptor-γ actively participates in regulating carbohydrate and lipid metabolism, and also acts as main regulator of both white and brown adipogenesis. This review based on our recent research, seeks to highlight the adipocyte differentiation.

  9. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes.

    Science.gov (United States)

    Choi, Minji; Mukherjee, Sulagna; Kang, Nam Hyeon; Barkat, Jameel Lone; Parray, Hilal Ahmad; Yun, Jong Won

    2018-04-11

    Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β 3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β 3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  10. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status

    Directory of Open Access Journals (Sweden)

    Theresa Schöttl

    2015-09-01

    Conclusion: Reduced mitochondrial respiratory capacity in white adipocytes is a hallmark of murine obesity irrespective of the glucose tolerance status. Impaired respiratory capacity in white adipocytes solely is not sufficient for the development of systemic glucose intolerance.

  11. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    Directory of Open Access Journals (Sweden)

    Choon Kiat Sim

    Full Text Available Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1, a Rho GTPase Activating Protein (RhoGAP previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK and filamentous actin (F-actin, suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  12. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K

    2004-01-01

    Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo...... fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...

  13. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...... in the regulation of white versus brown adipocyte differentiation in vitro and possibly in vivo. Here we summarize the current knowledge on the retinoblastoma protein in fat cells, with particular emphasis on its potential role in adipocyte lineage commitment and differentiation....

  14. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  15. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes.

    Directory of Open Access Journals (Sweden)

    Forough Jahandideh

    Full Text Available Insulin resistance and inflammation in adipose tissue is a key mechanism underlying metabolic syndrome, a growing health problem characterized by diabetes, obesity and hypertension. Previous work from our research group has demonstrated the potential of egg white ovotransferrin derived bioactive peptides against hypertension, oxidative stress and inflammation in vitro and in vivo. Egg white hydrolysate (EWH has also shown anti-hypertensive effects in spontaneously hypertensive rats. Given the interplay among hypertension, inflammation, oxidative stress and metabolic syndrome, the objective of the study was to test the EWH on differentiation, insulin signaling and inflammatory responses in 3T3-F442A pre-adipocytes. Our study suggested that EWH could promote adipocyte differentiation as shown by increased lipid accumulation, increased release of adiponectin and upregulation of peroxisome proliferator associated receptor gamma (PPARγ and CCAAT/ enhancer binding protein alpha (C/EBP-α. In addition to enhanced insulin effects on the upregulation of protein kinase B/Akt phosphorylation, EWH treatment increased extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation to a level similar to that of insulin, indicating insulin sensitizing and mimetic properties of the EWH. EWH further attenuated cytokine induced inflammatory marker; cyclooxygenase -2 (COX-2 by 48.78%, possibly through the AP-1 pathway by down regulating c-Jun phosphorylation in adipocytes. Given the critical role of adipose in the pathogenesis of insulin resistance and metabolic syndrome, EWH may have potential applications in the prevention and management of metabolic syndrome and its complications.

  16. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    DEFF Research Database (Denmark)

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  17. Relationship of adipocyte size to hyperphagia in developing male obese Zucker rats.

    Science.gov (United States)

    Vasselli, J R; Fiene, J A; Maggio, C A

    1992-01-01

    In growing male obese Zucker rats, hyperphagia reaches a maximum or "breakpoint" and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.

  18. Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.

    Science.gov (United States)

    Lone, Jameel; Yun, Jong Won

    2016-05-15

    Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes

    DEFF Research Database (Denmark)

    Petrovic, Natasa; Walden, Tomas B; Shabalina, Irina G

    2009-01-01

    The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain...... physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis...... associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells...

  20. Effects of selected bioactive food compounds on human white adipocyte function

    DEFF Research Database (Denmark)

    Björk, Christel; Wilhelm, Uta; Mandrup, Susanne

    2016-01-01

    BACKGROUND: Previous studies suggest that intake of specific bioactive compounds may have beneficial clinical effects on adipose tissue partly due to their anti-inflammatory and insulin-sensitizing properties. With the overall aim to contribute to better understanding of the mechanisms of selecte...... uptake albeit only with the combination of DHA and AC. Taken together, our results may link the reported health benefits of the selected bioactives on metabolic disorders such as insulin resistance, hypertension and dyslipidemia to effects on white adipocytes....

  1. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    Science.gov (United States)

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  2. Intrinsic differences in adipocyte precursor cells from different white fat depots

    DEFF Research Database (Denmark)

    Macotela, Yazmín; Emanuelli, Brice; Mori, Marcelo A

    2012-01-01

    Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. In the current study, we demonstrate...... that adipocyte precursor cells (APCs) isolated from visceral and subcutaneous white adipose depots of mice have distinct patterns of gene expression, differentiation potential, and response to environmental and genetic influences. APCs derived from subcutaneous fat differentiate well in the presence of classical...... induction cocktail, whereas those from visceral fat differentiate poorly but can be induced to differentiate by addition of bone morphogenetic protein (BMP)-2 or BMP-4. This difference correlates with major differences in gene expression signature between subcutaneous and visceral APCs. The number of APCs...

  3. Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats.

    Science.gov (United States)

    Vasselli, J R; Flory, T; Fried, S K

    1987-01-01

    The intestinal glucosidase inhibitor acarbose was administered as a dietary admix (30 mg/100 g chow diet) to male Zucker obese and lean rats. After 15 weeks, epidiymal fat pads were removed and adipocytes isolated by collagenase digestion. Equilibrium binding of A-14 tyrosine 125I-insulin, and transport of U-14C-glucose was determined was adipocytes incubated for 50 min at 37 degrees C in 0-16000 pM insulin. Insulin binding/cell was enhanced two-fold in lean (P less than 0.01) and obese (n.s.) drug groups. In drug-treated leans, increased sensitivity of glucose transport to submaximally stimulating concentrations of insulin was observed (P less than 0.02). For both genotypes, acarbose mildly decreased insulin levels and body weight gain, although adipocyte size was unaffected. Results indicate that enhanced insulin binding accompanies metabolic improvements induced by acarbose in lean Zucker rats.

  4. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism

    DEFF Research Database (Denmark)

    Petersen, Charlotte; Nielsen, Mette D.; Andersen, Elise S.

    2017-01-01

    RNA and protein levels of the lactate-H+ transporter MCT1 and the Na+,HCO3 - cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein...... level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after...... noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO3 -/pH homeostasis are important for the physiological function of mature adipocytes....

  5. Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α.

    Directory of Open Access Journals (Sweden)

    Jihyun Kim

    Full Text Available The β3-adrenergic receptor (AR signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β3-AR signaling highly induces the expression of transcriptional coactivator PGC-1α and its splice variant N-terminal (NT-PGC-1α, which in turn activate the transcription program of adaptive thermogenesis by co-activating a number of transcription factors. We previously reported that NT-PGC-1α is able to increase mitochondrial number and activity in cultured brown adipocytes by promoting the expression of mitochondrial and thermogenic genes. In the present study, we performed genome-wide profiling of NT-PGC-1α-responsive genes in brown adipocytes to identify genes potentially regulated by NT-PGC-1α. Canonical pathway analysis revealed that a number of genes upregulated by NT-PGC-1α are highly enriched in mitochondrial pathways including fatty acid transport and β-oxidation, TCA cycle and electron transport system, thus reinforcing the crucial role of NT-PGC-1α in the enhancement of mitochondrial function. Moreover, canonical pathway analysis of NT-PGC-1α-responsive genes identified several metabolic pathways including glycolysis and fatty acid synthesis. In order to validate the identified genes in vivo, we utilized the FL-PGC-1α-/- mouse that is deficient in full-length PGC-1α (FL-PGC-1α but expresses a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α254. The β3-AR-induced increase of NT-PGC-1α254 in FL-PGC-1α-/- brown and white adipose tissue was closely associated with elevated expression of genes involved in thermogenesis, mitochondrial oxidative metabolism, glycolysis and fatty acid synthesis. Increased adipose tissue thermogenesis by β3-AR activation resulted in attenuation of adipose tissue expansion in FL-PGC-1α-/- adipose tissue under the high-fat diet condition. Together, the data strengthen our previous findings that NT-PGC-1

  6. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  7. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats.

    Science.gov (United States)

    Johnson, Julia A; Trasino, Steven E; Ferrante, Anthony W; Vasselli, Joseph R

    2007-11-01

    The anti-diabetic thiazolidinediones (TZDs) stimulate adipocyte differentiation and decrease mean adipocyte size. However, whether these smaller, more insulin-sensitive adipocytes maintain their size after TZD therapy is discontinued has not been studied. Adult female Sprague-Dawley rats were fed a low-fat (10% fat) diet or, to elevate body weight (BW), a high-fat (HF) diet (45% fat) for 6 weeks. Rats were initially randomized to groups (n = 12) fed either low-fat or HF diets, with or without the TZD rosiglitazone (ROSI; 5 mg/kg per day), for 6 weeks. ROSI was then discontinued, and all animals were fed HF for another 6 weeks before sacrifice. Retroperitoneal (RP) adipose tissue morphology was determined from tissue collected by serial biopsies before and after 6 weeks of ROSI treatment and at sacrifice. Measures of BW and adiposity did not differ among groups 6 weeks after stopping ROSI treatment. However, during treatment, ROSI in both diets significantly decreased RP adipocyte size and increased RP DNA content, and these effects continued to be observed after discontinuing treatment. ROSI administration also decreased circulating insulin, leptin, and triglycerides and increased circulating adiponectin levels; however, these effects were reversed on stopping treatment. These results demonstrated that TZD-induced effects on adipocyte size and number were maintained after discontinuing treatment, even with consumption of an obesigenic diet. However, additional studies are needed to determine whether TZD-treated animals eventually achieve an adipocyte size similar to that of untreated animals at the expense of a higher BW.

  8. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats

    Science.gov (United States)

    Song, Won-Yeong

    2016-01-01

    BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion. PMID:27698955

  9. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes.

    OpenAIRE

    Kelly, K L; Kiechle, F L; Jarett, L

    1984-01-01

    Partially purified plasma membranes prepared from rat adipocytes contain N-methyltransferase(s) that utilize(s) S-adenosyl-L-methionine to synthesize phosphatidylcholine from phosphatidylethanolamine. The incorporation of [3H]methyl from S-adenosyl-L-[methyl-3H]methionine into plasma membrane phospholipids was linear with incubation time and plasma membrane protein concentration and was inhibited in a dose-dependent manner by both S-adenosyl-L-homocysteine and 3-deazadenosine. The addition of...

  10. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  11. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    International Nuclear Information System (INIS)

    Carter-Su, C.; Okamoto, K.

    1987-01-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1- 3 H(N)]glucose and D-[ 14 C-U]glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in 125 I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [ 3 H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [ 3 H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions

  12. Effect of triiodothyronine and insulin on glucose metabolism in tissue explants and isolated adipocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1985-01-01

    Glucose metabolism in adipocytes from 6 week old lean and obese Zucker rats were sensitive to direct and chronic treatment with insulin and triidothyronine (T 3 ). Insulin had a large stimulatory effect on glucose metabolism in acutely isolated adipocytes. This effect was greater in the lean than in the obese. Fatty acid, CO 2 , and glycerol-glyceride formation from radiolabeled glucose was elevated in the obese over the leans. Pretreatment of isolated adipocytes with pharmacological concentrations of T 3 for 30 minutes prior to the measurement of glucose metabolism had a greater effect on lean than obese adipocytes. The presence of insulin was required to observe the acute effects of T 3 . A 2-hour exposure to physiological levels of T 3 in the presence of insulin in both lean and obese adipocytes decreased lipogenesis. In the absence of insulin, a 2 hour pretreatment with physiological levels of T 3 in tissue from a euthyroid animal produced increased lipogenesis

  13. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis.

    Science.gov (United States)

    Ondrusova, Katarina; Fatehi, Mohammad; Barr, Amy; Czarnecka, Zofia; Long, Wentong; Suzuki, Kunimasa; Campbell, Scott; Philippaert, Koenraad; Hubert, Matthew; Tredget, Edward; Kwan, Peter; Touret, Nicolas; Wabitsch, Martin; Lee, Kevin Y; Light, Peter E

    2017-11-27

    Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).

  14. The effects of knee immobilization on marrow adipocyte hyperplasia and hypertrophy at the proximal rat tibia epiphysis.

    Science.gov (United States)

    Trudel, Guy; Uhthoff, Hans K; Solanki, Sanjay; Laneuville, Odette

    2017-09-01

    Marrow adipose deposition is observed during aging and in association with extended periods of immobility. The objective of this study was to determine the contribution of adipocyte hypertrophy and hyperplasia to bone marrow fat deposition induced by immobilization of the rat knee joint for 2, 4, 16 or 32 weeks. Histomorphometric analyses compared immobilized to sham-operated proximal tibia from age and gender matched rats to assess the contribution of aging and duration of immobilization on the number and size of marrow adipocytes. Results indicated that marrow adipose tissue increased with the duration of immobilization and was significant larger at 16 weeks compared to the sham-operated group (0.09956±0.13276mm 2 vs 0.01990±0.01100mm 2 , p=0.047). The marrow adipose tissue was characterized by hyperplasia of adipocytes with a smaller average size after 2 and 4 weeks of immobilization (at 2 weeks hyperplasia: 68.86±33.62 vs 43.57±24.47 adipocytes/mm 2 , p=0.048; at 4 weeks hypotrophy: 0.00036±0.00019 vs 0.00046±0.00023mm 2 , p=0.027), and by adipocyte hypertrophy after 16 weeks of immobilization (0.00083±0.00049 vs 0.00046±0.00028mm 2 , p=0.027) compared to sham-operated. Both immobilized and sham-operated groups showed marrow adipose conversion with age; immobilized (p=0.008; sham: p=0.003). Overall, fat deposition in the bone marrow of the proximal rat tibia epiphysis and induced by knee joint immobilization was characterized by hyperplasia of small adipocytes in the early phase and by adipocyte hypertrophy in the later phase. Mediators of marrow fat deposition after immobilization and preventive countermeasures need to be investigated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase

    International Nuclear Information System (INIS)

    Lytton, J.

    1985-01-01

    The K0.5 for intracellular sodium of the two forms of (Na + ,K + )-ATPase which exist in rat adipocytes has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na + pump and allow sodium to equilibrate into the cell. The activity of (Na + ,K + )-ATPase was then monitored with 86 Rb + /K + pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22 Na + tracer equilibration were used to determine the actual intracellular [Na + ] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86 Rb + /K + pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha and 33 mM for alpha(+). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions

  16. Digitonin abolishes free 2-deoxy-D-glucose accumulation in isolated rat adipocytes

    International Nuclear Information System (INIS)

    Thompson, K.; Kleinzeller, A.

    1986-01-01

    The hypothesis that accumulation against sizable chemical gradients of free (non-phosphorylated) 2-deoxy-D-glucose (2dGlc) in isolated rat adipocytes results from an intracellular compartmentation of free hexose was investigated. Cells exposed to 20 μg/ml digitonin for 10' demonstrated an increased plasma membrane permeability indexed by increased L-glucose entry rates and cellular (presumably cytosolic) protein and K + loss. Functional integrity of intracellular organelles was indicated by the ability of the cells to support ATP-driven 45 Ca 2+ -uptake. Equilibrium 3-O-methylglucose (3-O-MG, a non-accumulated hexose) levels were unaffected. These data suggest a specific permeabilizing action of digitonin at the plasma membrane having no effect on intracellular organelles or passively distributed solutes. Upon addition of digitonin, free 2dGlc fell from 66.5 +/- 8.9 to 7.4 +/- 2.3 pmol/10 5 cells, a value not significantly different from 3-O-MG levels. The gradient of 2dGlc-phosphate was also abolished, as was the increased steady-state free 2dGlc levels induced by insulin. The data argue against a compartmentation model as either the mechanism of adipocyte sugar accumulation or the basis of the steady-state free 2dGlc increase seen with insulin and suggest that an intact plasma membrane is essential to the process

  17. Anti-obesity effects of Arctii Fructus (Arctium lappa) in white/brown adipocytes and high-fat diet-induced obese mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Park, Jinbong; Jeong, Mi-Young; Mun, Jung-Geon; Park, Sung-Joo; Lee, Jong-Hyun; Um, Jae-Young; Hong, Seung-Heon

    2016-12-07

    Arctii Fructus is traditionally used in oriental pharmacies as an anti-inflammatory medicine. Although several studies have shown its anti-inflammatory effects, there have been no reports on its use in obesity related studies. In this study, the anti-obesity effect of Arctii Fructus was investigated in high-fat diet (HFD)-induced obese mice, and the effect was confirmed in white and primary cultured brown adipocytes. Arctii Fructus inhibited weight gain and reduced the mass of white adipose tissue in HFD-induced obese mice. Serum levels of triglyceride and LDL-cholesterol were reduced, and HDL-cholesterol was increased in the Arctii Fructus treated group. In 3T3-L1 cells, a water extract (WAF) and 70% EtOH extract (EtAF) of Arctii Fructus significantly inhibited adipogenesis and suppressed the expression of proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. In particular, EtAF activated the phosphorylation of AMP-activated protein kinase. On the other hand, uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, known as brown adipocytes specific genes, were increased in primary cultured brown adipocytes by WAF and EtAF. This study shows that Arctii Fructus prevents the development of obesity through the inhibition of white adipocyte differentiation and activation of brown adipocyte differentiation which suggests that Arctii Fructus could be an effective therapeutic for treating or preventing obesity.

  18. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    Science.gov (United States)

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  19. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Casanueva, Felipe F; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3α/β, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPα, C/EBPβ, C/EBPδ and PPARγ promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of

  20. Solubilization and characterization of a novel tyrosine kinase from rat adipocytes

    International Nuclear Information System (INIS)

    Yagaloff, K.A.; Czech, M.P.

    1987-01-01

    The authors report the efficient solubilization and characterization of a Triton X-100 insoluble tyrosine kinase from rat adipocytes. Plasma membranes were prepared from rat epididymal fat pads and were solubilized in 1% Triton X-100. Following centrifugation, the pellet was solubilized for 15 min at 4 0 C using both ionic and non-ionic detergents. Tyrosine kinase activity was measured in the soluble and particulate fractions using the exogenous substrate poly(glu-tyr) in a TCA precipitation assay. Reactions were performed in 50mM Hepes, 10mM MgCl 2 and 100μM gamma[ 32 P]-ATP (10Ci/mmol) at 4 0 C with or without 1mg/ml of the polyaminoacid. Incorporation rates of 100 to 1000 pmol/min/mg were obtained, while endogenous [ 32 P] incorporation was typically less than 10% of that in the presence of poly(glu-tyr). More than 75% of the tyrosine kinase activity was recovered in the soluble supernatant using this assay methodology. The solubilized tyrosine kinase was found to require Mg 2+ or Mn 2+ but preferred Mg 2+ and was inhibited by high levels of Mn 2+ . Kinase activity was strongly inhibited by Ca 2+ (>50% at 1mM), NaCl (>50% at 250mM) and NH 4 SO 4 (>50% at 50mM) but was activated by 10μM heparin and 5mM dithiothreitol. These properties distinguish the solubilized tyrosine kinase from other cellular tyrosine kinases

  1. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sertié, R.A.L.; Andreotti, S. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Proença, A.R.G. [Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Campaña, A.B.; Lima, F.B. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-26

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.

  2. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    International Nuclear Information System (INIS)

    Sertié, R.A.L.; Andreotti, S.; Proença, A.R.G.; Campaña, A.B.; Lima, F.B.

    2015-01-01

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes

  3. Okadaic Acid, a Bioactive Fatty Acid from Halichondria okadai, Stimulates Lipolysis in Rat Adipocytes: The Pivotal Role of Perilipin Translocation

    Directory of Open Access Journals (Sweden)

    Nen-Chung Chang

    2013-01-01

    Full Text Available Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black sponge Halichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor, calphostin C (PKC inhibitor, or KT-5823 (PKG inhibitor did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.

  4. Effect of high fat and high sugar diet on insulin binding and insulin action in isolated rat adipocytes

    OpenAIRE

    岡﨑,悟

    1987-01-01

    To clarify on a cellular basis the mechanism of the diabetogenic effect of the westernized diet, insulin binding, insulin stimulated 3-o-methylglucose uptake and glucose oxidation were studied in isolated adipocytes from rats fed experimental diets : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the westernized diet), low fat-high sugar diet (10% fat, 50% starch, 20% s...

  5. Mathematical modeling of white adipocyte exocytosis predicts adiponectin secretion and quantifies the rates of vesicle exo- and endocytosis.

    Science.gov (United States)

    Brännmark, Cecilia; Lövfors, William; Komai, Ali M; Axelsson, Tom; El Hachmane, Mickaël F; Musovic, Saliha; Paul, Alexandra; Nyman, Elin; Olofsson, Charlotta S

    2017-12-08

    Adiponectin is a hormone secreted from white adipocytes and takes part in the regulation of several metabolic processes. Although the pathophysiological importance of adiponectin has been thoroughly investigated, the mechanisms controlling its release are only partly understood. We have recently shown that adiponectin is secreted via regulated exocytosis of adiponectin-containing vesicles, that adiponectin exocytosis is stimulated by cAMP-dependent mechanisms, and that Ca 2+ and ATP augment the cAMP-triggered secretion. However, much remains to be discovered regarding the molecular and cellular regulation of adiponectin release. Here, we have used mathematical modeling to extract detailed information contained within our previously obtained high-resolution patch-clamp time-resolved capacitance recordings to produce the first model of adiponectin exocytosis/secretion that combines all mechanistic knowledge deduced from electrophysiological experimental series. This model demonstrates that our previous understanding of the role of intracellular ATP in the control of adiponectin exocytosis needs to be revised to include an additional ATP-dependent step. Validation of the model by introduction of data of secreted adiponectin yielded a very close resemblance between the simulations and experimental results. Moreover, we could show that Ca 2+ -dependent adiponectin endocytosis contributes to the measured capacitance signal, and we were able to predict the contribution of endocytosis to the measured exocytotic rate under different experimental conditions. In conclusion, using mathematical modeling of published and newly generated data, we have obtained estimates of adiponectin exo- and endocytosis rates, and we have predicted adiponectin secretion. We believe that our model should have multiple applications in the study of metabolic processes and hormonal control thereof. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    International Nuclear Information System (INIS)

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  7. PCB-153 shows different dynamics of mobilisation from differentiated rat adipocytes during lipolysis in comparison with PCB-28 and PCB-118.

    Science.gov (United States)

    Louis, Caroline; Tinant, Gilles; Mignolet, Eric; Thomé, Jean-Pierre; Debier, Cathy

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules. Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes. These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes.

  8. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  9. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    OpenAIRE

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  10. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    OpenAIRE

    Wan Chen; Hong Tang; Xiangzhou Liu; Mei Zhou; Jiqiang Zhang; Kanglai Tang

    2015-01-01

    Background/Aims: Dexamethasone (Dex)-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs) to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: ...

  11. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    Science.gov (United States)

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  12. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate.

    Science.gov (United States)

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes.

  13. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Science.gov (United States)

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  14. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue.

    Science.gov (United States)

    Prince, Paula D; Santander, Yanina A; Gerez, Estefania M; Höcht, Christian; Polizio, Ariel H; Mayer, Marcos A; Taira, Carlos A; Fraga, Cesar G; Galleano, Monica; Carranza, Andrea

    2017-08-01

    Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP + ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    Science.gov (United States)

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  16. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  17. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    OpenAIRE

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosph...

  18. Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Houlahan, Kathleen E.; Prokopec, Stephenie D.; Sun, Ren X. [Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto (Canada); Moffat, Ivy D. [Department of Pharmacology & Toxicology, University of Toronto, Toronto (Canada); Lindén, Jere [Department of Veterinary Biosciences, University of Helsinki, Helsinki (Finland); Lensu, Sanna [Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä (Finland); Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Okey, Allan B. [Department of Pharmacology & Toxicology, University of Toronto, Toronto (Canada); Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi [Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki (Finland); Boutros, Paul C., E-mail: Paul.Boutros@oicr.on.ca [Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto (Canada); Department of Pharmacology & Toxicology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2015-10-15

    Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100 μg/kg of TCDD at 1 or 4 days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4 days than at 1 day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and F13a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4. - Highlights: • Exposure to TCDD causes wasting syndrome in L-E rats but not in H/W rats. • We examined the transcriptome of TCDD-treated L-E and H/W rat white adipose tissue. • L-E WAT demonstrated altered abundance of several genes involved in immune response. • Few

  19. Insulin-stimulated conversion of D-[5-3H] glucose to 3HOH in the perifused isolated rat adipocyte

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Peavy, D.E.; Frechette, P.; Solomon, S.S.

    1986-01-01

    Characteristics of basal and insulin-stimulated glucose utilization by perifused adipocytes have been investigated by measuring the formation of 3 HOH from D-(5- 3 H) glucose. At a glucose concentration of 0.55 mmol/L, basal glucose utilization ranged from 0.5 to 1.0 nmol/min/10(6) cells. Perifused adipocytes showed a maximal response to insulin of a threefold to fourfold increase in the conversion of (5- 3 H) glucose to 3 HOH with a half-maximal response at an insulin concentration of 20 microU/mL. The response to insulin was blocked by phlorizin and cytochalasin B, competitive inhibitors of glucose transport, consistent with an effect of insulin on glucose transport. Insulin increased the Vmax for glucose metabolism but had no effect on the apparent affinity for glucose utilization. The characteristics of glucose utilization and the stimulation of glucose metabolism by insulin in the perifused adipocyte are therefore similar to characteristics previously observed with incubated adipocytes. Because insulin can readily be removed from the system, perifused adipocytes are especially suited for studying the termination of insulin action. The termination of insulin-stimulated glucose metabolism occurred at the same rate in the presence of tracer (1 nmol/L) (5- 3 H)-glucose alone as when 0.55 mmol/L glucose or 2 mmol/L pyruvate were added to the perifusion buffer. The halftime for this process in both cases was approximately 40 minutes. These data suggest that the presence of metabolizable substrate is not required for the termination of the insulin response, but the time course suggests that termination requires more than simply insulin-receptor dissociation

  20. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    Directory of Open Access Journals (Sweden)

    Wan Chen

    2015-11-01

    Full Text Available Background/Aims: Dexamethasone (Dex-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: First, we used qPCR and Western blotting to detect the expression of the adipogenic differentiation markers aP2 and C/EBPα after treating the TSCs with Dex. Oil red staining was used to confirm that high concentration Dex promoted adipogenic differentiation of rat TSCs. Next, we used qPCR and Western blotting to detect the effect of a high concentration of dexamethasone on molecules related to the canonical WNT/β-catenin pathway in TSCs. Results: Treating rat TSCs with Dex promoted the synthesis of the inhibitory molecule dickkopf1 (DKK1 at the mRNA and protein levels. Western blotting results further showed that Dex downregulated the cellular signaling molecule phosphorylated glycogen synthase kinase-3β (P-GSK-3 β (ser9, upregulated P-GSK-3β (tyr216, and downregulated the pivotal signaling molecule β-catenin. Furthermore, DKK1 knockdown attenuated Dex-induced inhibition of the canonical WNT/β-catenin pathway and of the adipogenic differentiation of TSCs. Lithium chloride (LiCl, a GSK-3β inhibitor reduced Dex-induced inhibition of the classical WNT/β-catenin pathway in TSCs and of the differentiation of TSCs to adipocytes. Conclusion: In conclusion, by upregulating DKK1 expression, reducing the level of P-GSK-3β (ser9, and increasing the level of P-GSK-3β (tyr216, Dex causes the degradation of β-catenin, the central molecule of the classical WNT pathway, thereby inducing rat TSCs to differentiate into adipocytes.

  1. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats.

    Science.gov (United States)

    Oliveira, Ariclecio Cunha de; Andreotti, Sandra; Sertie, Rogério António Laurato; Campana, Amanda Baron; de Proença, André Ricardo Gomes; Vasconcelos, Renata Prado; Oliveira, Keciany Alves de; Coelho-de-Souza, Andrelina Noronha; Donato-Junior, José; Lima, Fábio Bessa

    2018-04-15

    Melatonin treatment has been reported to be capable of ameliorating metabolic diabetes-related abnormalities but also to cause hypogonadism in rats. We investigated whether the combined treatment with melatonin and insulin can improve insulin resistance and other metabolic disorders in rats with streptozotocin-induced diabetes during neonatal period and the repercussion of this treatment on the hypothalamic-pituitary-gonadal axis. At the fourth week of age, diabetic animals started an 8-wk treatment with only melatonin (0.2 mg/kg body weight) added to drinking water at night or associated with insulin (NHP, 1.5 U/100 g/day) or only insulin. Animals were then euthanized, and the subcutaneous (SC), epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Hypothalamus was collected for gene expression and blood samples were collected for biochemical assays. The treatment with melatonin plus insulin (MI) was capable of maintaining glycemic control. In epididymal (EP) and subcutaneous (SC) adipocytes, the melatonin plus insulin (MI) treatment group recovered the insulin responsiveness. In the hypothalamus, melatonin treatment alone promoted a significant reduction in kisspeptin-1, neurokinin B and androgen receptor mRNA levels, in relation to control group. Combined treatment with melatonin and insulin promoted a better glycemic control, improving insulin sensitivity in white adipose tissue (WAT). Indeed, melatonin treatment reduced hypothalamic genes related to reproductive function. Copyright © 2017. Published by Elsevier Inc.

  2. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    International Nuclear Information System (INIS)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of [ 3 H]-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound [ 3 H]oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 μg/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10 4 adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

  3. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V.

    1991-01-01

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in [ 3 H]glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 μM sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis

  4. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. (Univ. of South Florida, Tampa (USA))

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  5. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  6. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Rebeca Cambray Guerra

    2014-01-01

    Full Text Available The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C, MS, MS ovariectomized (Ovx, and MS Ovx plus estradiol (E2. MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity.

  7. Effects of Chowiseungcheng-tang Extracts on the Preadipocytes Proliferation in 3T3-L1 cell line, Lipolysis of Adipocytes in rat, and Localized Fat Accumulation by extraction methods

    Directory of Open Access Journals (Sweden)

    Jae-eun, Lee

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation in 3T3-L1 cell line, lipolysis of adipocytes in rat’s epididymal adipocytes and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish preadipocytes proliferation and promote lipolysis of adipocytes do primary role to reduce obesity. So, we used 3T3-L1 mouse embryo fibroblasts(preadipocytes and rat epididymal adipocytes from Sprague-Dawley rats to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation, lipolysis of adipocytes. They were treated with 0.01, 0.1, 1.0㎎/㎖ Chowiseungcheng-tang alcohol and water extracts. And for the purpose of investigating the effects of Chowiseungcheng-tang alcohol and water extracts on the localized fat accumulation, we injected 0.1, 1.0, 10.0㎎/㎖ Chowiseungcheng-tang extracts to porcine fat tissues and observed histological changes of them. Results : Following results were obtained from the preadipocytes proliferation and lipolysis of adipocytes and histological investigation of fat tissues. 1. Chowiseungcheng-tang extracts suppressed preadipocytes proliferation on the high dosage(especially 1.0㎎/㎖, and especially alcohol extracts had better effects. 2. The alcohol extracts of Chowiseungcheng-tang decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the concentrations of 0.1, 1.0㎎/㎖. Alcohol extracts had better effects than water extracts. 3. Chowiseungcheng-tang extracts increased lipolysis of adipocytes on the concentrations of 0.1, 1.0㎎/㎖, and especially on the concentration of 1.0㎎/㎖ alcohol extract of Chowiseungcheng-tang had better effect. 4. The water extract of Chowiseungcheng-tang had significant activity to the destruction of porcine fat cell membranes only on the concentration of 10.0㎎/㎖, but alcohol extracts of Chowiseungcheng-tang had it on all

  8. Obesity Beige adipocytes-will they beat obesity?

    DEFF Research Database (Denmark)

    Sandholt, Camilla H.; Pedersen, Oluf.

    2015-01-01

    The mechanistic link between the FTO locus and risk of obesity has remained elusive. However, a new study presents compelling evidence suggesting that the browning of white adipocytes into beige adipocytes (together with regulation of thermogenesis), might be an important and potentially modifiable...

  9. Effect of Guci powder on toe swelling induced by egg white in rats

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Shen, Huiling; Ma, Zhenzhen; Zhang, Xuehui; Zhang, Zhengchen

    2018-04-01

    To observe the effect of Guci Powder on foot swelling induced by egg white in rats. 50 male rats were randomly divided into normal saline group (n=10), white vinegar group (n=10) and Guning lotion group (n=10). There were 10 rats in the high-dose group and 10 in the low-dose group. The rats in each group were treated with the drug on the left and right feet of the rats. 0.5 hours after the last administration, the rats in each group were inflamed. The left hindsole plantar volume was measured respectively, so that the difference of the posterior toe volume before inflammation was taken as the swelling degree, and the swelling degree of each group was calculated. Compared with physiological saline group, the rats' egg white toe swelling (Pegg white toe in rats was inhibited at 0.5˜2h (Pegg white in rats, and the external application of bone spur powder has anti-inflammatory and swelling effect.

  10. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis.

    Science.gov (United States)

    Sidossis, Labros; Kajimura, Shingo

    2015-02-01

    Brown adipose tissue (BAT), a specialized fat that dissipates energy to produce heat, plays an important role in the regulation of energy balance. Two types of thermogenic adipocytes with distinct developmental and anatomical features exist in rodents and humans: classical brown adipocytes and beige (also referred to as brite) adipocytes. While classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants, beige adipocytes sporadically reside with white adipocytes and emerge in response to certain environmental cues, such as chronic cold exposure, a process often referred to as "browning" of white adipose tissue. Recent studies indicate the existence of beige adipocytes in adult humans, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, including type 2 diabetes. This Review aims to cover recent progress in our understanding of the anatomical, developmental, and functional characteristics of brown and beige adipocytes and discuss emerging questions, with a special emphasis on adult human BAT.

  11. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming

    Directory of Open Access Journals (Sweden)

    Adilson Guilherme

    2017-08-01

    Conclusions: These results demonstrate that downregulation of fatty acid synthesis via FASN depletion in white adipocytes of mature mice can stimulate neuronal signaling to control thermogenic programming in iWAT.

  12. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    2010-07-01

    Full Text Available Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively

  13. No Additive Effects of Polyphenol Supplementation and Exercise Training on White Adiposity Determinants of High-Fat Diet-Induced Obese Insulin-Resistant Rats

    Directory of Open Access Journals (Sweden)

    Karen Lambert

    2018-01-01

    Full Text Available One of the major insulin resistance instigators is excessive adiposity and visceral fat depots. Individually, exercise training and polyphenol intake are known to exert health benefits as improving insulin sensitivity. However, their combined curative effects on established obesity and insulin resistance need further investigation particularly on white adipose tissue alterations. Therefore, we compared the effects on different white adipose tissue depot alterations of a combination of exercise and grape polyphenol supplementation in obese insulin-resistant rats fed a high-fat diet to the effects of a high-fat diet alone or a nutritional supplementation of grape polyphenols (50 mg/kg/day or exercise training (1 hr/day to 5 days/wk consisting of treadmill running at 32 m/min for a 10% slope, for a total duration of 8 weeks. Separately, polyphenol supplementation and exercise decreased the quantity of all adipose tissue depots and mesenteric inflammation. Exercise reduced adipocytes’ size in all fat stores. Interestingly, combining exercise to polyphenol intake presents no more cumulative benefit on adipose tissue alterations than exercise alone. Insulin sensitivity was improved at systemic, epididymal, and inguinal adipose tissues levels in trained rats thus indicating that despite their effects on adipocyte morphological/metabolic changes, polyphenols at nutritional doses remain less effective than exercise in fighting insulin resistance.

  14. Dearomatized white spirit inhalation exposure causes long-lasting neurophysiological changes in rats

    DEFF Research Database (Denmark)

    Lund, S. P.; Simonsen, L.; Hass, Ulla

    1996-01-01

    Dearomatized white spirit inhalation exposure causes long-lasting neurophysioloical changes in rats. NEUROTOXICOL TERATOL 18(1), 67-76, 1996. -Exposure for 6 h per day, 5 days per week, during a period of 6 months to the organic solvent dearomatized white spirit (0, 400, and 800 ppm) was studied ...

  15. Effects of varying degrees of intermittent hypoxia on proinflammatory cytokines and adipokines in rats and 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Qing He

    Full Text Available OBJECTIVES: Intermittent hypoxia (IH, resulted from recurring episodes of upper airway obstruction, is the hallmark feature and the most important pathophysiologic pathway of obstructive sleep apnea (OSA. IH is believed to be the most important factor causing systemic inflammation. Studies suggest that insulin resistance (IR is positively associated with OSA. In this study, we hypothesized that the recurrence of IH might result in cellular and systemic inflammation, which was manifested through the levels of proinflammatory cytokines and adipokines after IH exposure, and because IR is linked with inflammation tightly, this inflammatory situation may implicate an IR status. METHODS: We developed an IH 3T3-L1 adipocyte and rat model respectively, recapitulating the nocturnal oxygen profile in OSA. In IH cells, nuclear factor kappa B (NF-κB DNA binding reactions, hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (Glut-1, necrosis factor alpha (TNF-α, interleukin (IL -6, leptin, adiponectin mRNA transcriptional activities and protein expressions were measured. In IH rats, blood glucose, insulin, TNF-α, IL-6, leptin and adiponectin levels were analyzed. RESULTS: The insulin and blood glucose levels in rats and NF-κB DNA binding activities in cells had significantly statistical results described as severe IH>moderate IH>mild IH>sustained hypoxia>control. The mRNA and protein levels of HIF-1α and Glut-1 in severe IH group were the highest. In cellular and animal models, both the mRNA and protein levels of TNF-α, IL-6 and leptin were the highest in severe IH group, when the lowest in severe IH group for adiponectin. CONCLUSIONS: Oxidative stress and the release of pro-inflammatory cytokines/adipokines, which are the systemic inflammatory markers, are associated with IH closely and are proportional to the severity of IH. Because IR and glucose intolerance are linked with inflammation tightly, our results may implicate the clinical

  16. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  17. Brown adipocyte function

    DEFF Research Database (Denmark)

    Winther, Sally

    . The first part of this thesis explores this by identifying and investigating two novel kinase regulators of brown adipocyte function. Study 1 demonstrates that spleen tyrosine kinase is a hitherto undescribed regulator of brown adipocyte differentiation and activation. Study 2 identifies glycogen synthase...

  18. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  19. The effects of in vitro exposure to white spirit on [Ca2+] in synaptosomes from rats exposed prenatally to white spirit

    DEFF Research Database (Denmark)

    Edelfors, S.; Hass, Ulla; Ravn-Jonsen, A.

    1999-01-01

    Female rats were exposed to white spirit (400 and 800 ppm for 6 hr/day) at day 7-20 during pregnancy. Thirty-five days after birth all female offspring were sacrificed, the brains removed, and the synaptosomal fractions prepared for in vitro studies. The cytosolic calcium concentration was measured...... using the FURA-2 technique. The results show that cytosolic calcium was increased in synaptosomes from rats exposed to white spirit prenatally compared to synaptosomes from unexposed rats. When synaptosomes were exposed to white spirit in vitro, the cytosolic calcium concentration changes were identical...... in all groups of rats. The membrane leakage measured as FURA-2 leakage from the synaptosomes identical in all three groups of animals. The results suggest that prenatal exposure to white spirit induces long-lasting and possibly irreversible changes in calcium homeostasis in the rat nervous system....

  20. Regional differences in adipocyte lactate production from glucose

    International Nuclear Information System (INIS)

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M.

    1988-01-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. [U- 14 C]glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots

  1. Pathological changes in the white matter after spinal contusion injury in the rat.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.

  2. SOCS-3 is involved in the downregulation of the acute insulin-like effects of growth hormone in rat adipocytes by inhibition of Jak2/IRS-1 signaling

    DEFF Research Database (Denmark)

    Ridderstråle, M; Amstrup, J; Hilton, D J

    2003-01-01

    One of the long-term effects of growth hormone (GH) in adipocytes is to maintain a state of refractoriness to insulin-like effects, a refractoriness which otherwise declines within a few hours of GH starvation. Here, we examined differences in GH signaling and the possible role for the recently i...

  3. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, an...

  4. Peculiarities of vascular tunic microstructure of the white rat eyeball under the effect of opioid.

    Science.gov (United States)

    Mateshuk-Vatseba, Lesya; Pidvalna, Uliana; Kost, Andriy

    2015-01-01

    This article deals with determination of changes in the structural organization of vascular tunic of the eyeball under the effect of opioid. The study was carried out on 24 mature white male rats aged 3.0-4.5 months and 170-280 g weight. The research material included histological specimen and semi-thin sections of white rats' eyeball vascular tunic. For the histological study, microscopic sections of the eyeball were stained with Hematoxylin and Eosin, Heidenhain's Azan trichrome. Specimens were studied and photographed with microscope magnification: ×600, ×1000. The first signs of microstructure disorder in all parts of vascular tunic of the eyeball are noticeable after two weeks of nalbuphine injection to the white rats. During the next four weeks of the experiment, the pathological changes increase and are manifested by the swelling and polymorphonuclear infiltration of the iris, ciliary body, choroid and by deep destructive changes of eyeball hemomicrocirculatory bloodstream. Histological and ultramicroscopic studies of the white rats' eyeball vascular tunic after six weeks of nalbuphine injections showed deep destructive changes in the structure of all parts of vascular tunic. Our study demonstrated a negative effect of the prolonged injection of opioid in the experiment on the state of microstructural organization of the eyeball vascular tunic. Development of angiopathy is the triggering for occurrence of destructive changes in the eyeball under the effect of opioid.

  5. Running exercise protects the capillaries in white matter in a rat model of depression.

    Science.gov (United States)

    Chen, Lin-Mu; Zhang, Ai-Pin; Wang, Fei-Fei; Tan, Chuan-Xue; Gao, Yuan; Huang, Chun-Xia; Zhang, Yi; Jiang, Lin; Zhou, Chun-Ni; Chao, Feng-Lei; Zhang, Lei; Tang, Yong

    2016-12-01

    Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Total white blood cell counts and LPS-induced TNF alpha production by monocytes of pregnant, pseudopregnant and cyclic rats

    NARCIS (Netherlands)

    Faas, MM; Moes, H; van der Schaaf, G; de Leij, LFMH; Heineman, MJ

    Pregnancy in the rat may be associated with an activated innate immune system. Therefore, we investigated monocyte function as well as total white blood cell (WBC) counts during the follicular phase of the ovarian cycle, pregnancy and pseudopregnancy in the rat. Rats were equipped with a permanent

  7. Total white blood cell counts and LPS-induced TNF alpha production by monocytes of pregnant, pseudopregnant and cyclic rats

    NARCIS (Netherlands)

    Faas, M. M.; Moes, H.; van der Schaaf, G.; de Leij, L. F. M. H.; Heineman, M. J.

    2003-01-01

    Pregnancy in the rat may be associated with an activated innate immune system. Therefore, we investigated monocyte function as well as total white blood cell (WBC) counts during the follicular phase of the ovarian cycle, pregnancy and pseudopregnancy in the rat. Rats were equipped with a permanent

  8. Mammary alveolar epithelial cells convert to brown adipocytes in post-lactating mice

    DEFF Research Database (Denmark)

    Giordano, Antonio; Perugini, Jessica; Kristensen, David Møbjerg

    2017-01-01

    During pregnancy and lactation, subcutaneous white adipocytes in the mouse mammary gland transdifferentiate reversibly to milk-secreting epithelial cells. In this study, we demonstrate by transmission electron microscopy that in the post-lactating mammary gland interscapular multilocular adipocyt...... organ plasticity...

  9. Effects of repeated exposure to white noise on central cholinergic activity in the rat.

    Science.gov (United States)

    Lai, H

    1988-03-01

    Acute (45 min) exposure to noise has been shown to decrease sodium-dependent high-affinity choline uptake activity in the frontal cortex and hippocampus of the rat. In the present experiment, the effects of repeated noise exposure on choline uptake in these two brain regions were studied. Rats were exposed to 100-dB white noise in ten 45-min sessions. Tolerance developed to the effects of noise on choline uptake. In addition, the effects were found to be classically conditionable to cues in the exposure environment. These data may have important implications in understanding the health hazard of noise exposure in both the public and occupational environments.

  10. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...

  11. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  12. Identification of The First Limiting Amino Acid In Cooked Polished White Rice Fed To Weanling Holtzman Rats

    Directory of Open Access Journals (Sweden)

    Mellova Masrizal

    2010-10-01

    Full Text Available Forty-eight male weanling rats (91 g were utilized to study the nutritional adequacy of cooked polished white rice. Rats were individually housed, and allowed ad libitum access to one of six treatment diets. Treatment diets were 1 polished white rice plus 10% casein and 0.18% methionine, CAS, 2 polished white rice, WHR, 3 polished white rice plus 0.45% lysine, LYS, 4 polished white rice plus0.40% methionine, MET, 5 polished white rice plus 0.30% threonine, THR, 6 polished white rice plus 0.45% lysine, 0.40% methionine, and 0.40% threonine, COM. Rice was cooked prior diet formulation using a 3 to 1 ratio of water to rice. Vitamins (AIN-76 and AIN minerals were added to all diets to meet NRC (1978 requirements. Rats fed CAS diets were significantly heavier on d 21 (P<0.05 than rats on COM, LYS, MET, THR, or WHR diets, (219.9 vs. 171.6, 153.2, 153.2, 148.3, or 155.4 g respectively. Supplementation of the most deficient essential amino acids, lysine (LYS or methionine (MET did not improve (P>0.05 rat performance over WHR fed rats, Average daily gain (ADG for CAS was 6.1 g/d and ADG for LYS and MET was 3.0 g/d. The addition of threonine (THR significantly (P<0.05 reduced ADG when compared to WHR diets (2.7 vs. 3.0 g/d. When rats were fed to COM diet significant (P<0.05 improvement in ADG was observed compared to WHR fed rats (4.8 vs. 3.0 g/d. The increased gains achieved with COM diet and the poor gains observed with the single amino acid diets (LYS, MET, or THR would suggest that polished white rice is limiting in more than one essential amino acid.

  13. The fat controller: adipocyte development.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Stephens

    Full Text Available Obesity is a condition characterized by excess adipose tissue that results from positive energy balance and is the most common metabolic disorder in the industrialized world. The obesity epidemic shows no sign of slowing, and it is increasingly a global problem. Serious clinical problems associated with obesity include an increased risk for type 2 diabetes, atherosclerosis, and cancer. Hence, understanding the origin and development of adipocytes and adipose tissue will be critical to the analysis and treatment of metabolic diseases. Historically, albeit incorrectly, adipocytes were thought to be inert cells whose singular function was lipid storage. It is now known that adipocytes have other critical functions; the most important include sensitivity to insulin and the ability to produce and secrete adipocyte-specific endocrine hormones that regulate energy homeostasis in other tissues. Today, adipocytes are recognized as critical regulators of whole-body metabolism and known to be involved in the pathogenesis of a variety of metabolic diseases. All cells come from other cells and many cells arise from precursor cells. Adipocytes are not created from other adipocytes, but they arise from precursor cells. In the last two decades, scientists have discovered the function of many proteins that influence the ability of precursor cells to become adipocytes. If the expansion of the adipose tissue is the problem, it seems logical that adipocyte development inhibitors could be a viable anti-obesity therapeutic. However, factors that block adipocyte development and limit adipocyte expansion also impair metabolic health. This notion may be counterintuitive, but several lines of evidence support the idea that blocking adipocyte development is unhealthy. For this reason it is clear that we need a better understanding of adipocyte development.

  14. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model.

    Science.gov (United States)

    Wu, Peng; Deng, Renpan; Wu, Xuee; Wang, Yong; Dong, Zhizhong; Dhital, Sushil; Chen, Xiao Dong

    2017-12-15

    The changes in physical, rheological and enzyme-digestive behaviours of cooked white and brown rice, with similar amylose content, were investigated using a dynamic in vitro rat stomach (DIVRS) model and a static soaking method. The brown rice had a higher resistance on disintegration and lower gastric emptying rate with 53% of the brown rice particles retained in the stomach at the end compared to 32% for the white rice. Furthermore, the release rate of maltose from the starch hydrolysis was higher in the white rice throughout the digestion suggesting the lower glycemic potency of the brown rice. These differences could be contributed from the rigid bran layer in the brown rice which would inhibit the moisture absorption into rice kernels, limit textural degradation, and generate higher gastric digesta viscosity leading to lower mixing and mass transfer efficiency. This study suggests that the structural difference could affect physiochemical properties during gastric digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg....../l), or 800 p.p.m. (4.58 mg/l) of dearomatised white spirit, 6 hr/day, 5 days/week up to 3 weeks. Five rats from each group were sacrificed immediately after the exposure for 1, 2, or 3 weeks and 2, 4, 6, or 24 hr after the end of 3 weeks' exposure. After 3 weeks of exposure the concentration of total white...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure...

  16. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation.

    Science.gov (United States)

    Scheller, Erica L; Khandaker, Shaima; Learman, Brian S; Cawthorn, William P; Anderson, Lindsay M; Pham, H A; Robles, Hero; Wang, Zhaohua; Li, Ziru; Parlee, Sebastian D; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Craft, Clarissa S; MacDougald, Ormond A

    2018-01-26

    Bone marrow adipose tissue (BMAT) is preserved or increased in states of caloric restriction. Similarly, we found that BMAT in the tail vertebrae, but not the red marrow in the tibia, resists loss of neutral lipid with acute, 48-hour fasting in rats. The mechanisms underlying this phenomenon and its seemingly distinct regulation from peripheral white adipose tissue (WAT) remain unknown. To test the role of β-adrenergic stimulation, a major regulator of adipose tissue lipolysis, we examined the responses of BMAT to β-adrenergic agonists. Relative to inguinal WAT, BMAT had reduced phosphorylation of hormone sensitive lipase (HSL) after treatment with pan-β-adrenergic agonist isoproterenol. Phosphorylation of HSL in response to β3-adrenergic agonist CL316,243 was decreased by an additional ~90% (distal tibia BMAT) or could not be detected (tail vertebrae). Ex vivo, adrenergic stimulation of lipolysis in purified BMAT adipocytes was also substantially less than iWAT adipocytes and had site-specific properties. Specifically, regulated bone marrow adipocytes (rBMAs) from proximal tibia and femur underwent lipolysis in response to both CL316,243 and forskolin, while constitutive BMAs from the tail responded only to forskolin. This occurred independently of changes in gene expression of β-adrenergic receptors, which were similar between adipocytes from iWAT and BMAT, and could not be explained by defective coupling of β-adrenergic receptors to lipolytic machinery through caveolin 1. Specifically, we found that whereas caveolin 1 was necessary to mediate maximal stimulation of lipolysis in iWAT, overexpression of caveolin 1 was insufficient to rescue impaired BMAT signaling. Lastly, we tested the ability of BMAT to respond to 72-hour treatment with CL316,243 in vivo. This was sufficient to cause beiging of iWAT adipocytes and a decrease in iWAT adipocyte cell size. By contrast, adipocyte size in the tail BMAT and distal tibia remained unchanged. However, within the

  17. Anti Lithiasis Activity of Avocado (Persea americana Mill Leaves Extract in White Male Rats

    Directory of Open Access Journals (Sweden)

    IETJE WIENTARSIH

    2012-03-01

    Full Text Available In Indonesia, avocado leaves have been used as traditional medicines for diureticum to cure urolithiasis. This research was to determine anti lithiasis activity of avocado leaves (Persea americana Mill extract on white male rats nefrolithiasis model induced by ethylene glycol. Ethanol extraction method was used to get extract of avogadro leaves. Twenty adult male white rats were divided into 4 different induction treatments i.e. aquadest, ethylene glycol 0.75% and ammonium chloride 2%, and extract of avocado leaves with different levels of 100 and 300 mg/kg bw respectively. Their body weight was measured daily to determine their growth ratio. And at the end of the trial, the kidney was analyzed its calcium level and inhibitory activity to formation of calcium oxalate crystals. The results showed that the amount of calcium level in the kidney of rats treated with extract of avogadro leaves was significantly decreased than that of rats treated with ethylene glycol 0.75% and ammonium chloride 2% (P < 0.05. The extract avocado leaves as a herbal remedy can be recommended as a phytotherapeutic agent especially for preventive action for urolithiasis diseases.

  18. [Delayed reactions of active avoidance in white rats under conditions of an alternative choice].

    Science.gov (United States)

    Ioseliani, T K; Sikharulidze, N I; Kadagishvili, A Ia; Mitashvili, E G

    1995-01-01

    It was shown that if the rats had been learned and then tested using conventional pain punishment of erroneous choice they were able to solve the problem of alternative choice only in the period of immediate action of conditioned stimuli. If the pain punishment for erroneously chosen compartment had not been applied in animal learning and testing, rats successfully solved the problem of alternative choice even after 5-second delay. Introduction of pain punishment led to the frustration of earlier elaborated delayed avoidance reactions. Analysis of the obtained results allows us to argue that the apparent incapability of white rats for solving the problems of delayed avoidance is caused by simultaneous action of two different mechanisms, i.e., those of the active and passive avoidance rather than short-term memory deficit.

  19. The sub-chronic toxicity of regular White Spirit in rats.

    Science.gov (United States)

    Carrillo, Juan-Carlos; Adenuga, M David; Mckee, Richard H

    2014-10-01

    Hydrocarbon solvents are mostly complex substances (UVCB) with carbon numbers in the range of approximately C5-C20. One of the most common types is a C9-C14 aliphatic solvent containing approximately 20% aromatics and commonly known as White Spirit in Europe and mineral spirits in the US. In previous repeated inhalation toxicity studies, White Spirit was reported to cause minimal systemic effects in most animal species with few effects other than male rat-specific kidney changes at levels up to approximately 2000mg/m(3). In the present study male and female rats were exposed to White Spirit vapors, 6h/day, 5days/week for 13weeks at levels of approximately 2000, 4000, or 8000mg/m(3) to assess the potential for effects at higher exposure levels. All of the rats survived the treatment period. In life observations were largely restricted to acute central nervous system (CNS) effects in the high exposure group. Terminal body weights of high exposure groups animals were significantly below control values. Statistically significant differences in the clinical and hematological observations were small and within normal physiological limits. Weights of some organs including liver, spleen and kidneys were elevated, but microscopic examination indicated that the only pathological effects were changes in the kidneys of the male rats, consistent with an α2u-globulin-mediated process, which is gender and species-specific and not relevant to humans. The overall no observed adverse effect level (NOAEC) was 4000mg/m(3). Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cytotoxic Effects of Ionizing Radiation and Chlorpyrifos on White Rats

    International Nuclear Information System (INIS)

    El-Bahkery, A.M.L.H.

    2014-01-01

    The hazard of accidental exposure to ionizing radiation (IR) and/or neurotoxic insecticides like the organophosphorus insecticide chlorpyrifos (CPF) represent series health problem for human. In the present work, the cytotoxic effects of ionizing radiation and chlorpyrifos on rats were studied where animals were under glutathione (GSH) depletion. Animals were pre-treated with single dose of Buthionine Sulfoximine (BSO) (200 mg/kg body weight, by oral intubation), then treated with high dose of CPF (30 mg/kg body weight) and or exposure to IR (single dose of 6 Gy whole body gamma ray) one hour after BSO treatment. Another groups of animals pertreated with N-acetyl cystiene (NAC) one hour before treated with CPF and/or IR. After 24 hours blood sample, liver and brain were taken and used for estimate the GSH level and the activities of glutathione-stransferase (GST), glutathione reductase (GR), acetyl cholinesterase (AChE), carboxyl esterase (CE), paraoxonase (PON) and arylesterase (AE). Also, native PAGE electrophoresis was undertaken for separating the CE and PON isozymes in plasma, liver and brain. The results indicated that CPF produced no change in GSH level. Whereas, treatment with either BSO or IR, produced decrease in GSH level. NAC restored GSH level near the control level in all treated groups CPF had no effect on GST activity and pretreatment with either BSO or NAC increased GST activity in CPF treated groups. Also, exposure to IR had no effect on GST activity. Whereas, IR in combination with CPF and/or NAC and/or BSO produced inhibition in plasma GST activity and increased liver GST activity. In addition, both CPF and IR had no effect on the activity of GR. Whereas, pre-treatment with either BSO or NAC produced inhibition in plasma and liver GR activity in CPF treated groups. No change had observed in the IR exposed groups. Treatment with CPF inhibited AChE activity in plasma, liver and brain. Whereas, exposure to IR inhibited AChE activity in brain only

  1. EFFECT OF SAPPAN WOOD (Caesalpinnia sappan L EXTRACT ON BLOOD GLUCOSE LEVEL IN WHITE RATS

    Directory of Open Access Journals (Sweden)

    Saefudin Saefudin

    2016-05-01

    Full Text Available Sappan wood or kayu secang (Caesalpinia sappan L. was reported of having medicinal properties, such as natural antioxidant, relieve vomiting of blood, and mix of ingredients for malaria drugs. The research was conducted to study the influence of ethanol extract from sappan wood on blood glucose level of white rats. The study of the blood glucose level in rats was carried out by using glucose tolerance method. It was measured by Refloluxs (Accutrend GC with Chloropropamide 50 mg/200 g BW (Body weight as positive control. The ethanol extracts were used in various concentrations 10, 20, 30, 40 and 50 mg/200 g BW per-oral and was observed every hour, beginning one hour before to 7 hours after the extract being administered. The results showed that treatment of ethanol extract of sappan wood by administer doses gave remarkable effect on the blood glucose level in white rat. It reduced the glucose level in the blood compared to the negative and positive control. Treatment of dose 30 mg/200 g BW gave similar effect to positive controls, while a dose of 50 mg/200 g BW gave lower blood glucose level (93 mg/dl than the positive controls.

  2. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  3. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  4. Particular features of conditioned electrodefensive reflex in white rats on background of constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shust, I.V.; Galantyuk, S.I.; Cheretyanko, Yu.V.

    Study of the influence of magnetic fields upon the higher nervous activity of man and animals has long been attracting the attention of researchers. It is indicated in the literature that magnetic fields inhibit development of conditioned reflexes in planarians, fishes, and mammals. However, there are data of opposite nature as well, indicating accelerated development of the avoidance reflex in animals exposed previously to a magnetic field. Researchers studied formation of a conditioned electrodefensive reflex (CER) in white rats exposed to a constant magnetic field (CMF), and the influence of a vitamin preparation - galascorbin - on formation of the CER in animals exposed to a CMF.

  5. Effect of radon inhalations on certain oxyda-reductive enzymes in adrenols of white rats

    International Nuclear Information System (INIS)

    Robaczynski, J.; Kaplonska, J.; Lozinska, E.

    1974-01-01

    Histochemical investigations were carried out on adrenals of white rats after radon inhalations from inhalers in Swieradow-spa. Increased reactions of oxydo-reductive enzymes: NAD tetrazolium reductase, succinic dehydrogenase and glucose-6-phosphate dehydrogenase were observed in the adrenal cortex, particularly in the zona reticularis which was hypertrophied. Raised activity of oxydo-reductive enzymes in the cells of adrenal cortex evidences increased metabolism in these cells which may reflect increased production of hormones. Finding of stimulation of adrenocortical cells after radon inhalations is of essential importance for explanation of the biological mechanism of action of radon used in balneotherapy. (author)

  6. [Biochemical changes in the placenta of white rats treated with basfungin].

    Science.gov (United States)

    Markova, E

    1976-01-01

    The author carried out experiments on white rats and discussed the role of the placental insufficiency in the perinatal pathology under the action of fungicide basfugine. After administration of the preparation singly at the critical 13th day of embriogenesis and repeatedly during the course of the gestation the author examined biochemically the activity of the following enzymes: glucose-6-phosphatdehydrogenase, lactatdehydrogenase and thermostable alkaline phosphatase. Basfungine, administered in effective teratogenic doses, inhibited the activity of the indicated enzymes in the placenta, manifesting in this way its functional insufficiency, which was most probably the substantial moment in the pathogenesis of the induced anamaly in the fetal development.

  7. toxicological effect of carbamate (methavin) on some biochemical activities in white rats

    International Nuclear Information System (INIS)

    Mohamed, M.M.B.

    2001-01-01

    this work aims to study the toxic effect, which resulted from the direct or indirect exposure to the applied insecticide (methomyl), which was formerly known as lannate, that belongs to carbamate group. this study includes the determination of the effect of the methomyl on some biochemical activities in white rats as well as the changes in some hormonal levels. since the mentioned insecticide used in egypt from many years ago, which necessitated numerous studies on its effect to various organs of the human body by treating some animals which are closely similar to human construction

  8. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes

    Science.gov (United States)

    Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.

    2007-01-01

    Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964

  9. Effects of White Wine Consumption on Weight in Rats: Do Polyphenols Matter?

    Directory of Open Access Journals (Sweden)

    Ana Marija Milat

    2017-01-01

    Full Text Available Introduction. Effects of white wine and the role of wine polyphenols on weight gain in rats of different age were examined in the 4-week-voluntary-consumption trial. Methods and Materials. Biochemically characterized standard (low polyphenols, W and macerated (high polyphenolic content, PW white wines were compared. One- and three-month-old Sprague-Dawley male rats (n=78 were used. Each age group was subdivided into water-only-drinking controls (C, W, and PW-drinking animals. Daily wine and total liquid consumption, food intake, and body weight were measured, and energy intake and feed efficiency index were calculated. Results. In both age categories, wine-drinking animals consumed less food and gained less weight in comparison to C (181 ± 2, 179 ± 6, and 201 ± 5 in younger animals and 32 ± 5, 28 ± 6, and 47 ± 4 grams in older animals, resp., regardless of wine type. Total energy intake was the lowest in PW-drinking animals. Conclusion. Wine-drinking animals gained less weight in comparison to C, regardless of the wines’ polyphenol content. Although our results are indicative of the major role of nonphenolic constituents of the wines (probably ethanol, the modifying role of wine phenolics on weight gain cannot be excluded as the group consuming PW had lower total energy intake than other groups.

  10. Clozapine modifies the differentiation program of human adipocytes inducing browning.

    Science.gov (United States)

    Kristóf, E; Doan-Xuan, Q-M; Sárvári, A K; Klusóczki, Á; Fischer-Posovszky, P; Wabitsch, M; Bacso, Z; Bai, P; Balajthy, Z; Fésüs, L

    2016-11-29

    Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain.

  11. Quantitative changes in adipocyte plasma membrane in response to nutritional manipulations

    International Nuclear Information System (INIS)

    Lewis, D.S.; Masoro, E.J.; Yu, B.P.

    1981-01-01

    The effects of changes in adipocyte size and the effects of nutritional manipulations on the quantity of plasma membrane per adipocyte were investigated. A method for estimating the quantity of plasma membrane was developed based on the specific labeling of adipocyte plasma membrane protein with the nonpermeable labeling agent 125I-labeled diazotized diiodosulfanilic acid. By studying rats (ranging in age from 50 to 125 days) fed a standard laboratory chow or a low fat diet or a high fat diet, a wide range of mean fat cell sizes was obtained. It was found that as the volume of the fat cell increased, the amount of plasma membrane increased in a linear fashion and that this linear relationship had the same slope whether the size of the adipocyte increased slowly with age or rapidly in response to a high fat diet. In contrast, fasting for up to 3 days caused a marked decrease in the mean volume of the adipocytes, but either no change or much less change in the amount of plasma membrane per cell than would have been predicted from the linear relationship between adipocytes, but either no change or much less change in the amount of plasma membrane per cell than would have been predicted form the linear relationship between adipocyte volume and amount of plasma membrane per cell obtained with fed rats, i.e., adipocytes from fasted rats contain more plasma membrane per cell than do fat cells of the same size from fed rats. Neither feeding a high fat diet nor fasting caused detectable changes in the protein and lipid composition of the adipocyte plasma membrane

  12. The Effect of Giving Sago Waste, Shrimp Waste and Its Combination on Cholesterol Level and Growth of White Rat

    OpenAIRE

    Ralahalu, T. N; Kartiarso,; Parakkasi, A; Wiryawan, K. G; Priyanto, R

    2011-01-01

    Cholesterol is very beneficial for the body but it needs attention when its level is increasing in the blood. The objective of the study was to determine cholesterol level and growth rate of white rat fed on ration containing sago waste, shrimp waste and their combinations. Fourty males Spraque dowley rats, aged two months with average body weight was 195.62 g, were randomly assigned to one of ten experimental treatments according to completely randomised design with four replication for each...

  13. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat

    Directory of Open Access Journals (Sweden)

    Brown Marc A

    2006-09-01

    Full Text Available Abstract Chronic consumption of diets high in resistant starch (RS leads to reduced fat cell size compared to diets high in digestible starch (DS in rats and increases total and meal fat oxidation in humans. The aim of the present study was to examine the rate of lipogenesis in key lipogenic organs following a high RS or DS meal. Following an overnight fast, male Wistar rats ingested a meal with an RS content of 2% or 30% of total carbohydrate and were then administered an i.p bolus of 50 μCi 3H2O either immediately or 1 hour post-meal. One hour following tracer administration, rats were sacrificed, a blood sample collected, and the liver, white adipose tissue (WAT, and gastrocnemius muscle excised and frozen until assayed for total 3H-lipid and 3H-glycogen content. Plasma triglyceride and NEFA concentrations and 3H-glycogen content did not differ between groups. In all tissues, except the liver, there was a trend for the rate of lipogenesis to be higher in the DS group than the RS group which reached significance only in WAT at 1 h (p

  14. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Thovhogi, Ntevheleni; Sibuyi, Nicole [Medical Research Council, Diabetes Research Group (South Africa); Meyer, Mervin [University of the Western Cape, Biotechnology Department, DST/Mintek Nanotechnology Innovation Centre (South Africa); Onani, Martin [University of the Western Cape, Chemistry Department (South Africa); Madiehe, Abram, E-mail: amadiehe@csir.co.za [Medical Research Council, Diabetes Research Group (South Africa)

    2015-02-15

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  15. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    International Nuclear Information System (INIS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-01-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats

  16. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Science.gov (United States)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  17. The effects of aqueous extract of white tea on serum antioxidant enzymes in rats exposed to arsenic

    Directory of Open Access Journals (Sweden)

    mohammadhassan rasoulifard

    2015-08-01

    Full Text Available Oxidative stress is a condition is which the biological system's ability to detoxify and eliminate harmful effects of free radicals is not sufficient and oxidative damages to cells or tissues  leads to the development of diseases such as cancer, arteriosclerosis and degenerative changes. Phenolic compounds due to their high antioxidant capacity, have an important role in health and increase the antioxidant defense against oxidative stress. The aim of this study was to evaluate the effect of aqueous extract of white tea on status of antioxidant enzymes (SOD, CAT and GPx, MDA (malondialdehyde and TAC (total antioxidant capacity in rats treated with sodium arsenite. In this study, 32 adult male rats weighing 200-250 g were used in four groups of eight. The first group included healthy normal rats (control group, the second group of rats were treated with sodium arsenite (100 ppm in drinking water the third group of rats were treated with aqueous extract of white tea at a concentration of 1/5%, via gavage, the fourth group of rats were treated with aqueous extract of white tea (1/5% via gavage with sodium arsenite (100 ppm in drinking water. The rats were killed at the end of the 28th day of treatment and blood samples were collected and the antioxidant enzymes of CAT (catalase, SOD (superoxide dismutase, GPx (glutathione peroxidase, and MDA and TAC were measured. The results indicate that the aqueous extract of white tea significantly increased the activities of SOD, GPx, CAT and TAC and decreased   MDA concentration (p

  18. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats.

    Science.gov (United States)

    Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong

    2018-04-18

    Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

  19. The effects of Co60 gamma rays on the absorption of salicylic natrium orally given to white rats

    International Nuclear Information System (INIS)

    Wiharto, Kunto; Kamal, Zainul; Mulyanto; Muryono, H.

    1982-01-01

    The effects of Co 60 gamma rays on the absorption of salicylic natrium orally taken by white rats after being irradiated were studied. Patients treated with radiation used to be given analgesic drugs to elicit pain. Effects of radiation on the physiology of gastrointestinal tracts of such patients are to be studied. Based on this perception some white rats were irradiated with Co 60 gamma rays at the cumulative doses of 500, 750, and 1000 rads which were fractionated to 5 daily doses of 100, 150, and 200 rads. Salicylate concentration in the rat's blood was measured with spectrophotometer. It was found that the greater the radiation dose was given, the less salicylic natrium was absorbed and at a certain dose saturation point happened. (RUW)

  20. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats.

    Science.gov (United States)

    Nunes, Ana R; Alves, Marco G; Tomás, Gonçalo D; Conde, Vanessa R; Cristóvão, Ana C; Moreira, Paula I; Oliveira, Pedro F; Silva, Branca M

    2015-03-14

    Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.

  1. Adipocyte aminopeptidases in obesity and fasting.

    Science.gov (United States)

    Alponti, Rafaela Fadoni; Silveira, Paulo Flavio

    2015-11-05

    This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  3. Immunomodulatory Effectiveness of Aqueous Obat Pahit Extract of Lingga Malay Ethnic on White Rats (Rattus novergicus

    Directory of Open Access Journals (Sweden)

    Fitmawati Fitmawati

    2017-12-01

    Full Text Available Obat pahit has been generally known and believed by Lingga Malay society as anti-aging agent. However, the study of Obat pahit is not scientifically proven. This research was aimed to prove immunomodulatory ability of Obat pahit potion from Lingga, Riau Archipelago. This study used white rats as an animal modelling, and Staphylococcus aureus as bacteria tester. The rats had been treated with aqueous Obat pahit extract from three TMPs on dose scales of 0.09, 0.18 and 0.27 mL/200g of body weight through oral administration for 7 days. Furthermore, on the 8th days, the experiment animals were injected by the preparation of bacteria tester through intraperitoneal administration in the amount of 0.5 mL/200 gram of body weigth and subsequently incubated for 1 hour after the injection. There were 2 observed parameters on this study, i.e efectivity and capacity of phagocytosis by leukocytes. The observation of leukocytes-phagocytocis activity was carried out by making a smear preparat samples of peritoneum fluid from rats. After the observation under microscope on a magnification of 100 times. The result was obtained the Obat pahit from Kalan PMT swere more effective on dose 2, while from SP4 and Linau TMPs were much more effective on dose 1. It is therefore, using these data of the results, the advanced doses scale of this Obat pahit would not be necessary. Obat pahit potion from Malay Lingga Malay Ethnic could become raw materials of immunomodulatory herbal medicine based on traditional knowledge. It also potentially as a standardized herbal.

  4. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  5. Adipocyte differentiation and leptin expression

    DEFF Research Database (Denmark)

    Hwang, C S; Loftus, T M; Mandrup, S

    1997-01-01

    Adipose tissue has long been known to house the largest energy reserves in the animal body. Recent research indicates that in addition to this role, the adipocyte functions as a global regulator of energy metabolism. Adipose tissue is exquisitely sensitive to a variety of endocrine and paracrine ...... of energy intake and expenditure. The hormonal and transcriptional control of adipocyte differentiation is discussed, as is the role of leptin and other factors secreted by the adipocyte that participate in the regulation of adipose homeostasis.......Adipose tissue has long been known to house the largest energy reserves in the animal body. Recent research indicates that in addition to this role, the adipocyte functions as a global regulator of energy metabolism. Adipose tissue is exquisitely sensitive to a variety of endocrine and paracrine......, most notably those of the C/EBP and PPAR families, which combine to regulate each other and to control the expression of adipocyte-specific genes. One such gene, i.e. the obese gene, was recently identified and found to encode a hormone, referred to as leptin, that plays a major role in the regulation...

  6. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function

    Directory of Open Access Journals (Sweden)

    Maude Giroud

    2016-08-01

    Full Text Available Objective: In rodents and humans, besides brown adipose tissue (BAT, islands of thermogenic adipocytes, termed “brite” (brown-in-white or beige adipocytes, emerge within white adipose tissue (WAT after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of this work was to characterize the role of microRNAs in the control of brite adipocyte formation. Methods/Results: Using human multipotent adipose derived stem cells, we identified miR-125b-5p as downregulated upon brite adipocyte formation. In humans and rodents, miR-125b-5p expression was lower in BAT than in WAT. In vitro, overexpression and knockdown of miR-125b-5p decreased and increased mitochondrial biogenesis, respectively. In vivo, miR-125b-5p levels were downregulated in subcutaneous WAT and interscapular BAT upon β3-adrenergic receptor stimulation. Injections of an miR-125b-5p mimic and LNA inhibitor directly into WAT inhibited and increased β3-adrenoceptor-mediated induction of UCP1, respectively, and mitochondrial brite adipocyte marker expression and mitochondriogenesis. Conclusion: Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression. Author Video: Author Video Watch what authors say about their articles Keywords: miR-125b-5p, White adipocyte, Brite adipocyte, Mitochondriogenesis

  7. Toksisitas Ekstrak Daun Sirih Merah pada Tikus Putih Penderita Diabetes Melitus (TOXICITY OF RED BETEL EXTRACT IN DIABETIC WHITE RAT

    Directory of Open Access Journals (Sweden)

    Anak Agung Sagung Kendran

    2013-12-01

    Full Text Available The aim of this research was to study the toxicity of red betel  (Piper crocatum extract in diabeticwhite rat based on ALT and AST activities. This research used 20 male white rats, which randomlydivided into five groups, P1: given only aqua; P2: given alloxan 120mg/kg bw; P3: given alloxan 120 mg/kgbw and red betel leaf extract 50 mg/kg bw; P4: given alloxan 120 mg/kg bw and red betel leaf extract 100mg/kg bw; P5: given alloxan 120 mg/kg bw and glibenclamide suspension 1 mg/kg bw. ALT and ASTactivities were measured by using reflovet plus Machine. The collected data were analyzed by usinganalysis of covariance. The result showed no significant  effect (P>0.05 was observed on giving red betelleaf extract in diabetic white rat for ALT and AST activities.  It can be concluded that red betel leaf extractis potential for diabetic treatment in white rat  and it is not toxic for the rat’s ALT and AST activities.

  8. Taxonomic structure and population level of colon microbial contents in white rats with experimental thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    L.I. Sydorchuk

    2017-08-01

    Full Text Available Background. Production of numerous biologically active compounds and their metabolites by intestinal microflora, interaction with the immune and other systems is of great importance while studying its changes in various diseases, one of which is thyrotoxicosis. So, the purpose of this study was to determine the severity of intestine microbioma disorder in white rats with experimental thyrotoxicosis (ET. Materials and methods. Studies were carried out on 25 mature male white rats (15 — control group, 10 — research group. ET was simulated by intragastric administration of L-thyroxine for 14 days. Under sterile conditions a laparotomy was performed, a section (2–3 cm of the large intestine with its contents was taken. Sterile 0.9% NaCl solution was added to the content. Series of ten-fold dilutions with a concentration of the initial mixture of 10–2 to 10–11 was prepared. From each test tube 0.01 ml was seeded on solid nutrient media with subsequent isolation and identification of microbes according to morphological, tinctorial, cultural and biochemical properties. Results. The results of the study demonstrated that in ET animals the main microbioma is represented by bacteria Bifidobacterium, Lactobacillus, Bacteroides, and also opportunistic enterobacteria (Escherichia, Proteus, Klebsiella, peptococcus, staphylococci and clostridia. This is accompanied by the elimination of Peptostreptococcus, Enterococcus from bacterial biotope and the contamination of K. oxytoca and staphylococci. There was a pronounced deficit of bifidobacteria by 42.81 %, lactobacillus by 22.57 %, normal intestinal bacillus by 16.48 %. By the population level, the coefficient of quantitative dominance and the significance factor, the leading place is occupied by bacteroids, role of which is increased by 21.72 %, and lactobacillus role decreases by 39.31 %, bifidobacteria decreases by 51.48 % and E. coli decreases by 57.49 %. In this case, the role of peptococcus 3

  9. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    Science.gov (United States)

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    OpenAIRE

    Schober, Michelle E.; Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimen...

  11. Evoked bioelectrical activity of efferent fibers of the sciatic nerve of white rats in experimental menopause

    Directory of Open Access Journals (Sweden)

    Rodinsky A.G.

    2016-03-01

    Full Text Available The aim of our work was analysis of the bioelectrical activity of efferent fibers of the sciatic nerve in experimental menopause condition. Experiments were performed on 25 female white rats, divided into experimental and control groups. Menopause was modeled by total ovariohysterectomy. In 120 days after modeling we had recorded evoked action potentials of fibers of isolated ventral root L5 induced by stimulation of sciatic nerve with rectangular pulses. Threshold, chronaxia, latency, amplitude and duration of the action potential (AP were analysed. Refractory phenomenon was investigated by applying paired stimuli at intervals of 2 to 20 ms. In the context of long-term hypoestrogenemy threshold of AP appearance was 55,32±7,69%, chronaxy – 115,09±2,67%, latent period – 112,62±1,74% as compared with the control animals (p<0.01. In conditions of paired stimuli applying the amplitude of response to the testing stimulus in animals with ovariohysterectomy at intervals 3 and 4 ms was 61,25±36,45% and 53,48±18,64% (p<0.05 respectively.

  12. Heating Has No Effect on the Net Protein Utilisation from Egg Whites in Rats

    Directory of Open Access Journals (Sweden)

    Ryosuke Matsuoka

    2017-01-01

    Full Text Available Egg whites (EW are a good source of protein; however, they are typically heated prior to consumption. Therefore, we investigated the effects of different heating conditions on the protein utilisation rate of EW. Male Sprague-Dawley rats (n=36, 198±1 g were divided into six groups and fed American Institute of Nutrition-76 chow containing unheated EW, soft-boiled EW, boiled EW, milk whey protein, soybean protein, or no protein over a 10-day period using pair-feeding. Urine and faeces were sampled daily beginning on day 5 to measure nitrogen content and the net protein utilisation (NPU rate. The soybean protein group had a significantly lower level of food intake and was thus excluded from subsequent analyses. The NPU value was similar among the unheated, soft-boiled, and boiled EW groups (97.5±0.4, 96.5±0.1, and 96.5±0.7, resp.. The EW group values were significantly higher than the whey group values (90.5±1.0. These results show that EW serve as a good source of protein, irrespective of heating.

  13. OXIDATIVE MODIFICATION OF PROTEINS AND GLUTATHIONE SYSTEM IN ADIPOCYTES UNDER DIABETES

    Directory of Open Access Journals (Sweden)

    Ye. V. Shakhristova

    2014-01-01

    Full Text Available Currently, diabetes ranks third in relation to medical and social significance after cardiovascular diseases and cancer and is the leading cause of blindness; it greatly increases the risk of myocardial infarction, coronary heart disease, nephropathy and hypertension in patients with this disorder; therefore clinical and experimental studies aimed at investigation of diabetes emergence and development mechanisms are urgent.The aim of the study was to investigate the status of oxidative modification of proteins and glutathionedependent antioxidant defense system in adipocytes of rats with alloxan diabetes under conditions of oxidative stress.Material and methods. Development of type 1 diabetes was induced in rats by alloxan administration (90 mg/kg of body mass. Adipocytes were obtained from epididymal adipose tissue of rats. The level of carbonyl derivatives of proteins, oxidized tryptophan, bityrosine, general, reduced, oxygenated and protein-bound glutathione, as well as glutathione peroxidase activity in adipocytes of rats was determined.Results. In adipocytes of rats with alloxan diabetes, concentration of carbonyl derivatives of proteins, bityrosine and oxidized tryptophan increased on the background of redox-potential of glutathione system and glutathione peroxidase activity decrease.Conclusion. The obtained data indicate the activation of free-radical oxidation of proteins and reduction of antioxidant defense under conditions of oxidative stress in the adipose tissue of rats with alloxan diabetes; this process plays an important role in pathogenesis of diabetes and its complications development.

  14. Edaravone, a Free Radical Scavenger, Mitigates Both Gray and White Matter Damages after Global Cerebral Ischemia in Rats

    Science.gov (United States)

    Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh

    2012-01-01

    Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the β amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562

  15. The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Seung Hwan, Won

    2008-06-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions : These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn’t exert any effect on lysis of cell membrane in fat tissue.

  16. Different modulation by dietary restriction of adipokine expression in white adipose tissue sites in the rat

    Directory of Open Access Journals (Sweden)

    Esteve Montserrat

    2009-07-01

    Full Text Available Abstract Background White adipose tissue (WAT is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome. Methods Overweight male rats had their food intake reduced a 40% compared with free-feeding controls. On day ten, the rats were killed; circulating glucose, insulin, leptin, adiponectin, triacylglycerols and other parameters were measured. The main WAT sites were dissected: mesenteric, retroperitoneal, epididymal and subcutaneous inguinal, which were weighed and frozen. Later all subcutaneous WAT was also dissected and weighed. Samples were used for DNA (cellularity analysis and mRNA extraction and semiquantitarive RT-PCR analysis of specific cytokine gene expressions. Results There was a good correlation between serum leptin and cumulative WAT leptin gene mRNA, but not for adiponectin. Food restriction reduced WAT size, but not its DNA content (except for epididymal WAT. Most cytokines were correlated to WAT site weight, but not to DNA. There was WAT site specialization in the differential expression (and probably secretion of adipokines: subcutaneous WAT showed the highest concentration for leptin, CD68 and MCP-1, mesenteric WAT for TNFα (and both tissues for the interleukins 1β and 6; resistin was highly expressed in subcutaneous and retroperitoneal WAT. Conclusion Food restriction induced different patterns for mesenteric and the other WAT sites, which may be directly related to both the response to intestine-derived energy availability, and an inflammatory-related response. However, retroperitoneal WAT, and to a lower extent, subcutaneous and epididymal, reacted decreasing the expression of

  17. Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice.

    Science.gov (United States)

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Nio-Kobayashi, Junko; Nakamura, Kyoko; Morimatsu, Masami; Sakaue, Hiroshi; Saito, Masayuki; Kimura, Kazuhiro

    2017-07-27

    We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.

  18. [Plasticity of memory in the brain of white rats after long-term exposure to titanium in drinking water].

    Science.gov (United States)

    Szuliński, S; Strusiński, A

    2001-01-01

    The experiment was conducted on male white rats from breeding base of the National Institute of Hygiene: WIS own breeding. During sixteen months the drinking water with TiCl3 in concentrations 5 and 25 mg/l, what is equivalent respectively 0.45 and 2.25 mg per 1 kg of daily weight of rats, was given the animals. After 3 and 15 months of exposure the rats were taught to differentiate and remember sight effects. The investigation of each cluster of rats, living previously in the same cage, was going non-stop by 24 hours for 5 days. The training was carried on in the special adopted cages making possible to record all correct and incorrect attempts in day long cycle. Percentage indicator, the ratio of mistakes to all number of the attempts, was used for assessment the training effectiveness in each group and the result in intoxicated group were compared with control group. During the whole time of exposition the supplying drinking water with TiCl3 in concentrations 5 and 25 mg/l has not caused changes in rats confirming possibility to evoke disorders of brain memory plasticity.

  19. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.

    Science.gov (United States)

    Jankovic, Aleksandra; Golic, Igor; Markelic, Milica; Stancic, Ana; Otasevic, Vesna; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2015-08-01

    White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold

  20. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats.

    Science.gov (United States)

    Islam, Md Shahidul

    2011-12-15

    White tea (WT) is very similar to green tea (GT) but it is exceptionally prepared only from the buds and young tea leaves of Camelia sinensis plant while GT is prepared from the matured tea leaves. The present study was investigated to examine the effects of a 0.5% aqueous extract of WT in a streptozotocin-induced diabetes model of rats. Six-week-old male Sprague-Dawley rats were divided into 3 groups of 6 animals in each group namely: normal control (NC), diabetic control (DBC) and diabetic white tea (DWT). Diabetes was induced by an intraperitoneal injection of streptozotocin (65 mg/kg BW) in DBC and DWT groups except the NC group. After 4 weeks feeding of 0.5% aqueous extracts of WT, the drink intake was significantly (Pfood intake, body weight gain, serum insulin and fructosamine concentrations were not influenced by the consumption of WT. Data of this study suggest that the 0.5% aqueous extract of WT is effective to reduce most of the diabetes associated abnormalities in a steptozotocin-induced diabetes model of rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures

    Directory of Open Access Journals (Sweden)

    Floriana Rotondo

    2016-11-01

    Full Text Available Background White adipose tissue (WAT is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. Experimental Design Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes were measured. The presence of non-nucleated cells (erythrocytes was also estimated. Results Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70–75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. Conclusions The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the “live cell mass” of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination. These data translate (with

  2. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  3. A role for long-chain acyl-CoA synthetase-4 (ACSL4 in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Killion

    2018-03-01

    , gonadal white adipose tissue (gWAT inflammation, and insulin resistance (IR. Additionally, deficiency of adipocyte ACSL4 expression in mice fed a HFD resulted in increased gWAT adipocyte OCR and whole body energy expenditure (EE. Keywords: Adipocytes, Fatty acid metabolism, Obesity, Arachidonic acid, Polyunsaturated fatty acid

  4. Protective effect of curcumin on experimentally induced arthritic rats: detailed histopathological study of the joints and white blood cell count

    Science.gov (United States)

    Kamarudin, Taty Anna; Othman, Faizah; Mohd Ramli, Elvy Suhana; Md Isa, Nurismah; Das, Srijit

    2012-01-01

    Curcuma longa (turmeric) rhizomes contains curcumin, an active compound which possesses anti-inflammatory effects. Collagen-induced arthritis (CIA) is an accepted experimental animal model of rheumatoid arthritis. The present study aimed to observe the histological changes in the joints of experimental arthritic rats treated with curcumin. Twenty four male Sprague-Dawley (approximately 7 weeks-old) rats were randomly divided into four groups. Three groups were immunized with 150 µg collagen. All rats with established CIA, with arthritis scores exceeding 1, were orally treated with betamethasone (0.5 mg/ml/kg body weight), curcumin (110 mg/ml/kg body weight) or olive oil (1.0 ml/kg body weight) daily, for two weeks. One remaining group was kept as normal control. Treatment with 110 mg/ml/kg curcumin showed significant mean differences in the average white blood cell (WBC) count (pPannus formation scores showed that curcumin supplementation successfully suppressed the pannus formation process that occurred in the articular cartilage of the CIA joints. The mean difference for histological scores for the curcumin group was insignificant compared to the betamethasone treated group. It is concluded that supplementation of curcumin has protective effect on the histopathological and degenerative changes in the joints of CIA rats which was at par with betamethasone. PMID:27366139

  5. Protective effect of curcumin on experimentally induced arthritic rats: detailed histopathological study of the joints and white blood cell count.

    Science.gov (United States)

    Kamarudin, Taty Anna; Othman, Faizah; Mohd Ramli, Elvy Suhana; Md Isa, Nurismah; Das, Srijit

    2012-01-01

    Curcuma longa (turmeric) rhizomes contains curcumin, an active compound which possesses anti-inflammatory effects. Collagen-induced arthritis (CIA) is an accepted experimental animal model of rheumatoid arthritis. The present study aimed to observe the histological changes in the joints of experimental arthritic rats treated with curcumin. Twenty four male Sprague-Dawley (approximately 7 weeks-old) rats were randomly divided into four groups. Three groups were immunized with 150 µg collagen. All rats with established CIA, with arthritis scores exceeding 1, were orally treated with betamethasone (0.5 mg/ml/kg body weight), curcumin (110 mg/ml/kg body weight) or olive oil (1.0 ml/kg body weight) daily, for two weeks. One remaining group was kept as normal control. Treatment with 110 mg/ml/kg curcumin showed significant mean differences in the average white blood cell (WBC) count (pcurcumin supplementation successfully suppressed the pannus formation process that occurred in the articular cartilage of the CIA joints. The mean difference for histological scores for the curcumin group was insignificant compared to the betamethasone treated group. It is concluded that supplementation of curcumin has protective effect on the histopathological and degenerative changes in the joints of CIA rats which was at par with betamethasone.

  6. Effect of chromic γ-irradiation with small doses on candidiasis development in white rats

    International Nuclear Information System (INIS)

    Berchev, K.; Krushkov, Iv.

    1976-01-01

    Rats continuously exposed to 2 rads/day during eight months (cumulative dose of 400 rads) and nonirradiated rats were infected with a candida cells administered intravenously. All the irradiated animals died ten days after infection while only ten per cent of the control animals died for the same period of time. A morphological study has revealed candidiasis in the irradiated rats; changes, mainly in the kidneys, and formation of candidiasis granulomas have been detected in the control animals

  7. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  8. Unravelling hair follicle-adipocyte communication.

    Science.gov (United States)

    Schmidt, Barbara; Horsley, Valerie

    2012-11-01

    Here, we explore the established and potential roles for intradermal adipose tissue in communication with hair follicle biology. The hair follicle delves deep into the rich dermal macroenvironment as it grows to maturity where it is surrounded by large lipid-filled adipocytes. Intradermal adipocytes regenerate with faster kinetics than other adipose tissue depots and in parallel with the hair cycle, suggesting an interplay exists between hair follicle cells and adipocytes. While adipocytes have well-established roles in metabolism and energy storage, until recently, they were overlooked as niche cells that provide important growth signals to neighbouring skin cells. We discuss recent data supporting adipocytes as niche cells for the skin and skin pathologies that may be related to alterations in skin adipose tissue defects. © 2012 John Wiley & Sons A/S.

  9. THE INFLUENCE OF DIFFERENT THYROID STATUS ON ELECTROPHYSIOLOGICAL AND MYOGRAPHICAL PARAMETERS OF SKELETAL MUSCLES CONTRACTION IN WHITE RATS.

    Science.gov (United States)

    Stanishevskaya, T I; Anosov, I P

    In experiments on white rats the character of effect of experimental hyperthyroidism was studied on the skeletal muscle (m. tibialis anterior) of white rats. It is shown that at experimental hyperthyroidism (rectal temperature of 38,5±0,10С) a muscle acquires high functional capabilities. It is shown that the latent period of generation and the time of development of positive wave “М-respones” are (-32%) and (- 22%). The latent period of shortening of muscle diminishes (- 23%) at single contraction. During experimental thyrotoxicosis (rectal temperature of 39,4±0,2 0 С) we observed physiopathological changes in the functional state of skeletal muscle: the lengthening of the latent period of generation of “М-respones” (+21%), an increase in the time of development of positive wave (+54%) and of latent period of shortening of muscle (+14%). It is concluded that in experimental hyperthyroidism and thyrotoxicosis the functional state of skeletal muscle changed in different directions.

  10. Selective Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  11. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  12. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    International Nuclear Information System (INIS)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong; Huang, Ziyang; Wang, Zhenhua

    2010-01-01

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  13. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies.

    Science.gov (United States)

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2017-02-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Direct Evidence of Brown Adipocytes in Different Fat Depots in Children

    Science.gov (United States)

    Rockstroh, Denise; Landgraf, Kathrin; Wagner, Isabel Viola; Gesing, Julia; Tauscher, Roy; Lakowa, Nicole; Kiess, Wieland; Bühligen, Ulf; Wojan, Magdalena; Till, Holger; Blüher, Matthias; Körner, Antje

    2015-01-01

    Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots. PMID:25706927

  15. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    Directory of Open Access Journals (Sweden)

    María del Mar Romero

    Full Text Available Cultured adipocytes (3T3-L1 produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively sustained. Proportionally (with respect to lactate plus glycerol, more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of

  16. The effect of x-irradiation on the implantation and development of the white rat fetus

    International Nuclear Information System (INIS)

    Danius, J.; Bahauddin, R.

    1976-01-01

    X-ray whole body irradiation (200R, exposure dose) was performed on young virgin females of about 4 months old. The female rats, divided into three groups, were treated as follows: Female rats as control (unirradiated = 1Kt): female rats irradiated before mating (RSbK), and female rats irradiated after mating (RSsK). The average number of surviving foetuses at 20 days gestational stage of 1Kt was compared with that of RSbK, and no significant difference was found (P<=0.05) while the difference between the average number of RSsK foetuses compared with that of 1Kt and RSbK was highly significant (P<0.01). A decrease in the average number of surviving foetuses was found in RSsK, although the analysis of variance of all groups, revealed no significant difference (P<=0.05) in the average number of implantations and weight of the foetuses. (author)

  17. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid.

    Science.gov (United States)

    Halvorson, D L; McCune, S A

    1984-11-01

    The compound 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, inhibits fatty acid synthesis, lactate and pyruvate accumulation and CO2 release in isolated rat adipocytes. TOFA stimulates the accumulation of citrate. ATP levels are not lowered by TOFA. In comparison with the natural fatty acid, oleate, TOFA exhibited a much greater inhibitory effect on lipogenesis. TOFyl-CoA formation within intact adipocytes was demonstrated. Although not inhibited by TOFA, acetyl-CoA carboxylase is inhibited by TOFyl-CoA. It is proposed that many of the metabolic effects of TOFA in isolated adipocytes can be explained by TOFyl-CoA inhibition of acetyl-CoA carboxylase. TOFA inhibits glycolysis as a secondary event with the primary event of inhibition of fatty acid synthesis causing an accumulation of citrate which is an inhibitor of phosphofructokinase.

  18. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  19. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    Science.gov (United States)

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  20. Adipocyte glucose transport regulation by eicosanoid precursors and inhibitors

    International Nuclear Information System (INIS)

    Lee, H.C.C.

    1987-01-01

    Glucose uptake and free fatty acid release by adipocytes are increased by catecholamines. The mechanism of the stimulatory action of catecholamines on glucose uptake may be via eicosanoid production from release fatty acids. Rats were fed iso-nutrient diets with high or low safflower oil. After one month, 5 rats per diet group were fed diets with aspirin or without aspirin for 2 days. Isolated adipocytes from epididymal fat pads were incubated at 37 0 C, gassed with 95% O 2 -5% CO 2 in KRB buffer with 3% bovine serum albumin and with or without eicosanoid modifiers; a stimulator (10 -5 M norepinephrine, N), or inhibitors (167 μl of antiserum to prostaglandin E (AntiE) per 1600 μl or 23mM Asp), or combinations of these. At 2-, 5-, and 10-min incubation, samples of incubation mixtures were taken to measure 2-deoxy glucose transport using 3 H-2-deoxy glucose, 14 C-inulin, and liquid scintillation counter

  1. The effect of thyroid hormones on the white adipose tissue gene expression of PAI-1 and its serum concentration

    Directory of Open Access Journals (Sweden)

    C. Biz

    2009-12-01

    Full Text Available Metabolic syndrome is associated with an increased risk of developing cardiovascular diseases and Plasminogen activator inhibitor 1 (PAI-1 overexpression may play a significant role in this process. A positive correlation between adipose tissue gene expression of PAI-1 and its serum concentration has been reported. Furthermore, high serum levels of thyroid hormones (T3 and T4 and PAI-1 have been observed in obese children. The present study evaluates the impact of thyroid hormone treatment on white adipose tissue PAI-1 gene expression and its serum concentration. Male Wistar rats (60 days old were treated for three weeks with T4 (50 µg/day, Hyper or with saline (control. Additionally, 3T3-L1 adipocytes were treated for 24 h with T4 (100 nM or T3 (100 nM. PAI-1 gene expression was determined by real-time PCR, while the serum concentration of PAI-1 was measured by ELISA using a commercial kit (Innovative Research, USA. Both the serum concentration of PAI-1 and mRNA levels were similar between groups in retroperitoneal and epididymal white adipose tissue. Using 3T3-L1 adipocytes, in vitro treatment with T4 and T3 increased the gene expression of PAI-1, suggesting non-genomic and genomic effects, respectively. These results demonstrate that thyroid hormones have different effects in vitro and in vivo on PAI-1 gene expression in adipocytes.

  2. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    DEFF Research Database (Denmark)

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana

    2011-01-01

    Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes......); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD......) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required...

  3. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue.

    Science.gov (United States)

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-06-01

    To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.

  4. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents. II. Neurobehavioral effects of white spirit in rat and human

    NARCIS (Netherlands)

    Lammers, J.H.C.M.; Emmen, H.H.; Muijser, H.; Hoogendijk, E.M.G.; McKee, R.H.; Owen, D.E.; Kulig, B.M.

    2007-01-01

    To evaluate the neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, studies were conducted which involved inhalation exposure of rats and humans to white spirit (WS). The specific objectives of these studies were to evaluate

  5. The state of glutathion system of blood, brain and liver of white rats after chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Petushok, N.Eh.; Lashak, L.K.; Trebukhina, R.V.

    1999-01-01

    The effects of 3-fold gamma-irradiation in total dose 0,75 Gy on the glutathion system in different periods after exposure (1 hour, 1 day, 1 and 4 weeks) in blood, brain and liver of white rats were studied. It was concluded that liver and brain have higher ability to maintain the stability of antioxidant system than blood has. After shot disturbances caused by irradiation in brain and liver the state of glutathion system of detoxication has normalized, while concentration of malonic dialdehyde was raised in all terms. The most pronounced changes of antioxidant system were registered in blood at early terms (1 hour) after irradiation that was manifested in increasing of reduced glutathion content, raising of glutathion reductase and catalase activity. In remote period the activity of this system in blood was exhausted

  6. Investigations into the locomotor activity of white rats under the effect of 50 Hz high voltage fields

    Energy Technology Data Exchange (ETDEWEB)

    Hilmer, H.; Tembrock, G.

    1970-07-01

    Tests were carried out on white rats to determine the effect of high-voltage 50 Hz ac electric fields on their locomotor activity. Short-term tests showed that, when they were able to choose between a box not subjected to a field (or subjected to a light field) and one exposed to the field, they stayed for only 27% of the time in the "field box". In the long-term tests, when exposed to the field for three hours, the principal activity peak which occurred during the last hour of the test period was shifted by one hour. Exposure to the field resulted in a change in the ratio between activity during darkness and that during periods of light. It seems probable that this ratio, as well as the daily activity pattern, will be subject to certain afer-effects of an exposure to the field lasting several weeks. 13 refs., 2 figs.

  7. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  8. Assessment of changes in energy metabolism parameters provoked by carbon tetrachloride in Wistar rats and the protective effect of white grape juice

    Directory of Open Access Journals (Sweden)

    Tatiane Gabardo

    2015-01-01

    Full Text Available The objective of this study was to evaluate the effect of organic and conventional grape juices consumption on the behavior of rats and their neuroprotective effect on the activity of brain energy metabolism enzymes in different brain areas of adult rats on the experimental model of hepatic encephalopathy. Male Wistar rats (90-days-old were treated once a day with conventional or organic white grape juice by gavage for 14 days (7 μL/g. On the 15th day the rats received carbon tetrachloride (CCl4 in a single dose of 3.0 mL/kg. Cerebral cortex, hippocampus and cerebellum were dissected to measure the activity of creatine kinase (CK and pyruvate kinase (PK. No changes in feeding behavior were observed after the treatment with the grapes juices. However, there was an increase in grooming behavior in the open field test provoked by both juices. CCl4 inhibited CK activity in cerebral cortex and hippocampus of the rats and CCl4 also reduced PK activity in all brain structures studied. Furthermore, both white grape juices prevented the decrease in the activity of CK and PK. Therefore, we can suggest that organic and conventional white grape juices could restore the activity of enzymes with a central role in brain energy metabolism.

  9. Effect of acute and chronic moderate red or white wine consumption on fasted and postprandial lipemia in the rat.

    Science.gov (United States)

    Daher, Costantine F; Slaiby, Rita; Haddad, Najib; Boustany, Karim; Baroody, George M

    2006-06-01

    The effects of acute and chronic (10 wk) red or white wine consumption on fasted and postprandial lipemia in the rat model are reported. Fasted rats, in the acute study, were loaded intragastrically with 5 ml of an olive oil emulsion (30% w/v) in the presence or absence of wine (8% v/v ethanol), and either mesenteric lymph or blood was collected 3 h postprandially. Animals in the chronic study received either red or white wine in drinking water for a period of 10 wk (3% v/v ethanol). Blood samples were collected from animals in either the fasted state or after fat-wine loading. Postprandially, wine delayed gastric emptying, reduced lymph triacylglycerol (TAG) secretion concomitantly with increased number and decreased chylomicron (CM) size, and increased plasma TAG and CM concentrations. Phospholipid and cholesterol contents of CM, but not very-low-density lipoprotein (VLDL), were increased, indicating enhanced liver bile secretion; however, a significant increase in plasma VLDL concentration was observed. In the chronic study, a wine-fat load resulted in increased high-density lipoprotein (HDL) cholesterol concentration and less pronounced postprandial hypertriglyceridemia and hyperchylomicronemia. In the fasted state, plasma TAG and total apolipoprotein B concentrations were not modified in these animals, and an increase in HDL and a decrease in low-density lipoprotein (LDL)/HDL cholesterol ratios were observed. No liver function or intestinal lipid absorption impairment was observed. In conclusion, unlike binge drinking, chronic moderate wine consumption appears to have a cardioprotective effect in the fasted state, an effect attenuated by the observed temporary postprandial hyperchylomicronemia and hypertriglyceridemia resulting from a direct effect of alcohol on CM size and number.

  10. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Neal X., E-mail: xuechen@iupui.edu [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); O’Neill, Kalisha; Akl, Nader Kassis [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Moe, Sharon M. [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Roudebush VA Medical Center, Indianapolis, IN (United States)

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  11. Dynamics of Adipocyte Turnover in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  12. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  13. The Effect of Honey on Plasma Malondialdehyde (MDA Level onAlloxan-Induced hyperglycemic Rats An Experimental studies in rats Galur Wistar White Males

    Directory of Open Access Journals (Sweden)

    Bela Risqiyani Fajrilah

    2013-12-01

    Full Text Available Malondialdehyde (MDA is the end product of lipid peroxidation and a marker of free radicals. Honey is a safe sweetener proven to lower blood glucose level and contains flavonoids, vitamin A, C, E as a source of antioxidant that can capture free radicals. This study aims to determine the effect of honey on plasma MDA level ionalloxan-induced hyperglycemicrats. This was an experimental study with post-test only control group design conducted for 25 days using 18 white male Wistar rats divided into 3 groups randomly. A negative control group, group B were given honey orally at the dose of 0.54 ml/mice/day, and group C were given honey orally at the of dose 0.9 ml/head/day. Each group consisted of 6 rats. Blood plasma MDA was evaluated by Thiobarbituric Acid Reactive Substance (TBARS test assay. One way ANOVA analysis test followed post hoc were applied for data analysis. The results showed that mean levels of MDA in group A, B, and C were 6.02 mmol/l ± 0.36, 4.37 mmol/± 0.30, and 1.12 mmol/l ± 0.11 respectively. Bivariate analysis One way ANOVA test showed a significant difference (p<0,05. Post hoc tests showed a significant differences between the study groups (p<0,05. It can be concluded that honey had an effect on the levels of malondialdehyde (MDA in the blood plasma of alloxan-induced hyperglycemic rats.

  14. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    Science.gov (United States)

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p RUN20 (p RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  15. Deficits in Docosahexaenoic Acid Accrual during Adolescence Reduce Rat Forebrain White Matter Microstructural Integrity: An in vivo Diffusion Tensor Imaging Study.

    Science.gov (United States)

    McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M

    2018-01-01

    Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.

  16. The Effect of Ethanol Intoxication on the Spectral Characteristics for Blood Components of White Rats

    OpenAIRE

    Korobova O.; Dudok T.; Trach I.; Moroz O.; Vlokh I.; Vlokh R.

    2003-01-01

    The present paper is devoted to studying, with the aid of different organic dyes, the transmittance spectra of hemoglobin and immunoglobulin G extracted from the blood of laboratory rats, which have been chronically intoxicated with ethanol. The differences in the spectra are detected, when compare with those for the control group. It is shown that the presence of ethanol in blood probably leads to uncoiling partially the hemoglobin molecules. The essential difference is also found in the tra...

  17. Changes in proinflammatory cytokines and white matter in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    Yang P

    2015-03-01

    Full Text Available Ping Yang,1 Zhenyong Gao,1 Handi Zhang,1 Zeman Fang,1 Cairu Wu,1 Haiyun Xu,1,2 Qing-Jun Huang1 1Mental Health Center, 2Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies. Keywords: cytokines, depression, myelination, oligodendrocytes, stress 

  18. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  19. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function

    Directory of Open Access Journals (Sweden)

    Julien Bricambert

    2016-12-01

    Full Text Available Objective: The goal of the study was to investigate the role of histone deacetylases (HDACs in adipocyte function associated with obesity and hypoxia. Methods: Total proteins and RNA were prepared from human visceral adipose tissues (VAT of human obese and normal weight subjects and from white adipose tissue (WAT of C57Bl6-Rj mice fed a normal or high fat diet (HFD for 16 weeks. HDAC activity was measured by colorimetric assay whereas the gene and protein expression were monitored by real-time PCR and by western blotting, respectively. RNA interference (RNAi was used to silence the expression of genes in 3T3-L1 adipocytes. Results: Total HDAC activity was decreased in VAT and WAT from obese individuals and from mice fed a HFD, respectively. The HDAC activity reduction was associated with decreased HDAC5/Hdac5 and HDAC6/Hdac6 expression in human and mice adipocyte fraction. Similarly, hypoxia hampered total Hdac activity and reduced the expression of Hdac5 and Hdac6 in 3T3-L1 adipocytes. The decrease of both Hdac5 and Hdac6 by hypoxia was associated with altered expression of adipokines and of the inducible cAMP early repressor (Icer, a key repressor that is defective in human and mice obesity. Silencing of Icer in adipocytes reproduced the changes in adipokine levels under hypoxia and obesity, suggesting a causative effect. Finally, modeling the defect of the two Hdacs in adipocytes by RNAi or selective inhibitors mimicked the effects of hypoxia on the expression of Icer, leading to impairment of insulin-induced glucose uptake. Conclusion: Hdac5 and Hdac6 expression are required for the adequate expression of Icer and adipocyte function. Altered adipose expression of the two Hdacs in obesity by hypoxia may contribute to the development of metabolic abnormalities. Keywords: Histone deacetylases, Adipocytes, Adipokines, Obesity, Insulin resistance

  20. The Effect of Bangpungtongsung-san Extracts on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Sang Min, Lee

    2008-03-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Bangpungtongsung-san extracts on the preadipocytes proliferation, of 3T3-L1 cell line. lipolysis of adipocytes in rat's epididymis and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish 3T3-L1 proliferation and lipogenesis do primary role to reduce obesity. So, 3T3-L1 preadipocyte and adipocytes were performed on cell cultures, and using Sprague-Dawley rats for the lipogenesis, and treated with 0.01-1 ㎎/㎖ Bangpungtongsung-san Extracts depend on concentrations. Porcine skin including fat tissue after treated Bangpungtongsung-san Extracts by means of the dosage dependent variation are investigated the histologic changes after injection of these extracts. Results : Following results were obtained from the 3T3-L1 preadipocyte proliferation and lipolysis of adipocyte in rats and histologic investigation of fat tissue. 1. Bangpungtongsung-san extracts were showed the effect of decreased preadipocyte proliferation on the high dosage(1.0㎎/㎖. 2. Bangpungtongsung-san extracts were showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the high dosage(1.0㎎/㎖ and Specially, alcohol extract of Bangpungtongsung -san was clear as time goes by high concentration. 3. Bangpungtongsung-san extracts were showed tries to compare the effect of lipolysis, alcohol extract of Bangpungtongsung-san on the high dosage(1.0㎎/㎖ was observed the effect is higher than water extract. 4. Investigated the histological changes in porcine fat tissue after treated Bangpungtongsung-san extracts, we knew that water extract of Bangpungtongsung-san was showed the effect of lipolysis on the high dosage(10.0㎎/㎖ and alcohol extract of Bangpungtongsung-san was showed significant activity to the lysis of cell membranes in all concentration. Conclusion : These results suggest that Bangpungtongsung-san extracts efficiently

  1. Cellular origins of cold-induced brown adipocytes in adult mice.

    Science.gov (United States)

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment. © FASEB.

  2. Adipocytes Impair Efficacy of Antiretroviral Therapy

    Science.gov (United States)

    Couturier, Jacob; Winchester, Lee C.; Suliburk, James W.; Wilkerson, Gregory K.; Podany, Anthony T.; Agarwal, Neeti; Chua, Corrine Ying Xuan; Nehete, Pramod N.; Nehete, Bharti P.; Grattoni, Alessandro; Sastry, K. Jagannadha; Fletcher, Courtney V.; Lake, Jordan E.; Balasubramanyan, Ashok; Lewis, Dorothy E.

    2018-01-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. PMID:29630975

  3. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  4. The absence of 2,3-diphosphoglycerate from myocytes, hepatocytes and adipocytes.

    Science.gov (United States)

    Reddy, W J; Burns, A H

    1976-04-23

    Myocytes, hepatocytes and adipocytes were prepared from heart, liver and epididymal fat pad of the rat. No detectable level of 2,3-diphosphoglycerate was found. Evidence is also presented which indicates the absence from these cells of 2,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase. Previous findings by others of the presence of 2,3-diphosphoglycerate and 2,3-diphosphoglycerate mutase probably resulted from erythrocytes sequestered in the tissue.

  5. Activity of retinene palmitasynthetase and retinene palmitatehydrolase in the small intestine mucosa and membranes of its cells in white rats affected by A-avitaminosis and irradiation

    International Nuclear Information System (INIS)

    Leutskij, K.M.; Sovtysik, D.D.

    1977-01-01

    A combined action of A-avitaminosis and ionizing radiation on the activity of retinenepalmitatesynthetase and retinenepalmitatehydrolase in the small intestine mucosa and cell membranes of white rats has been investigated. The activity of retinenepalmitatehydrolase has been shown to decrease in the irradiated animals deficient in vitamin A as compared to the control nonirradiated animals. The activity of retinenepalmitatesynthetase affected by a combination of A-avitaminosis and irradiation increases as compared to the control nonirradiated rats both in the small intestine mucosa and its cell membranes

  6. Lipasin/betatrophin is differentially expressed in liver and white adipose tissue without association with insulin resistance in Wistar and Goto-Kakizaki rats.

    Science.gov (United States)

    Cahová, M; Habart, D; Olejár, T; Berková, Z; Papáčková, Z; Daňková, H; Lodererova, A; Heczková, M; Saudek, F

    2017-05-04

    Lipasin is a recently identified lipokine expressed predominantly in liver and in adipose tissue. It was linked to insulin resistance in mice and to type 1 and type 2 diabetes (T1D, T2D) in humans. No metabolic studies concerning lipasin were performed yet in rats. Therefore, we used rat model of T2D and insulin resistance, Goto-Kakizaki (GK) rats, to determine changes of lipasin expression in liver and in white adipose tissue (WAT) over 52 weeks in the relation to glucose tolerance, peripheral tissue insulin sensitivity and adiposity. GK rats were grossly glucose intolerant since the age of 6 weeks and developed peripheral insulin resistance at the age of 20 weeks. Expression of lipasin in the liver did not differ between GK and Wistar rats, declining with age, and it was not related to hepatic triacylglycerol content. In WAT, the lipasin expression was significantly higher in Wistar rats where it correlated positively with adiposity. No such correlation was found in GK rats. In conclusion, lipasin expression was associated neither with a mild age-related insulin resistance (Wistar), nor with severe genetically-based insulin resistance (GK).

  7. Comparison of rat connective tissue reaction to two types of foreign and Iranian white Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Vosough Hosseini S.

    2008-11-01

    Full Text Available "nBackground and Aim: Three Dimensional obturation of root canal is one of the main goals of root canal therapy to preserve health or reach the regeneration or healing of periapical tissues. Root end filling materials are used in numerous situations to reach the mentioned goals. One of the common root end- filling materials is mineral trioxide aggregate (MTA which the foreign and Iranian ones are different in their prices. The aim of this study was to compare the rat connective tissue reaction to Iranian and foreign MTA. "nMaterials and Methods: This was an animal study in which 40 rats were divided into 5 groups of each 8. The polyethylene tubes filled with foreign (Pro Root MTA and Iranian (Root MTA white MTA and were implanted in subcutaneous connective tissue. Similarly, the empty tubes were inserted in subcutaneous connective tissue as control group. The samples were examined histologically after 7, 14, 30, 60 and 90 days and were scored as followings: 0, was characterized to samples without inflammatory cells; without inflammatory reaction 1, for samples with less than 25 inflammatory cells; mild inflammatory reaction. 2, for samples with 25 to 125 inflammatory cells; moderate inflammatory reaction and 3, for ones with more than 125 inflammatory cells; severe inflammatory reaction. The data were analyzed using Kruskal-Wallis test and p<0.05 was considered as the level of significance. "nResults: In general, inflammatory reactions were reduced in all groups. Experimental groups had moderate to severe inflammation in the 7th day which had significant difference with the control group having mild to moderate inflammation (p=0.04. There was not any significant differences between experimental and control group in 14th, 30th, 60th and 90th days (p>0.05. "nConclusion: Based on the findings of this investigation, inflammatory subcutaneous connective tissue reaction to Iranian (Root MTA and foreign (Pro Root MTA MTA was the same.

  8. Proteomic Identification of Target Proteins of Thiodigalactoside in White Adipose Tissue from Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Hilal Ahmad Parray

    2015-06-01

    Full Text Available Previously, galectin-1 (GAL1 was found to be up-regulated in obesity-prone subjects, suggesting that use of a GAL1 inhibitor could be a novel therapeutic approach for treatment of obesity. We evaluated thiodigalactoside (TDG as a potent inhibitor of GAL1 and identified target proteins of TDG by performing comparative proteome analysis of white adipose tissue (WAT from control and TDG-treated rats fed a high fat diet (HFD using two dimensional gel electrophoresis (2-DE combined with MALDI-TOF-MS. Thirty-two spots from a total of 356 matched spots showed differential expression between control and TDG-treated rats, as identified by peptide mass fingerprinting. These proteins were categorized into groups such as carbohydrate metabolism, tricarboxylic acid (TCA cycle, signal transduction, cytoskeletal, and mitochondrial proteins based on functional analysis using Protein Annotation Through Evolutionary Relationship (PANTHER and Database for Annotation, Visualization, Integrated Discovery (DAVID classification. One of the most striking findings of this study was significant changes in Carbonic anhydrase 3 (CA3, Voltage-dependent anion channel 1 (VDAC1, phosphatidylethanolamine-binding protein 1 (PEBP1, annexin A2 (ANXA2 and lactate dehydrogenase A chain (LDHA protein levels between WAT from control and TDG-treated groups. In addition, we confirmed increased expression of thermogenic proteins as well as reduced expression of lipogenic proteins in response to TDG treatment. These results suggest that TDG may effectively prevent obesity, and TDG-responsive proteins can be used as novel target proteins for obesity treatment.

  9. γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots

    International Nuclear Information System (INIS)

    LoPachin, Richard M.; Jortner, Bernard S.; Reid, Maria L.; Das, Soma

    2003-01-01

    A quantitative analytical method was used to measure myelinated axon morphometric parameters (e.g., axon area, ratio of axon area/fiber area, and index of circularity) in rat nervous tissue during intoxication with 2,5-hexanedione (HD). Parameters were assessed in nerve roots (dorsal and ventral) and in ascending (gracile fasciculus and spinocerebellar tract) and descending (corticospinal and rubrospinal tracts) spinal cord white matter tracts (L4-L5) of rats intoxicated with HD at two different daily dose-rates (175 or 400 mg HD/kg/day, gavage). For each dose-rate, tissue was sampled at four neurological endpoints: unaffected, slight, moderate, and severe toxicity, as determined by gait analysis and measurements of grip strength. Results indicate that, regardless of the HD dose-rate, axon atrophy (reduced axon area) was a widespread, abundant effect that developed in concert with neurological deficits. The atrophy response occurred contemporaneously in both ascending and descending spinal tracts, which suggests that loss of caliber developed simultaneously along the proximodistal axon axis. In contrast, swollen axons were a numerically small component and were present in nerve roots and spinal tracts only during subchronic intoxication at the lower HD dose-rate (i.e., 175 mg/kg/day). Intoxication at the higher dose-rate (400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. These observations in conjunction with our previous studies of HD-induced peripheral neuropathy (Toxicol. Appl. Pharmacol. 135 (1995) 58; and Toxicol. Appl. Pharmacol. 165 (2000) 127) indicate that axon atrophy, and not axonal swelling, is a primary neuropathic phenomenon

  10. Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats.

    Science.gov (United States)

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-10-10

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  11. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-10-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR. Though brown rice (BR and germinated brown rice (GBR have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  12. [Functional morphology of the submandibular salivary glands of white rats during aging involution].

    Science.gov (United States)

    Rybakova, M G

    1979-12-01

    Functional morphology of different zones of submandibular glands of albino rats was studied quantitatively with due regard for the stages of neuroendocrine system involution. It is shown that function of salivary glands during ageing is not altered; cyclic fluctuations with estral cycle phases are maintained similarly to those in young animals. But the basal level of proteins and mucopolysaccharides is reduced, their mean levels being equal to the minimal level in young animals. On the other hand, activation of enzymes responsible for energy and transport processes takes place and their relationships change. The data obtained prove the relationship between salivary and endocrine glands and confirm the viewpoint that in early age involution disintegration occurs between different parameters of the functional activity of salivary glands rather than there take place changes in their function.

  13. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    Science.gov (United States)

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  14. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  15. TIME COURSE ALTERATIONS OF SATELLITE CELL EVENTS IN RESPONSE TO LIGHT MODERATE ENDURANCE TRAINING IN WHITE GASTROCNEMIUS MUSCLE OF THE RAT

    Directory of Open Access Journals (Sweden)

    Zong-Yan Cai

    2012-01-01

    Full Text Available This study investigated satellite cells and their related molecular events adapted to light moderate endurance training in the white gastrocnemius muscle of the rat. The white gastrocnemius muscle of male Sprague-Dawley rats that had been trained for 4 weeks and 8 weeks, with control rats being analysed alongside them, was selected for analysis (n=3 per group. The training protocol consisted of treadmill running at 20 m · min-1 for 30 min on a 0% grade, for 3 days · week-1. Immunohistochemical staining coupled with image analysis was used for quantification. To provide deeper insight into the cell layer, 40 sections per rat, corresponding to 120 values per group, were obtained as a mean value for statistical comparison. The results indicated that at week 4, training effects increased the vascular endothelial growth factor (VEGF content and c-met positive satellite cell numbers. At week 8, the training effect was attenuated for VEGF and c-met satellite cell numbers, but it increased in the muscle fibre area. Additionally, c-met positive satellite cell numbers correlated with VEGF content (r = 0.79, p<0.05. In conclusion, this study suggests that light moderate endurance training could stimulate satellite cell activation that might be related to VEGF signalling. Additionally, the satellite cells activated by moderate endurance training might contribute to slight growth in myocytes.

  16. Swimming intervention mitigates HFD-induced obesity of rats through PGC-1α-irisin pathway.

    Science.gov (United States)

    Yang, X-Q; Yuan, H; Li, J; Fan, J-J; Jia, S-H; Kou, X-J; Chen, N

    2016-05-01

    Irisin, a newly discovered myokine, can drive the browning of white adipocytes to control body weight or mitigate obesity progression through regulating energy metabolism. However, the underlying mechanisms or specific signal pathways of exercise-induced irisin on the management of obesity are still unclear. Totally 30 rats were subjected to high fat diet (HFD) feeding for 8 weeks to establish the rat model with obesity successfully. HFD-induced obese model rats were provided with 8 weeks swimming intervention at moderate intensity for exploring the treatment of obesity through exercise intervention. In addition, another 15 rats were subjected to HFD feeding coupled with total 16 weeks swimming intervention at a moderate intensity from the beginning of the experiment, which was used for exploring the prevention of obesity through exercise intervention. Blood and gastrocnemius samples were harvested from obese rats after swimming intervention to explore its specific signal pathways through ELISA analysis and Western blotting. HFD feeding of rats for 8 weeks could lead to the obesity due to the disorders of lipid metabolism. Totally 8 weeks swimming intervention at moderate intensity for rats with obesity could obviously alleviate the progression of obesity and 16 weeks swimming intervention from the beginning of the experiment could significantly inhibit the development of obesity. Meanwhile, swimming intervention could result in an increased phosphorylation of AMPK and up-regulation of irisin and PGC-1α as the biomarkers of energy metabolism. Exercise intervention can activate PGC-1α-dependent irisin to induce the browning of white adipocytes, thus inhibiting or alleviating the occurrence and development of obesity.

  17. Adipocytes and abdominal aortic aneurysm: Putative potential role of adipocytes in the process of AAA development.

    Science.gov (United States)

    Kugo, Hirona; Moriyama, Tatsuya; Zaima, Nobuhiro

    2018-01-15

    Background Adipose tissue plays a role in the storage of excess energy as triglycerides (TGs). Excess fat accumulation causes various metabolic and cardiovascular diseases. It has been reported that ectopic fat deposition and excess TG accumulation in non-adipose tissue might be important predictors of cardiometabolic and vascular risk. For example, ectopic fat in perivascular tissue promotes atherosclerotic plaque formation in the arterial wall. Objective Recently, it has been reported that ectopic fat (adipocyte) in the vascular wall of an abdominal aortic aneurysm (AAA) is present in both human and experimental animal models. The pathological significance of adipocytes in the AAA wall has not been fully understood. In this review, we summarized the functions of adipocytes and discussed potential new drugs that target vascular adipocytes for AAA treatment. Result Previous studies suggest that adipocytes in vascular wall play an important role in the development of AAA. Conclusion Adipocytes in the vascular wall could be novel targets for the development of AAA therapeutic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Adipocyte Versus Pituitary Leptin in the Regulation of Pituitary Hormones: Somatotropes Develop Normally in the Absence of Circulating Leptin

    Science.gov (United States)

    Odle, Angela K.; Haney, Anessa; Allensworth-James, Melody; Akhter, Noor

    2014-01-01

    Leptin is a cytokine produced by white fat cells, skeletal muscle, the placenta, and the pituitary gland among other tissues. Best known for its role in regulating appetite and energy expenditure, leptin is produced largely by and in proportion to white fat cells. Leptin is also important to the maintenance and function of the GH cells of the pituitary. This was shown when the deletion of leptin receptors on somatotropes caused decreased numbers of GH cells, decreased circulating GH, and adult-onset obesity. To determine the source of leptin most vital to GH cells and other pituitary cell types, we compared two different leptin knockout models with Cre-lox technology. The global Lep-null model is like the ob/ob mouse, whereby only the entire exon 3 is deleted. The selective adipocyte-Lep-null model lacks adipocyte leptin but retains pituitary leptin, allowing us to investigate the pituitary as a potential source of circulating leptin. Male and female mice lacking adipocyte leptin (Adipocyte-lep-null) did not produce any detectable circulating leptin and were infertile, suggesting that the pituitary does not contribute to serum levels. In the presence of only pituitary leptin, however, these same mutants were able to maintain somatotrope numbers and GH mRNA levels. Serum GH trended low, but values were not significant. However, hypothalamic GHRH mRNA was significantly reduced in these animals. Other serum hormone and pituitary mRNA differences were observed, some of which varied from previous results reported in ob/ob animals. Whereas pituitary leptin is capable of maintaining somatotrope numbers and GH mRNA production, the decreased hypothalamic GHRH mRNA and low (but not significant) serum GH levels indicate an important role for adipocyte leptin in the regulation of GH secretion in the mouse. Thus, normal GH secretion may require the coordinated actions of both adipocyte and pituitary leptin. PMID:25116704

  19. The brown adipocyte differentiation pathway in birds: An evolutionary road not taken

    Science.gov (United States)

    Mezentseva, Nadejda V; Kumaratilake, Jaliya S; Newman, Stuart A

    2008-01-01

    Background Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. Results We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs) with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-γ (PPARγ), and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1α, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. Conclusion These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat. PMID:18426587

  20. Control of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysiology or Therapy

    Directory of Open Access Journals (Sweden)

    Xiuquan eMa

    2015-01-01

    Full Text Available Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots has physiological and pathophysiological significance in view of the different functions of these depots. Brown or beige fat [BAT] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity and glucose tolerance; conversely expanded visceral fat [VAT] is associated with insulin resistance, low grade inflammation, dyslipidaemia and cardiometabolic risk. The largest depot, subcutaneous white fat [WAT], has important beneficial characteristics including storage of lipid out of harms way and secretion of adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid oxidation, energy utilisation, enhanced insulin action and an anti-inflammatory role. The absence of these functions in lipodystrophies leads to major metabolic disturbances. An ability to expand WAT adipocyte differentiation would seem an important defence mechanism against the detrimental effects of energy excess and limit harmful accumulation of lipid in ectopic sites, such as liver and muscle.Adipocyte differentiation involves a transcriptional cascade with PPARg being most important in WAT but less so in VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly specific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of Islet1 requires further study. Basic control of differentiation is similar in BAT but important differences include the effect of PGC-1a on mitochondrial biosynthesis and upregulation of UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype.Modulation of the capacity or function of these different adipose tissue depots, by altering adipocyte differentiation or other means, holds promise for interventions that can be helpful in human disease, particularly cardiometabolic disorders associated with the world wide explosion of

  1. The Therapeutic Potential of Brown Adipocytes in Humans

    Directory of Open Access Journals (Sweden)

    Craig ePorter

    2015-10-01

    Full Text Available Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking.As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole body energy expenditure. Brown adipose tissue (BAT is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP. UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent re-discovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans, and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translation step for this early promise to be realized.

  2. Colloidal gold-labeled insulin complex. Characterization and binding to adipocytes.

    Science.gov (United States)

    Moll, U M; Thun, C; Pfeiffer, E F

    1986-01-01

    Biologically active insulin gold complex was used as an ultrastructural marker to study insulin binding sites, uptake, and internalization in isolated rat adipocytes. The preparation conditions for monodispersed particles, ca. 16 nm in diameter and loaded with approximately 100 insulin molecules, are reported. The complex is stable for at least six weeks. Single particles or small clusters were scattered across the cell membrane. The distribution of unbound receptors seemed to be independent of the extensive system of pre-existing surface connected vesicles in adipocytes. The uptake of particles took place predominantly via non-coated pinocytotic invaginations; clathrin-coated pits did not seem to be important for this process. Lysosome-like structures contained aggregates of 10-15 particles. These data suggest that insulin gold complex is a useful marker for the specific labeling of insulin binding sites.

  3. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  4. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  5. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  1. Effect on the content of n-acetylaspartate, total creatine, choline containing compounds, and lactate in the hippocampus of rats exposed to aromatic white spirit for three weeks measured by NMR spectroscopy

    DEFF Research Database (Denmark)

    Steensgaard, A; Ostergaard, G; Jensen, C V

    1996-01-01

    parameters in vivo, and to examine the same subjects repeatedly over time. NMR spectroscopy was used to study the effects of organic solvents in rats. Rats were exposed to 0, 400 ppm, or 800 ppm of aromatic white spirit 6 hr/day, 7 days/week for 3 weeks. During the first week, the rats showed signs...... of irritation of mucous membranes, and appeared to be sedated. Both types of effect gradually diminished during the second week. The rats were examined by single volume of interest (VOI) NMR spectroscopy. N-acetylaspartate, creatinine and phosphocreatinine, and choline containing compounds were measured...

  2. Effects of total saponins from Trillium tschonoskii rhizome on grey and white matter injury evaluated by quantitative multiparametric MRI in a rat model of ischemic stroke.

    Science.gov (United States)

    Li, Manzhong; Ouyang, Junyao; Zhang, Yi; Cheng, Brian Chi Yan; Zhan, Yu; Yang, Le; Zou, Haiyan; Zhao, Hui

    2018-04-06

    Trillium tschonoskii rhizome (TTR), a medicinal herb, has been traditionally used to treat traumatic brain injury and headache in China. Although the potential neuroprotective efficacy of TTR has gained increasing interest, the pharmacological mechanism remains unclear. Steroid saponins are the main bioactive components of the herb. To investigate the protective and repair-promoting effects of the total saponins from TTR (TSTT) on grey and white matter damages in a rat model of middle cerebral artery occlusion (MCAO) using magnetic resonance imaging (MRI) assay. Ischemic stroke was induced by MCAO. TSTT and Ginaton (positive control) were administered orally to rats 6h after stroke and daily thereafter. After 15 days of treatment, the survival rate of each group was calculated. We then conducted neurological deficit scores and beam walking test to access the neurological function after ischemic stroke. Subsequently, T2-weighted imaging (T2WI) and T2 relaxometry mapping were performed to measure infarct volume and grey and white matter integrity, respectively. Moreover, diffusion tensor imaging (DTI) was carried out to evaluate the grey and white matter microstructural damage. Additionally, arterial spin labelling (ASL) - cerebral blood flow (CBF) and magnetic resonance angiography (MRA) images provided dynamic information about vascular hemodynamic dysfunction after ischemic stroke. Finally, haematoxylin and eosin (HE) staining was carried out to evaluate the stroke-induced pathological changes in the brain. The survival rate and neurological behavioural outcomes (Bederson scores and beam walking tests) were markedly ameliorated by TSTT (65mg/kg) treatment within 15 days after ischemic stroke. Moreover, T2WI and T2 relaxometry mapping showed that TSTT (65mg/kg) significantly reduced infarct volume and attenuated grey and white matter injury, respectively, which was confirmed by histopathological evaluation of brain tissue. The results obtained from DTI showed that

  3. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    Science.gov (United States)

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy. PMID:26628950

  4. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Science.gov (United States)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  5. Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Hye-Ryung Choi

    Full Text Available Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role of dual-specificity phosphatase 10 (DUSP10 in brown adipocyte differentiation using primary brown preadipocytes.The expression of DUSP10 increased continuously after the brown adipocyte differentiation of mouse primary brown preadipocytes, whereas the phosphorylation of p38 was significantly upregulated at an early stage of differentiation followed by steep downregulation. The overexpression of DUSP10 induced a decrease in the level of p38 phosphorylation, resulting in lower lipid accumulation than that in cells overexpressing the inactive mutant DUSP10. The expression levels of several brown adipocyte markers such as PGC-1α, UCP1, and PRDM16 were also significantly reduced upon the ectopic expression of DUSP10. Furthermore, decreased mitochondrial DNA content was detected in cells expressing DUSP10. The results obtained upon treatment with the p38 inhibitor, SB203580, clearly indicated that the phosphorylation of p38 at an early stage is important in brown adipocyte differentiation. The effect of the p38 inhibitor was partially recovered by DUSP10 knockdown using RNAi.These results suggest that p38 phosphorylation is controlled by DUSP10 expression. Furthermore, p38 phosphorylation at an early stage is critical in brown adipocyte differentiation. Thus, the regulation of DUSP10 activity affects the efficiency of brown adipogenesis. Consequently, DUSP10 can be used as a novel target protein for the regulation of obesity.

  6. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  7. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    International Nuclear Information System (INIS)

    Smiley, R.M.; Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J.

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with 32 PO 4 in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the β-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M r 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the α-2 agonist clonidine. Epinephrine, a combined α and β agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the α-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes

  8. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy.

    Science.gov (United States)

    Robles, Hero; Park, SungJae; Joens, Matthew S; Fitzpatrick, James A J; Craft, Clarissa S; Scheller, Erica L

    2018-01-27

    Unlike white and brown adipose tissues, the bone marrow adipocyte (BMA) exists in a microenvironment containing unique populations of hematopoietic and skeletal cells. To study this microenvironment at the sub-cellular level, we performed a three-dimensional analysis of the ultrastructure of the BMA niche with focused ion beam scanning electron microscopy (FIB-SEM). This revealed that BMAs display hallmarks of metabolically active cells including polarized lipid deposits, a dense mitochondrial network, and areas of endoplasmic reticulum. The distinct orientations of the triacylglycerol droplets suggest that fatty acids are taken up and/or released in three key areas - at the endothelial interface, into the hematopoietic milieu, and at the bone surface. Near the sinusoidal vasculature, endothelial cells send finger-like projections into the surface of the BMA which terminate near regions of lipid within the BMA cytoplasm. In some regions, perivascular cells encase the BMA with their flattened cellular projections, limiting contacts with other cells in the niche. In the hematopoietic milieu, BMAT adipocytes of the proximal tibia interact extensively with maturing cells of the myeloid/granulocyte lineage. Associations with erythroblast islands are also prominent. At the bone surface, the BMA extends organelle and lipid-rich cytoplasmic regions toward areas of active osteoblasts. This suggests that the BMA may serve to partition nutrient utilization between diverse cellular compartments, serving as an energy-rich hub of the stromal-reticular network. Lastly, though immuno-EM, we've identified a subset of bone marrow adipocytes that are innervated by the sympathetic nervous system, providing an additional mechanism for regulation of the BMA. In summary, this work reveals that the bone marrow adipocyte is a dynamic cell with substantial capacity for interactions with the diverse components of its surrounding microenvironment. These local interactions likely contribute to

  9. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  10. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  11. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  12. Combined fetal inflammation and postnatal hypoxia causes myelin deficits and autism-like behavior in a rat model of diffuse white matter injury.

    Science.gov (United States)

    van Tilborg, Erik; Achterberg, E J Marijke; van Kammen, Caren M; van der Toorn, Annette; Groenendaal, Floris; Dijkhuizen, Rick M; Heijnen, Cobi J; Vanderschuren, Louk J M J; Benders, Manon N J L; Nijboer, Cora H A

    2018-01-01

    Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism-spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple-hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long-term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism-like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  13. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-11-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (Pspinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (Pspinal cord gives some positive effects for the regeneration of the white matter.

  14. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (PMRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some

  15. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    Science.gov (United States)

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  16. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    Science.gov (United States)

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  17. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe W.; Murk, Albertinka J.; Gils-Kok, van Dieuwertje; Steegenga, Wilma T.

    2017-01-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what

  18. Metabolic cooperativity between epithelial cells and adipocytes of mice

    International Nuclear Information System (INIS)

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from [ 14 C]glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations

  19. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  20. White Bean seeds and Pomegranate peel and fruit seeds as hypercholesterolemic and hypolipidemic agents in albino rats

    Directory of Open Access Journals (Sweden)

    Abdel-Rahim, E. A.

    2013-03-01

    Full Text Available This study was carried out to evaluate the effects of soaked white bean seeds, pomegranate seeds and dried peels and their mixtures on the lipid profiles of rats suffering from hyperlipidemia and hypercholesterolemia. The chemical compositions of dried soaked beans and pomegranate (seeds and peels were determined on dry matter which amounted to good values for proteins, lipids, crude fiber and phenols. Also, the phenol contents of pomegranate seeds and peels showed 16 compounds varying in amount between them. It was noticed that catechin and phenol are the dominating compounds. The obtained results showed a good hypolipidemic ability for soaked bean seeds and pomegranate (seeds, peels and their mixtures as well as their mixtures. A bean seeds diet produced a general improvement in the clinical status of blood lipid profile (total lipids, triglycerides, cholesterol, HDL-c, LDL-c and VLDL-c, liver function (ALT, AST and bilirubin, kidneys function (uric acid, urea and creatinine, blood lipid peroxidation and antioxidant enzymes (SOD and CAT by which hyperlipidemia and hypercholesterolemia were reduced. The mixed diet had the best influence concerning biological studies than the other treatments which used bean seeds and pomegranate (seeds and peels alone.

    Se ha llevado a cabo un estudio para evaluar los efectos de las semillas de alubias blancas y de las de granadas así como de sus cáscaras secas y sus mezclas sobre los perfiles de lípidos de ratas que sufren de hiperlipidemia e hipercolesterolemia. La composición química de las alubias blancas y de las granadas (semillas y cáscaras fue determinada en base a materia seca alcanzando una buena relación de proteínas, lípidos, fibra cruda y fenoles. Además, el contenido de fenoles de las semillas y las cáscaras de granada mostraron 16 compuestos que varían en cantidad entre ellos. Se observó que la catequina y los fenoles son los compuestos predominantes. Los resultados obtenidos

  1. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP- 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Vicente Castrejón-Tellez

    2016-07-01

    Full Text Available Uncoupling proteins (UCPs are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS. We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV and quercetin (QRC. We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression.

  2. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  3. Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption

    DEFF Research Database (Denmark)

    Winther, Sally; Isidor, Marie Sophie; Basse, Astrid Linde

    2018-01-01

    During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated kn......During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using si...... of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely...... on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways....

  4. Inflames of confined space-hypoxia syndrome on riboflavin and its coenzymes content in white rat tissues

    OpenAIRE

    Федорко, Наталія Леонідівна; Прокоф’єва, Наталія Юріївна; Келар, Анастасія Едуардівна; Петров, Сергій Анатолійович

    2015-01-01

    During confined space-hypoxia syndrome it is observed a significant increase of riboflavin in all organs of rats, but more in the heart and brain. High level of flavin adenine dinucleotide is observed in rat liver and kidney, and significant increase of flavin mononucleotide is observed only in the brain. The data reflect the metabolism of riboflavin under conditions of confined space-hypoxia syndrome, and change of the flavin content in the bodies of animals indicates different compensatory ...

  5. Protective effect of curcumin on experimentally induced arthritic rats: detailed histopathological study of the joints and white blood cell count

    OpenAIRE

    Kamarudin, Taty Anna; Othman, Faizah; Mohd Ramli, Elvy Suhana; Md Isa, Nurismah; Das, Srijit

    2012-01-01

    Curcuma longa (turmeric) rhizomes contains curcumin, an active compound which possesses anti-inflammatory effects. Collagen-induced arthritis (CIA) is an accepted experimental animal model of rheumatoid arthritis. The present study aimed to observe the histological changes in the joints of experimental arthritic rats treated with curcumin. Twenty four male Sprague-Dawley (approximately 7 weeks-old) rats were randomly divided into four groups. Three groups were immunized with 150 ?g collagen. ...

  6. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    Science.gov (United States)

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  8. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines.

    Directory of Open Access Journals (Sweden)

    Bao G Vu

    Full Text Available BACKGROUND: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. METHODOLOGY/PRINCIPAL FINDINGS: Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to

  9. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    Science.gov (United States)

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    (BBB) open field locomotor score than rats in group 1 (Groups 2 and 3=18.2 and 19.4 points, respectively, after 28 days vs. Group 1=13.6 points; p=.015). Rats in Group 4 scored no better than those in Group 1 (BBB=16.4). Motor evoked potential (MEP) recordings revealed a strong trend towards significant improvement in latency measurements in all treatment groups compared with controls at 28 days, although three animals in Group 1 and two animals in Group 3 were not recordable. Histological examination demonstrated significantly more spared white matter in the same groups that correlated with the improvements in BBB scores and MEP latencies. Immunohistochemical analysis showed the survival, proliferation and migration of the transplanted cells, as well as the induction of proliferating endogenous neural precursor cells in animals treated with Shh. These findings suggest that the transplantation of oligodendrocyte precursors may improve axonal conduction and spinal cord function in the injured spinal cord. The benefits seem more pronounced with the addition of Shh, and the addition of Shh alone results in the proliferation of an endogenous population of neural precursor cells.

  10. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.

    Science.gov (United States)

    Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna

    2018-04-06

    Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. DiabetterTM Reduces Post Meal Hyperglycemia Via Enhancement Of Glucose Uptake Into Adipocytes And Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis

    2014-01-01

    Currently, there are lots of herbal products available in local markets that are used for treatment of diabetes mellitus. Most of these products are not standardized and lack of efficacy and safety data. DiaBetterTM is one of the local herbal products that have been used for treatment of diabetes. This study was carried out to determine the efficacy of DiaBetterTM in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. Antihyperglycemic evaluation was done in normal and streptozotocin-induced diabetic rats at different prandial states and the antihyperglycemic mechanisms elucidation was carried out in muscle and adipocytes cells using glucose tracer method (2-deoxy-[1-3H]-glucose). The results showed that DiaBetterTM significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetterTM significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54-fold (p<0.01) and 1.46-fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetterTM was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity activity of DiaBetterTM was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetterTM suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that DiaBetterTM can be used as dietary adjunct for the treatment of type 2 diabetes mellitus which related to insulin resistance. (author)

  18. Relation of soya bean meal level to the concentration of plasma free amino acids and body growth in white rats.

    Science.gov (United States)

    Mandal, Tapas K; Parvin, Nargish; Mondal, Santanu; Saxena, Vijaylaxmi; Saxena, Ashok K; Sarkar, Sabyasachi; Saha, Mitali

    2012-04-01

    Amino acid (AA) levels in plasma and body growth were determined in rats (n20) fed diets with different soya bean meal levels. Free AA in plasma was determined by reversed-phase high-pressure liquid chromatography. We have used four levels of protein diets like 8%, 15%, 23% and 35% in this trial. Rats which were fed the low-protein (8%) diet with low percentage of soya bean meal were found to be growth-retarded. The body weight gain of high protein group (35%) was lower than that of the 23% groups. In the rats fed with the low-soya bean meal diet, some nonessential AA (NEAA) in plasma like asparagine, aspartic acid, cysteine, glutamic acid and serine increased, whereas the essential AA (EAA), with the exception of arginine, methionine and valine decreased. Here, plasma EAA-to-NEAA ratios were not correlated to growth and experimental diet. We hypothesize that AA metabolism is associated to changes in growth in rats on different protein intake. This study has showed the sensitivity of body mass gain, feed intake, feed conversion rate of rats to four levels of protein in the diet under controlled experimental conditions. © 2011 Blackwell Verlag GmbH.

  19. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  20. Exploration of the cytotoxic effects of an insecticide, lambda cyhalothrine, on sexual exocrine function in the white rat.

    Science.gov (United States)

    Lebaili, N; Saadi, L; Mosbah, R; Mechri, N

    2008-01-01

    Many xenobiotiques (solvents, pesticides, metals heavy.....) are suspected to be responsible for the fall of the male and female fertility. The purpose of this work is to study the insecticide impact, Lambda-cyhalothrine, managed by oral way during 7 days on the rat testicles histology. Wistar rats were given distilled water (controls) or containing 15,383 mg/kg or 23,075 mg/kg of Lambda-cyhalothrine. The exposure to this insecticide induced an increase in the diameters of the seminiferous tubes. The histological of the seminiferous tubes revealed deteriorations of the germinatif epithelium: blocking of the spermatogenesis, presence of the apoptotic cells and absence of the spermatozoids in certain lumens. All these histological alterations constitute a signs of cytotoxicity of Lambda-cyhalothrine on the male fertility in the Wistar rat.

  1. Effects of Epigallocatechin-3-Gallate on Autophagic Lipolysis in Adipocytes

    Directory of Open Access Journals (Sweden)

    Sang-Nam Kim

    2017-06-01

    Full Text Available Previous studies demonstrated effects of green tea on weight loss; however, green tea-induced modulation of adipocyte function is not fully understood. Here, we investigated effects of the major green tea phytochemical, epigallocatechin-3-gallate (EGCG on triglyceride contents, lipolysis, mitochondrial function, and autophagy, in adipocytes differentiated from C3H10T1/2 cells and immortalized pre-adipocytes in vitro. EGCG reduced the triglycerol content significantly in adipocytes by 25%, comparable to the nutrient starvation state. EGCG did not affect protein kinase A signaling or brown adipocyte marker expression in adipocytes; however, EGCG increased autophagy, as measured by autophagy flux analysis and immunoblot analysis of LC3B, ATG7, and Beclin1. EGCG treatment reduced mitochondrial membrane potential by 56.8% and intracellular ATP levels by 49.1% compared to controls. Although mammalian target of rapamycin signaling was not upregulated by EGCG treatment, EGCG treatment induced AMP-activated protein kinase phosphorylation, indicating an energy-depleted state. In addition, EGCG increased the association between RAB7 and lipid droplets, suggesting that lipophagy was activated. Finally, knockdown of Rab7 attenuated the EGCG-dependent reduction in lipid contents. Collectively, these results indicated that EGCG upregulated autophagic lipolysis in adipocytes, supporting the therapeutic potential of EGCG as a caloric restriction mimetic to prevent obesity and obesity-related metabolic diseases.

  2. Female adipocyte androgen synthesis and the effects of insulin

    Directory of Open Access Journals (Sweden)

    David Cadagan

    2014-01-01

    Full Text Available The metabolic syndrome is a cluster of metabolic disorders characterized by insulin resistance and hyperinsulinaemia, and its presence can increase the risk of cardiovascular disease significantly. The metabolic syndrome is associated with increased circulating androgen levels in women, which may originate from the ovaries and adrenal glands. Adipocytes are also able to synthesise steroid hormones, and this output has been hypothesised to increase with elevated insulin plasma concentrations. However, the contribution of the adipocytes to the circulating androgen levels in women with metabolic syndrome is limited and the effects of insulin are not fully understood. The aim of this study was to investigate the presence of steroid precursors and synthetic enzymes in human adipocyte biopsies as markers of possible adipocyte androgen synthesis. We examined pre and mature adipocytes taken from tissue biopsies of abdominal subcutaneous adipose tissue of participating women from the Department of Obstetrics and Gynaecology, of the Royal Derby Hospital. The results showed the potential for localised adipocyte androgen synthesis through the presence of the androgen precursor progesterone, as well as the steroid-converting enzyme 17α-hydroxylase. Furthermore, we found the controlled secretion of androstenedione in vitro and that insulin treatment caused levels to increase. Continued examination of a localised source of androgen production is therefore of clinical relevance due to its influence on adipocyte metabolism, its negative impact on female steroidogenic homeostasis, and the possible aggravation this may have when associated to obesity and obesity related metabolic abnormalities such as hyperinsulinaemia.

  3. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  4. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  5. Inflames of confined space-hypoxia syndrome on riboflavin and its coenzymes content in white rat tissues

    Directory of Open Access Journals (Sweden)

    Наталія Леонідівна Федорко

    2015-08-01

    Full Text Available During confined space-hypoxia syndrome it is observed a significant increase of riboflavin in all organs of rats, but more in the heart and brain. High level of flavin adenine dinucleotide is observed in rat liver and kidney, and significant increase of flavin mononucleotide is observed only in the brain. The data reflect the metabolism of riboflavin under conditions of confined space-hypoxia syndrome, and change of the flavin content in the bodies of animals indicates different compensatory processes

  6. PMN Leukocytes and Fibroblasts Numbers on Wound Burn Healing on the Skin of White Rat after Administration of Ambonese Plantain Banana

    Directory of Open Access Journals (Sweden)

    Juniarti

    2012-04-01

    Full Text Available A study of ambonese plantain banana (Musa paradisiaca var sapientum Lamb treatment in burn wound healing on the skin of white rats (Rattus novergicus has been conducted. The wound healing of burn injuries was evaluated by counting the number of PMN leukocytes and fibroblasts at the 7th, 14th, and 21st days following the treatment. The study showed that the decrease in number of PMN leukocytes of subjects treated with ambonese plantain banana was relatively more significant compared to both negative and positive control (Bioplacenton ®. In contrast, an increasing number of fibroblasts was significantly demonstrated at the 14th and 21st days after treatment. In conclusion, ambonese plantain banana treatment in burn injuries will provide better results compared to both positive and negative controls.

  7. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  8. Adipocyte-Macrophage Cross-Talk in Obesity.

    Science.gov (United States)

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  9. Respiratory activity variations induced in groups of LD 12:12 synchronized Sprague-Dawley rats by a 100 dB white noise emitted at 12-h intervals.

    Science.gov (United States)

    Stupfel, M; Molin, D; Thierry, H; Busnel, M C

    1980-01-01

    A white noise is emitted during 2 h, either in the middle of the scotoperiod (activity period) or of the photoperiod (rest period), on grouped specific pathogen free (SPF) male Sprague-Dawley rats, LD 12:12 synchronized by light (L = 6 h = 150 lux). Continuous measurements of VCO2, taken as an index of respiratory activity shows: 1. a short increase both after the beginning and the end of the stimulus, with slight time length differences between young and older rats; 2. a slight (2-3%) continued increase during the photoperiod and a high decrease (13%) during the scotoperiod. These VCO2 variations obtained during and after the white noise emission correspond to measurements of activity displacement and observations of behavior performed on a small sample of rats.

  10. Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women.

    Directory of Open Access Journals (Sweden)

    Agné Kulyté

    Full Text Available Although the mechanisms linking obesity to insulin resistance (IR and type 2 diabetes (T2D are not entirely understood, it is likely that alterations of adipose tissue function are involved. The aim of this study was to identify new genes controlling insulin sensitivity in adipocytes from obese women with either insulin resistant (OIR or sensitive (OIS adipocytes. Insulin sensitivity was first determined by measuring lipogenesis in isolated adipocytes from abdominal subcutaneous white adipose tissue (WAT in a large observational study. Lipogenesis was measured under conditions where glucose transport was the rate limiting step and reflects in vivo insulin sensitivity. We then performed microarray-based transcriptome profiling on subcutaneous WAT specimen from a subgroup of 9 lean, 21 OIS and 18 obese OIR women. We could identify 432 genes that were differentially expressed between the OIR and OIS group (FDR ≤5%. These genes are enriched in pathways related to glucose and amino acid metabolism, cellular respiration, and insulin signaling, and include genes such as SLC2A4, AKT2, as well as genes coding for enzymes in the mitochondria respiratory chain. Two IR-associated genes, KLF15 encoding a transcription factor and SLC25A10 encoding a dicarboxylate carrier, were selected for functional evaluation in adipocytes differentiated in vitro. Knockdown of KLF15 and SLC25A10 using siRNA inhibited insulin-stimulated lipogenesis in adipocytes. Transcriptome profiling of siRNA-treated cells suggested that KLF15 might control insulin sensitivity by influencing expression of PPARG, PXMP2, AQP7, LPL and genes in the mitochondrial respiratory chain. Knockdown of SLC25A10 had only modest impact on the transcriptome, suggesting that it might directly influence insulin sensitivity in adipocytes independently of transcription due to its important role in fatty acid synthesis. In summary, this study identifies novel genes associated with insulin sensitivity in

  11. An experimental study of the effect of Co-60 irradiation on the healing process of extraction wounds in white rats

    Energy Technology Data Exchange (ETDEWEB)

    You, Young Jun; Ahn, Hyung Kyu [Dept. of Dental Radiology, Graduate School, Seoul National University, Seoul (Korea, Republic of)

    1982-11-15

    Because of the development of rampant caries, osteomyelitis and osteoradionecrosis that occur after radiation therapy of oral cancers, extraction of teeth at or near the malignant lesion has been done in the past. Few, however, have studied the radiation effect on the healing of extraction wounds. The study is concerned with the effect of Co-60 irradiation on the healing process of extraction wounds in rats. Fifty six, male, Sprague-Dawley rats are used. The right first molar of the mandible is extracted from all animals. They are divided into three experimental groups of 14 each and a control group of 14. There experimental groups are irradiated respectively with 200 rad, 400 rad and 600 rad and a pair of rats in each group are killed on days 1, 3, 5, 7, 14, 21 and 28 after irradiation. Two animals from the control group are killed on the day when the experimental rats are killed. The irradiated hemimandibles are fixed in 10% neutral formalin, decalcified in 5% trichloroacetic acid, embedded in paraffin and sectioned. The sections are stained in hematoxylin and eosin, van Gison, Masson's trichrome or silver nitrate. Results show that in general radiation effects on healing extraction wounds are dose dependent; i.e., the higher is the dose, the greater is the histologic changes observed: 1. Irradiation tends to retard blood clot organization and epithelial regeneration. 2. An increase in the number of giant cells and osteoclasts is noted after irradiation. 3. Formation of regenerating connective tissues around and within the extraction site is compromised, and a clear reduction of primitive mesenchymal type connective cells is noted. 4. The healing process begins along the lateral aspect of the extraction socket in the control, while irregular histologic appearances of the trabecular pattern is present in the experimental rats.

  12. [Changes in phospholipids of the brain grey and white matter during in vitro autolysis in rats subjected to acute hypobaric hypoxic hypoxia].

    Science.gov (United States)

    Gribanov, G A; Leshchenko, D V; Golovko, M Iu

    2004-01-01

    The development of autolysis in grey brain matter of albino rats was accompanied by desintegration of aminophospholipids with parallel increase of glycerophosphates (GLP) and phosphatidic acids (PA) on early stages of incubation and lysophospholipids (LPL) on later stages. Acute hypobaric hypoxic hypoxia decreased the level of phosphatidylethanolamines (PE) with simultaneous accumulation of PA. Previous hypoxia altered the character of autolytic reorganizations of phospholipids. Oscillatory reciprocal reorganizations in the system PE > PS (phosphatidylserine) were observed at early stage (1 h) and at late stages of autolysis (24 h). At the same time increased transformation of phosphatidylcholines (PC) into sphingomyelins (SM) with simultaneous accumulation GLP was registered. During autolysis of brain white matter of control rats opposite oscillatory reorganizations of PE, PC, SM, PA with reduction of PE and simultaneous increase of LPL and PA level after 1 hour of incubation were observed. Reciprocal reactions of biotransformation in system PS > PE were revealed at 4th hour. Previous hypobaric hypoxic hypoxia reduced the level of total phospholipids as well as PS at simultaneous increase of LPL. Acute hypobaric hypoxic hypoxia increased autolytic transformations in system PC > SM and induced hydrolysis of PE, PC into LPL at late stages of autolysis.

  13. Altered Functional Connectivity Following an Inflammatory White Matter Injury in the Newborn Rat: A High Spatial and Temporal Resolution Intrinsic Optical Imaging Study

    Directory of Open Access Journals (Sweden)

    Edgar Guevara

    2017-07-01

    Full Text Available Very preterm newborns have an increased risk of developing an inflammatory cerebral white matter injury that may lead to severe neuro-cognitive impairment. In this study we performed functional connectivity (fc analysis using resting-state optical imaging of intrinsic signals (rs-OIS to assess the impact of inflammation on resting-state networks (RSN in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide (LPS or saline injections were administered in postnatal day (P3 rat pups and optical imaging of intrinsic signals were obtained 3 weeks later. (rs-OIS fc seed-based analysis including spatial extent were performed. A support vector machine (SVM was then used to classify rat pups in two categories using fc measures and an artificial neural network (ANN was implemented to predict lesion size from those same fc measures. A significant decrease in the spatial extent of fc statistical maps was observed in the injured group, across contrasts and seeds (*p = 0.0452 for HbO2 and **p = 0.0036 for HbR. Both machine learning techniques were applied successfully, yielding 92% accuracy in group classification and a significant correlation r = 0.9431 in fractional lesion volume prediction (**p = 0.0020. Our results suggest that fc is altered in the injured newborn brain, showing the long-standing effect of inflammation.

  14. The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study.

    Science.gov (United States)

    Salehi, Mohammad Saied; Namavar, Mohammad Reza; Tamadon, Amin; Bahmani, Raziyeh; Jafarzadeh Shirazi, Mohammad Reza; Khazali, Homayoun; Dargahi, Leila; Pandamooz, Sareh; Mohammad-Rezazadeh, Farzad; Rashidi, Fatemeh Sadat

    2017-01-01

    To evaluate the effects of long-term, moderate level noise exposure during crucial periods of rat infants on stereological parameters of medial geniculate body (MGB) and auditory cortex. Twenty-four male offspring of 12 pregnant rats were divided into four groups: fetal-to-critical period group, which were exposed to noise from the last 10 days of fetal life till postnatal day (PND) 29; fetal period group that exposed to noise during the last 10 days of fetal life; critical period group, exposed to noise from PND 15 till PND 29, and control group. White noise at 90 dB for 2 h per day was used. Variance for variables was performed using Proc GLM followed by mean comparison by Duncan's multiple range test. Numerical density of neurons in MGB of fetal-to-critical period group was lower than control group. Similar results were seen in numerical density of neurons in layers IV and VI of auditory cortex. Furthermore, no significant difference was observed in the volume of auditory cortex among groups, and only MGB volume in fetal-to-critical period group was higher than other groups. Estimated total number of neurons in MGB was not significantly different among groups. It seems necessary to prevent long-term moderate level noise exposure during fetal-to-critical neonatal period.

  15. The influence of prolonged gamma irradiation on morpho functional indexes of blood capillaries of ovary in 20-day foetuses white rat

    International Nuclear Information System (INIS)

    Ablekovskaya, O.N.; Amvros'ev, A.P.

    1999-01-01

    It was studied the character and direction of structural transformations of blood capillaries of micro circulatory channel of 20-days white rat foetus in normal conditions and after prolonged action of gamma-radiation in the whole period of embryogenesis (absorbed dose 0,43 Gy).The peculiarities of reactions of hemo capillaries and their cell structure to gamma-rays action in embryogenesis were revealed. It was shown the decrease of diameters of capillaries, diminution of section area of cytoplasm of endotheliocytes, extension of the size of nuclei of these cells. Polyploid endotheliocytes were found in the experimental conditions. Prenatal irradiation in doses leaded to reduction of the number of microvessels and mitochondria in cytoplasm of cells of blood capillaries in ovary of rat foetus. These results revealed that low dose prolonged action of gamma-radiation during the period of embryogenesis changed the morphological parameters of important synthetic, transport and energy processes in capillary cells of ovary in fetal period of ontogenesis

  16. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    Science.gov (United States)

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  17. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    OpenAIRE

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations inst...

  18. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  6. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  7. Functional response of white rats isolated heart to the stimulation of adrenergic receptors after gamma-irradiation in low doses

    International Nuclear Information System (INIS)

    Antonenko, A.N.; Lobanok, L.M.

    1999-01-01

    It was investigated the effects of acute gamma-irradiation on bio mechanical activity of rats heart isolated by Langendorf's method in early and delayed terms after exposure to gamma-rays. Intra ventricle pressure and the rate of its growth, volumetric rate of coronal flow, frequency of heart contraction were registered. Stimulation of alpha-adrenergic receptors was conducted by means of specific agonist mesatone and stimulation of beta-adrenergic receptors was made by means of isoprenaline. The study has shown that acute irradiation of rats caused the decrease of both contractile ability and relaxation of myocardium in a 10 days after exposure. In delayed period bio mechanical activity of isolated heart was restored. Functional response of heart to the stimulation of alpha- and beta-adrenergic receptors was decreased in all terms of investigation

  8. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  9. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    Science.gov (United States)

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  10. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis. We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5. Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.

  11. The Influence of a KDT501, a Novel Isohumulone, on Adipocyte Function in Humans

    Directory of Open Access Journals (Sweden)

    Brian S. Finlin

    2017-09-01

    Full Text Available ObjectiveIn a phase II clinical trial in nine obese, insulin-resistant humans, we observed that treatment with KDT501, a novel isohumulone drug, increased total and high-molecular weight (HMW adiponectin in plasma. The objective was to determine whether KDT501 increased adiponectin secretion from subcutaneous white adipose tissue (SC WAT and the underlying mechanism(s.MethodsNine obese participants with either prediabetes or with normal glucose tolerance plus three features of metabolic syndrome were part of the study. SC WAT biopsies were performed before and after 28 days of KDT501 treatment in a clinical research setting. In addition, a cold stimulus was used to induce thermogenic gene expression. Adiponectin secretion was measured, and gene expression of 130 genes involved in adipose tissue function was determined. The effect of KDT501 on adipocyte mitochondrial function was analyzed in vitro.ResultsSC WAT explants secreted more total and HMW adiponectin after KDT501 treatment (P < 0.05. After KDT501 treatment, a number of genes involved in thermogenesis and lipolysis were induced by cold (P < 0.05. KDT501 also potentiated β-adrenergic signaling (P < 0.001 and enhanced mitochondrial function in adipocytes (P < 0.001.ConclusionKDT501 induced adiponectin secretion posttranscriptionally and increased gene expression of thermogenic and lipolytic genes in response to cold stimulation. These beneficial effects on SC WAT may be explained by the ability of KDT501 to potentiate β-adrenergic signaling and enhance mitochondrial function in adipocytes.Clinical Trial Registrationhttps://www.ClinicalTrials.gov, ID number: NCT02444910.

  12. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    Science.gov (United States)

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  13. The transport of DDT from chylomicrons to adipocytes does not mimic triacylglycerol transport

    Science.gov (United States)

    Kohan, Alison B.; Vandersall, Abbey E.; Yang, Qing; Xu, Min; Jandacek, Ronald J.; Tso, Patrick

    2012-01-01

    Despite being banned in the U.S., organochlorine toxins such as DDT are frequently detected in human adipose tissue. The main route of exposure is through the consumption of contaminated foods and subsequent intestinal packaging of DDT into chylomicrons. These chylomicrons, which also contain dietary triacylglycerol (TG), are delivered directly to peripheral tissues without first being metabolized by the liver. The physiological process by which these compounds are delivered from chylomicrons to adipose is not well understood, but is clinically relevant since it bypasses first-pass metabolism. Based on its highly lipophilic nature, it has been assumed that DDT is transferred to peripheral tissues similar to TG; however, this has not been measured. Here, we use the lymph fistula rat to isolate chylomicrons containing both DDT and TG. These chylomicrons are the in vivo DDT delivery vehicle. Using 3T3-L1 adipocytes, we investigated the rate at which DDT transfers from chylomicrons to adipocytes, and mediators of this process. This novel approach closely approximates the in vivo DDT exposure route. We show that: 1) DDT repartitions from chylomicrons to adipocytes, 2) this transport does not require hydrolysis of TG within the chylomicron, and is stimulated by the inhibition of LPL, 3) albumin does not inhibit DDT uptake, 4) DDT dissolved in DMSO does not appropriately mimic in vivo DDT transport; and most importantly, 5) DDT uptake from chylomicrons does not mimic the uptake of TG from the same particles. Understanding these factors is important for designing interventions for human populations exposed to DDT. PMID:22885168

  14. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  15. The effect of monofluorophosphate implant in white rat mothers towards the level of fluor in the incisors of their young babies (Rattus-rattus

    Directory of Open Access Journals (Sweden)

    Widjijono Widjijono

    2010-06-01

    Full Text Available Background: Fluoride has been widely used in the prevention of dental caries for a long time. To prevent dental caries, fluoride must be induced in low amount at high frequency. Inducing it through implantation process even make slow release of small concentration of fluoride. Purpose: The aim of this research was to analyze whether the induction of monofluorophosphate (MFP implant into the white rat mothers affects the level of fluoride in the incisors of their young babies. Method: The objects of the research were twenty white rat mothers in two days of pregnancy which then were divided into four groups (n=5. First, those mothers have been induced with implant under their back skin until their born young babies in the age of 35 days (n=5. The level of fluoride in the incisors of those young babies then is measured with Potentiometer. The obtained data were finally analyzed with One-Way ANOVA test and continued by with LSD test (p=0.05. Result: The result of this research showed that the means of the fluoride level in the incisors of those babies divided into those four groups in series were about 11956.16±201.35 ppb (K, 27328.04±234.56 ppb (P1, 37267.21±248.86 ppb (P2, and 18103.50±267.11 ppb (P3. The result of ANOVA test then showed that the induction of various MFP implant levels significantly affected the level of fluoride in the incisors of the babies. The mean differences among the treatment groups after being tested with LSD 0.05 were also significant. Conclusion: The finding confirm that the significant increasing of the optimal fluoride retention in the incisors of white rat babies can be achieved with the induction of fluoride with MFP ions implant in about 52.98 mg.Latar belakang: Pencegahan karies gigi menggunakan senyawa fluor telah banyak dilakukan dan berlangsung dalam jangka waktu lama. Pemberian fluor dalam jumlah rendah dan frekuensi tinggi merupakan pemenuhan kebutuhan pencegahan karies gigi. Pemberian dengan cara

  16. Effects of Aluminum Chloride on the some ‎Blood Parameters and Histological Spleen in ‎White Male Rats

    Directory of Open Access Journals (Sweden)

    Shaymaa Abdul Hadi Kadhum

    2017-12-01

    Full Text Available Aluminum exists in numerous produced foods, medicines and likewise added to drinking water for refining purpose. Its existence has so heavily contaminated with the surroundings that exposed to, it is almost inescapable. This survey was aimed at evaluating the possible effects that Aluminum chloride could exposure have in the blood parameters and histopathology of spleen twenty four rats were used and  divided into four groups; “first group  was the control injected with normal saline, group II injected into subcutaneous with (240 ppm from Aluminum chloride (AlCl3,  group III injected with (320 ppm from (AlCl3, group IV injected with (400 ppm from (AlCl3 for 45 days. This study  showed a significant decrease (P<0.05 in red blood cell count, hemoglobin concentration, packed cell volume, mean corpuscular volume and mean corpuscular hemoglobin when compared to control group, while there was a significant increase (P<0.05 in total leucocyte count (TLC and Differential leucocytes count (DLC especially in lymphocyte. The results showed a significant elevated (P<0.05 in ESR value. Changes increased with increase in concentration of Aluminum chloride injected. Observation of blood parameters allows the most rapid detection of changes in wistar rats after the exposure of poisonous(AlCl3”

  17. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  18. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.

    Science.gov (United States)

    Luisa Bonet, M; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2015-04-15

    A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  20. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  1. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  2. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  3. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  4. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    Science.gov (United States)

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  5. Cloning, characterization and expression of Peking duck fatty acid synthase during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Fang Ding

    2014-11-01

    Conclusion: We have successfully cloned and characterized Peking duck FAS. FAS was induced during adipocyte differentiation and by oleic acid treatment. These findings suggest that Peking duck FAS plays a similar role to mammalian FAS during adipocyte differentiation.

  6. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  7. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    Science.gov (United States)

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  8. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life.

    Science.gov (United States)

    Hogsden, Jennifer L; Dringenberg, Hans C

    2009-08-01

    The composition of N-methyl-D-aspartate (NMDA) receptor subunits influences the degree of synaptic plasticity expressed during development and into adulthood. Here, we show that theta-burst stimulation of the medial geniculate nucleus reliably induced NMDA receptor-dependent long-term potentiation (LTP) of field postsynaptic potentials recorded in the primary auditory cortex (A1) of urethane-anesthetized rats. Furthermore, substantially greater levels of LTP were elicited in juvenile animals (30-37 days old; approximately 55% maximal potentiation) than in adult animals (approximately 30% potentiation). Masking patterned sound via continuous white noise exposure during early postnatal life (from postnatal day 5 to postnatal day 50-60) resulted in enhanced, juvenile-like levels of LTP (approximately 70% maximal potentiation) relative to age-matched controls reared in unaltered acoustic environments (approximately 30%). Rats reared in white noise and then placed in unaltered acoustic environments for 40-50 days showed levels of LTP comparable to those of adult controls, indicating that white noise rearing results in a form of developmental arrest that can be overcome by subsequent patterned sound exposure. We explored the mechanisms mediating white noise-induced plasticity enhancements by local NR2B subunit antagonist application in A1. NR2B subunit antagonists (Ro 25-6981 or ifenprodil) completely reversed white noise-induced LTP enhancement at concentrations that did not affect LTP in adult or age-matched controls. We conclude that white noise exposure during early postnatal life results in the maintenance of juvenile-like, higher levels of plasticity in A1, an effect that appears to be critically dependent on NR2B subunit activation.

  9. Further Identification of the Effect of Bradykinin Potentiating Factor Isolated From Scorpion Venom on Irradiated White Rat

    International Nuclear Information System (INIS)

    Hasan, H.F.

    2011-01-01

    Scorpion venom of Androctonus amoreuxi contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effect through enhancing its release and acts as an angiotensin converting enzyme inhibitor (ACEI). Both irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Possible interruption of the RAS with an ACEI induced by BPF isolated from the scorpion, Androctonus amoreuxi venom or the presence of angiotensin II receptor blocker (ARB) losartan and/or γ- radiation were evaluated. The examined parameters included blood erythrocytes count (RBC), total leucocytic count (WBC), haemoglobin content (Hb) and hematocrit value (Hct) as well as, glutathione content (GSH), malondialdehyde (MDA) and advanced oxidative protein product (AOPP) of kidney homogenate besides aldosterone, sodium, potassium, chloride, calcium, urea, creatinine and uric acid levels of serum. A group of rats (70 - 80 gm each) were received i.p. injection of BPIF (1μg / g body wt) twice per week for three weeks, while the other group received i.p. injection of losartan (5μg / g body wt) twice per week for three weeks. γ-Irradiation was performed at a dose level of 4Gy. All animals were examined after an investigation period of 21 days from γ- irradiation. Either BPF or losartan was performed together with irradiation. The results pointed out that irradiation discerned a significant elevation in the level of MDA, AOPP, aldosterone, sodium, urea and creatinine, and a significant drop in the haematological values (RBCs, WBCs, Hb and Hct), GSH, calcium and uric acid. Repeated injections of BPF or losartan had a beneficial result against the deleterious effect of γ- irradiation. The present investigation clarifies comparable effects for treatment of radiation damage to the kidney through RAS by BPF as (ACEI) and losartan as (ARB). The present work adds further identification to the properties of BPF in controlling of radiation damage. Therapeutic agents from

  10. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome.

    Science.gov (United States)

    Henriques, Felipe Santos; Sertié, Rogério Antônio Laurato; Franco, Felipe Oliveira; Knobl, Pamela; Neves, Rodrigo Xavier; Andreotti, Sandra; Lima, Fabio Bessa; Guilherme, Adilson; Seelaender, Marilia; Batista, Miguel Luiz

    2017-05-01

    Cancer cachexia is a multifactorial syndrome characterized by body weight loss, atrophy of adipose tissue (AT) and systemic inflammation. However, there is limited information regarding the mechanisms of immunometabolic response in AT from cancer cachexia. Male Wistar rats were inoculated with 2 × 10 7 of Walker 256 tumor cells [tumor bearing (TB) rats]. The mesenteric AT (MeAT) was collected on d 0, 4, 7 (early stage), and 14 (cachexia stage) after tumor cell injection. Surgical biopsies for MeAT were obtained from patients who had gastrointestinal cancer with cachexia. Lipolysis showed an early decrease in glycerol release in TB d 4 (TB4) rats in relation to the control, followed by a 6-fold increase in TB14 rats, whereas de novo lipogenesis was markedly lower in the incorporation of glucose into fatty acids in TB14 rats during the development of cachexia. CD11b and CD68 were positive in TB7 and TB14 rats, respectively. In addition, we found cachexia stage results similar to those of animals in MeAT from patients: an increased presence of CD68 + , iNOS2 + , TNFα + , and HSL + cells. In summary, translational analysis of MeAT from patients and an animal model of cancer cachexia enabled us to identify early disruption in Adl turnover and subsequent inflammatory response during the development of cancer cachexia.-Henriques, F. S., Sertié, R. A. L., Franco, F. O., Knobl, P., Neves, R. X., Andreotti, S., Lima, F. B., Guilherme, A., Seelaender, M., Batista, M. L., Jr. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. © FASEB.

  11. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects.

    Science.gov (United States)

    Rydén, Mikael; Andersson, Daniel P; Bernard, Samuel; Spalding, Kirsty; Arner, Peter

    2013-10-01

    Human obesity is associated with decreased triglyceride turnover and impaired lipolysis in adipocytes. We determined whether such defects also occur in subjects with only moderate increase in fat mass. Human abdominal subcutaneous adipose tissue was investigated in healthy, nonobese subjects [body mass index (BMI) > 17 kg/m(2) and BMI lean subjects (P = 0.017) with triglyceride T1/2 of 14 and 9 months, respectively (P = 0.04). Triglyceride age correlated positively with BMI (P = 0.002) but not with adipocyte volume (P = 0.2). Noradrenaline-, isoprenaline- or dibutyryl cyclic AMP-induced lipolysis was inversely correlated with triglyceride age (P maintenance of excess body fat.

  12. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    Science.gov (United States)

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  13. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Hyejin Lee

    2016-04-01

    Full Text Available The fruit of Psoralea corylifolia L. (Fabaceae (PC, known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ and CCAAT/enhancer binding protein-α (C/EBPα. Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4 translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  14. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  15. Adipocyte hypertrophy, fatty liver and metabolic risk factors in South Asians: the Molecular Study of Health and Risk in Ethnic Groups (mol-SHARE.

    Directory of Open Access Journals (Sweden)

    Sonia S Anand

    Full Text Available OBJECTIVE: We sought to determine if differences in the distribution and characteristics of adipose tissue between South Asians and white Caucasians account for differences in risk factors for cardiovascular disease. RESEARCH DESIGN AND METHODS: We recruited 108 healthy South Asians (36.8 years and white Caucasians (34.2 years within three BMI strata. Body composition, adipocyte size, abdominal fat area, and hepatic adiposity were assessed and related to fasting glucose, insulin, lipids and adiponectin. RESULTS: After adjustment for age, sex, and BMI, South Asians compared to white Caucasians had higher ln fasting insulin (mean difference (MD: 0.44; 95% CI: 0.20-0.69, lower HDL cholesterol (md: -0.13; 95% CI:-0.26 to -0.01, and lower adiponectin (md: -2.38; 95% CI: -3.59 to -1.17. South Asians also had more body fat (md: 2.69; 95% CI: 0.70 to 4.69, lower lean muscle mass (md: -3.25; 95%CI: -5.35 to -1.14, increased waist to hip ratio (md: 0.03; 95% CI: 0.01-0.05, less superficial subcutaneous abdominal adipose tissue (md: -2.94; 95% CI: -5.56 to-0.32, more deep/visceral to superficial adipose tissue ratio (md 0.34; 95% CI: 0.02 to 0.65, and more liver fat (md: 7.43%; 95% CI: 2.30 to 12.55%. Adipocyte area was increased in South Asians compared to white Caucasians (md: 64.26; 95% CI: 24.3 to 104.1 units(2. Adjustment for adipocyte area attenuated the ethnic differences in insulin (md: 0.22; 95% CI: -0.07 to 0.51, HDL (md: -0.01; 95% CI: -0.16 to 0.13 and adiponectin (md: -1.11; 95% CI: -2.61 to 0.39. Adjustment for differences in adipocyte area and fat distribution attenuated the ethnic difference in liver fat (md: 5.19; 95% CI: 0.31 to 10.06. CONCLUSION: South Asians have an increased adipocyte area compared to white Caucasians. This difference accounts for the ethnic differences in insulin, HDL cholesterol, adiponectin, and ectopic fat deposition in the liver.

  16. The effect of montelukast and antiadhesion barrier solution on the capsule formation after insertion of silicone implants in a white rat model.

    Science.gov (United States)

    Yang, J-D; Kwon, O-H; Lee, J-W; Chung, H-Y; Cho, B-C; Park, H-Y; Kim, T-G

    2013-01-01

    myofibroblast content of the peri-implant capsules around silicone implants in this white rat model. They lowered the expression of the fibrotic mediator, TGF-β, and inhibited the peri-implant capsular fibrosis. Therefore, montelukast and AABS are effective in the reduction of silicone-induced peri-implant capsular formation.

  17. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Directory of Open Access Journals (Sweden)

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  18. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO 2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because

  19. Diabetter"T"M Reduces Post Meal Hyperglycemia Via Enhancement of Glucose Uptake Into Adipocytes and Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Mohd Hishamudin Mohd Jinal; Alqarni Bader Ayed; Shafii Khamis

    2014-01-01

    There are lots of herbal products for diabetes mellitus treatment available in local market. Most of these products are not standardized and lack of efficacy and safety data. DiaBetter"T"M is one of the herbal products that have been used for diabetes treatment. This study was carried out to determine the efficacy of DiaBetter"T"M in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. The results showed that DiaBetter"T"M significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetter"T"M significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54 fold (p<0.01) and 1.46 fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetter"T"M was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity of DiaBetter"T"M was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetter"T"M suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that the DiaBetter"T"M can be used as dietary adjunct for the management of type 2 diabetes mellitus which related to insulin resistance. (Author)

  20. Lipid droplet meets a mitochondrial protein to regulate adipocyte lipolysis

    Science.gov (United States)

    In response to adrenergic stimulation, adipocytes undergo protein kinase A (PKA)-stimulated lipolysis. A key PKA target in this context is perilipin 1, a major regulator of lipolysis on lipid droplets (LDs). A study published in this issue of The EMBO Journal (Pidoux et al, 2011) identifies optic at...

  1. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten

    2005-01-01

    factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease...

  2. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity

    Directory of Open Access Journals (Sweden)

    Gallagher Iain J

    2011-03-01

    Full Text Available Abstract Background Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity. Methods Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white primary murine adipocytes (prior to and following differentiation to yield global profiles of miRNAs. Results We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided. Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p Conclusion In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell in vitro adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of

  3. [The adipocyte in the history of slimming agents].

    Science.gov (United States)

    Franchi, J; Pellicier, F; André, P; Schnebert, S

    2003-07-01

    Nowadays, in industrialised societies, it is fashionable for women to be slim. However, throughout history, this has not always been the case, especially as "cellulite" (cellulitis) was full of typically feminine symbols. The ideal feminine silhouette has changed with the rhythm of cultures. Cellulitis is an inappropriate term used by women to describe curves which they judge to be too plump and not very aesthetic, mostly around the thighs and hips. This lipodystrophy of the adipose tissue represents approximately 25% of a woman's body weight. It is clinically characterised by an "orange peel" skin surface, which is a result of the excessive development of the volume of the adipocytes organised in lobules within the walls of the unstretchable conjunctive tissue. This phenomenon is associated with an insufficiency of the venous tonus and an increase in the capillary permeability, which both contribute to an increase in the infiltration of water in the tissue. In reality, the understanding of cellulite has truly progressed with research based on adipocyte functions. An adipocyte is a metabolically active cell which plays a central role in the control of the energetic balance of the organism. In order to assume this role, it possesses all the enzymatic equipment necessary for synthesis (lipogenesis) and for triglyceride storage, mobilisation and liberation as free fatty acids (lipolysis). During these last few years, as well as this role as an energetic reserve which manages lipogenesis/lipolysis balance, the adipocyte has acquired the status of an endocrine and paracrine cell through the identification of numerous secreted factors. When we look back at the history of slimming products launched on the market since the 1980's, we can notice the role of the adipocyte tool and understand its functions in the choice of active ingredients, the development of complementary actions, the importance of the texture, the evolution of methods used to evaluate the efficacy on

  4. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    Science.gov (United States)

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  5. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    Full Text Available BACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-Apob(100/100. CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.

  6. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  7. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    Science.gov (United States)

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    Science.gov (United States)

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  9. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity.

    Science.gov (United States)

    Walewski, José L; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J; Vasselli, Joseph R; Pomp, Afons; Dakin, Gregory; Berk, Paul D

    2014-07-01

    Microarray studies identified Ch12:orf39 (Spexin) as the most down-regulated gene in obese human fat. Therefore, we examined its role in obesity pathogenesis. Spexin effects on food intake, meal patterns, body weight, respiratory exchange ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with diet-induced obesity (DIO). Its effects on adipocyte [(3)H]-oleate uptake were determined. In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = -0.797) with Leptin. In rats, Spexin (35 µg/kg/day SC) reduced caloric intake ∼32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 µg/kg/day IP) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70 µg/kg/day IP) demonstrated no aversive Spexin effects. Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. Copyright © 2014 The Obesity Society.

  10. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Sara Palacios-Ortega

    2015-07-01

    Full Text Available Background/Aims: Tumor necrosis factor-α (TNF-α-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1 is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days in the presence TNF-α (10 ng/mL and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.

  11. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    Science.gov (United States)

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  12. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.

    Science.gov (United States)

    Nishio, Miwako; Saeki, Kumiko

    2014-01-01

    We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.

  13. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  14. Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2018-04-01

    Full Text Available Long non-coding RNAs (lncRNAs belong to a recently discovered class of molecules proposed to regulate various cellular processes. Here, we systematically analyzed their expression in human subcutaneous white adipose tissue (WAT and found that a limited set was differentially expressed in obesity and/or the insulin resistant state. Two lncRNAs herein termed adipocyte-specific metabolic related lncRNAs, ASMER-1 and ASMER-2 were enriched in adipocytes and regulated by both obesity and insulin resistance. Knockdown of either ASMER-1 or ASMER-2 by antisense oligonucleotides in in vitro differentiated human adipocytes revealed that both genes regulated adipogenesis, lipid mobilization and adiponectin secretion. The observed effects could be attributed to crosstalk between ASMERs and genes within the master regulatory pathways for adipocyte function including PPARG and INSR. Altogether, our data demonstrate that lncRNAs are modulators of the metabolic and secretory functions in human fat cells and provide an emerging link between WAT and common metabolic conditions. Keywords: White adipose tissue, Adipocytes, Long non-coding RNAs, Metabolic traits, Lipolysis, Adiponectin

  15. Transdifferentiation of adipocytes to osteoblasts: potential for orthopaedic treatment.

    Science.gov (United States)

    Lin, Daphne P L; Dass, Crispin R

    2018-03-01

    As both adipocytes and osteoblasts originate from the same pool of mesenchymal stem cells, increasing clinical evidence has emerged of the plasticity between the two lineages. For instance, the downregulation of osteoblast differentiation and upregulation of adipogenesis are common features of conditions such as multiple myeloma, obesity and drug-induced bone loss in diabetes mellitus. However, despite in-vitro and in-vivo observations of adipocyte transdifferentiation into osteoblasts, little is known of the underlying mechanisms. This review summarises the current knowledge of this particular transdifferentiation process whereby the Wnt/β-catenin signalling pathway and Runx2 overexpression have been postulated to play a critical role. Furthermore, due to the possibility of a novel therapy in the treatment of bone conditions, a number of agents with the potential to induce adipo-to-osteoblast transdifferentiation have been investigated such as all-trans retinoic acid, bone morphogenetic protein-9 and vascular endothelial growth factor. © 2018 Royal Pharmaceutical Society.

  16. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  17. Regulation of glycolysis in brown adipocytes by HIF-1α

    DEFF Research Database (Denmark)

    Basse, Astrid L; Isidor, Marie S; Winther, Sally

    2017-01-01

    Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also...... with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes....

  18. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  19. Adipocyte and leptin accumulation in tumor-induced thymic involution.

    Science.gov (United States)

    Lamas, Alejandro; Lopez, Elena; Carrio, Roberto; Lopez, Diana M

    2016-01-01

    Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.

  20. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  1. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    Science.gov (United States)

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  2. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  3. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    Science.gov (United States)

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis.

    Science.gov (United States)

    Bozec, Aline; Hannemann, Nicole

    2016-06-03

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes.

  5. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  6. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Shanshan Gao

    Full Text Available Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.

  7. The adipocyte as an important target cell for Trypanosoma cruzi infection.

    Science.gov (United States)

    Combs, Terry P; Nagajyothi; Mukherjee, Shankar; de Almeida, Cecilia J G; Jelicks, Linda A; Schubert, William; Lin, Ying; Jayabalan, David S; Zhao, Dazhi; Braunstein, Vicki L; Landskroner-Eiger, Shira; Cordero, Aisha; Factor, Stephen M; Weiss, Louis M; Lisanti, Michael P; Tanowitz, Herbert B; Scherer, Philipp E

    2005-06-24

    Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.

  8. Hydrogenated fat intake during pregnancy and lactation caused increase in TRAF-6 and reduced AdipoR1 in white adipose tissue, but not in muscle of 21 days old offspring rats

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Claudia M

    2011-01-01

    Full Text Available Abstract Background Although lipids transfer through placenta is very limited, modification in dietary fatty acids can lead to implications in fetal and postnatal development. Trans fatty acid (TFA intake during gestation and lactation have been reported to promote dyslipidemia and increase in pro- inflammatory adipokines in offspring. The aim of this study was to evaluate whether the alterations on pro-inflammatory cytokines and dyslipidemia observed previously in 21-d-old offspring of rats fed a diet containing hydrogenated vegetable fat during gestation and lactation were related to alterations in TLR-4, TRAF-6 and adipo-R1 receptor in white adipose tissue and muscle. On the first day of gestation, rats were randomly divided into two groups: (C received a control diet, and (T received a diet enriched with hydrogenated vegetable fat, rich in trans fatty acids. The diets were maintained throughout gestation and lactation. Each mother was given eight male pups. On the 21st day of life the offspring were killed. Blood, soleus and extensor digital longus (EDL muscles, and retroperitoneal (RET white adipose tissue were collected. Results 21-d-old of T rats had higher serum triacylglycerols, cholesterol, and insulin. The Adipo R1 protein expression was lower in RET and higher in EDL of T group than C. TLR-4 protein content in all studied tissues were similar between groups, the same was verified in TRAF-6 protein expression in soleus and EDL. However, TRAF-6 protein expression in RET was higher in T than C. Conclusion These results demonstrated that maternal ingestion of hydrogenated vegetable fat rich in TFAs during gestation and lactation decrease in Adipo R1 protein expression and increase in TRAF-6 protein expression in retroperitoneal adipose tissue, but not in skeletal muscle, which could contributed for hyperinsulinemia and dyslipidemia observed in their 21-d-old offspring.

  9. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    Science.gov (United States)

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  10. Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Škugor Stanko

    2010-01-01

    immune pathways were seen throughout adipogenesis. The induction of AP1 (Jun, Fos, which is a master regulator of stress responses, culminated by the end of adipogenesis, concurrent with the maximal observed lipid deposition. Conclusions Our data point to an intimate relationship between metabolic regulation and immune responses in white adipocytes of a cold-blooded vertebrate. Stress imposed on adipocytes by LD formation and expansion is prominently reflected in the ER compartment and the activated UPR response could have an important role at visceral obesity in fish.

  11. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    Science.gov (United States)

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  12. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  13. A Single Bout of Fasting (24 h) Reduces Basal Cytokine Expression and Minimally Impacts the Sterile Inflammatory Response in the White Adipose Tissue of Normal Weight F344 Rats.

    Science.gov (United States)

    Speaker, Kristin J; Paton, Madeline M; Cox, Stewart S; Fleshner, Monika

    2016-01-01

    Sterile inflammation occurs when inflammatory proteins are increased in blood and tissues by nonpathogenic states and is a double-edged sword depending on its cause (stress, injury, or disease), duration (transient versus chronic), and inflammatory milieu. Short-term fasting can exert a host of health benefits through unknown mechanisms. The following experiment tested if a 24 h fast would modulate basal and stress-evoked sterile inflammation in plasma and adipose. Adult male F344 rats were either randomized to ad libitum access to food or fasted for 24 h prior to 0 (control), 10, or 100, 1.5 mA-5 s intermittent, inescapable tail shocks (IS). Glucose, nonesterified free fatty acids (NEFAs), insulin, leptin, and corticosterone were measured in plasma and tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-10 in plasma, and subcutaneous, intraperitoneal, and visceral compartments of white adipose tissue (WAT). In control rats, a 24 h fast reduced all measured basal cytokines in plasma and visceral WAT, IL-1 β and IL-6 in subcutaneous WAT, and IL-6 in intraperitoneal WAT. In stressed rats (IS), fasting reduced visceral WAT TNF- α , subcutaneous WAT IL-1 β , and plasma insulin and leptin. Short-term fasting may thus prove to be a useful dietary strategy for reducing peripheral inflammatory states associated with visceral obesity and chronic stress.

  14. A Single Bout of Fasting (24 h Reduces Basal Cytokine Expression and Minimally Impacts the Sterile Inflammatory Response in the White Adipose Tissue of Normal Weight F344 Rats

    Directory of Open Access Journals (Sweden)

    Kristin J. Speaker

    2016-01-01

    Full Text Available Sterile inflammation occurs when inflammatory proteins are increased in blood and tissues by nonpathogenic states and is a double-edged sword depending on its cause (stress, injury, or disease, duration (transient versus chronic, and inflammatory milieu. Short-term fasting can exert a host of health benefits through unknown mechanisms. The following experiment tested if a 24 h fast would modulate basal and stress-evoked sterile inflammation in plasma and adipose. Adult male F344 rats were either randomized to ad libitum access to food or fasted for 24 h prior to 0 (control, 10, or 100, 1.5 mA-5 s intermittent, inescapable tail shocks (IS. Glucose, nonesterified free fatty acids (NEFAs, insulin, leptin, and corticosterone were measured in plasma and tumor necrosis factor- (TNF- α, interleukin- (IL- 1β, IL-6, and IL-10 in plasma, and subcutaneous, intraperitoneal, and visceral compartments of white adipose tissue (WAT. In control rats, a 24 h fast reduced all measured basal cytokines in plasma and visceral WAT, IL-1β and IL-6 in subcutaneous WAT, and IL-6 in intraperitoneal WAT. In stressed rats (IS, fasting reduced visceral WAT TNF-α, subcutaneous WAT IL-1β, and plasma insulin and leptin. Short-term fasting may thus prove to be a useful dietary strategy for reducing peripheral inflammatory states associated with visceral obesity and chronic stress.

  15. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  16. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.

    Science.gov (United States)

    Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise

    2017-08-01

    The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Chelation of intracellular calcium blocks insulin action in the adipocyte

    International Nuclear Information System (INIS)

    Pershadsingh, H.A.; Shade, D.L.; Delfert, D.M.; McDonald, J.M.

    1987-01-01

    The hypothesis that intracellular Ca 2+ is an essential component of the intracellular mechanism of insulin action in the adipocyte was evaluated. Cells were loaded with the Ca 2+ chelator quin-2, by preincubating them with quin-2 AM, the tetrakis(acetoxymethyl) ester of quin-2. Quin-2 loading inhibited insulin-stimulated glucose transport without affecting basal activity. The ability of insulin to stimulate glucose uptake in quin-2-loaded cells could be partially restored by preincubating cells with buffer supplemented with 1.2 mM CaCl 2 and the Ca 2+ ionophore A23187. These conditions had no effect on basal activity and omission of CaCl 2 from the buffer prevented the restoration of insulin-stimulated glucose uptake by A23187. Quin-2 loading also inhibited insulin-stimulated glucose oxidation and the ability of insulin to inhibit cAMP-stimulated lipolysis without affecting their basal activities. Incubation of cells with 100 μM quin-2 or quin-2 AM had no effect on intracellular ATP concentration or the specific binding of 125 I=labeled insulin to adipocytes. These findings suggest that intracellular Ca 2+ is an essential component in the coupling of the insulin-activated receptor complex to cellular physiological/metabolic machinery. Furthermore, differing quin-2 AM dose-response profiles suggest the presence of dual Ca 2+ -dependent pathways in the adipocyte. One involves insulin stimulation of glucose transport and oxidation, whereas the other involves the antilipolytic action of insulin

  18. The estrogen-related receptors and the adipocyte.

    Science.gov (United States)

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2013-08-01

    The estrogen-related receptors (ERRα, β, and γ) are orphan members of the nuclear receptor superfamily. ERRα and γ are highly expressed in tissues displaying elevated energy demands and are involved in several aspects of energetic metabolism, which they regulate mostly in association with members of the PGC-1 coactivator family. These activities have mostly been documented in the liver, heart, or skeletal muscle. ERRα and γ are also highly expressed in adipocytes. Their precise roles in this cell type are less documented, although published data indicate that they contribute to cell differentiation as well as functionality. This review describes these activities.

  19. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    Science.gov (United States)

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  20. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs

    DEFF Research Database (Denmark)

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey

    2017-01-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex...

  1. Characterization of murine melanocortin receptors mediating adipocyte lipolysis and examination of signalling pathways involved

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Raun, Kirsten; Jacobsen, Marianne Lambert

    2011-01-01

    hormone (a-MSH) generated from proopiomelanocortin (POMC), as well as synthetic MSH analogues to stimulate lipolysis in murine 3T3-L1 adipocytes it is shown that MC2R and MC5R are lipolytic mediators in differentiated 3T3-L1 adipocytes. Involvement of cAMP, phosphorylated extracellular signal...

  2. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics

    DEFF Research Database (Denmark)

    Adachi, Jun; Kumar, Chanchal; Zhang, Yanling

    2007-01-01

    , mitochondria, membrane, and cytosol of 3T3-L1 adipocytes. We identified 3,287 proteins while essentially eliminating false positives, making this one of the largest high confidence proteomes reported to date. Comprehensive bioinformatics analysis revealed that the adipocyte proteome, despite its specialized...

  3. Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Bouraoui, L; Gutiérrez, J; Navarro, I

    2008-09-01

    Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.

  4. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Directory of Open Access Journals (Sweden)

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  5. Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism

    DEFF Research Database (Denmark)

    Petersen, Pia Steen; Jin, Chunyu; Madsen, Andreas Nygaard

    2011-01-01

    , conceivably due to decreased energy expenditure and adipocyte lipolytic activity.-Petersen, P. S., Jin, C., Madsen, A. N., Rasmussen, M., Kuhre, R., L. Egerod, K. L., Nielsen, L. B., Schwartz. T. W., Holst, B. Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism....

  6. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  7. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

    Directory of Open Access Journals (Sweden)

    María Miana

    2015-06-01

    Full Text Available Extracellular matrix (ECM remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX family of amine oxidases, including LOX and LOX-like (LOXL isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD. Interestingly, treatment with β-aminopropionitrile (BAPN, a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4, as well as the increase in suppressor of cytokine signaling 3 (SOCS3 and dipeptidyl peptidase 4 (DPP4 levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX

  8. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats.

    Science.gov (United States)

    Miana, María; Galán, María; Martínez-Martínez, Ernesto; Varona, Saray; Jurado-López, Raquel; Bausa-Miranda, Belén; Antequera, Alfonso; Luaces, María; Martínez-González, José; Rodríguez, Cristina; Cachofeiro, Victoria

    2015-06-01

    Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters - it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for

  9. White House

    Science.gov (United States)

    ... content Jump to navigation the WHITE HOUSE President Donald J. Trump Get in Touch Home Briefing Room From the ... For All Americans The Administration The Administration President Donald J. Trump Vice President Mike Pence First Lady Melania Trump ...

  10. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  11. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  12. Methylation of miR-145a-5p promoter mediates adipocytes differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jingjing; Cheng, Xiao; Shen, Linyuan; Tan, Zhendong; Luo, Jia; Wu, Xiaoqian; Liu, Chendong [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Yang, Qiong [Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, Sichuan (China); Jiang, Yanzhi [College of Life and Science, Sichuan Agricultural University, Chengdu 611130 (China); Tang, Guoqing; Li, Xuewei [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Zhang, Shunhua, E-mail: zhangsh1919@163.com [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China); Zhu, Li, E-mail: zhuli7508@163.com [College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130 (China)

    2016-06-17

    MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promoted or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. -- Highlights: •MiR-145a-5p promotes adipocytes proliferation. •MiR-145a-5p is negatively correlated with obesity. •MiR-145a-5p mediates adipocytes differentiation via regulating pathway related adipocytes differentiation. MiR-145a-5p mediating adipocytes differentiation was regulated by DNA methylation.

  13. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    Science.gov (United States)

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  14. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  15. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    Science.gov (United States)

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  16. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet

    Science.gov (United States)

    Burgeiro, Ana; Cerqueira, Manuela G.; Varela-Rodríguez, Bárbara M.; Nunes, Sara; Neto, Paula; Pereira, Frederico C.; Reis, Flávio; Carvalho, Eugénia

    2017-01-01

    Glucotoxicity and lipotoxicity are key features of type 2 diabetes mellitus, but their molecular nature during the early stages of the disease remains to be elucidated. We aimed to characterize glucose and lipid metabolism in insulin-target organs (liver, skeletal muscle, and white adipose tissue) in a rat model treated with a high-sucrose (HSu) diet. Two groups of 16-week-old male Wistar rats underwent a 9-week protocol: HSu diet (n = 10)—received 35% of sucrose in drinking water; Control (n = 12)—received vehicle (water). Body weight, food, and beverage consumption were monitored and glucose, insulin, and lipid profiles were measured. Serum and liver triglyceride concentrations, as well as the expression of genes and proteins involved in lipid biosynthesis were assessed. The insulin-stimulated glucose uptake and isoproterenol-stimulated lipolysis were also measured in freshly isolated adipocytes. Even in the absence of obesity, this rat model already presented the main features of prediabetes, with fasting normoglycemia but reduced glucose tolerance, postprandial hyperglycemia, compensatory hyperinsulinemia, as well as decreased insulin sensitivity (resistance) and hypertriglyceridemia. In addition, impaired hepatic function, including altered gluconeogenic and lipogenic pathways, as well as increased expression of acetyl-coenzyme A carboxylase 1 and fatty acid synthase in the liver, were observed, suggesting that liver glucose and lipid dysmetabolism may play a major role at this stage of the disease. PMID:28635632

  17. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  18. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  19. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  20. TBTC induces adipocyte differentiation in human bone marrow long term culture

    International Nuclear Information System (INIS)

    Carfi, M.; Croera, C.; Ferrario, D.; Campi, V.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2008-01-01

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  1. Exposure to Tumescent Solution Significantly Increases Phosphorylation of Perilipin in Adipocytes.

    Science.gov (United States)

    Keskin, Ilknur; Sutcu, Mustafa; Eren, Hilal; Keskin, Mustafa

    2017-02-01

    Lidocaine and epinephrine could potentially decrease adipocyte viability, but these effects have not been substantiated. The phosphorylation status of perilipin in adipocytes may be predictive of cell viability. Perilipin coats lipid droplets and restricts access of lipases; phospho-perilipin lacks this protective function. The authors investigated the effects of tumescent solution containing lidocaine and epinephrine on the phosphorylation status of perilipin in adipocytes. In this in vitro study, lipoaspirates were collected before and after tumescence from 15 women who underwent abdominoplasty. Fat samples were fixed, sectioned, and stained for histologic and immunohistochemical analyses. Relative phosphorylation of perilipin was inferred from pixel intensities of immunostained adipocytes observed with confocal microscopy. For adipocytes collected before tumescent infiltration, 10.08% of total perilipin was phosphorylated. In contrast, 30.62% of total perilipin was phosphorylated for adipocytes collected from tumescent tissue (P < .01). The tumescent technique increases the relative phosphorylation of perilipin in adipocytes, making these cells more vulnerable to lipolysis. Tumescent solution applied for analgesia or hemostasis of the donor site should contain the lowest possible concentrations of lidocaine and epinephrine. LEVEL OF EVIDENCE 5. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  2. The Effect of Growth Hormone on Lipid Accumulation or Maturation in Adipocytes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-11-01

    Full Text Available Background: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH on lipids accumulation or maturation of adipocytes remains elusive. Methods: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. Results: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. Conclusions: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.

  3. Absorption, distribution, metabolism, and excretion of 14C-MMB4 DMS administered intramuscularly to Sprague-Dawley rats and New Zealand White rabbits.

    Science.gov (United States)

    Lusiak, Bozena D; Kobs, Dean J; Hong, S Peter; Burback, Brian L; Johnson, Jerry D

    2013-01-01

    1,1'-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] dimethanesulfonate (MMB4 DMS) is currently under development for the treatment of chemical warfare organophosphorus nerve agent poisoning. The present study evaluates the absorption, distribution, metabolism, and excretion of (14)C-MMB4 DMS administered intramuscularly to rats and rabbits. The formulated mixture of radiolabeled and nonradiolabeled MMB4 DMS was administered as a single or 7-day repeated dose. Rat doses were 55 or 220 mg/kg (100 µCi/kg), and rabbit doses were 25 or 100 mg/kg (31.25 and 62.5 µCi/kg, respectively). Urine, bile (rats only), feces, blood, and tissues were collected for up to 72 hours. Metabolic profiling using high-performance liquid chromatography with radiodetection was performed on selected urine samples. For both animal species, the majority of the total radioactivity was excreted in the urine (74%-94%) by 72 hours after dosing with greater than 90% of the radioactivity measured in the urine within 8 to 12 hours after dosing. There were no apparent species or dose differences in the urine excretion pattern. The distribution of (14)C-MMB4 DMS-derived radioactivity was rapid and generally reached the highest concentration by the first collection time point (0.25 hours). The tissue-blood concentration ratios were highest at the injection sites and in the kidneys and gastrointestinal tract contents for both the species. Two metabolites of MMB4 DMS were detected in rat and rabbit urine; their structure was confirmed by liquid chromatography with tandem mass spectrometry as 4-pyridine aldoxime and isonicotinic acid (pyridine-4-carboxylic acid).

  4. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    Science.gov (United States)

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  5. THE COMBINATION OF MANGOSTEEN PEEL EXTRACT WITH ROSELLA FLOWER PETALS EXTRACT AND ANTHILL PLANT EXTRACT AS CHOLESTEROL AND TRIGLYCERIDES REDUCER ON MALE WHITE RATS

    Directory of Open Access Journals (Sweden)

    Anjar Mahardian Kusuma

    2016-12-01

    Full Text Available Hypercholesterolemia is a disease associated with high levels of cholesterol and LDL levels in the blood. Utilization of the commercial drugs can be given; however apart from the expensive price, adverse side effects might occur. It makes people choose alternative medication with herbal medicine through the use of natural materials. This study aimed to determine the effect of the combination of mangosteen peel extract-extract of roselle calyx and mangosteen peel extract-extract the ant nest plant as lowering cholesterol and triglyceride levels in male rats. The method used in this study was a laboratory experimental method using device posttest only control group design (simple experimental design. This study used 25 male rats of Wistar strain, divided into 5 groups; Group I: group without treatment, group II: control group solvent (NaCMC 1%, group III: positive control group (Simvastatin, Group IV: combination group mangosteen peel extract (200 mg / kg - extract of roselle calyx (250 mg / kg, group V: group combination of mangosteen peel extract 200 mg / kg - extract anthill (270 mg / kg. Induction of cholesterol in rats using quail egg yolk (10 ml / kg. The results showed that there was no significant difference in cholesterol and triglycerides between the combination of both extracts of mangosteen peel with a positive control (p<0,05.

  6. White Paranoia

    DEFF Research Database (Denmark)

    Jørholt, Eva

    2017-01-01

    Inspired by Alain Robbe-Grillet’s novel La Jalousie (1957), the essay contends that Michael Haneke’s Caché (2005) takes its viewers inside a postcolonial white paranoia which is, arguably, the root cause of the exclusion, segregation and racist discrimination that many immigrants from the former ...

  7. European Whiteness?

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2008-01-01

    Born out of the United States’ (U.S.) history of slavery and segregation and intertwined with gender studies and feminism, the field of critical whiteness studies does not fit easily into a European setting and the particular historical context that entails. In order for a field of European...

  8. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  9. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells

    DEFF Research Database (Denmark)

    Hamam, D; Ali, D; Vishnubalaji, R

    2014-01-01

    The molecular mechanisms promoting lineage-specific commitment of human mesenchymal (skeletal or stromal) stem cells (hMSCs) into adipocytes (ADs) are not fully understood. Thus, we performed global microRNA (miRNA) and gene expression profiling during adipocytic differentiation of h...... differentiation and accelerated formation of mature ADs in ex vivo cultures. Integrated analysis of bioinformatics and global gene expression profiling in miR-320c overexpressing cells and during adipocytic differentiation of hMSC identified several biologically relevant gene targets for miR-320c including RUNX2...

  10. Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.

    Science.gov (United States)

    Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I

    2013-05-01

    Obesity can promote a chronic inflammatory state and is associated with an increased risk for cancer. Since adipocytes can produce mediators that can regulate conventional immune cells, this study sought to determine if the presence of premalignant oral lesions would skew how immune cells respond to adipocyte-derived mediators to create an environment that may be more favorable for their progression toward cancer. While media conditioned by adipocytes stimulated normal spleen cell production of the T helper (Th) type-1 cytokines interleukin (IL)-2, interferon-γ (IFN-γ), IL-12 and granulocyte-monocyte colony-stimulating factor (GM CSF), media from premalignant lesion cells either blocked or had no added affect on the adipocyte-stimulated Th1 cytokine production. In contrast, media conditioned by premalignant lesion cells exacerbated adipocyte-stimulated spleen cell production of the Th2 cytokines IL-10 and IL-13, although it did not further enhance the adipocyte-stimulated spleen cell production of IL-4 and TGF-β. The premalignant lesion environment also heightened the adipocyte-stimulated spleen cell production of the inflammatory mediators IL 1α, IL-1β, IL-6 and IL-9, although it did not further increase the adipocyte-stimulated production of tumor necrosis factor-α (TNF-α). IL 17 production was unaffected by the adipocyte-derived mediators, but was synergistically triggered by adding media from premalignant lesion cells. These stimulatory effects on spleen cell production of Th2 and inflammatory mediators were not induced in the absence of media conditioned by adipocytes. In contrast, media conditioned by adipocytes did not stimulate production of predominantly monocyte-derived chemokine C-X-C motif ligand (CXCL)9, chemokine C-C motif ligand (CCL)3 or CCL4, although it stimulated production of CCL2 and the predominantly T cell-derived chemokine CCL5, which was the only chemokine whose production was further increased by media from premalignant lesions

  11. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    Science.gov (United States)

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  12. Classical and alternative NF-κB signaling cooperate in regulating adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Weidemann, A.; Lovas, A.; Rauch, A.

    2016-01-01

    Background and objective:Inflammation of adipose tissue (AT) is a central mediator of insulin resistance. However, the molecular mechanisms triggered by inflammatory cells are not fully understood. The aim of this study was to analyze the metabolic functions of lymphotoxin-β-receptor (LTβ...... to adipocytes. The molecular mechanism was elucidated by chromatin immunoprecipitation and combinatorial treatment with α-LTβR and tumor necrosis factor (TNF).Results:RelB FatKO mice showed improved insulin sensitivity despite increased adiposity and adipocyte hypertrophy. LTβR-induced activation of p52-Rel.......Conclusions:Our data describe an anti-adipogenic action of LTβR signaling and a novel synergism of alternative and classical NF-κB signaling in the regulation of adipocytes. In conclusion, this strong synergism between the two NF-κB pathways shows a method to inhibit adipocyte differentiation and to improve insulin...

  13. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy

    DEFF Research Database (Denmark)

    Molina, Henrik; Yang, Yi; Ruch, Travis

    2009-01-01

    The adipose tissue has important secretory and endocrine functions in humans. The regulation of adipocyte differentiation has been actively pursued using transcriptomic methods over the last several years. Quantitative proteomics has emerged as a promising approach to obtain temporal profiles...

  14. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA

    DEFF Research Database (Denmark)

    Lundh, Morten; Pluciñska, Kaja; Isidor, Marie S

    2017-01-01

    OBJECTIVE: Functional investigation of novel gene/protein targets associated with adipocyte differentiation or function heavily relies on efficient and accessible tools to manipulate gene expression in adipocytes in vitro. Recent advances in gene-editing technologies such as CRISPR-Cas9 have...... not only eased gene editing but also greatly facilitated modulation of gene expression without altering the genome. Here, we aimed to develop and validate a competent in vitro adipocyte model of controllable functionality as well as multiplexed gene manipulation in adipocytes, using the CRISPRa "SAM......" system and siRNAs to simultaneously overexpress and silence selected genes in the same cell populations. METHODS: We introduced a stable expression of dCas9-VP64 and MS2-P65, the core components of the CRIPSRa SAM system, in mesenchymal C3H/10T1/2 cells through viral delivery and used guide RNAs...

  15. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  16. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    International Nuclear Information System (INIS)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-01-01

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  17. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cormac T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland); Ryan, Silke, E-mail: silke.ryan@ucd.ie [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland)

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  18. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    International Nuclear Information System (INIS)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-01-01

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  19. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  20. Family history of type 2 diabetes, abdominal adipocyte size and markers of the metabolic syndrome.

    Science.gov (United States)

    Anthanont, P; Ramos, P; Jensen, M D; Hames, K C

    2017-11-01

    A major risk factor of type 2 diabetes mellitus (T2DM) is a positive family history of diabetes. First degree relatives (FDR) of patients with T2DM are more insulin resistant and are reported to have larger abdominal subcutaneous adipocytes than adults without a family history. Our objectives were to assess whether FDR of T2DM are associated with larger abdominal adipocytes independent of age, sex and abdominal subcutaneous fat and to assess whether a family history of T2DM is also independently related to femoral adipocyte size, as well as visceral fat and fasting plasma triglyceride (TG) concentrations. We extracted adipocyte size, body composition, plasma TG and demographic data of non-diabetic research participants of previous studies conducted in our laboratory. We ascertained the family history of T2DM from the electronic medical records. Multivariate regression analysis was used to assess whether FDR of T2DM are more likely to have other risk factors after adjusting for known covariates. Of 604 participants, 148 were FDR of T2DM. Although abdominal and femoral adipocyte size was greater in FDR of T2DM than those without a family history (0.74±0.33 vs 0.63±0.33 μg lipid per cell, Phistory of T2DM was a significant predictor of abdominal adipocyte size after adjustment for age and body fat distribution parameters in females (total R 2 =0.5, Phistory of T2DM was not independently predictive of femoral adipocyte size, visceral fat area or TG. Female FDR of T2DM have larger abdominal, but not femoral, adipocytes, even after accounting for age and body fat distribution.

  1. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  2. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Takeo Iwata

    Full Text Available Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL and acetyl-CoA carboxylase (ACC, in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT, suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA, which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through

  3. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    International Nuclear Information System (INIS)

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-01-01

    Highlights: ► Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. ► Overexpression of ATF3 represses C/EBPα expression. ► ATF3 directly binds to mouse C/EBPα promoter spanning from −1928 to −1907. ► ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBPα transcript and repressed the activity of the 3.6-kb mouse C/EBPα promoter, demonstrating that ATF3 downregulates C/EBPα expression. Transfection studies using mutant constructs containing 5′-deletions in the C/EBPα promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between −1921 and −1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBPα promoter spanning from −1928 to −1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBPα mRNA and repress the promoter activity of the C/EBPα gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBPα expression. Collectively, these results demonstrate that ATF3 represses the C/EBPα gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition of adipocyte differentiation.

  4. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects

    OpenAIRE

    Blouin, Cedric M.; Le Lay, Soazig; Eberl, Anita; Koefeler, Harald C.; Guerrera, Ida Chiara; Klein, Christophe; Le Liepvre, Xavier; Lasnier, Francoise; Bourron, Olivier; Gautier, Jean-Francois; Ferre, Pascal; Hajduch, Eric; Dugail, Isabelle

    2010-01-01

    Caveolins form plasmalemnal invaginated caveolae. They also locate around intracellular lipid droplets but their role in this location remains unclear. By studying primary adipocytes that highly express caveolin-1, we characterized the impact of caveolin-1 deficiency on lipid droplet proteome and lipidome. We identified several missing proteins on the lipid droplet surface of caveolin-deficient adipocytes and showed that the caveolin-1 lipid droplet pool is organized as multi-protein complexe...

  5. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid

    OpenAIRE

    Ixchelt Cuaranta-Monroy; Zoltan Simandi; Zsuzsanna Kolostyak; Quang-Minh Doan-Xuan; Szilard Poliska; Attila Horvath; Gergely Nagy; Zsolt Bacso; Laszlo Nagy

    2014-01-01

    Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocy...

  6. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    Directory of Open Access Journals (Sweden)

    Christine M. Kusminski

    2015-10-01

    Conclusion: We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  7. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  8. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    Science.gov (United States)

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  9. Establishment of lipofection for studying miRNA function in human adipocytes.

    Science.gov (United States)

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  10. Establishment of lipofection for studying miRNA function in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Eveliina Enlund

    Full Text Available miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  11. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.

    Science.gov (United States)

    Harris, Charles A; Haas, Joel T; Streeper, Ryan S; Stone, Scot J; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W; Zechner, Rudolf; Farese, Robert V

    2011-04-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.

  12. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S

    Science.gov (United States)

    Harris, Charles A.; Haas, Joel T.; Streeper, Ryan S.; Stone, Scot J.; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W.; Zechner, Rudolf; Farese, Robert V.

    2011-01-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types. PMID:21317108

  13. Adipocytes properties and crosstalk with immune system in obesity-related inflammation.

    Science.gov (United States)

    Maurizi, Giulia; Della Guardia, Lucio; Maurizi, Angela; Poloni, Antonella

    2018-01-01

    Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation, and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders. © 2017 Wiley Periodicals, Inc.

  14. High content analysis of differentiation and cell death in human adipocytes.

    Science.gov (United States)

    Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt

    2013-10-01

    Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  15. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    Science.gov (United States)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  16. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF

    Science.gov (United States)

    Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.

    2017-01-01

    Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970

  17. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  18. Momordica charantia (bitter melon inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-06-01

    Full Text Available Abstract Background Escalating trends of obesity and associated type 2 diabetes (T2D has prompted an increase in the use of alternative and complementary functional foods. Momordica charantia or bitter melon (BM that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes. Methods Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR. Results Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ and sterol regulatory element-binding protein 1c (SREBP-1c and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol. Conclusion Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.

  19. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  20. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    Science.gov (United States)

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  1. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    Science.gov (United States)

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  2. Effect of gamma irradiation on the activity of alanine and aspartate transaminases in subcellular fractions of the brain and heart in white rats

    Energy Technology Data Exchange (ETDEWEB)

    Plenin, A E

    1973-01-01

    In experiments on rats, the activity of alanine (I) and aspartate transaminases (II) was studied in homogenates and subcellular fractions of the brain and myocardium under normal conditions and for 30 days after ..gamma.. irradiation at 40 rads. The activity of II in brain homogenates increased 1 hour after irradiation but decreased by 20 percent on day 3; it decreased again on days 7 and 15. The activity of brain I increased after 1 hour and 3 days but then returned to normal. The activity of I in heart homogenates increased in all the periods after irradiation. The subcellular fractions exhibited phase changes in the activity of the enzymes. These changes were different in nature from those observed after X and ..gamma.. irradiation at the same dose.

  3. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, Jean

    2012-02-01

    OBJECTIVE: Several studies have reported the existence of a subgroup of obese individuals with normal metabolic profiles. It remains unclear what factors are responsible for this phenomenon. We proposed that adipocyte size might be a key factor in the protection of metabolically healthy obese (MHO) individuals from the adverse effects of obesity. SUBJECTS: Thirty-five patients undergoing bariatric surgery were classified as MHO (n = 15) or metabolically unhealthy obese (MUO, n = 20) according to cut-off points adapted from the International Diabetes Federation definition of the metabolic syndrome. Median body mass index (BMI) was 48 (range 40-71). RESULTS: There was a moderate correlation between omental adipocyte size and subcutaneous adipocyte size (r = 0.59, p<0.05). The MHO group had significantly lower mean omental adipocyte size (80.9+\\/-10.9 microm) when compared with metabolically unhealthy patients (100.0+\\/-7.6 microm, p<0.0001). Mean subcutaneous adipocyte size was similar between the two groups (104.1+\\/-8.5 microm versus 107.9+\\/-7.1 microm). Omental, but not subcutaneous adipocyte size, correlated with the degree of insulin resistance as measured by HOMA-IR (r = 0.73, p<0.0005), as well as other metabolic parameters including triglyceride\\/HDL-cholesterol ratio and HbA1c. Twenty-eight patients consented to liver biopsy. Of these, 46% had steatohepatitis and fibrosis. Fifty percent (including all the MHO patients) had steatosis only. Both omental and subcutaneous adipocyte size were significantly associated with the degree of steatosis (r = 0.66, p<0.0001 and r = 0.63, p<0.005 respectively). However, only omental adipocyte size was an independent predictor of the presence or absence of fibrosis. CONCLUSION: Metabolically healthy individuals are a distinct subgroup of the severely obese. Both subcutaneous and omental adipocyte size correlated positively with the degree of fatty liver, but only omental adipocyte size was related to metabolic health

  4. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy

    2002-01-01

    molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal...... cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several...

  5. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    Science.gov (United States)

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  6. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  7. Small non coding RNAs in adipocyte biology and obesity.

    Science.gov (United States)

    Amri, Ez-Zoubir; Scheideler, Marcel

    2017-11-15

    Obesity has reached epidemic proportions world-wide and constitutes a substantial risk factor for hypertension, type 2 diabetes, cardiovascular diseases and certain cancers. So far, regulation of energy intake by dietary and pharmacological treatments has met limited success. The main interest of current research is focused on understanding the role of different pathways involved in adipose tissue function and modulation of its mass. Whole-genome sequencing studies revealed that the majority of the human genome is transcribed, with thousands of non-protein-coding RNAs (ncRNA), which comprise small and long ncRNAs. ncRNAs regulate gene expression at the transcriptional and post-transcriptional level. Numerous studies described the involvement of ncRNAs in the pathogenesis of many diseases including obesity and associated metabolic disorders. ncRNAs represent potential diagnostic biomarkers and promising therapeutic targets. In this review, we focused on small ncRNAs involved in the formation and function of adipocytes and obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lipolytic actions of secretin in mouse adipocytes[S

    Science.gov (United States)

    Sekar, Revathi; Chow, Billy K. C.

    2014-01-01

    Secretin (Sct), a classical gut hormone, is now known to play pleiotropic functions in the body including osmoregulation, digestion, and feeding control. As Sct has long been implicated to regulate metabolism, in this report, we have investigated a potential lipolytic action of Sct. In our preliminary studies, both Sct levels in circulation and Sct receptor (SctR) transcripts in adipose tissue were upregulated during fasting, suggesting a potential physiological relevance of Sct in regulating lipolysis. Using SctR knockout and Sct knockout mice as controls, we show that Sct is able to stimulate lipolysis in vitro in isolated adipocytes dose- and time-dependently, as well as acute lipolysis in vivo. H-89, a protein kinase A (PKA) inhibitor, was found to attenuate lipolytic effects of 1 μM Sct in vitro, while a significant increase in PKA activity upon Sct injection was observed in the adipose tissue in vivo. Sct was also found to stimulate phosphorylation at 660ser of hormone sensitive lipase (HSL) and to bring about the translocation of HSL from cytosol to the lipid droplet. In summary, our data demonstrate for the first time the in vivo and in vitro lipolytic effects of Sct, and that this function is mediated by PKA and HSL. PMID:24273196

  9. Diffusion tensor microscopy data (15.6 μm in-plane of white matter tracts in the human, pig, and rat spinal cord with corresponding tissue histology

    Directory of Open Access Journals (Sweden)

    Jeremy J. Flint

    2016-12-01

    Full Text Available The following article contains nine diffusion tensor imaging (DTI datasets acquired with magnetic resonance microscopy (MRM, 15.6 μm in-plane. All data was collected in the region bordering the ventral horn and white matter of cross sections from the spinal cord enlargements along with each sample׳s corresponding tissue histology. These data are collected in fixed spinal cord sections of varying thicknesses taken from rat (2×21 direction DTI datasets, pig (1×21 direction DTI dataset, and human (5×21 direction DTI datasets + 1×6 direction DTI dataset tissue sources. Following MRM acquisition, the sections were histologically processed using Nissl or Black-Gold II (Histo-Chem Inc., 1BGII myelin stain and imaged again using light microscopy techniques. Methodological procedures are an amalgamation of protocol components described previously (doi:10.1016/j.neuroimage.2010.04.031 [1], doi:10.1016/j.neuroimage.2011.04.052 [2].

  10. Histopatologi Usus Halus Tikus Putih Jantan yang Diberikan Deksametason dan Vitamin E (HISTOPATHOLOGY SMALL INSTESTINE OF MALE WHITE RATS THAT WERE DEXAMETHASONE AND VITAMINE E SUPLEMENTED

    Directory of Open Access Journals (Sweden)

    Kadek Karina Dewi Wijayanthi

    2017-02-01

    Full Text Available Deksametason telah diketahui sebagai obat kortikosteroid sintetik yang banyak digunakan oleh masyarakat. Jika deksametason digunakan dalam jangka waktu panjang dan pemakaian dosis besar, menyebabkan stres oksidatif pada sel akibat akumulasi radikal bebas yang menyebabkan kematian sel pada jaringan organ tubuh. Vitamin E diketahui memiliki peran yang baik sebagai antioksidan. Saat ini belum diketahui efek samping pemberian deksametason dan vitamin E terhadap kerusakan usus halus tikus putih (Rattus norvegicus. Penelitian ini menggunakan sampel 25 ekor tikus putih jantan, dibagi dalam 5 kelompok perlakuan, yaitu kontrol negatif (P0, kontrol positif (P1 diberikan deksametason Harsen  0.13 mg/kg, dan perlakuan diberikan deksametason Harsen 0.13 mg/kg dengan variasi vitamin E (Natur-E bertingkat yaitu P2 (100 mg/kg, P3 (150 mg/kg, dan P4 (200 mg/kg. Setelah perlakuan diberikan selama 2 minggu, tikus dinekropsi dan usus halus diambil untuk selanjutnya dibuat sediaan histopatologi dengan pewarnaan hematoksilin-eosin (HE. Hasil menunjukkan perlakuan P1 terlihat nekrosis berat (kaseosa pada usus halus, sedangkan seluruh perlakuan P2, P3, dan P4 berpengaruh terhadap perbaikan kerusakan akibat efek samping deksametason. Perlakuan 4 (P4 sebagai hasil paling baik dalam mengurangi efek samping deksametason.   Dexamethasone it’s in period a synthetic corticosteroid drug that widely used by the public. If  it used for long time and the use of large doses, causing oxidative stress in cells due to the accumulation of free radicals which may cause cell death in the body organs tissues. Vitamin E was known to have a good role as an antioxidant effect. Currently, unknown effects of dexamethasone and vitamin E administration on damage of the small intestine of rat (Rattus norvegicus. This study used an experimental design. Samples 25 male rats were divided into 5 groups, namely the negative control or no treatment (P0, positive control (P1 was given

  11. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis.

    Science.gov (United States)

    Gwon, So Young; Ahn, Ji Yun; Kim, Tae Wan; Ha, Tae Youl

    2012-01-01

    This study was conducted to determine the anti-obesity effects of Zanthoxylum piperitum DC fruit ethanol extract (ZPE) in 3T3-L1 adipocytes and obese mice fed a high-fat diet. We evaluated the influence of the addition of ZPE to a high-fat diet on body weight, adipose tissue weight, serum and hepatic lipids in C57BL/6 mice. In addition, adipogenic gene expression was determined by Western blot and real-time reverse transcription-PCR analysis. We assessed the effect of ZPE on 3T3-L1 preadipocyte differentiation. ZPE reduced weight gain, white adipose tissue mass, and serum triglyceride and cholesterol levels (pZPE decreased lipid accumulation and PPARγ, C/EBPα, SREBP-1, and FAS protein and mRNA levels in the liver. ZPE inhibited in vitro adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP-1 in 3T3L1 cells. These findings suggest that Z. piperitum DC exerts an anti-obesity effect by inhibiting adipogenesis through the downregulation of genes involved in the adipogenesis pathway.

  12. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  13. Brown-Like Adipocyte Progenitors Derived from Human iPS Cells: A New Tool for Anti-obesity Drug Discovery and Cell-Based Therapy?

    Science.gov (United States)

    Yao, Xi; Salingova, Barbara; Dani, Christian

    2018-04-10

    Alternative strategies are urgently required to fight obesity and associated metabolic disorders including diabetes and cardiovascular diseases. Brown and brown-like adipocytes (BAs) store fat, but in contrast to white adipocytes, activated BAs are equipped to dissipate energy stored. Therefore, BAs represent promising cell targets to counteract obesity. However, the scarcity of BAs in adults is a major limitation for a BA-based therapy of obesity, and the notion to increase the BA mass by transplanting BA progenitors (BAPs) in obese patients recently emerged. The next challenge is to identify an abundant and reliable source of BAPs. In this chapter, we describe the capacity of human-induced pluripotent stem cells (hiPSCs) to generate BAPs able to differentiate at a high efficiency with no gene transfer. This cell model represents an unlimited source of human BAPs that in a near future may be a suitable tool for both therapeutic transplantation and for the discovery of novel efficient and safe anti-obesity drugs. The generation of a relevant cell model, such as hiPSC-BAs in 3D adipospheres enriched with macrophages and endothelial cells to better mimic the microenvironment within the adipose tissue, will be the next critical step.

  14. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    International Nuclear Information System (INIS)

    Kern, P.A.; Marshall, S.; Eckel, R.H.

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific 125 I-insulin binding. In addition, chloroquine induced an increase in cell-associated 125 I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measured as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology

  15. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS: evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph S Marino

    Full Text Available Clinical research shows an association between polycystic ovary syndrome (PCOS and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC mice and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC mice showed reduced or absent ovulation. IR/LepR(POMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

  16. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    Directory of Open Access Journals (Sweden)

    Ana Paula García

    Full Text Available Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy (CR dams. Body weight (BW, the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+ and NPY(+, suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+ and NPY(+. Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  17. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  18. Microparticles release by adipocytes act as "find-me" signals to promote macrophage migration.

    Directory of Open Access Journals (Sweden)

    Akiko Eguchi

    Full Text Available Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs are critical "find-me" signals for recruitment of monocytes and macrophages. Supernatants from stressed adipocytes stimulated the attraction of monocyte cells and primary macrophages. The activation of caspase 3 was required for release of these signals. Adipocytes exposed to saturated fatty acids showed marked release of MPs into the supernatant while common genetic mouse models of obesity demonstrate high levels of circulating adipocyte-derived MPs. The release of MPs was highly regulated and dependent on caspase 3 and Rho-associated kinase. Further analysis identified these MPs as a central chemoattractant in vitro and in vivo. In addition, intravenously transplanting circulating MPs from the ob/ob mice lead to activation of monocytes in circulation and adipose tissue of the wild type mice. These data identify adipocyte-derived MPs as novel "find me" signals that contributes to macrophage infiltration associated with obesity.

  19. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  20. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2013-01-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion

  1. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Directory of Open Access Journals (Sweden)

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  2. Romidepsin Promotes Osteogenic and Adipocytic Differentiation of Human Mesenchymal Stem Cells through Inhibition of Histondeacetylase Activity

    Directory of Open Access Journals (Sweden)

    Dalia Ali

    2018-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are adult multipotent stem cells that can differentiate into mesodermal lineage cells, including adipocytes and osteoblasts. However, the epigenetic mechanisms governing the lineage-specific commitment of BMSCs into adipocytes or osteoblasts are under investigation. Herein, we investigated the epigenetic effect of romidepsin, a small molecule dual inhibitor targeting HDAC1 and HDAC2 identified through an epigenetic library functional screen. BMSCs exposed to romidepsin (5 nM exhibited enhanced adipocytic and osteoblastic differentiation. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis and osteogenesis in romidepsin-treated BMSCs during induction into adipocytes or osteoblasts, respectively. Pharmacological inhibition of FAK signaling during adipogenesis or inhibition of FAK or TGFβ signaling during osteogenesis diminished the biological effects of romidepsin on BMSCs. The results of chromatin immunoprecipitation combined with quantitative polymerase chain reaction indicated a significant increase in H3K9Ac epigenetic markers in the promoter regions of peroxisome proliferator-activated receptor gamma (PPARγ and KLF15 (related to adipogenesis or SP7 (Osterix and alkaline phosphatase (ALP (related to osteogenesis in romidepsin-treated BMSCs. Our data indicated that romidepsin is a novel in vitro modulator of adipocytic and osteoblastic differentiation of BMSCs.

  3. Patterns of hyperphagia in the Zucker obese rat: a role for fat cell size and number?

    Science.gov (United States)

    Vasselli, J R

    1985-06-01

    The hypothesis that adipocyte size and number influence feeding behavior, via as yet unidentified signals to the CNS, is reviewed. The proposal is made that, due to several metabolic alterations which favor lipid deposition, the genetically obese Zucker rat (fafa) may be an appropriate model in which to study feeding-adipose tissue relationships. Data from several studies are presented demonstrating that the developing male Zucker fatty rat displays hyperphagia during the growth period which reaches a peak, or "break point," and then declines such that intake of fatty and lean rats becomes comparable at approximately 20 weeks of age. Beyond week 20, cycles of hyperphagia of several weeks' duration can be detected in fatty rats. The above feeding changes are related to data showing that on a laboratory chow-type diet, adipocytes approach maximal size at 15-16 weeks in the fatty rat, while accelerated proliferation of adipocytes takes place following week 20. During growth, responding for food in an operant task by fatty rats varies in accord with the pattern of hyperphagia. Further studies in the fatty rat show that the duration and magnitude of developmental hyperphagia can be altered by manipulating the caloric density and macronutrient content of the diet, with fat containing diets leading to the earliest break point of developmental hyperphagia. Some theoretical problems with the notion of adipose tissue feedback control of feeding behavior are discussed.

  4. The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation

    DEFF Research Database (Denmark)

    Brier, Ann-Sofie B; Loft, Anne; Madsen, Jesper G S

    2017-01-01

    The KDM5 family of histone demethylases removes the H3K4 tri-methylation (H3K4me3) mark frequently found at promoter regions of actively transcribed genes and is therefore generally considered to contribute to corepression. In this study, we show that knockdown (KD) of all expressed members...... of the KDM5 family in white and brown preadipocytes leads to deregulated gene expression and blocks differentiation to mature adipocytes. KDM5 KD leads to a considerable increase in H3K4me3 at promoter regions; however, these changes in H3K4me3 have a limited effect on gene expression per se. By contrast......, genome-wide analyses demonstrate that KDM5A is strongly enriched at KDM5-activated promoters, which generally have high levels of H3K4me3 and are associated with highly expressed genes. We show that KDM5-activated genes include a large set of cell cycle regulators and that the KDM5s are necessary...

  5. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  6. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia

    DEFF Research Database (Denmark)

    Fink, Trine; Abildtrup, Lisbeth Ann; Fogd, Kirsten

    2004-01-01

    Human mesenchymal stem cells (hMSCs) have the capacity to differentiate along several pathways to form bone, cartilage, tendon, muscle, and adipose tissues. The adult hMSCs reside in vivo in the bone marrow in niches where oxygen concentration is far below the ambient air, which is the most...... commonly encountered laboratory condition. The study reported here was designed to determine whether oxygen has a role in the differentiation of hMSCs into adipocytes. Indeed, when exposed to atmosphere containing only 1% of oxygen, the formation of adipocyte-like phenotype with cytoplasmic lipid....... High level of induction, however, was observed with the PPAR-gamma-induced angiopoietin-related gene, PGAR. The lack of an adipocyte-specific transcription pattern thus indicates that despite accumulation of the lipid, true adipogenic differentiation did not take place. In conclusion, hypoxia appears...

  7. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang

    2017-01-01

    The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal...... and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated......57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation...

  8. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  9. Cross-species ChIP-seq studies provide insights into regulatory strategies of PPAR¿ in adipocytes

    DEFF Research Database (Denmark)

    Schmidt, Søren Fisker; Jørgensen, Mette; Sandelin, Albin Gustav

    2012-01-01

    Three recent studies have investigated interspecies retention of binding sites of peroxisome proliferator-activated receptor ¿ (PPAR¿), the master regulator of adipocyte differention, between mouse and human adipocytes. Here we discuss the major findings and demonstrate that retention of binding ...

  10. The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

    OpenAIRE

    Y. Suzuki; Y. H. Hong; S. H. Song; A. Ardiyanti; D. Kato; K. H. So; K. Katoh; S. G Roh

    2012-01-01

    Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiat...

  11. Narrative Constructions of Whiteness among White Undergraduates

    Science.gov (United States)

    Foste, Zak

    2017-01-01

    This critical narrative inquiry was guided by two overarching research questions. First, this study examined how white undergraduates interpreted and gave meaning to their white racial identities. This line of inquiry sought to understand how participants made sense of their white racial selves, the self in relation to people of color, and the…

  12. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u-ac.jp; Hanao, Norihide; Nishiyama, Kaori; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2012-01-01

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl{sub 2}, HgCl{sub 2}, NaAsO{sub 2} and MnCl{sub 2} pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl{sub 2} significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl{sub 2} treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl{sub 2} significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl{sub 2} had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl{sub 2} enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl{sub 2} treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead

  13. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Anja Böhm

    Full Text Available Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.10 insulin-resistant (IR vs. 10 insulin-sensitive (IS non-diabetic morbidly obese (BMI >40 kg/m2 Caucasians were matched for gender, age, BMI, and percentage of body fat. From subcutaneous fat biopsies, primary preadipocytes were isolated and differentiated to adipocytes in vitro. About 280 metabolites were investigated by a targeted metabolomic approach intracellularly, extracellularly, and in plasma.Among others, aspartate was reduced intracellularly to one third (p = 0.0039 in IR adipocytes, pointing to a relative depletion of citric acid cycle metabolites or reduced aspartate uptake in MUHO. Other amino acids, already known to correlate with diabetes and/or obesity, were identified to differ between MUHO's and MHO's adipocytes, namely glutamine, histidine, and spermidine. Most species of phosphatidylcholines (PCs were lower in MUHO's extracellular milieu, though simultaneously elevated intracellularly, e.g., PC aa C32∶3, pointing to increased PC synthesis and/or reduced PC release. Furthermore, altered arachidonic acid (AA metabolism was found: 15(S-HETE (15-hydroxy-eicosatetraenoic acid; 0 vs. 120pM; p = 0.0014, AA (1.5-fold; p = 0.0055 and docosahexaenoic acid (DHA, C22∶6; 2-fold; p = 0.0033 were higher in MUHO. This emphasizes a direct contribution of adipocytes to local adipose tissue inflammation. Elevated DHA, as an inhibitor of prostaglandin synthesis, might be a hint for counter-regulatory mechanisms in MUHO.We identified adipocyte-inherent metabolic alterations discriminating between MHO and MUHO.

  14. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    International Nuclear Information System (INIS)

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-01-01

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  15. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  16. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    Science.gov (United States)

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  17. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-01-01

    Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  18. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp [Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Miyamoto, Yuki [Juntendo University Faculty of Health Care and Nursing, Takasu 2-5-1, Urayasu-shi, Chiba 279-0023 (Japan); Itoh, Seigo; Daida, Hiroyuki [Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Nakazato, Yuji [Center for Environmental Research, Department of Cardiology, Juntendo University Faculty of Medicine Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba 279-0022 (Japan); Okada, Takao [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  19. Establishment of Lipofection for Studying miRNA Function in Human Adipocytes

    OpenAIRE

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNA...

  20. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  1. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  2. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    Science.gov (United States)

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  3. Administration of Bioflavonoides Improves Plasma Levels of Adipocyte Hormones

    Directory of Open Access Journals (Sweden)

    Boncheva M.

    2014-12-01

    Full Text Available Since time immemorial the fruits of aronia melanocarpa (rich of bioflavonoides have been known for their medicinal properties. Present-day research of the pharmacological effects of aronia melanocarpa juice and fruits intake indicates that their high contents of anthocyanins is closely related to the health enhancing properties of this plant. This is a key fact which can be used in the prevention of most commonly spread, socially significant diseases, reducing for instance the total risk of cardio-vascular diseases. The great molecular variety anthocyanins possess and the role they play in cell metabolism, are still being investigated. This gives grounds to study the effects of Aronia melanocarpa on human cells, tissues, and organs. The aim of this study is to trace the effect of 150-200 ml aronia melanokarpa juice daily oral intake on the adipocyte hormones leptin (Lp, resistine (Rs and adiponectin (Adn blood levels in 10 patients with high body mass index (BMI, kg/m2 and high waist circumference. We used ELISA methods for hormonal analyses. During the study-period of two months patients did not change anything in their lifestyle. In the study group, the levels of Rs, Lp and Adn changed significantly compared to their baseline levels (averages, ng/mL - 6.93 ± 0.137, 18.40 ±1.021 and 7.98 ± 0.077 vs. 5.06 ± 0.011, 15.23 ± 0.906 and 10.45 ± 0.103 at the end of the second month, respectively. Compared with the control group of 6 people, matched for BMI, not receiving aronia melanocarpa juice, these values were markedly different. Patients taking aronia melanokarpa juice report improvement in various conditions that have caused them discomfort before the research started: pain in the muscles and joints faded away and were replaced by a new feeling of strength, headache attacks disappeared, improvement in memory and sleep were reported, regular defecation, no signs of gastric discomfort, better vision, a quicker auditory reaction, motivation

  4. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  5. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    Science.gov (United States)

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hormonal control of fat accumulation in L-glutamate-treated obese rats

    International Nuclear Information System (INIS)

    Remke, H.; Wilsdorf, A.; Mueller, F.

    1988-01-01

    Persistently decreased concentrations of the growth hormone and the tissue-nonepinephrine in connection with growth retardation and obesity were investigated concerning the effects on cells of epididymal adipose tissue in postnatally injured glutamate-treated rats using 14 C-labelled tracers. Diminished secretion of growth hormone causes in adipocytes increased glucose intake, amplification of the insulin effect, and fat accumulation. A supersensitivity towards norepinephrine in adipocytes in vitro is due to diminished concentration of this hormone in the tissue. Insulin resistance is developed at the beginning of the stationary phase of obesity in these animals. (author)

  7. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  8. Erick A. White | NREL

    Science.gov (United States)

    Engineering, Colorado School of Mines, 2011 B.S., Chemical Engineering, University of Colorado at Boulder Research Assistant, Colorado School of Mines, Department of Chemical Engineering, 2006-2011 Field Team Erick A. White Photo of Erick A. White Erick White Chemical Reaction Engineer Erick.White@nrel.gov

  9. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    Science.gov (United States)

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, Jean

    2010-01-01

    Several studies have reported the existence of a subgroup of obese individuals with normal metabolic profiles. It remains unclear what factors are responsible for this phenomenon. We proposed that adipocyte size might be a key factor in the protection of metabolically healthy obese (MHO) individuals from the adverse effects of obesity.

  11. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion.

    Science.gov (United States)

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-22

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.

  12. beta-adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus)

    NARCIS (Netherlands)

    Vianen, GJ; Obels, PP; Van Den Thillart, GEEJM; Zaagsma, J

    The regulation of triglyceride mobilization by catecholamines was investigated in the teleost fish Oreochromis mossambicus (tilapia) in vivo and in vitro. In vitro experiments were carried out with adipocytes that were isolated for the first time from fish adipose tissue. For the in vivo

  13. The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation

    DEFF Research Database (Denmark)

    Fajas, Lluis; Egler, Viviane; Reiter, Raphael

    2002-01-01

    The retinoblastoma protein (RB) has previously been shown to facilitate adipocyte differentiation by inducing cell cycle arrest and enhancing the transactivation by the adipogenic CCAAT/enhancer binding proteins (C/EBP). We show here that the peroxisome proliferator-activated receptor gamma...

  14. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes

    DEFF Research Database (Denmark)

    Henriksson, Emma; Säll, Johanna; Gormand, Amélie

    2015-01-01

    regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that cAMP/PKA reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 promotes GLUT4 levels and glucose uptake...

  15. Increased Adipocyte Size, Macrophage Infiltration, and Adverse Local Adipokine Profile in Perirenal Fat in Cushing's Syndrome.

    Science.gov (United States)

    Roerink, Sean H P P; Wagenmakers, Margreet A E M; Langenhuijsen, Johan F; Ballak, Dov B; Rooijackers, Hanne M M; d'Ancona, Frank C; van Dielen, François M; Smit, Jan W A; Plantinga, Theo S; Netea-Maier, Romana T; Hermus, Ad R M M

    2017-08-01

    To analyze changes in fat cell size, macrophage infiltration, and local adipose tissue adipokine profiles in different fat depots in patients with active Cushing's syndrome. Subcutaneous (SC) and perirenal (PR) adipose tissue of 10 patients with Cushing's syndrome was compared to adipose tissue of 10 gender-, age-, and BMI-matched controls with regard to adipocyte size determined by digital image analysis on hematoxylin and eosin stainings, macrophage infiltration determined by digital image analysis on CD68 stainings, and adipose tissue leptin and adiponectin levels using fluorescent bead immunoassays and ELISA techniques. Compared to the controls, mean adipocyte size was larger in PR adipose tissue in patients. The percentage of macrophage infiltration of the PR adipose tissue and PR adipose tissue lysate leptin levels were higher and adiponectin levels were lower in SC and PR adipose tissue lysates in patients. The adiponectin levels were also lower in the SC adipose tissue supernatants of patients. Associations were found between the severity of hypercortisolism and PR adipocyte size. Cushing's syndrome is associated with hypertrophy of PR adipocytes and a higher percentage of macrophage infiltration in PR adipose tissue. These changes are associated with an adverse local adipokine profile. © 2017 The Obesity Society.

  16. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes<