WorldWideScience

Sample records for rat ventral hippocampus

  1. Neonatal ventral hippocampus lesion alters the dopamine content in the limbic regions in postpubertal rats.

    Science.gov (United States)

    Alquicer, Glenda; Silva-Gómez, Adriana B; Peralta, Fernando; Flores, Gonzalo

    2004-04-01

    The neonatal ventral Hippocampus (nVH) lesion in rats has been used as a model to test the hypothesis that early neurodevelopmental abnormalities lead to behavioral changes putatively linked to schizophrenia. The schizophrenic patients tend to social isolation. In addition, considerable evidence from behavioral and neurochemistry studies strongly implicate the dopamine (DA) system and the medial part of the prefrontal cortex (mPFC) in the pathophysiology of the social isolation syndrome. In order to assess effects of the postweaning social isolation (pwSI) on the DA system of the nVH lesions, we investigated the DA content and its metabolite, DOPAC in different limbic subregions in rats postpubertally at postnatal day (P) 78 following nVH lesions at P7 with and without pwSI for 8 weeks. The DA and DOPAC were measured by HPLC with electrochemical detection. The nVH lesion induces increase in the DA content in the hippocampus with no effect in the mPFC, nucleus accumbens and caudate-putamen, while the pwSI induces major increase in the DA content in limbic subregions such as the mPFC, nucleus accumbens and hipocampus with opposite effect in the caudate-putamen. These results suggest that while pwSI has an effect in the postpubertal content of DA in both sham and nVH lesions in rats, the nVH-lesioned rats appear to be affected to a greater extent than the sham animals underscoring the influence of pwSI differences in the development of behaviors in the nVH-lesioned animals.

  2. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats.

    Science.gov (United States)

    Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub

    2017-11-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.

  3. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    Science.gov (United States)

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Long-lasting enhancement of synaptic excitability of CA1/subiculum neurons of the rat ventral hippocampus by vasopressin and vasopressin(4-8)

    NARCIS (Netherlands)

    Gispen, W.H.; Chepkova, A.N.; French, P.; Wied, D. de; Ontskul, A.H.; Ramakers, G.M.J.; Skrebitski, V.G.; Urban, I.J.A.

    1995-01-01

    Vasopressin (VP) is axonally distributed in many brain structures, including the ventral hippocampus. Picogram quantities of VP injected into the hippocampus improve the passive avoidance response of rats, presumably by enhancing memory processes. Vasopressin is metabolized by the brain tissue into

  5. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  6. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    Science.gov (United States)

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  7. Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood

    DEFF Research Database (Denmark)

    Bortz, D M; Jørgensen, Christinna Vangsgaard; Mikkelsen, J D

    2014-01-01

    Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious ...

  8. Chronic Stress Triggers Expression of Immediate Early Genes and Differentially Affects the Expression of AMPA and NMDA Subunits in Dorsal and Ventral Hippocampus of Rats

    Directory of Open Access Journals (Sweden)

    Anibal Pacheco

    2017-08-01

    Full Text Available Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA and N-methyl-D-aspartate (NMDA receptor subunits in dorsal and ventral hippocampus (VH. Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH. By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.

  9. Anxiolytic-Like Effects and Increase in Locomotor Activity Induced by Infusions of NMDA into the Ventral Hippocampus in Rat: Interaction with GABAergic System.

    Science.gov (United States)

    Bina, Payvand; Rezvanfard, Mehrnaz; Ahmadi, Shamseddin; Zarrindast, Mohammad Reza

    2014-10-01

    In this study, we investigated the role of N-Methyl-D-Aspartate (NMDA) receptors in the ventral hippocampus (VH) and their possible interactions with GABAA system on anxiety-like behaviors. We used an elevated-plus maze test (EPM) to assess anxiety-like behaviors and locomotor activity in male Wistar rats. The results showed that intra-VH infusions of different doses of NMDA (0.25 and 0.5 μg/rat) increased locomotor activity, and also induced anxiolytic-like behaviors, as revealed by a tendency to increase percentage of open arm time (%OAT), and a significant increase in percentage of open arm entries (%OAE). The results also showed that intra-VH infusions of muscimol (0.5 and 1 μg/rat) or bicuculline (0.5 and 1 μg/rat) did not significantly affect anxiety-like behaviors, but bicuculline at dose of 1 μg/rat increased locomotor activity. Intra-VH co-infusions of muscimol (0.5 μg/rat) along with low doses of NMDA (0.0625 and 0.125 μg/rat) showed a tendency to increase %OAT, %OAE and locomotor activity; however, no interaction was observed between the drugs. Interestingly, intra-VH co-infusions of bicuculline (0.5 μg/rat) along with effective doses of NMDA (0.25 and 0.5 μg/rat) decreased %OAT, %OAE and locomotor activity, and a significant interaction between two drugs was observed. It can be concluded that GABAergic system may mediate the anxiolytic-like effects and increase in locomotor activity induced by NMDA in the VH.

  10. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus.

    Science.gov (United States)

    Chawla, M K; Sutherland, V L; Olson, K; McNaughton, B L; Barnes, C A

    2018-02-01

    Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis. © 2017 Wiley Periodicals, Inc.

  11. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    Science.gov (United States)

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  12. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  13. Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression

    DEFF Research Database (Denmark)

    Bisgaard, Christina; Jayatissa, Magdalena N; Enghild, Jan J

    2007-01-01

    etiology and recovery. Thus two-dimensional differential in-gel electrophoresis was employed to compare the ventral hippocampal proteomes between different treatment groups in the chronic mild stress (CMS) model of depression. The CMS paradigm induces anhedonic behaviour, which is a major symptom......The development of depression as well as recovery from depression is most likely accompanied by a change in protein expression profiles. The purpose of the present study was to quantitatively investigate global protein expression differences independent of any hypothesis describing depression...... of depression, by exposing rats to a series of mild stressors for 7 weeks, with antidepressant treatment during the last 4 weeks. In the CMS model, animals were split into six different groups at the end of treatment; unchallenged control escitalopram (n = 12), unchallenged control vehicle (n = 12), CMS vehicle...

  14. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making.

    Science.gov (United States)

    Schumacher, Anett; Vlassov, Ekaterina; Ito, Rutsuko

    2016-04-01

    The resolution of an approach-avoidance conflict induced by ambivalent information involves the appraisal of the incentive value of the outcomes and associated stimuli to orchestrate an appropriate behavioral response. Much research has been directed at delineating the neural circuitry underlying approach motivation and avoidance motivation separately. Very little research, however, has examined the neural substrates engaged at the point of decision making when opposing incentive motivations are experienced simultaneously. We hereby examine the role of the dorsal and ventral hippocampus (HPC) in a novel approach-avoidance decision making paradigm, revisiting a once popular theory of HPC function, which posited the HPC to be the driving force of a behavioral inhibition system that is activated in situations of imminent threat. Rats received pre-training excitotoxic lesions of the dorsal or ventral HPC, and were trained to associate different non-spatial cues with appetitive, aversive and neutral outcomes in three separate arms of the radial maze. On the final day of testing, a state of approach-avoidance conflict was induced by simultaneously presenting two cues of opposite valences, and comparing the time the rats spent interacting with the superimposed 'conflict' cue, and the neutral cue. The ventral HPC-lesioned group showed significant preference for the conflict cue over the neutral cue, compared to the dorsal HPC-lesioned, and control groups. Thus, we provide evidence that the ventral, but not dorsal HPC, is a crucial component of the neural circuitry concerned with exerting inhibitory control over approach tendencies under circumstances in which motivational conflict is experienced. © 2015 Wiley Periodicals, Inc.

  15. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  16. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Muscarinic receptor blockade in ventral hippocampus and prelimbic cortex impairs memory for socially transmitted food preference.

    Science.gov (United States)

    Carballo-Márquez, Anna; Vale-Martínez, Anna; Guillazo-Blanch, Gemma; Martí-Nicolovius, Margarita

    2009-05-01

    Acetylcholine is involved in learning and memory and, particularly, in olfactory tasks, but reports on its specific role in consolidation processes are somewhat controversial. The present experiment sought to determine the effects of blocking muscarinic cholinergic receptors in the ventral hippocampus (vHPC) and the prelimbic cortex (PLC) on the consolidation of social transmission of food preference, an odor-guided relational task that depends on such brain areas. Adult male Wistar rats were bilaterally infused with scopolamine (20 microg/site) immediately after social training and showed impairment, relative to vehicle-injected controls, in the expression of the task measured 24 h after learning. Results indicated that scopolamine in the PLC completely abolished memory, suggesting that muscarinic transmission in this cortical region is crucial for consolidation of recent socially acquired information. Muscarinic receptors in the vHPC contribute in some way to task consolidation, as the rats injected with scopolamine in the vHPC showed significantly lower trained food preference than control rats, but higher than both chance level and that of the PLC-injected rats. Behavioral measures such as social interaction, motivation to eat, neophobia, or exploration did not differ between rats infused with scopolamine or vehicle. Such data suggest a possible differential role of muscarinic receptors in the PLC and the vHPC in the initial consolidation of a naturalistic form of nonspatial relational memory. Copyright 2008 Wiley-Liss, Inc.

  18. Envolvimento de receptores 5-HT2C do hipocampo ventral em comportamentos de defesa de ratos no labirinto em cruz elevado Involvement of ventral hippocampus 5-HT2C receptors on defensive behaviors of rats in the elevated plus-maze

    Directory of Open Access Journals (Sweden)

    Marília Greidinger Carvalho

    2012-04-01

    Full Text Available A ativação farmacológica dos receptores 5-HT2C induz comportamentos de defesa em modelos animais. O estudo busca investigar se o bloqueio seletivo de receptores 5-HT2C no hipocampo ventral (HV previne comportamentos defensivos induzidos por um agonista de receptor 5-HT2C administrado perifericamente em ratos expostos ao labirinto em cruz elevado (LCE. Quinze minutos após injeções intraperitoniais (IP, 1ml/kg do agonista 5-HT2C WAY-161503, ratos foram microinjetados bilateralmente no HV com o antagonista seletivo de receptores 5-HT2C SB-242084 (0, 0,1, 0,5 ou 1.5μg. Dez minutos após, cada animal foi exposto ao LCE para o registro de categorias de ansiedade. Injeções sistêmicas do WAY-161503 reduziram seletivamente as explorações nos braços abertos e aumentaram padrões de avaliação de risco. Esse efeito foi atenuado de maneira dose-dependente pela microinjeção de SB-242084 no HV, confirmando a ação ansiogênica de agonistas 5-HT2C e sugerindo que esse perfil comportamental seja mediado, pelo menos em parte, por receptores 5-HT2C do HV.Pharmacological 5-HT2C receptor activation induces defensive behaviors in several animal models of anxiety. The present study investigated whether the selective blockade of 5-HT2C receptors in the ventral hippocampus (VH prevents defensive behaviors induced by a 5-HT2C agonist administered systemically in rats exposed to the elevated plus-maze (EPM. Fifteen minutes after intraperitonial (IP, 1ml/kg injections of the selective 5-HT2C receptor agonist WAY-161503 (3 mg/kg, rats were bilaterally microinjected with the selective 5-HT2C antagonist SB-242084 (0, 0.1, 0.5 or 1.5μg into the VH. Ten minutes after, each animal was exposed to the EPM for measuring classical and ethological anxiety measures. IP WAY-161503 injections selectively decreased open-arm exploration while increasing risk-assessment. This anxiogenic-like action was dose-dependently attenuated by intra-VH SB-242084 microinjections

  19. Differential Effect of the Dopamine D3 Agonist (±-7-Hydroxy-2-(N,N-di-n-propylamino Tetralin (7-OH-DPAT on Motor Activity between Adult Wistar and Sprague-Dawley Rats after a Neonatal Ventral Hippocampus Lesion

    Directory of Open Access Journals (Sweden)

    Sonia Guzmán-Velázquez

    2011-01-01

    Full Text Available The neonatal ventral hippocampal lesion (nVHL has been widely used as an animal model for schizophrenia. Rats with an nVHL show several delayed behavioral alterations that mimic some symptoms of schizophrenia. Sprague-Dawley (SD rats with an nVHL have a decrease in D3 receptors in limbic areas, but the expression of D3 receptors in Wistar (W rats with an nVHL is unknown. The 7-Hydroxy-2-(N,N-di-n-propylamino tetralin (7-OH-DPAT has been reported as a D3-preferring agonist. Thus, we investigated the effect of (±-7-OH-DPAT (0.25 mg/kg on the motor activity in male adult W and SD rats after an nVHL. The 7-OH-DPAT caused a decrease in locomotion of W rats with an nVHL, but it did not change the locomotion of SD rats with this lesion. Our results suggest that the differential effect of 7-OH-DPAT between W and SD rats with an nVHL could be caused by a different expression of the D3 receptors. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia.

  20. Inactivation of ventral hippocampus interfered with cued-fear acquisition but did not influence later recall or discrimination.

    Science.gov (United States)

    Chen, Veronica M; Foilb, Allison R; Christianson, John P

    2016-01-01

    The ventral hippocampus (VH) is involved in the both the acquisition and recall of conditioned fear. Here, we tested the role of VH in acquisition and recall of a conditioned fear discrimination. Intra-VH vehicle or muscimol injections were made 1h prior to a CS+/CS- conditioning or prior to later recall. Vehicle treated rats exhibited discrimination with significantly greater freezing to the CS+ than to the CS- whereas muscimol treated rats did not freeze. Injections made before recall had no effect as both treatment groups displayed equal freezing in response to the CS+, and discrimination. While these results are consistent with several reports, the failure to influence fear discrimination upon recall appears to contrast with the hypothesized role of VH in recall of extinguished conditioned fear cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress.

    Science.gov (United States)

    Pearson-Leary, J; Eacret, D; Chen, R; Takano, H; Nicholas, B; Bhatnagar, S

    2017-06-27

    During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces

  2. Adult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior.

    Science.gov (United States)

    Ho, Y C; Wang, S

    2010-11-24

    Clinical and preclinical studies suggest that the hippocampus has a role in the pathophysiology of major depression. In the learned helplessness (LH) animal model of depression after inescapable shocks (ISs) animals that display LH behavior have reduced cell proliferation in the hippocampus; this effect can be reversed by antidepressant treatment. Using this model, we compared rats that displayed LH behavior and rats that did not show LH behavior (NoLH) after ISs to determine whether reduced hippocampal cell proliferation is associated with the manifestation of LH behavior or is a general response to stress. Specifically, we examined cell proliferation, neurogenesis, and synaptic function in dorsal and ventral hippocampus of LH and NoLH animals and control rats that were not shocked. The LH rats had showed reduced cell proliferation, neurogenesis, and synaptic transmission in the dorsal hippocampus, whereas no changes were seen in the ventral hippocampus. These changes were not observed in the NoLH animals. In a group of NoLH rats that received the same amount of electrical shock as the LH rats to control for the unequal shocks received in these two groups, we observed changes in Ki-67(+) cells associated with acute stress. We conclude that reduced hippocampal cell proliferation and neurogenesis are associated with the manifestation of LH behavior and that the dorsal hippocampus is the most affected area. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Sign-trackers have elevated myo-inositol in the nucleus accumbens and ventral hippocampus following Pavlovian conditioned approach.

    Science.gov (United States)

    Fitzpatrick, Christopher J; Perrine, Shane A; Ghoddoussi, Farhad; Galloway, Matthew P; Morrow, Jonathan D

    2016-01-04

    Pavlovian conditioned approach (PCA) is a behavioral procedure that can be used to assess individual differences in the addiction vulnerability of drug-naïve rats and identify addiction vulnerability factors. Using proton magnetic resonance spectroscopy ( 1 H-MRS) ex vivo, we simultaneously analyzed concentrations of multiple neurochemicals throughout the mesocorticolimbic system two weeks after PCA training in order to identify potential vulnerability factors to addiction in drug naïve rats for future investigations. Levels of myo-inositol (Ins), a 1 H-MRS-detectable marker of glial activity/proliferation, were increased in the nucleus accumbens (NAc) and ventral hippocampus (vHPC), but not dorsal hippocampus or medial prefrontal cortex, of sign-trackers compared to goal-trackers or intermediate responders. In addition, Ins levels positively correlated with PCA behavior in the NAc and vHPC. Because the sign-tracker phenotype is associated with increased drug-seeking behavior, these results observed in drug-naïve rats suggest that alterations in glial activity/proliferation within these regions may represent an addiction vulnerability factor. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus

    Directory of Open Access Journals (Sweden)

    Gayane Grigoryan

    2016-01-01

    Full Text Available Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp., based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.

  5. Left-right functional asymmetry of ventral hippocampus depends on aversiveness of situations.

    Science.gov (United States)

    Sakaguchi, Yukitoshi; Sakurai, Yoshio

    2017-05-15

    Many studies suggest that animals exhibit lateralized behaviors during aversive situations, and almost all animals exhibit right hemisphere-dominant behaviors associated with fear or anxiety. However, which brain structure in each hemisphere underlies such lateralized function is unclear. In this study, we focused on the hippocampus and investigated the effects of bilateral and unilateral lesions of the ventral hippocampus (VH) on anxiety-like behavior using the successive alleys test. We also examined the expression of c-fos in the VH, which was induced by an aversive situation. Results revealed that consistent right VH dominance trended with the anxiety level. Weaker anxiety induced both right and left VH functions, whereas stronger anxiety induced right VH function. From these results, we conclude that animals are able to adaptively regulate their behaviors to avoid aversive stimuli by changing the functional dominance of their left and right VH. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress.

    Science.gov (United States)

    Nasca, Carla; Bigio, Benedetta; Zelli, Danielle; de Angelis, Paolo; Lau, Timothy; Okamoto, Masahiro; Soya, Hideyo; Ni, Jason; Brichta, Lars; Greengard, Paul; Neve, Rachael L; Lee, Francis S; McEwen, Bruce S

    2017-10-11

    We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP + -Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  8. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    Science.gov (United States)

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  9. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    Science.gov (United States)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  11. Different implications of the dorsal and ventral hippocampus on contextual memory retrieval after stress.

    Science.gov (United States)

    Pierard, C; Dorey, R; Henkous, N; Mons, N; Béracochéa, D

    2017-09-01

    This study assessed the relative contributions of dorsal (dHPC) and ventral (vHPC) hippocampus regions in mediating the rapid effects of an acute stress on contextual memory retrieval. Indeed, we previously showed that an acute stress (3 electric footschocks; 0.9 mA each) delivered 15 min before the 24 h-test inversed the memory retrieval pattern in a contextual discrimination task. Specifically, mice learned in a four-hole board two successive discriminations (D1 and D2) varying by the color and texture of the floor. Twenty-four hours later, nonstressed animals remembered accurately D1 but not D2 whereas stressed mice showed an opposite memory retrieval pattern, D2 being more accurately remembered than D1. We showed here that, at the time of memory testing in that task, stressed animals exhibited no significant changes neither in pCREB activity nor in the time-course evolution of corticosterone into the vHPC; in contrast, a significant decrease in pCREB activity and a significant increase in corticosterone were observed in the dHPC as compared to nonstressed mice. Moreover, local infusion of the anesthetic lidocaine into the vHPC 15 min before the onset of the stressor did not modify the memory retrieval pattern in nonstress and stress conditions whereas lidocaine infusion into the dHPC induced in nonstressed mice an memory retrieval pattern similar to that observed in stressed animals. The overall set of data shows that memory retrieval in nonstress condition involved primarily the dHPC and that the inversion of memory retrieval pattern after stress is linked to a dHPC but not vHPC dysfunction. © 2017 Wiley Periodicals, Inc.

  12. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum.

    Science.gov (United States)

    Brenes, Juan C; Fornaguera, Jaime

    2009-03-02

    This study examined the effect of fluoxetine, a selective serotonin (5-HT) reuptake inhibitor, on isolation-induced changes on sucrose consumption and preference, spontaneous open-field activity, forced swimming behavior, and on tissue levels of 5-HT and dopamine (DA) in hippocampus and ventral striatum (VS). Male Sprague-Dawley rats were reared in social isolation or group housing from postnatal day 28. Thirty-two days later, half of the isolated animals were orally treated with fluoxetine (10mg/kg/day) during the following 34 days. At the end of this period, behavior was assessed and afterward ex-vivo tissue samples were obtained. It was found that fluoxetine restored isolation-increased sucrose consumption and immobility behavior, without affecting locomotor activity, which appeared slightly increased in isolated groups both treated and untreated. In the hippocampus, isolation rearing depleted 5-HT contents and increased 3,4-dihydroxyphenylacetic acid (DOPAC) levels, as well as 5-HT and DA turnover. These neurochemical alterations were reversed by fluoxetine. In VS, treated and untreated isolated rats showed higher 5-HT levels than grouped congeners. Although fluoxetine did not affect 5-HT and DA contents in this region, it slightly reversed the alterations in the 5-HT and DA turnover observed in isolated rats. Overall, social isolation impaired incentive and escape motivated behaviors. At the neurochemical level, isolation rearing affected 5-HT rather than DA activity, and this differential effect was more noticeable in hippocampus than in VS. The chronic treatment with fluoxetine during the last month of rearing somewhat prevented these behavioral and neurochemical alterations. Our data suggest that isolation rearing is an appropriate procedure to model some developmental-related alterations underlying depression disorders.

  13. MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS OF RATS IN ACCELERATED AGING

    Directory of Open Access Journals (Sweden)

    K. Yu. Maksimova

    2014-01-01

    Full Text Available The aim of this work was the analysis of structural changes with age in the hippocampus of senescenceaccelerated OXYS rats when signs of accelerated brain aging are missing (age 14 days, developments (age 5 months, and active progresses (age 15 months. The study was performed on 15 OXYS rats and 15 Wistar rats (as a control. After dislocation, brains were dissected, fixed with 10% formalin, embedded in paraffin, and serially cut in coronal sections (5μm thickness. These sections were stained with Cresyl violet and examined with a photomicroscope (Carl Zeiss Axiostar plus, Germany. The total number of hippocampal pyramidal cells in the CA1, CA3 and the dentate gyrus regions were estimated in 14-dayold, 5and 15-month-old OXYS and Wistar rats (n = 5 on the 5 slices of each brain sections. The number of neurons with chromatolysis, hyperchromatic with darkly stained cytoplasm and shrunken neurons were calculated as degenerative neurons. The pictures obtained with the program Carl Zeiss Axio Vision 8.0 with increasing 10  100, determined the average area bodies and nuclei of neurons (mkm2. The significant structural changes of neurons in the CA1, CA3 and dentate gyrus regions of the hippocampus in OXYS rats at 5 month of age are revealed by light microscopy. This results indicates the early develop neurodegeneration in OXYS rats. The most pronounced morphological changes occur in the CA1 region of the hippocampus of OXYS rats and irreversible. The degenerative changes of neurons in the hippocampus increases by the age of 15 months. Morphometric analysis of the average area of bodies and the nuclei of hippocampal neurons in CA1, CA3 and the dentate gyrus regions of OXYS and Wistar rats at 14 days of age showed no significant interline differences. At 5 months of age in the CA1 region of the hippocampus of OXYS rats was determined a significantly lower average body size and nuclei of pyramidal neurons compared with Wistar rats. With age, these

  14. Somatostatin receptors in rat hippocampus: localization to intrinsic neurons

    International Nuclear Information System (INIS)

    Palacios, J.M.; Reubi, J.C.; Maurer, R.

    1986-01-01

    The effect of neurotoxic chemical and electrolytical lesions on somatostatin (SS) receptor binding in the septo-hippocampal afferents, pyramidal and granule cells of the rat hippocampus was examined by autoradiography using the stable SS analogue 125 I-204-090 as radioligand. Electrolytical lesions of the septum did not result in modification of SS binding in the hippocampus. In contrast, both granule cell lesion with colchicine and pyramidal or pyramidal and granule cell lesions with increasing kainic acid doses did result in a specific decrease of binding in the dentate gyrus and hippocampus (CA 1 and CA 3 ). These results suggest that SS receptors in the hippocampus are probably associated with elements from intrinsic neurons. (Author)

  15. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    Zilles, K.

    1988-01-01

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  16. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    Science.gov (United States)

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  17. Dorsal hippocampus is necessary for visual categorization in rats.

    Science.gov (United States)

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for

  18. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    Oleskevich, S.; Descarries, L.; Lacaille, J.C.

    1989-01-01

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  19. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues.

    Science.gov (United States)

    Riaz, Sadia; Schumacher, Anett; Sivagurunathan, Seyon; Van Der Meer, Matthijs; Ito, Rutsuko

    2017-07-01

    The hippocampus (HPC) has been widely implicated in the contextual control of appetitive and aversive conditioning. However, whole hippocampal lesions do not invariably impair all forms of contextual processing, as in the case of complex biconditional context discrimination, leading to contention over the exact nature of the contribution of the HPC in contextual processing. Moreover, the increasingly well-established functional dissociation between the dorsal (dHPC) and ventral (vHPC) subregions of the HPC has been largely overlooked in the existing literature on hippocampal-based contextual memory processing in appetitively motivated tasks. Thus, the present study sought to investigate the individual roles of the dHPC and the vHPC in contextual biconditional discrimination (CBD) performance and memory retrieval. To this end, we examined the effects of transient post-acquisition pharmacological inactivation (using a combination of GABA A and GABA B receptor agonists muscimol and baclofen) of functionally distinct subregions of the HPC (CA1/CA3 subfields of the dHPC and vHPC) on CBD memory retrieval. Additional behavioral assays including novelty preference, light-dark box and locomotor activity test were also performed to confirm that the respective sites of inactivation were functionally silent. We observed robust deficits in CBD performance and memory retrieval following inactivation of the vHPC, but not the dHPC. Our data provides novel insight into the differential roles of the ventral and dorsal HPC in reward contextual processing, under conditions in which the context is defined by proximal cues. © 2017 Wiley Periodicals, Inc.

  20. Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma.

    Science.gov (United States)

    Sood, Rapita; Ritov, Gilad; Richter-Levin, Gal; Barki-Harrington, Liza

    2013-03-01

    Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes. Elevated plus maze tests confirmed that animals that experienced the threat of drowning present heightened levels of anxiety one month after trauma. An examination of the CA1 hippocampal areas of the same rats showed that underwater trauma caused a significant increase in the association of Mdm2 with β2AR, β Arrestin-1, and p53 in the ventral but not dorsal CA1. Our results provide support for the idea that stress-related events may result in biochemical changes restricted to the ventral 'emotion-related' parts of the hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Transient inactivation of the neonatal ventral hippocampus impairs attentional set-shifting behavior

    DEFF Research Database (Denmark)

    Brooks, Julie M; Pershing, Michelle L; Thomsen, Morten Skøtt

    2012-01-01

    as adults on an attentional set-shifting task. Performance in this task depends upon the integrity of the PFC and NAC. TTX infusions did not affect the initial acquisition or ability to learn an intra-dimensional shift. However, TTX rats required a greater number of trials than did controls to acquire...

  2. Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear.

    Science.gov (United States)

    Qi, Chu-Chu; Wang, Qing-Jun; Ma, Xue-Zhu; Chen, Hai-Chao; Gao, Li-Ping; Yin, Jie; Jing, Yu-Hong

    2018-03-19

    Following a social defeat, the balanced establishment and extinction of aversive information is a beneficial strategy for individual survival. Abnormal establishment or extinction is implicated in the development of mental disorders. This study investigated the time course of the establishment and extinction of aversive information from acute social defeat and the temporal responsiveness of the basolateral amygdala (BLA), ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) in this process. Mouse models of acute social defeat were established by using the resident-intruder paradigm. To evaluate the engram of social defeat, the intruder mice were placed into the novel context at designated time to test the social behavior. Furthermore, responses of BLA, vHIP and mPFC were investigated by analyzing the expression of immediate early genes, such as zif268, arc, and c-fos. The results showed after an aggressive attack, aversive memory was maintained for approximately 7 days before gradually diminishing. The establishment and maintenance of aversive stimulation were consistently accompanied by BLA activity. By contrast, vHIP and mPFC response was inhibited from this process. Additionally, injecting muscimol (Mus), a GABA receptor agonist, into the BLA alleviated the freezing behavior and social fear and avoidance. Simultaneously, Mus treatment decreased the zif268 and arc expression in BLA, but it increased their expression in vHIP. Our data support and extend earlier findings that implicate BLA, vHIP and mPFC in social defeat. The time courses of the establishment and extinction of social defeat are particularly consistent with the contrasting BLA and vHIP responses involved in this process.

  3. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder.

    Science.gov (United States)

    Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D

    2016-02-01

    Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.

  4. GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE

    Science.gov (United States)

    GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE. MB Rosen, VS Wilson, JE Schmid, and LE Gray Jr. US EPA, ORD, NHEERL, RTP, NC.Vinclozolin (Vi) and procymidone (Pr) are antiandrogenic fungicides. While changes in gene expr...

  5. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  6. Effect of pregabalin on apoptotic regulatory genes in hippocampus of rats with chronic temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    ZHANG Yi-dan

    2012-04-01

    Full Text Available Objective To observe the effect of pregabalin on the expression of Bcl-2 and Bax in hippocampus of chronic epileptic rats induced by pilocarpine, to explore the anti-epileptic pharmacology mechanism of pregabalin, and its anti-apoptotic effect on hippocampal neurons of rats. Methods The model of chronic temporal lobe epileptic rats induced by lithium-pilocarpine was established, then the rats in pregabalin treatment group received intraperitoneal injection of pregabalin (40 mg/kg once daily for three weeks. The expression of Bcl-2 and Bax in hippocampus of all rats was detected by immunohistochemical technique and Western blotting. Results Compared with normal saline group rats, the expression of Bcl-2 and Bax in hippocampus of rats with chronic temporal lobe epilepsy was significantly increased (P = 0.000, for all. Pregabalin can down-regulate the expression of Bax and up-regulate the expression of Bcl-2 in hippocampus of rats compared to model group rats (P = 0.000, for all. Conclusion Pregabalin may have the effects of inhibiting cell apoptosis and protecting neurons through lowing Bax level and increasing Bcl-2 level in hippocampus of chronic temporal lobe epileptic rats.

  7. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus; ...

  8. Effects of Electrical Stimulation of the Rat Vestibular Labyrinth on c-Fos Expression in the Hippocampus.

    Science.gov (United States)

    Hitier, Martin; Sato, Go; Zhang, Yan-Feng; Besnard, Stephane; Smith, Paul F

    2018-04-22

    Several studies have demonstrated that electrical activation of the peripheral vestibular system can evoke field potential, multi-unit neuronal activity and acetylcholine release in the hippocampus (HPC). However, no study to date has employed the immediate early gene protein, c-Fos, to investigate the distribution of activation of cells in the HPC following electrical stimulation of the vestibular system. We found that vestibular stimulation increased the number of animals expressing c-Fos in the dorsal HPC compared to sham control rats (P ≤ 0.02), but not in the ventral HPC. c-Fos was also expressed in an increased number of animals in the dorsal dentate gyrus (DG) compared to sham control rats (P ≤ 0.0001), and to a lesser extent in the ventral DG (P ≤ 0.006). The results of this study show that activation of the vestibular system results in a differential increase in the expression of c-Fos across different regions of the HPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    International Nuclear Information System (INIS)

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced [ 3 H]-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of [ 3 H]-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand [ 3 H]-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity

  10. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    International Nuclear Information System (INIS)

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [ 3 H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  11. Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat.

    Science.gov (United States)

    Wolf, Rainer; Dobrowolny, Henrik; Nullmeier, Sven; Bogerts, Bernhard; Schwegler, Herbert

    2017-03-30

    The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague-Dawley rats (Wolf et al., Pharmacopsychiatry 43:99-109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.

  12. Distinct Effect of Stress on 11 beta-Hydroxysteroid Dehydrogenase Type 1 and Corticosteroid Receptors in Dorsal and Ventral Hippocampus

    Czech Academy of Sciences Publication Activity Database

    Ergang, Peter; Kuželová, A.; Soták, Matúš; Klusoňová, Petra; Makal, J.; Pácha, Jiří

    2014-01-01

    Roč. 63, č. 2 (2014), s. 255-261 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/10/0969 Grant - others:Univerzita Karlova(CZ) 6187/2012; Univerzita Karlova(CZ) 5366/2012 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * stress * hippocampus Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  13. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress.

    Science.gov (United States)

    Maggio, Nicola; Segal, Menahem

    2011-04-15

    The ventral hippocampus (VH) was recently shown to express lower magnitude long-term potentiation (LTP) compared with the dorsal hippocampus (DH). Exposure to acute stress reversed this difference, and VH slices from stressed rats expressed larger LTP than that produced in the DH, which was reduced by stress. Stressful experience in adolescence has been shown to produce long-lasting effects on animal behavior and on ability to express LTP/long-term depression (LTD) of reactivity to afferent stimulation in the adult. We are interested in possible interactions between juvenile and adult stress in their effects of adult plasticity. We studied the effects of a composite juvenile (28-30 days) stress, followed by a reminder stressful experience in the young adult (60 days) rat, on the ability to produce LTP and LTD in CA1 region of slices of the VH and DH. Juvenile or adult stress produced a transient decrease in ability to express LTP in DH and a parallel increase in LTP in VH. Stress in the young adult after juvenile stress produced a striking prolongation of the DH/VH disparity with respect to the ability to express both LTP and LTD into the adulthood of the rat. These results have important implications for the impact of juvenile stress on adult neuronal plasticity and on the understanding the functions of the different sectors of the hippocampus. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  15. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  16. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  17. ELECTROPHYSIOLOGICAL CHARACTERIZATION OF DOPAMINERGIC AND NONDOPAMINERGIC NEURONS IN ORGANOTYPIC SLICE CULTURES OF THE RAT VENTRAL MESENCEPHALON

    DEFF Research Database (Denmark)

    STEENSEN, BH; NEDERGAARD, S; OSTERGAARD, K

    1995-01-01

    -old organotypic slice cultures of the ventral mesencephalon prepared from newborn rats. Dopaminergic neurones were distinguished from non-dopaminergic neurones by staining with the autofluorescent serotonin analogue 5,7-dihydroxytryptamine and briefly viewing the preparation with short exposures to ultraviolet...... 81 M Omega), were silent or fired spontaneously at a low frequency (0-9 Hz), and no spontaneous GABA(A)-ergic inhibitory postsynaptic potentials or inward rectification were present. In contrast, non-dopaminergic neurones had fast action potentials (0.6-3.2 ms), low input resistance (mean 32 M Omega...

  18. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  19. A terrified-sound stress induced proteomic changes in adult male rat hippocampus.

    Science.gov (United States)

    Yang, Juan; Hu, Lili; Wu, Qiuhua; Liu, Liying; Zhao, Lingyu; Zhao, Xiaoge; Song, Tusheng; Huang, Chen

    2014-04-10

    In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Differential effects of centrally-active antihypertensives on 5-HT1A receptors in rat dorso-lateral septum, rat hippocampus and guinea-pig hippocampus.

    Science.gov (United States)

    Leishman, D J; Boeijinga, P H; Galvan, M

    1994-01-01

    1. The electrophysiological responses elicited by 5-hydroxytryptamine1A-(5-HT1A) receptor agonists in rat and guinea-pig CA1 pyramidal neurones and rat dorso-lateral septal neurones were compared in vitro by use of conventional intracellular recording techniques. 2. In the presence of 1 microM tetrodotoxin (TTX), to prevent indirect effects, 5-HT, N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) and 8-hydroxy-2(di-n-propylamino) tetralin (8-OH-DPAT) hyperpolarized the neurones from rat and guinea-pig brain. 3. The hypotensive drug flesinoxan, a selective 5-HT1A receptor agonist, hyperpolarized neurones in all three areas tested; however, another hypotensive agent with high affinity at 5-HT1A-receptors, 5-methyl-urapidil, hyperpolarized only the neurones in rat hippocampus and septum. 4. In guinea-pig hippocampal neurones, 5-methyl-urapidil behaved as a 5-HT1A-receptor antagonist. 5. The relative efficacies (5-HT = 1) of DP-5-CT, 8-OH-DPAT, flesinoxan and 5-methyl-urapidil at the three sites were: rat hippocampus, 1.09, 0.7, 0.5 and 0.24; rat septum, 0.88, 0.69, 0.82 and 0.7; guinea-pig hippocampus, 1.0, 0.69, 0.89 and 0, respectively. 6. It is concluded that the hypotensive agents flesinoxan and 5-methyl-urapidil appear to have different efficacies at 5-HT1A receptors located in different regions of the rodent brain. Whether these regional and species differences arise from receptor plurality or variability in intracellular transduction mechanisms remains to be elucidated.

  1. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress.

    Science.gov (United States)

    Diniz, Cassiano R A F; Casarotto, Plínio C; Joca, Sâmia R L

    2016-07-01

    Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex.

    Science.gov (United States)

    Parfitt, Gustavo Morrone; Nguyen, Robin; Bang, Jee Yoon; Aqrabawi, Afif J; Tran, Matthew M; Seo, D Kanghoon; Richards, Blake A; Kim, Jun Chul

    2017-07-01

    Anxiety is an adaptive response to potentially threatening situations. Exaggerated and uncontrolled anxiety responses become maladaptive and lead to anxiety disorders. Anxiety is shaped by a network of forebrain structures, including the hippocampus, septum, and prefrontal cortex. In particular, neural inputs arising from the ventral hippocampus (vHPC) to the lateral septum (LS) and medial prefrontal cortex (mPFC) are thought to serve as principal components of the anxiety circuit. However, the role of vHPC-to-LS and vHPC-to-mPFC signals in anxiety is unclear, as no study has directly compared their behavioral contribution at circuit level. We targeted LS-projecting vHPC cells and mPFC-projecting vHPC cells by injecting the retrogradely propagating canine adenovirus encoding Cre recombinase into the LS or mPFC, and injecting a Cre-responsive AAV (AAV8-hSyn-FLEX-hM3D or hM4D) into the vHPC. Consequences of manipulating these neurons were examined in well-established tests of anxiety. Chemogenetic manipulation of LS-projecting vHPC cells led to bidirectional changes in anxiety: activation of LS-projecting vHPC cells decreased anxiety whereas inhibition of these cells produced opposite anxiety-promoting effects. The observed anxiety-reducing function of LS-projecting cells was in contrast with the function of mPFC-projecting cells, which promoted anxiety. In addition, double retrograde tracing demonstrated that LS- and mPFC-projecting cells represent two largely anatomically distinct cell groups. Altogether, our findings suggest that the vHPC houses discrete populations of cells that either promote or suppress anxiety through differences in their projection targets. Disruption of the intricate balance in the activity of these two neuron populations may drive inappropriate behavioral responses seen in anxiety disorders.

  3. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  4. Expression of Toll-like receptor 4 in hippocampus of rat model with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    PAN Li-ping

    2013-12-01

    Full Text Available Objective To investigate the expression of Toll-like receptor 4 (TLR4 protein in hippocampus of rat model with temporal lobe epilepsy after status epilepticus (SE and explore its function in the pathogenesis of temporal lobe epilepsy. Methods Rat model with temporal lobe epilepsy was induced by lithium chloride (LiCl-pilocarpine. Total protein was extracted from hippocampus and rat brain slices were obtained at different time points (0, 1, 6, 12, 24, 48 h and 7, 10, 30, 50 d after SE. Western blotting and immunohistochemical staining were used for detection of the expression of TLR4 in the hippocampus. Results The results of Western blotting showed the TLR4 protein expression at 0, 1, 6, 12, 24, 48 h and 7, 10, 30 d after SE was higher than that in the control group (P 0.05. Conclusion TLR4 protein was mainly expressed in cytoplasm of pyramidal cells in CA3 area of hippocampus. TLR4 protein expression in the hippocampus was increased in varying degrees at different observation time points after SE, indicating that TLR4 may play an important role in the development of epilepsy.

  5. Structural layers of ex vivo rat hippocampus at 7T MRI.

    Directory of Open Access Journals (Sweden)

    Jeanine Manuella Kamsu

    Full Text Available Magnetic resonance imaging (MRI applied to the hippocampus is challenging in studies of the neurophysiology of memory and the physiopathology of numerous diseases such as epilepsy, Alzheimer's disease, ischemia, and depression. The hippocampus is a well-delineated cerebral structure with a multi-layered organization. Imaging of hippocampus layers is limited to a few studies and requires high magnetic field and gradient strength. We performed one conventional MRI sequence on a 7T MRI in order to visualize and to delineate the multi-layered hippocampal structure ex vivo in rat brains. We optimized a volumic three-dimensional T2 Rapid Acquisition Relaxation Enhancement (RARE sequence and quantified the volume of the hippocampus and one of its thinnest layers, the stratum granulare of the dentate gyrus. Additionally, we tested passive staining by gadolinium with the aim of decreasing the acquisition time and increasing image contrast. Using appropriated settings, six discrete layers were differentiated within the hippocampus in rats. In the hippocampus proper or Ammon's Horn (AH: the stratum oriens, the stratum pyramidale of, the stratum radiatum, and the stratum lacunosum moleculare of the CA1 were differentiated. In the dentate gyrus: the stratum moleculare and the stratum granulare layer were seen distinctly. Passive staining of one brain with gadolinium decreased the acquisition time by four and improved the differentiation between the layers. A conventional sequence optimized on a 7T MRI with a standard receiver surface coil will allow us to study structural layers (signal and volume of hippocampus in various rat models of neuropathology (anxiety, epilepsia, neurodegeneration.

  6. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    Science.gov (United States)

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  7. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  8. Evidence that stress activates glial lactate formation in vivo assessed with rat hippocampus lactography

    NARCIS (Netherlands)

    Elekes, O; Venema, K; Postema, F; Dringen, R; Hamprecht, B; Korf, J

    1996-01-01

    Extracellular lactate of the rat hippocampus is inter alia increased by immobilization stress. The origin of lactate is, however, not well established, so it is not known whether it is mainly derived form neurons or glial cells. Dialysates were collected shortly (1 or 2 days) or with a delay (14 or

  9. Mitochondria morphologic changes and metabolic effects of rat hippocampus after microwave irradiation

    International Nuclear Information System (INIS)

    Zhao Li; Peng Ruiyun; Gao Yabing; Wang Shuiming; Wang Lifeng; Dong Qi; Xu Xinping; Ma Junjie

    2007-01-01

    Objective: To investigate the effect of microwave on mitochondria morphologic and metabolism of rat hippocampus. Methods: 30 male rats were exposed to microwave with the average power density of 30 mW/cm 2 . Rats were sacrificed at 6 h, 1 d, 3 d and 7 d after irradiation. Electron microscope, enzymatic activity staining and spectrophotometer were used to study ultrastructure change of hippocampus mitochondria and activity of ATPase, SDH and MAO. Mitochondrial ATP, ADP and AMP contents were measured by high performance liquid chromatography (HPLC). Results: At 6 h after microwave radiation, the sizes and shapes of hippocampus mitochondria were abnormal and the injury of mitochondria was aggravated at 1 and 3 d after radiation. The mitochondria presented swell, cavitation including disorder, shortness and decrease of crest. The activity of SDH and content of ATP were decreased at 6 h, most serious at 3 d(P<0.01), and recovered at 7 d after radiation. The activity of ATPase and MAO increased notably at 1 d and 3 d after radiation (P<0.01). Conclusions: Microwave can damage the structure and function of mitochondria in rat hippocampus, and cause the energy metabolism of enzyme disorder. (authors)

  10. Lipoic acid effects on glutamate and taurine concentrations in rat hippocampus after pilocarpine-induced seizures

    Directory of Open Access Journals (Sweden)

    P S Santos

    2011-01-01

    Full Text Available Pilocarpine-induced seizures can be mediated by increases in oxidative stress and by cerebral amino acid changes. The present research suggests that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures in cellular level. The objective of the present study was to evaluate the lipoic acid (LA effects in glutamate and taurine contents in rat hippocampus after pilocarpine-induced seizures. Wistar rats were treated intraperitoneally (i.p. with 0.9% saline (Control, pilocarpine (400 mg/kg, Pilocarpine, LA (10 mg/kg, LA, and the association of LA (10 mg/kg plus pilocarpine (400 mg/kg, that was injected 30 min before of administration of LA (LA plus pilocarpine. Animals were observed during 24 h. The amino acid concentrations were measured using high-performance liquid chromatograph (HPLC. In pilocarpine group, it was observed a significant increase in glutamate content (37% and a decrease in taurine level (18% in rat hippocampus, when compared to control group. Antioxidant pretreatment significantly reduced the glutamate level (28% and augmented taurine content (32% in rat hippocampus, when compared to pilocarpine group. Our findings strongly support amino acid changes in hippocampus during seizures induced by pilocarpine, and suggest that glutamate-induced brain damage plays a crucial role in pathogenic consequences of seizures, and imply that strong protective effect could be achieved using lipoic acid through the release or decrease in metabolization rate of taurine amino acid during seizures.

  11. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  12. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    Science.gov (United States)

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  13. A kinetic study of the in vivo incorporation of 65Zn into the rat hippocampus

    International Nuclear Information System (INIS)

    Sato, S.M.; Frazier, J.M.; Goldberg, A.M.

    1984-01-01

    Previous autoradiographical studies utilizing 65 Zn demonstrated an apparent concentration of 65 Zn in the mossy fiber boutons of the hippocampus. To examine the speciation of the 65 Zn pool found in this neuronal pathway, we investigated the in vivo incorporation of systemic 65 Zn into rat hippocampus compared with other brain regions. We were especially interested in kinetically assessing the zinc associated with three previously identified cytosolic zinc-binding species found in the hippocampus. The hypothesis that two of these cytosolic zinc-binding species, a metallothionein-like protein and a putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampus was tested. It was confirmed that the t 1/2 of hippocampal zinc is longer than other brain regions that were studied. Furthermore, we observed that 65 Zn is incorporated into three cytosolic zinc-binding species in the hippocampus as resolved using Ultrogel AcA 34 gel permeation chromatography. One of these species, the putative zinc-glutathione complex, accumulates zinc more slowly than the other species. The data suggest that the putative zinc-glutathione complex may represent an important 65 Zn pool in the hippocampus. This finding is in accordance with out hypothesis that a zinc-binding species, specifically, the putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampal mossy boutons

  14. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  15. Glucose metabolic alterations in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Li, Jingjing; Liu, Beibei; Cai, Ming; Lin, Xiaojing; Lou, Shujie

    2017-11-04

    Diabetes could negatively affect the structures and functions of the brain, especially could cause the hippocampal dysfunction, however, the potential metabolic mechanism is unclear. The aim of this study was to investigate the changes of glucose metabolism in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise, and to analyze the possible mechanisms. A rat model of type 2 diabetes mellitus was established by high-fat diet feeding in combination with STZ intraperitoneal injection, then 4 weeks of aerobic exercise was conducted. The glucose metabolites and key enzymes involved in glucose metabolism in hippocampus were respectively detected by GC/MS based metabolomics and western blot. Metabolomics results showed that compared with control rats, the level of citric acid was significantly decreased, while the levels of lactic acid, ribose 5-phosphate, xylulose 5-phosphate and glucitol were significantly increased in the diabetic rat. Compared with diabetic rats, the level of citric acid was significantly increased, while the lactic acid, ribose 5-phosphate and xylulose 5-phosphate were significantly decreased in the diabetic exercise rats. Western blot results showed that lower level of citrate synthase and oxoglutarate dehydrogenase, higher level of aldose reductase and glucose 6-phosphatedehydrogenase were found in the diabetic rats when compared to control rats. After 4 weeks of aerobic exercise, citrate synthase was upregulated and glucose 6-phosphatedehydrogenase was downregulated in the diabetic rats. These results suggest that diabetes could cause abnormal glucose metabolism, and aerobic exercise plays an important role in regulating diabetes-induced disorder of glucose metabolism in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Study of the variations in apoptotic factors in hippocampus of male rats with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Behrang Alani

    2013-01-01

    Full Text Available Background: Post-traumatic stress disorder (PTSD is a stress-related psychosomatic disorder caused by occurrence of a traumatic event and the hippocampus volume of the patients with Post-traumatic stress disorder decreased. However, the mechanisms that cause such damage are not well-understood. The aim of this study is to detect the expression of apoptosis-related Bax, Bcl-2, Caspase-3 and Insulin-like growth Factor-I proteins in the hippocampus region in the Predatory stress rats. Materials and Methods: A total of 70 male wistar rats were divided into Predatory stress groups of 1d, 2d, 3d, 7d, 14d, 30d and a normal control group (N = 10. Rats were subjected to 5 min of predatory stress and then exposed to the elevated plus-maze (EPM. Serum corticosterone and Insulin-like growth factor-1 level of Hippocampus were measured by ELISA technique. The expression of Bax, Bcl-2, and Caspase-3 were detected by western blotting. Results: Rats spent significantly more time in closed arms of the elevated plus maze (EPM than control group after exposure to stress. Serum levels of corticosterone significantly increased at 2d-3d. The expression of hippocampal IGF-1 was significantly up-regulated at 1d-2d after stress. Both Bax and the ratio of Bax/Bcl-2 significantly peaked at Predatory stress 2d-14d. Caspase3 was significantly active among 2d-30 compared to the normal control. Conclusion: The activation of caspase-3 in the stress groups indicates that apoptosis may be one of the reasons inducing hippocampus atrophy and play roles in the pathogenesis of PTSD. Increase in hippocampus levels of IGF-1 during early PTSD might be involved in the early molecular inhibitory mechanism of apoptosis in PTSD.

  17. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Directory of Open Access Journals (Sweden)

    Daniel P. Venâncio

    2012-01-01

    Full Text Available We investigated the effect of 96 h paradoxical sleep deprivation (PSD and 21-day sleep restriction (SR on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR.

  18. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Science.gov (United States)

    Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.

    2012-01-01

    We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719

  19. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning

    International Nuclear Information System (INIS)

    Gallagher, M.; Bizon, J.L.; Nicolle, M.M.

    1996-01-01

    Using in vitro autoradiography, we investigated [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, [ 3 H]kainate and [ 3 H]N-methyl-d-aspartate binding in two forebrain regions, the hippocampus and striatum, of young (four months of age) and aged (24-25 months of age) Long-Evans rats that had previously been tested for spatial learning ability in the Morris water maze. Although there was substantial preservation of binding in the aged rats, reductions in binding were present in the aged rats that were specific to ligand and anatomical region. In the hippocampus of aged rats, [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate binding in CA1 and [ 3 H]kainate binding in CA3 were reduced. In contrast, N-methyl-d-aspartate binding was not significantly different between age groups. There was evidence of sprouting in the dentate gyrus molecular layer of aged rats, indicated by changes in the topography of [ 3 H]kainate binding. Binding density was analysed with respect to patch/matrix compartmentalization in the striatum. The most striking result was a large decrease in N-methyl-d-aspartate binding in aged rats that was not limited to any dorsal/ventral or patch/matrix area of the striatum. Additionally, [ 3 H]kainate binding in striatal matrix was modestly reduced in aged rats. Of these age effects, only N-methyl-d-aspartate binding in the striatum and [ 3 H]kainate binding in the CA3 region of the hippocampus were correlated with spatial learning, with lower binding in the aged rats associated with better spatial learning ability.Age-related alterations in ionotropic glutamate receptors differ with respect to the receptor subtype and anatomical region examined. The age effects were not neccessarily indicative of cognitive decline, as only two age-related binding changes were correlated with spatial learning. Interestingly, in these instances, lower binding in the aged rats was associated with preserved spatial learning, suggesting a compensatory reduction

  20. Catecholaminergic development of fetal rat ventral mesencephalon : Characterization by high-performance liquid chromatography with electrochemical detection and immunohistochemistry

    NARCIS (Netherlands)

    Tomasini, R; Kema, IP; Muskiet, FAJ; Meiborg, G; Staal, MJ; Go, KG

    We determined dopamine (DA), noradrenaline (NA), and adrenaline (A), as well as immunohistochemically stained tyrosine hydroxylase (TH) and DA in dissected rat ventral mesencephalon (VM) tissue from Embryonic Day (ED) 14 to Postnatal Day (P) 17. Whole VM tissue DA, NA, and A contents increased with

  1. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin.

    Science.gov (United States)

    Patel, Ryan; Dickenson, Anthony H

    2016-07-01

    Neuropathic pain represents a substantial clinical challenge; understanding the underlying neural mechanisms and back-translation of therapeutics could aid targeting of treatments more effectively. The ventral posterior thalamus (VP) is the major termination site for the spinothalamic tract and relays nociceptive activity to the somatosensory cortex; however, under neuropathic conditions, it is unclear how hyperexcitability of spinal neurons converges onto thalamic relays. This study aimed to identify neural substrates of hypersensitivity and the influence of pregabalin on central processing. In vivo electrophysiology was performed to record from VP wide dynamic range (WDR) and nociceptive-specific (NS) neurons in anesthetized spinal nerve-ligated (SNL), sham-operated, and naive rats. In neuropathic rats, WDR neurons had elevated evoked responses to low- and high-intensity punctate mechanical stimuli, dynamic brushing, and innocuous and noxious cooling, but less so to heat stimulation, of the receptive field. NS neurons in SNL rats also displayed increased responses to noxious punctate mechanical stimulation, dynamic brushing, noxious cooling, and noxious heat. Additionally, WDR, but not NS, neurons in SNL rats exhibited substantially higher rates of spontaneous firing, which may correlate with ongoing pain. The ratio of WDR-to-NS neurons was comparable between SNL and naive/sham groups, suggesting relatively few NS neurons gain sensitivity to low-intensity stimuli leading to a "WDR phenotype." After neuropathy was induced, the proportion of cold-sensitive WDR and NS neurons increased, supporting the suggestion that changes in frequency-dependent firing and population coding underlie cold hypersensitivity. In SNL rats, pregabalin inhibited mechanical and heat responses but not cold-evoked or elevated spontaneous activity. Copyright © 2016 the American Physiological Society.

  2. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.

    Directory of Open Access Journals (Sweden)

    Norio Takata

    Full Text Available The dorsal and ventral hippocampal regions (dHP and vHP are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP and multi unit activities (MUA upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2. Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP, which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.

  3. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  4. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A gene-environment study of cytoglobin in the human and rat hippocampus

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Elfving, Betina; Müller, Heidi Kaastrup

    2013-01-01

    Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown C......NOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression.......Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown...... Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (n...

  6. Context Dependent Effects of Ventral Tegmental Area Inactivation on Spatial Working Memory

    OpenAIRE

    Martig, Adria K.; Jones, Graham L.; Smith, Kelsey E.; Mizumori, Sheri J.Y.

    2009-01-01

    Rats were tested on a hippocampus dependent win-shift working memory task in familiar or novel environments after receiving bilateral ventral tegmental area infusions of baclofen. Baclofen infusion disrupted working memory performance in both familiar and novel environments. In addition, baclofen infusion selectively disrupted short-term working memory in the novel environment. This experiment confirms selective ventral tegmental area support of accurate performance during a context dependent...

  7. Neurochemical phenotype of cytoglobin‑expressing neurons in the rat hippocampus

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Fahrenkrug, Jan; Hannibal, Jens

    2014-01-01

    in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number...... of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic...... structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population...

  8. Granule cell potentials in the dentate gyrus of the hippocampus: coping behavior and stress ulcers in rats.

    Science.gov (United States)

    Henke, P G

    1990-01-01

    Evoked population potentials of the granule cells in the dentate gyrus of the hippocampus were increased in stress-resistant rats and decreased in stress-susceptible rats, as indexed by restraint-induced gastric ulcers. Inescapable, uncontrollable shock stimulation also suppressed granule cell population spikes and interfered with subsequent coping responses when escape was possible, i.e. the so-called helplessness effect. The data were interpreted to indicate that the hippocampus is part of a coping system in stressful situations.

  9. The expression changes of inflammatory cytokines in the hippocampus following whole-brain irradiation in rats

    International Nuclear Information System (INIS)

    Yu De; Tian Ye; Ding Weijun; Zhu Yaqun; Liu Chunfeng

    2004-01-01

    To investigate the change pattern of some inflammatory cytokines in brain tissue at the acute phase after brain irradiated. The whole brain of SD rats was irradiated by the single dose of 2, 15 or 30 Gy of 4 MeV electron beam. The enzyme-linked immunosorbent assay (ELISA) was used for the measurement of IL-1 β, IL-6, and TNF-α content in hippocampus tissue of rats at 1h, 6h, 12h, 1d, 2 and 1 week post-irradiation. The mRNA of IL-1 β, IL-6, and TNF-α were detected by reverse-transcription polymerase chain reaction (RT-PCR) in the same experimental groups. It was analyzed about the influence of dosage and post-irradiation duration with the cytokines expression. Compared with both the normal control and the anesthetized with chloral hydrate but sham-irradiation groups, there were no difference about the three inflammatory cytokines expression in rats with 2 Gy irradiated. At 6h after irradiation with 15 Gy, 6 and 12h with 30 Gy groups, the content of IL-1β and TNF-α in hippocampus tissue were significantly increased, and were returned to normal level after 12 to 24h. The same change tendency of their mRNA relational level was observed in 15 and 30 Gy groups, but it happened earlier in 1h after exposure. Although the content of IL-6 in hippocampus kept stable in all the groups, its mRNA level raised obviously in 12h group. After 15-30 Gy whole-brain irradiation, the expression of some inflammatory cytokines increased abruptly in the hippocampus of SD rat within 1 day, but the interplay between inflammatory cytokines changes and the pathogenesis of radiation injury was incompletely understood at present. (authors)

  10. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  11. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Apiwat Sirichoat

    2015-10-01

    Full Text Available Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol while treated rats received asiatic acid (30 mg/kg orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis.

  12. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  13. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats.

    Science.gov (United States)

    Backes, E N; Hemby, S E

    2008-03-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.

  14. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  15. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    Science.gov (United States)

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  16. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    Science.gov (United States)

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  17. Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Mohammad Abbasian

    2013-11-01

    Full Text Available Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx. Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 – among Connexins– is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS on Cx32 gene and protein expressions in rat hippocampus is evaluated. Methods: LPS (2.5μg/rat was infused into the rat cerebral ventricles for 14 days. Cx32 mRNA and protein levels were measured by Real Time PCR and Western Blot after 1st, 7th and 14th injection of LPS in the hippocampus. Results: Significant increase in Cx32 mRNA expression was observed after 7th injection of LPS (P<0.001. However, no significant change was observed in Cx32 protein level. Conclusion: LPS seems to modify Cx32 GJ communication in the hippocampus at transcription level but not at translation or post-translation level. In order to have a full view concerning modification of Cx32 GJ communication, effect of LPS on Cx32 channel gating should also be determined.

  18. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Department of Toxicology, Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510‐300 (China); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514‐8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‐8507 (Japan); Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Ichihara, Gaku, E-mail: gak@med.nagoya-u.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan)

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  19. Modulation of [3H]-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    International Nuclear Information System (INIS)

    Mennini, T.; Miari, A.

    1991-01-01

    Serotonin (5-HT) added in vitro increased [ 3 H]-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of [ 3 H]-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine [ 3 H]-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 μM 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion [ 3 H]-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion [ 3 H]-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes

  20. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    Directory of Open Access Journals (Sweden)

    Irmgard eAmrein

    2014-05-01

    Full Text Available African mole-rats (family Bathyergidae are small to medium sized, long-lived and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of one year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin. Solitary Cape mole-rats (Georychus capensis, social highveld mole-rats (Cryptomys hottentotus pretoriae, and eusocial naked mole-rats (Heterocephalus glaber were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean

  2. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species.

    Science.gov (United States)

    Amrein, Irmgard; Becker, Anton S; Engler, Stefanie; Huang, Shih-Hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents.

  3. Theta oscillation and neuronal activity in rat hippocampus areinvolved in temporal discrimination of time in seconds

    Directory of Open Access Journals (Sweden)

    Tomoaki eNakazono

    2015-06-01

    Full Text Available The discovery of time cells revealed that the rodent hippocampus has information of time.Previous studies have suggested that a role of hippocampal time cells is to integratetemporally segregated events into a sequence using working memory with time perception.However, it is unclear that hippocampal cells contribute to time perception itself becausemost previous studies employed delayed matching-to-sample tasks that did not evaluatetime perception separately from working memory processes. Here, we investigated thefunction of the rat hippocampus in time perception using a temporal discrimination task. Inthe task, rats had to discriminate between durations of 1 and 3 sec to get a reward, andmaintaining task-related information as working memory was not required. We found thatsome hippocampal neurons showed firing rate modulation similar to that of time cells.Moreover, theta oscillation of local field potentials (LFPs showed a transient enhancementof power during time discrimination periods. However, there were little relationshipsbetween the neuronal activities and theta oscillations. These results suggest that both theindividual neuronal activities and theta oscillations of LFPs in the hippocampus have a possibility to be engaged in seconds order time perception; however, they participate in different ways.

  4. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  5. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats.

    Science.gov (United States)

    Chang, Stephen E; Todd, Travis P; Bucci, David J; Smith, Kyle S

    2015-12-01

    Cues associated with rewarding events acquire value themselves as a result of the incentive value of the reward being transferred to the cue. Consequently, presentation of a reward-paired cue can trigger reward-seeking behaviours towards the cue itself (i.e. sign-tracking). The ventral pallidum (VP) has been demonstrated to be involved in a number of motivated behaviours, both conditioned and unconditioned. However, its contribution to the acquisition of incentive value is unknown. Using a discriminative autoshaping procedure with levers, the effects of disrupting VP activity in rats on the emergence of sign-tracking was investigated using chemogenetics, i.e. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Transient disruption of VP neurons [activation of the inhibitory hM4D(Gi) DREADD through systemic injections of clozapine N-oxide (CNO) prior to each autoshaping session] impaired acquisition of sign-tracking (lever press rate) without having any effect on approach to the site of reward delivery (i.e. goal-tracking) or on the expression of sign-tracking after it was acquired. In addition, electrophysiological recordings were conducted in freely behaving rats following VP DREADD activation. The majority of VP units that were responsive to CNO injections exhibited rapid inhibition relative to baseline, a subset of CNO-responsive units showed delayed excitation, and a smaller subset displayed a mixed response of inhibition and excitation following CNO injections. It is argued that disruption of VP during autoshaping specifically disrupted the transfer of incentive value that was attributed to the lever cue, suggesting a surprisingly fundamental role for the VP in acquiring, compared with expressing, Pavlovian incentive values. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. The development of the cholinergic system in rat hippocampus following postnatal X-irradiation

    International Nuclear Information System (INIS)

    Ben-Barak, J.

    1981-01-01

    Postnatal X-irradiation of the rat hippocampus results in a marked reduction in the number of the postnatally developing granular neurons in the dentate gyrus and also caused a marked increase in the specific activity of acetylcholinesterase (AChE) and choline acetyltransferase (CAT) and a slight but consistent increase in the activity per whole hippocampus of AChE. The effect of irradiation on the granular neurons and on the cholinergic enzymes was found to be dose and age dependent. Drastic increase in specific enzymatic activities is also observed in the irradiated cerebellum whose granular neurons differentiate postnatally and to a lesser extent in the cerebral cortex in which cell formation is accomplished prior to birth. (Auth.)

  7. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat

    International Nuclear Information System (INIS)

    Frederickson, C.J.; Klitenick, M.A.; Manton, W.I.; Kirkpatrick, J.B.

    1983-01-01

    Zinc was measured in whole hippocampus and in hippocampal sub-regions by stable-isotope dilution mass spectrometry. Lyophilized tissues were spiked by a precisely-known amount of zinc-64. The zinc-64/zinc-66 isotope ratio was determined by mass spectrometry. In both man and the rat, the most zinc (102-145 ppm, dry weight) was found in the hilar region, the least (27-35) in the fimbria. The amount of zinc directly associated with mossy-fiber axons was estimated to be approximately 8% of the total zinc in the hippocampus, and the concentration of mossy-fiber zinc was estimated at 220-300 μM. Methodological and theoretical implications of the quantitative findings were discussed. (Auth.)

  8. The mitochondrial toxin, 3-nitropropionic acid, induces extracellular Zn2+ accumulation in rat hippocampus slices.

    Science.gov (United States)

    Wei, Guo; Hough, Christopher J; Sarvey, John M

    2004-11-11

    3-nitropropionic acid (3-NPA), a suicide inhibitor of succinate dehydrogenase (SDH; complex II), has been used to provide useful experimental models of Huntington's disease (HD) and "chemical hypoxia" in rodents. The trace ion Zn2+ has been shown to cause neurodegeneration. Employing real-time Newport Green fluorescence imaging of extracellular Zn2+, we found that 3-NPA (10-100 microM) caused a concentration-dependent increase in the concentration of extracellular Zn2+ ([Zn2+]o) in acute rat hippocampus slices. This increase in [Zn2+]o was abolished by 10 mM CaEDTA. The increase of [Zn2+]o was also accompanied by a rapid increase of cytoplasmic-free Zn2+ concentration ([Zn2+]i). The induction of Zn2+ release by 3-MPA in hippocampus slices points to a potential mechanism by which 3-NPA might induce neurodegeneration.

  9. Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats.

    Science.gov (United States)

    Liu, Huiying; Yang, Jinghua; Liu, Qiufang; Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Zheng, Linlin; Xi, Qi; Cai, Yuan

    2014-12-01

    Rare earth elements (REEs) are used in many fields for their diverse physical and chemical properties. Surveys have shown that REEs can impair learning and memory in children and cause neurobehavioral defects in animals. However, the mechanism underlying these impairments has not yet been completely elucidated. Lanthanum (La) is often selected to study the effects of REEs. The aim of this study was to investigate the spatial memory impairments induced by lanthanum chloride (LaCl3) and the probable underlying mechanism. Wistar rats were exposed to LaCl3 in drinking water at 0 % (control, 0 mM), 0.25 % (18 mM), 0.50 % (36 mM), and 1.00 % (72 mM) from birth to 2 months after weaning. LaCl3 considerably impaired the spatial learning and memory of rats in the Morris water maze test, damaged the synaptic ultrastructure and downregulated the expression of p-MEK1/2, p-ERK1/2, p-MSK1, p-CREB, c-FOS and BDNF in the hippocampus. These results indicate that LaCl3 exposure impairs the spatial learning and memory of rats, which may be attributed to disruption of the synaptic ultrastructure and inhibition of the ERK/MSK1 signaling pathway in the hippocampus.

  10. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    Science.gov (United States)

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.

  11. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.

    Science.gov (United States)

    Kim, Hong; Lee, Myoung-Hwa; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Won, Ran; Shin, Hye-Sook; Kim, Chang-Ju

    2006-03-01

    During the prenatal period, the development of individual is influenced by the environmental factors. In the present study, the influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats was investigated. The exposure to the noise during pregnancy caused growth retardation, decreased neurogenesis in the hippocampus, and impaired spatial learning ability in pups. The exposure to music during pregnancy, on the other hand, caused increased neurogenesis in the hippocampus and enhanced spatial learning ability in pups. The present study has shown the importance of the prenatal environmental conditions for the cognition and brain development.

  12. Effect of tibolone on dendritic spine density in the rat hippocampus.

    Science.gov (United States)

    Beltrán-Campos, V; Díaz-Ruiz, A; Padilla-Gómez, E; Aguilar Zavala, H; Ríos, C; Díaz Cintra, S

    2015-09-01

    Oestrogen deficiency produces oxidative stress (OS) and changes in hippocampal neurons and also reduces the density of dendritic spines (DS). These alterations affect the plastic response of the hippocampus. Oestrogen replacement therapy reverses these effects, but it remains to be seen whether the same changes are produced by tibolone (TB). The aim of this study was to test the neuroprotective effects of long-term oral TB treatment and its ability to reverse DS pruning in pyramidal neurons (PN) of hippocampal area CA1. Young Sprague Dawley rats were distributed in 3 groups: a control group in proestrus (Pro) and two ovariectomised groups (Ovx), of which one was provided with a daily TB dose (1mg/kg), OvxTB and the other with vehicle (OvxV), for 40 days in both cases. We analysed lipid peroxidation and DS density in 3 segments of apical dendrites from PNs in hippocampal area CA1. TB did not reduce lipid peroxidation but it did reverse the spine pruning in CA1 pyramidal neurons of the hippocampus which had been caused by ovariectomy. Oestrogen replacement therapy for ovariectomy-induced oestrogen deficiency has a protective effect on synaptic plasticity in the hippocampus. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Evaluation of GABA Receptors of Ventral Tegmental Area in Cardiovascular Responses in Rat

    Directory of Open Access Journals (Sweden)

    Minoo Rasoulpanah

    2015-07-01

    Full Text Available Background: The ventral tegmental area (VTA is well known for its role in cardiovascular control. It is demonstrated that about 20-30% of the VTA neurons are GABAergic though their role in cardiovascular control is not yet understood. This study is carried out to find the effects of GABA A and GABA B receptors on cardiovascular response of the VTA. Methods: Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA. The average changes in mean arterial pressure (MAP and heart rate (HR were compared between the case and the control groups using t test and with the pre-injection values using paired t test. Results: Microinjection of muscimol, a GABAA agonist (500, 1500 and 2500 pmol/100nl into the VTA had no significant effect on MAP and HR compared with the saline group and pre-injection values. Injection of bicuculline methiodide (BMI, 100 and 200 pmol/100 nl, a GABAA antagonist, caused a significant increase in the MAP (11.1±1.95mmHg, P<0.5 and a decrease in HR (-32.07±10.2, P<0.01. Microinjection of baclofen a GABAB receptor agonist (500 or 1000 pmole/100 nl and phaclofen a GABAB receptor antagonist (500 or 1000 pmole/100 nl had no significant effects on MAP and HR. Conclusion: For the first time it was demonstrated that GABA system of the VTA inhibits the cardiovascular system through the activation of GABAA but not the GABAB receptors.

  14. Organization of GABAergic synaptic circuits in the rat ventral tegmental area.

    Science.gov (United States)

    Ciccarelli, Alessandro; Calza, Arianna; Panzanelli, Patrizia; Concas, Alessandra; Giustetto, Maurizio; Sassoè-Pognetto, Marco

    2012-01-01

    The ventral tegmental area (VTA) is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA) neurons and also contains a sparse population of γ-aminobutyric acid (GABA)ergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A) and GABA(B) receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A) and GABA(B) receptors. However VTA neurons differ considerably in the expression of GABA(A) receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.

  15. Organization of GABAergic synaptic circuits in the rat ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Alessandro Ciccarelli

    Full Text Available The ventral tegmental area (VTA is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA neurons and also contains a sparse population of γ-aminobutyric acid (GABAergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A and GABA(B receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A and GABA(B receptors. However VTA neurons differ considerably in the expression of GABA(A receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.

  16. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats.

    Directory of Open Access Journals (Sweden)

    Guiqin Xie

    Full Text Available Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1 receptors (D(1Rs. In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.

  17. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane.

    Science.gov (United States)

    Xiao, Hongyan; Liu, Bing; Chen, Yali; Zhang, Jun

    2016-02-01

    Developmental exposure to volatile anesthetics has been associated with cognitive deficits at adulthood. Rodent studies have revealed impairments in performance in learning tasks involving the hippocampus. However, how the duration of anesthesia exposure impact on hippocampal synaptic plasticity, learning, and memory is as yet not fully elucidated. On postnatal day 7(P7), rat pups were divided into 3 groups: control group (n=30), 3% sevoflurane treatment for 1h (Sev 1h group, n=30) and 3% sevoflurane treatment for 6h (Sev 6h group, n=28). Following anesthesia, synaptic vesicle-associated proteins and dendrite spine density and synapse ultrastructure were measured using western blotting, Golgi staining, and transmission electron microscopy (TEM) on P21. In addition, the effects of sevoflurane treatment on long-term potentiation (LTP) and long-term depression (LTD), two molecular correlates of memory, were studied in CA1 subfields of the hippocampus, using electrophysiological recordings of field potentials in hippocampal slices on P35-42. Rats' neurocognitive performance was assessed at 2 months of age, using the Morris water maze and novel-object recognition tasks. Our results showed that neonatal exposure to 3% sevoflurane for 6h results in reduced spine density of apical dendrites along with elevated expression of synaptic vesicle-associated proteins (SNAP-25 and syntaxin), and synaptic ultrastructure damage in the hippocampus. The electrophysiological evidence indicated that hippocampal LTP, but not LTD, was inhibited and that learning and memory performance were impaired in two behavioral tasks in the Sev 6h group. In contrast, lesser structural and functional damage in the hippocampus was observed in the Sev 1h group. Our data showed that 6-h exposure of the developing brain to 3% sevoflurane could result in synaptic plasticity impairment in the hippocampus and spatial and nonspatial hippocampal-dependent learning and memory deficits. In contrast, shorter

  19. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 1; Postnatal maturation of hippocampal cells

    Energy Technology Data Exchange (ETDEWEB)

    Represa, A; Dessi, F; Beaudoin, M; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    The axons of dentate granule cells, the mossy fibres, establish synaptic contacts with the thorny excrescences of the apical dendrite of CA3 pyramidal neurons. Dentate granule cells develop postnatally in rats, whereas the CA3 pyramidal cells are generated before birth. In the present studies, using unilateral neonatal {gamma}-ray irradiation to destroy the granule cells in one hemisphere, we have studied the effect of mossy fibre deprivation on the development of their targets. We show that such ''degranulation'' prevents the normal development of giant thorny excrescences, suggesting that the development of thorny excrescences in CA3 pyramidal neurons is under the control of mossy fibres. In contrast, irradiation of the hippocampus of the neonatal rat does not affect the development of the dendritic arborization of CA3 pyramidal cells and their non-mossy dendritic spines. (author).

  20. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p testosterone...

  1. [Effects of electromagnetic radiation on RAF/MEK/ERK signaling pathway in rats hippocampus].

    Science.gov (United States)

    Zuo, Hong-yan; Wang, De-wen; Peng, Rui-yun; Wang, Shui-ming; Gao, Ya-bing; Xu, Xin-ping; Ma, Jun-Jie

    2009-05-01

    To study the development of changes for signaling molecules related to Raf/MEK/ERK pathway in hippocampus of rats after electromagnetic radiation, and investigate the mechanisms of radiation injury. Rats were exposed to X-HPM, S-HPM and EMP radiation source respectively, and animal model of electromagnetic radiation was established. Western blot was used to detect the expression of Raf-1, phosphorylated Raf-1 and phospholylated ERK. The expression of Raf-1 down-regulated during 6 h-14 d after radiation, most significantly at 7 d, and recovered at 28 d. There was no significant difference between the radiation groups. The expression of phosphorylated Raf-1 and phosphorylated ERK both up-regulated at 6 h and 7 d after radiation, more significantly at 6 h, and the two microwave groups were more serious for phosphorylated ERK. During 6 h-14 d after S-HPM radiation, the expression of phosphorylated Raf-1 increased continuously, but phosphorylated ERK changed wavily, 6 h and 7 d were expression peak. Raf/MEK/ERK signaling pathway participates in the hippocampus injury induced by electromagnetic radiation. The excessive activation of ERK pathway may result in the apoptosis and death of neurons, which is the important mechanism of recognition disfunction caused by electromagnetic radiation.

  2. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels?

    Science.gov (United States)

    O'Sullivan, E; Barrett, E; Grenham, S; Fitzgerald, P; Stanton, C; Ross, R P; Quigley, E M M; Cryan, J F; Dinan, T G

    2011-09-01

    Brain-derived neurotrophic factor (BDNF) is of interest because of its putative role in stress and psychiatric disorders. Maternal separation is used as an animal model of early-life stress and of irritable bowel syndrome (IBS). Animals exposed to the paradigm show altered gut function together with heightened levels of arousal and corticosterone. Some probiotic organisms have been shown to be of benefit in IBS and influence the brain-gut axis. Our objective was to investigate the effects of maternal separation on BDNF under basal conditions and in response to the probiotic Bifidobacterium breve 6330. The study implemented the maternal separation model which we have previously described. Polymerase chain reaction and in situ hybridisation were performed to measure the effect of maternal separation on both BDNF total variants and BDNF splice variant (exon) IV in the hippocampus. Maternally separated and non-separated rats were treated with B. breve 6330, to investigate the effect of this probiotic on BDNF total variant and BDNF exon IV expression. Maternal separation increased BDNF total variants (Pbreve 6330 increased BDNF total variants (Pbreve 6330 did not alter BDNF levels in the maternally separated rats. Maternal separation caused a marked increase in BDNF in the hippocampus. While B. breve 6330 influenced BDNF in normal animals, it had no significant effect on BDNF in those which were maternally separated. We have demonstrated that an orally administered probiotic can influence hippocampal BDNF.

  3. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  4. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    Science.gov (United States)

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. Copyright © 2014 the authors 0270-6474/14/3415534-14$15.00/0.

  5. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  6. The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats.

    Science.gov (United States)

    Conboy, Lisa; Tanrikut, Cihan; Zoladz, Phillip R; Campbell, Adam M; Park, Collin R; Gabriel, Cecilia; Mocaer, Elisabeth; Sandi, Carmen; Diamond, David M

    2009-04-01

    Agomelatine, a novel antidepressant with established clinical efficacy, acts as a melatonin receptor agonist and 5-HT(2C) receptor antagonist. As stress is a significant risk factor in the development of depression, we sought to determine if chronic agomelatine treatment would block the stress-induced impairment of memory in rats trained in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. Moreover, since neural cell adhesion molecule (NCAM) is known to be critically involved in memory consolidation and synaptic plasticity, we evaluated the effects of agomelatine on NCAM, and polysialylated NCAM (PSA-NCAM) expression in rats given spatial memory training with or without predator stress. Adult male rats were pre-treated with agomelatine (10 mg/kg i.p., daily for 22 d), followed by a single day of RAWM training and memory testing. Rats were given 12 training trials and then they were placed either in their home cages (no stress) or near a cat (predator stress). Thirty minutes later the rats were given a memory test trial followed immediately by brain extraction. We found that: (1) agomelatine blocked the predator stress-induced impairment of spatial memory; (2) agomelatine-treated stressed, as well as non-stressed, rats exhibited a rapid training-induced increase in the expression of synaptic NCAM in the ventral hippocampus; and (3) agomelatine treatment blocked the water-maze training-induced decrease in PSA-NCAM levels in both stressed and non-stressed animals. This work provides novel observations which indicate that agomelatine blocks the adverse effects of stress on hippocampus-dependent memory and activates molecular mechanisms of memory storage in response to a learning experience.

  7. Tramadol Pretreatment Enhances Ketamine-Induced Antidepressant Effects and Increases Mammalian Target of Rapamycin in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2012-01-01

    Full Text Available Several lines of evidence have demonstrated that acute administration of ketamine elicits fast-acting antidepressant effects. Moreover, tramadol also has potential antidepressant effects. The aim of this study was to investigate the effects of pretreatment with tramadol on ketamine-induced antidepressant activity and was to determine the expression of mammalian target of rapamycin (mTOR in rat hippocampus and prefrontal cortex. Rats were intraperitoneally administrated with ketamine at the dose of 10 mg/kg or saline 1 h before the second episode of the forced swimming test (FST. Tramadol or saline was intraperitoneally pretreated 30 min before the former administration of ketamine or saline. The locomotor activity and the immobility time of FST were both measured. After that, rats were sacrificed to determine the expression of mTOR in hippocampus and prefrontal cortex. Tramadol at the dose of 5 mg/kg administrated alone did not elicit the antidepressant effects. More importantly, pretreatment with tramadol enhanced the ketamine-induced antidepressant effects and upregulated the expression of mTOR in rat hippocampus and prefrontal cortex. Pretreatment with tramadol enhances the ketamine-induced antidepressant effects, which is associated with the increased expression of mTOR in rat hippocampus and prefrontal cortex.

  8. Electrophysiological and neurochemical changes in the rat hippocampus after in vitro and in vivo treatments with cocaine

    International Nuclear Information System (INIS)

    Yasuda, R.P.

    1986-01-01

    The in vitro and in vivo effects of cocaine in the noradrenergic pathway in the rat hippocampus were examined. Although the blockade of [ 3 H]-norepinephrine-uptake by cocaine has been well-characterized in both the central and peripheral nervous systems, investigations characterizing the electrophysiological effects of cocaine in the central nervous system have been limited. The first part of this thesis examines the relationship between the ability of cocaine to potentiate the electrophysiological response to norepinephrine (NE) and the ability of cocaine to block noradrenergic high affinity uptake in rat hippocampal slices. The second part of this thesis examines the effects of the repeated administration of cocaine on noradrenergic pre- and postsynaptic function and receptors of the rat hippocampus. These studies demonstrate that after repeated administration of cocaine (10 mg/kg/day) for 8 and 14 days there is a 50% decrease in NE high affinity uptake in the rat hippocampus. This was accompanied by a 40% increase in a binding site for NE uptake inhibitors at 14 days. In contrast to these effects, there was no effect on β-adrenergic receptor number or the isoproterenol induced electrophysiological responsiveness in the rat hippocampus. The conclusion of these studies is that the repeated administration of cocaine has a greater effect on presynaptic targets in the noradrenergic system than on postsynaptic neurons

  9. Primary Blast-Induced Changes in Akt and GSK3β Phosphorylation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Yushan Wang

    2017-08-01

    Full Text Available Traumatic brain injury (TBI due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β, in rat hippocampus, were investigated. Male Sprague-Dawley (SD rats (350–400 g were exposed to a single pulse shock wave (25 psi; ~7 ms duration and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9, were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA receptor activity was

  10. 1H-MR spectroscopy of the rat hippocampus after whole brain irradiation: an in vivo study

    International Nuclear Information System (INIS)

    Ding Weijun; Yang Haihua; Wang Xufeng; Hu Wei; Lei Hao; Li Chunxia; Fang Fang; Fang Zhouxi

    2008-01-01

    Objective: To study the relationships between dynamic changes of the hippocampus metabolites, cognitive impairment and ultrastructural changes of hippocampus in rats during the initial 4 weeks after 6 MV X-ray whole-brain irradiation. Methods: 65 rats were randomly divided into foul groups as sham control (n=5), 10 Gy, 20 Gy and 30 Gy groups (n=20). The learning and memory ability was measured with the Y maze test 4, 8 weeks, 2, 6 months after irradiation. 1 H-MRS was performed after 2 or 4 weeks' brain irradiation. The ultrastructural changes of the hippocampus were observed by electronic microscope. Results: The learning and memorizing ability of irradiation groups was significantly different from that of control group. Compared with control group, the NAA/Ct and Cho/Cr ratio in the left hippocampus in 10 Gy, 20 Gy and 30 Gy groups at 2 weeks and 4 weeks decreased significantly. Neuronal mitochondria edema, endothelial cells swelling and lamina dissociation in myelin sheath were demonstrated in various degrees by electromicroscope at 4 weeks following whole brain irradiation. Conclusions: 1 H-MRS can be used to non-invasively monitor the metabolic changes, both quantitatively and dynamically, of the irradiated rat brain, 1 H-MRS is superior to MRI in detecting early abnormality of the brain. The NAA/Cr and Cho/Cr ratio in irradiated hippocampus could reflect the severity of the brain injury to some extent. (authors)

  11. Involvement of serotonin in the ventral tegmental area in thermoregulation of freely moving rats.

    Science.gov (United States)

    Ishiwata, Takayuki; Hasegawa, Hiroshi; Greenwood, Benjamin N

    2017-07-13

    We have recently reported that the serotonin (5-HT) projections from the midbrain's raphe nuclei that contains 5-HT cell bodies may play a role both in heat production and in heat loss. The purpose of the present study was to clarify the involvement of 5-HT in the ventral tegmental area (VTA), where 5-HT is suggested to participate in thermoregulation, using the combined methods of telemetry, microdialysis, and high performance liquid chromatography, with a special emphasis on regulation of the body temperature (T b ) in freely moving rats. First, we measured changes in T b , tail skin temperature (T tail ; an index of heat loss), heart rate (HR; an index of heat production), locomotor activity (Act), and levels of extracellular monoamines in the VTA during cold (5°C) or heat (35°C) exposure. Subsequently, we perfused citalopram (5-HT re-uptake inhibitor) into the VTA and measured the thermoregulatory parameters and monoamines release. Although T b , T tail , and HR changed during both exposures, significant changes in extracellular level of 5-HT (138.7±12.7% baseline, p<0.01), but not dopamine (DA) or noradrenaline (NA) were noted in the VTA only during heat exposure. In addition, perfusion of citalopram into the VTA increased extracellular 5-HT levels (221.0±52.2% baseline, p<0.01), but not DA or NA, while T b decreased from 37.4±0.1°C to 36.8±0.2°C (p<0.001),T tail increased from 26.3±0.4°C to 28.4±0.4°C (p<0.001), and HR and Act remained unchanged. Our results suggest that the VTA is a key area for thermoregulation, and 5-HT, but not DA or NA, modulates the heat loss system through action in the VTA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Effect of electroacupuncture on cellular structure of hippocampus in splenic asthenia pedo-rats].

    Science.gov (United States)

    Yang, Zhuo-xin; Zhuo, Yuan-yuan; Yu, Hai-bo; Wang, Ning

    2010-02-01

    To observe the effect of electroacupuncture (EA) on hippocampal structure in splenic asthenia pedo-rats. A total of 15 SD male rats were randomly assigned to normal control group (n=5), model group (n=5) and EA group (n=5). Splenic asthenic syndrome model was established by intragastric administration of rhubarb and intraperitoneal injection of Reserpine for 14 d. EA (1 mA, 3 Hz/iS Hz) was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 mm, once a day for 14 days. The cellular structure of hippocampus was observed by light microscope and transmission electron microscope. Optical microscopic observation showed that in normal control group, the cellular nucleus was distinct, and the granular cell layer well-arranged and tight. In model group, the intracellular space was widened, and the granular cell layer was out of order in the arrangement. In EA group, the celluldr nucleus and the granular cell layer were nearly normal. Results of the electronic microscope showed that cells in model group had a karyopyknosis with irregular appearance and clear incisure, and some of them presented dissolving and necrotic phenomena; and those in EA group were milder in injury, had nearly-normal nucleus with visible nucleoli and relatively-intact nuclear membrane. Regarding the cellular plasma, in comparison with rich normal organelles of control group, the mitochondria in model group were swelling, with vague, dissolved and broken cristae, while in EA group, majority of the organelles were well-kept, and slightly dissolved mitochondrial cristae found. In regard to the synaptic structure, in comparison with control group, synaptic apomorphosis and swelling mitochondria were found in model group While in EA group, milder swelling and hydropic degeneration were seen. Different from the distinct pre- and post-synaptic membrane and synaptic vesicles of control group, while those in EA group were nearly-normal. electroacupunture can effectively relieve splenasthenic

  13. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke

    International Nuclear Information System (INIS)

    Lee, Heung M.; Reed, Jason; Greeley, George H.; Englander, Ella W.

    2009-01-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase α subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke

  14. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    Science.gov (United States)

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  15. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    Using microdialysis in CA1 of the rat hippocampus, we studied the effect of transient cerebral ischemia on in vivo uptake and on extracellular levels of glutamate during, and at different time points after ischemia. (3)H-D-aspartate (test substance), and (14)C-mannitol (reference substance), were...

  16. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    Science.gov (United States)

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-04

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.

  17. Acetylcholine release in the hippocampus during the operant conditioned reflex and the footshock stimulus in rats.

    Science.gov (United States)

    Dong, Yu; Mao, Jianjun; Shangguan, Dihua; Zhao, Rui; Liu, Guoquan

    2004-10-14

    The activity of the septo-hippocampal cholinergic pathway was investigated by measuring changes in the extracellular acetylcholine (ACh) levels in the hippocampus, by means of microdialysis, during the operant conditioned reflex and the repeated footshock stimulus. Microdialysis samplings were conducted in a Skinner box where lights were delivered as conditioned stimuli (CS) paired with footshocks as unconditioned stimuli (US). Two groups of rats were used. Extracellular ACh and choline (Ch) in samples collected at 6min intervals were assessed by high-performance liquid chromatography with electrochemical detection. The elevation of hippocampus ACh was observed in the two experimental groups. The increase in ACh during aversive stimulus (footshock) was significantly larger and was probably related to the number of footshocks. There might be moderate increase in the hippocampal ACh release during the retrieval of information. The concentration of choline showed no significant fluctuation in the two groups during the whole process. This experiment explored in more detail hippocampal cholinergic activity in relation to the two different procedures.

  18. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (pprecursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  20. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion.

    Science.gov (United States)

    de Castro-Neto, Eduardo Ferreira; da Cunha, Rafael Henrique; da Silveira, Dartiu Xavier; Yonamine, Mauricio; Gouveia, Telma Luciana Furtado; Cavalheiro, Esper Abrão; Amado, Débora; Naffah-Mazzacoratti, Maria da Graça

    2013-11-26

    To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P ayahuasca ingestion.

  1. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    Science.gov (United States)

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  2. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  3. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  4. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus.

    Science.gov (United States)

    Hunter, B E; de Fiebre, C M; Papke, R L; Kem, W R; Meyer, E M

    1994-02-28

    Long-term potentiation (LTP) can be modulated by a number of neurotransmitter receptors including muscarinic and GABAergic receptor types. We have found that a novel nicotinic agonist, 2,4-dimethoxybenzylidene anabaseine (DMXB), facilitated the induction of LTP in the hippocampus in a dose-dependent and mecamylamine-sensitive manner. DMXB displaced high affinity nicotinic [125I]alpha-bungarotoxin and [3H]acetylcholine binding in rat brain. Xenopus oocyte studies demonstrated that DMXB has agonist activity at alpha 7 but not alpha 4/beta 2 nicotinic receptor subtypes. These results indicated that DMXB is a novel nicotinic agonist with apparent specificity for the alpha 7/alpha-bungarotoxin nicotinic receptor subtype and indicate that nicotinic receptor activation is capable of modulating the induction of long-term potentiation.

  5. Neuron activity in rat hippocampus and motor cortex during discrimination reversal.

    Science.gov (United States)

    Disterhoft, J F; Segal, M

    1978-01-01

    Chronic unit activity and gross movement were recorded from rats during two discrimination reversals in a classical appetitive conditioning situation. The anticipatory movement decreased in response to the former CS+ tone and increased to the previous CS- tone after each reversal. Hippocampus and motor cortex were differently related to these two kinds of behavioral change. Response rates of hippocampal neurons were more closely related to the increased movement response to the former CS- which now signaled food. Motor cortex neuron responses were more closely correlated with the decrease in movement responses to the former CS+ which became neutral after the reversal. It appeared that hippocampal neurons could have been involved in one cognitive aspect of the situation, motor cortex neurons in another. The data were related to current functional concepts of these brain regions.

  6. High-dose dextromethorphan produces myelinoid bodies in the hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Hai-Quyen Tran

    2016-10-01

    Full Text Available Dextromethorphan (DM administered at supra-antitussive doses produce psychotoxic and neurotoxic effects in humans. We administered DM (80 mg/kg to rats intraperitoneally to determine the ultrastructural change induced by DM, because intraperitoneal route is sensitive for the behavioral responses. Treatment with DM resulted in mitochondrial dysfunction and formation of myelinoid bodies in the hippocampus. MK-801 [(+-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] attenuated DM-induced cytosolic oxidative burdens. However, neither MK-801 nor naloxone affected DM-induced mitochondrial dysfunction and formation of myelinoid bodies, indicating that the neurotoxic mechanism needs to be further elucidated. Therefore, the spectrum of toxicological effects associated with DM need to be reassessed.

  7. High-dose dextromethorphan produces myelinoid bodies in the hippocampus of rats.

    Science.gov (United States)

    Tran, Hai-Quyen; Chung, Yoon Hee; Shin, Eun-Joo; Kim, Won Ki; Lee, Jae-Chul; Jeong, Ji Hoon; Wie, Myung Bok; Jang, Choon-Gon; Yamada, Kiyofumi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-10-01

    Dextromethorphan (DM) administered at supra-antitussive doses produce psychotoxic and neurotoxic effects in humans. We administered DM (80 mg/kg) to rats intraperitoneally to determine the ultrastructural change induced by DM, because intraperitoneal route is sensitive for the behavioral responses. Treatment with DM resulted in mitochondrial dysfunction and formation of myelinoid bodies in the hippocampus. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] attenuated DM-induced cytosolic oxidative burdens. However, neither MK-801 nor naloxone affected DM-induced mitochondrial dysfunction and formation of myelinoid bodies, indicating that the neurotoxic mechanism needs to be further elucidated. Therefore, the spectrum of toxicological effects associated with DM need to be reassessed. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    Science.gov (United States)

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in

  9. INFLUENCE OF ELECTROACUPUNCTURE ON THE ULTRASTRUCTURE OF CA3 REGION OF THE HIPPOCAMPUS IN VD RATS

    Institute of Scientific and Technical Information of China (English)

    YAN Bing; XU Neng-gui; HE Li-lei; TANG Chun-zhi; SHAO Ying

    2006-01-01

    Objective: To observe the effect of electroacupuncture (EA) on learning and memory abilities and ultrastructure of synapses in CA3 region of the hippocampus in vascular dementia (VD) rats. Methods: A total of 32 SD rats were randomized into control (sham-operation, n = 7), model (n = 7), EA (n = 9) and medication (n=9) groups. VD model was established by occlusion of the bilateral vertebral arteries (electrocoagulation) and bilateral common carotid arteries (occlusion for 5 min and reperfusion for 10 min, repeated the procedure for 3 times to induce global ischemia). EA (150 Hz, 1 mA) was applied to "Baihui"(百会GV 20), "Geshu"(膈俞 BL 17), "Pishu"(脾俞 BL 20) and "Shenshu"(肾俞 BL 23) for 20 min, once daily and continuously for 15 days. In medication group, the rats were fed with Nimotong (12 mg/kg), once daily and continuously for 15 days. Morris water maze method was used to test the animals' learning and memory abilities (latencies to find the hidden platform determined by place navigation trials, and latencies to cross on the location of the removed platform determined by spatial probe trials) after the treatment. Ultrastructural changes (numerical density, NA,surface density, Sv and volume density, Vv) of Gray type 1 synapses in CA3 region of the hippocampus were observed by using transmission electronic microscope and automatic image analysis system. Results: 1 ) Place navigation test showed that in comparison with control group, the average escape latency of VD group was significantly longer (P<0.01), while in comparison with VD group, the latencies of both EA and medication groups decreased significantly ( P<0.01 ). No significant difference was found between EA and medication groups in the escape latency (P>0.05). 2) Spatial probe-test displayed that in comparison with control group, the times which the animals crossed the target platform in VD group decreased significantly (P<0.01), while compared with VD group, those of both EA and

  10. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  11. [Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism].

    Science.gov (United States)

    Li, Xin-juan; Zhang, Yan; Xu, Chun-yang; Li, Shuang; Du, Ai-lin; Zhang, Li-bin; Zhang, Rui-ling

    2015-03-01

    To observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism. Forty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method. The abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P chronic alcoholism group (P chronic alcoholism group( P chronic alcoholism group were significantly increased compared with control group (P chronic alcoholism group ( P chronic alcoholism damage may interrelate with regulation of Cdk5 kinase activity.

  12. Study on cognition disorder and morphologic change of neurons in hippocampus area following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 周云涛; 高俊玲

    2002-01-01

    Objective: To explore the correlation between cognition disorder and morphologic change of hippocampal neurons after traumatic brain injury (TBI).   Methods: Wistar rat models with severe TBI were made by Marmarous method. The histopathological change of the neurons in the hippocampus area were studied with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase-mediated X-dUPT nick end labeling (TUNEL), respectively. The cognitive function was evaluated with the Morris water maze test.   Results: The comprehensive neuronal degeneration and necrosis could be observed in CA2-3 regions of hippocampus at 3 days after injury. Apoptotic positive neurons in CA2-4 regions of hippocampus and dentate gyrus increased in the injured group at 24 hours following TBI. They peaked at 7 days and then declined. Significant impairment of spatial learning and memory was observed after injury in the rats.   Conclusions: The rats have obvious disorders in spatial learning and memory after severe TBI. Meanwhile, delayed neuronal necrosis and apoptosis can be observed in the neurons in the hippocampus area. It suggests that delayed hippocampal cell death may contribute to the functional deficit.

  13. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    Science.gov (United States)

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion

    Institute of Scientific and Technical Information of China (English)

    Eduardo; Ferreira; de; Castro-Neto; Rafael; Henrique; da; Cunha; Dartiu; Xavier; da; Silveira; Mauricio; Yonamine; Telma; Luciana; Furtado; Gouveia; Esper; Abro; Cavalheiro; Débora; Amado; Maria; da; Graa; Naffah-Mazzacoratti

    2013-01-01

    AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography(HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion(gavage). Animals were killed 40 min after drug ingestion and the structures stored at-80 ℃ until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant. RESULTS: The results showed decreased concentrations of glycine(GLY)(0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid(GABA)(1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level(0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA(0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg(1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg(2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg(1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg(noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg(noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg(noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001). CONCLUSION: Our data suggest

  15. The role of basolateral amygdala adrenergic receptors in hippocampus dependent spatial memory in rat

    Directory of Open Access Journals (Sweden)

    Vafaei A.L.

    2008-03-01

    Full Text Available Background and the purpose of the study: There are extensive evidences indicating that the noradrenergic system of the basolateral nucleus of the amygdala (BLA is involved in memory processes. The present study investigated the role of the BLA adrenergic receptors (ARs in hippocampus dependent spatial memory in place avoidance task in male rat. Material and Methods: Long Evans rats (n=150 were trained to avoid footshock in a 60° segment while foraging for scattered food on a circular (80-cm diameter arena. The rats were injected bilaterally in the BLA specific ARS (Adrenergic receptors agonist norepinephrine (NE, 0.5 and 1 µg/µl and specific β-ARs antagonist propranolol (PRO, 0.5 and 1 µg/µl before acquisition, after training or before retrieval of the place avoidance task. Control rats received vehicle at the same volume. The learning in a single 30-min session was assessed 24h later by a 30-min extinction trial in which the time to first entrance and the number of entrances to the shocked area measured the avoidance memory. Results: Acquisition and consolidation were enhanced and impaired significantly by NE and PRO when the drugs were injected 10 min before or immediately after training, respectively. In contrast, neither NE nor PRO influenced animal performances when injected before retention testing. Conclusion: Findings of this study indicates that adrenergic system of the BLA plays an important role in regulation of memory storage and show further evidences for the opinion that the BLA plays an important role in integrating hormonal and neurotransmitter influences on memory storage.

  16. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  17. The effects of electromagnetic irradiation on activation of microglia and JAKs in rat hippocampus

    International Nuclear Information System (INIS)

    Chen Chunhai; Yang Xuesen; Hao Yutong; Zhang Guangbin; Yu Zhengping

    2008-01-01

    Objective: To determine the activation of microglia and the phosphorylation of Jaks, the upstream factors of JAK/STAT(janus activated kinase/signal transducers and activators of transcription) signaling pathway, after electromagnetic irradiation. Methods: Rats were irradiated by 90 mW/cm 2 EMF for 20 min. The phosphorylation of Jaks was determined by western blot at different time after electromagnetic irradiation. The activation of microglia was determined by immuno- chemistry. Results: GSA-IB4 was upregulated in microglia, which indicated microglia was activated after electromagnetic irradiation. The phosphorylation of Jak1, Jak2 and Jak3 in rat hippocampus was upregulated after electromagnetic irradiation. The phosphorylation of Jakl was upregulated after microwave exposure and peaked at 12 h. Jak2 peaked at 0 h after electro-magnetic irradiation and sustained in a high level. Jak3 was slightly affected by electromagnetic irradiation. All the three members of JAKs return to normal at 72 h after electromagnetic irradiation. Conclusion: Microglia cells was activated after electromagnetic irradiation. The phosphorylation of Jaks was upregulated by electromagnetic irradiation. It suggested that JAK/ STAT singnaling pathway was activated after electromagnetic irradiation, which indicated that JAK/STAT signaling pathway may participate in brain microglia activation induced by electromagnetic irradiation. (authors)

  18. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    International Nuclear Information System (INIS)

    Noble, E.P.; Ritchie, T.

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with [3H]inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of [3H]inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers

  19. Anticonvulsant and neuroprotective effects of Rosa damascena hydro-alcoholic extract on rat hippocampus

    Directory of Open Access Journals (Sweden)

    Mansour Homayoun

    2015-04-01

    Full Text Available Objective: Previously, analgesic, hypnotic, and anticonvulsant effects have been suggested for Rosa damascena (R. damascena. In the present study, possible anti-seizure and neuro-protective effects of hydro-alcoholic extract of R. damascena has been investigated after inducing seizures in rats by pentylenetetrazole (PTZ. Materials and Methods: The rats were divided to five groups: (1 Control: received saline, (2 PTZ: 100 mg/kg, i.p., (3 PTZ-Extract 50 mg/kg(PTZ-Ext 50, (4 PTZ- Extract 100 mg/kg(PTZ-Ext 100, and (5 PTZ- Extract 200 mg/kg(PTZ-Ext 200 groups which were treated with 50, 100, and 200 mg/kg respectively of hydro-alcoholic extract of R. damascena for one week before PTZ injection. The animals were examined for electrocorticography (ECoG recording and finally, the brains were removed for histological study. Results: The hydro-alcoholic extract of R. damascena significantly prolonged the latency of seizure attacks and reduced the frequency and amplitude of epileptiform burst discharges induced by PTZ injection. Moreover, all three doses of the extract significantly inhibited production of dark neurons in different regions of the hippocampus in the mentioned animal model. Conclusion: The present study showed that the hydro-alcoholic extract of R. damascena has anticonvulsant and neuroprotective effects. More investigations are needed to be done in order to better understand the responsible compound(s as well as the possible mechanism(s.

  20. Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.

    Science.gov (United States)

    Horrigan, D J; Fuller, C A; Horowitz, J M

    1997-10-01

    The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.

  1. Ulinastatin suppresses endoplasmic reticulum stress and apoptosis in the hippocampus of rats with acute paraquat poisoning

    Directory of Open Access Journals (Sweden)

    Hai-feng Li

    2015-01-01

    Full Text Available Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had disappeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraquat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.

  2. Comparison of neurodegeneration between right and left hippocampus area in rats

    Directory of Open Access Journals (Sweden)

    Arezo Nahavandi

    2015-02-01

    Conclusion: Our study showed different manifestations of depression after UCMS. It showed that UCMS could lead to mental depression. This study showed that the right hippocampus was more sensitive to stress than the left hippocampus. In fact, UCMS resulted in depression. The study showed that the right hippocampus was more sensitive to stress than the left hippocampus. Therefore, the main function of the right hemisphere, which is adaptation to the new environment, is disturbed more.

  3. Effects of prenatal low dose beta radiation from tritiated water on rat hippocampus neurons. Electrophysiological and neuro behavioural changes

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1997-01-01

    Pregnent Wistar rats were exposed to tritiated water (HTO) on day 13 of gestation so that for their offsprings, the absorbed doses were estimated to be 0.000, 0.044, 0.088 and 0.264 Gy. The influence of HTO to the morphology and number of hippocampus pyramidal neurons and the maximum electric current of Ca 2+ in neurons was observed for the in-vitro-cultured hippocampus of new-born rats and the learning and memory behaviours were assessed by the electric avoidance reflex test in a Y-maze and the condition reflex test for young rats. The results show that prenatal exposure to HTO in a cumulative dose of 0.088 Gy can cause a reduction in number of neurons in hippocampus cultured in vitro, and that the electric current of Ca 2+ tends to decline with cumulative dose increasing, with the significant decrease in offsprings prenatally exposed to HTO in dose of 0.264 Gy. The results of electric avoidance reflex test in a Y-maze and condition reflex test indicate that for young rats prenatally exposed to HTO, a cumulative dose of 0.088 Gy could induce damage in their learning and memory behaviours

  4. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    Science.gov (United States)

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  5. Angiotensin IV possibly acts through PKMzeta in the hippocampus to regulate cognitive memory in rats.

    Science.gov (United States)

    Chow, Lok-Hi; Tao, Pao-Luh; Chen, Yuan-Hao; Lin, Yu-Hui; Huang, Eagle Yi-Kung

    2015-10-01

    Ang IV is an endogenous peptide generated from the degradation of angiotensin II. Ang IV was found to enhance learning and memory in CNS. PKMzeta was identified to be a fragment of PKCzeta (protein kinase Czeta). Its continuous activation was demonstrated to be correlated with the formation of memory in the hippocampus. Therefore, we investigated whether PKMzeta participates in the effects of Ang IV on memory. We first examined the effect of Ang IV on non-spatial memory/cognition in modified object recognition test in rats. Our data showed that Ang IV could increase the exploration time on novel object. The co-administration of ZIP (PKMzeta inhibitor) with Ang IV significantly blocked the effect by Ang IV. The effects of Ang IV on hippocampal LTP at the CA1 region were also evaluated. Ang IV significantly increased the amplitude and slope of the EPSPs, which was consistent with other reports. Surprisingly, instead of potentiating LTP, Ang IV caused a failed maintenance of LTP. Moreover, there was no quantitative change in PKMzeta induced by Ang IV and/or ZIP after behavioral experiments. Taken together, our data re-confirmed the finding of the positive effect of Ang IV to enhance memory/cognition. The increased strength of EPSPs with Ang IV could also have certain functional relevance. Since the behavioral results suggested the involvement of PKMzeta, we hypothesized that the enhancement of memory/cognition by Ang IV may rely on an increase in PKMzeta activity. Overall, the present study provided important advances in our understanding of the action of Ang IV in the hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. ESTIMATION OF THE NUMBER OF NEURONS IN THE HIPPOCAMPUS OF RATS WITH PENICILLIN INDUCED EPILEPSY

    Directory of Open Access Journals (Sweden)

    Ilgaz Akdogan

    2011-05-01

    Full Text Available Epilepsy is a neurological disease arising from strong and uncontrollable electrical firings of a group of neurons in the central nervous system. Experimental epileptic models have been developed to assess the physiopathology of epileptic seizures. This study was undertaken to estimate the number of neurons in the rat hippocampus with penicillin induced epilepsy, using a stereological method, "the optical fractionator". In the experimental group, 500 IU penicillin-G was injected intra-cortically, and in the control group, the same volume of saline was administered. A week later, the animals were decapitated and their brains were removed by craniatomy. Frozen brains were cut with a thickness of 150 ěm in a cryostat. Sections were collected by systematic random sampling and stained with hematoxylen-eosin. Microscopic images of pyramidal cell layers from hippocampus CA1, CA2 and CA3 subfields were then transferred to a monitor, using a 100x objective (N.A. = 1.25. Using the optical disector method, the neurons were counted in the frames and determined with a fractionator sampling scheme. The total pyramidal neuron number was then estimated using the optical fractionator method. The total pyramidal neuron number was found to be statistically lower in the experimental group (mean = 142,888 ± 11,745 than in the control group (mean = 177,953 ± 10,907 (p < 0.05. The results suggest that a decrease in the hippocampal neuronal number in a penicillin model of epilepsy can be determined objectively and efficiently using the optical fractionator method.

  7. Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro

    Directory of Open Access Journals (Sweden)

    Wang XX

    2016-09-01

    Full Text Available Xin-Xing Wang,1,2,* Ying-Ying Zha,3,* Bo Yang,1 Lin Chen,1,2 Ming Wang1,2 1CAS Key Laboratory of Brain Function and Diseases, 2Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, People’s Republic of China *These authors contributed equally to this work Abstract: Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 µM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol. Keywords: fullerenol, hippocampal slice, nitric oxide synthase, synaptic plasticity, oxidative stress

  8. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  9. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    Science.gov (United States)

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  10. Hypofractionated stereotactic radiotherapy to the rat hippocampus. Determination of dose response and tolerance

    International Nuclear Information System (INIS)

    Ernst-Stecken, A.; Roedel, F.; Grabenbauer, G.; Sauer, R.; Jeske, I.; Bluemcke, I.; Hess, A.; Ganslandt, O.; Brune, K.

    2007-01-01

    Purpose: To determine the effect of hypofractionated stereotactic radiotherapy (hfSRT) on adult rat brain tissue (necrosis, impact on blood-brain barrier, signal changes on high-field magnetic resonance imaging [MRI]). Material and Methods: Adult male Wistar rats underwent MRI and CT scanning of the brain and respective images were introduced into the Novalis trademark radiosurgery device (BrainLab, Feldkirchen, Germany). All animals (body weight 350 g) were irradiated weekly with doses of 2 x 10 Gy (n = 3 animals), 3 x 10 Gy (n = 3 animals) and 4 x 10 Gy (n = 3 animals), targeted to the left hippocampus after image-guided positioning. 4.7-T T2-weighted MRI scanning was performed in each animal. Animals were sacrificed 8, 12, and 16 weeks after hfSRT and brains were immersion-fixed in 4% paraformaldehyde for subsequent histopathologic analysis. Results: In concordance with isodose distributions, pathologic signal hyperintensities in MRI were recorded from 4 x 10 Gy after 8 weeks, 3 x 10 Gy after 12 weeks, while 2 x 10 Gy induced slight detectable alterations only after 16 weeks. Subsequent histopathologic analysis revealed hippocampal cell necrosis with significantly earlier and stronger occurrence for higher doses (40 Gy > 30 Gy > 20 Gy). Pial microvessel permeability also increased after 40 Gy, whereas 30 Gy induced moderate changes. Conclusion: Conclusion: Partial-brain irradiation with hfSRT (Novalis trademark System) was successfully adopted for small animals and histopathologic analysis confirmed its repositioning accuracy. The neuropathologic effects correlated with dose and observation time. The approach will be further developed for quality assurance in hfSRT of normal brain tissue, as well as novel treatment modalities in epileptic rats and orthotopic tumor models. (orig.)

  11. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2012-05-01

    Full Text Available Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4 treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5μg T4/100 g body weight (BW treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.

  12. Effects of benzo(a)pyrene exposure on the ATPase activity and calcium concentration in the hippocampus of neonatal rats.

    Science.gov (United States)

    Yang, Kai; Chen, Chengzhi; Cheng, Shuqun; Cao, Xianqing; Tu, Baijie

    2017-03-30

    To investigate whether postnatal benzo(a)pyrene (B(a)P) exposure caused the impairments on the process of neurodevelopment and the alteration in the calcium medium in the neonatal rats. Eighty neonatal Sprague Dawley (SD) rats were randomly divided into 5 groups (untreated control group, vehicle group, 0.02 mg/kg, 0.2 mg/kg and 2 mg/kg B(a)P-exposed group). Rats were treated with B(a)P by the intragastric administration from postnatal day (PND) 4 to 25. Morris water maze (MWM) was employed to observe the spatial memory of rats. The activity of calcium adenosine triphosphatase (Ca2+-ATPase), sodium-potassium adenosine triphosphatase (Na+-K+-ATPase) and calcium-magnesium adenosine triphosphatase (Ca2+-Mg2+-ATPase) in the hippocampus were detected by commercial kits. Fura-2 pentakis(acetoxymethyl) (Fura-2/AM) probe and reactive oxygen species (ROS) reagent kit were used for measuring the concentration of Ca2+ and ROS in the hippocampus synapse, respectively. Rats exposed to B(a)P resulted in the deficits in the spatial memory manifested by the increased escape latency and decreased number of crossing platform and time spent in target quadrant in comparison with the control groups. Benzo(a)pyrene exposure caused the significant decrease in the ATPase activity in the hippocampus and caused Ca2+ overload in the synaptic, besides, the ROS concentration increased significantly which may further induce neurobehavioral impairment of the neonatal rats. Our findings suggest that postnatal B(a)P exposure may cause the neurobehavioral impairments in the neonatal rats, which were mediated by the decreased ATPase activity and elevated Ca2+ concentration. Int J Occup Med Environ Health 2017;30(2):203-211. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid......Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about......-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none...

  14. Indomethacin can downregulate the levels of inflammatory mediators in the hippocampus of rats submitted to pilocarpine-induced status epilepticus

    Directory of Open Access Journals (Sweden)

    Michele Juliane Vieira

    2014-09-01

    Full Text Available OBJECTIVE: Refractory status epilepticus is one of the most life-threatening neurological emergencies and is characterized by high morbidity and mortality. Additionally, the use of anti-inflammatory drugs during this period is very controversial. Thus, this study has been designed to analyze the effect of a low dose of indomethacin (a COX inhibitor on the expression of inflammatory molecules. METHOD: The hippocampus of rats submitted to pilocarpine-induced long-lasting status epilepticus was analyzed to determine the expression of inflammatory molecules with RT-PCR and immunohistochemistry. RESULTS: Compared with controls, reduced levels of the kinin B2 receptors IL1β and TNFα were found in the hippocampus of rats submitted to long-lasting status epilepticus and treated with indomethacin. CONCLUSIONS: These data show that low doses of indomethacin could be employed to minimize inflammation during long-lasting status epilepticus.

  15. Estradiol does not influence strategy choice but place strategy choice is associated with increased cell proliferation in the hippocampus of female rats.

    Science.gov (United States)

    Rummel, Julia; Epp, Jonathan R; Galea, Liisa A M

    2010-09-01

    Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 microg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. ELECTROACUPUNCTURE AT THE WANGU ACUPOINT SUPPRESSES EXPRESSION OF INFLAMMATORY CYTOKINES IN THE HIPPOCAMPUS OF RATS WITH VASCULAR DEMENTIA.

    Science.gov (United States)

    Fang, Yanan; Sui, Rubo

    2016-01-01

    Vascular dementia (VD) is the most frequent psychiatric complication of stroke, and is often difficult to treat. Incidence rate of vascular cognition impairment is still 70% after stroke in one year (Sui R et al.2011). Stroke patients with VD suffer from a higher mortality rate and have worse functional outcomes and quality of life. However, despite the extensive literatures on this topic, there is no agreement on the causal mechanisms and effective therapy for VD. The objective of this study is to examine if electroacupuncture at the Wangu acupoint (GB 12), whose position is similar to the cerebellar fastigial nucleus, could reduce inflammatory cytokines in the hippocampus of rats with vascular dementia (VD). The 54 healthy, male, Sprague-Dawley (SD) rats, 9 months old, and of clean grade (300-450) g, were randomly divided into three groups: sham surgery group, VD group and electro-acupuncture group. The ethology scores of VD rats were evaluated and the mRNA expressions of inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the hippocampus were assessed and the hippocampal tissues were observed by hematoxylin-eosin staining. Compared with the VD group, in the electroacupuncture group, the rats' learning ability improved significantly and the mRNA expression of TNF-α, IL-6 and IL-1β decreased. Simultaneously, the damage extent of nerve cells in the hippocampal tissues decreased, with their morphology recovered to nearly normal. Electro-acupuncture at the Wangu acupoint can decrease the levels of inflammatory cytokines in the hippocampus, reduce the damage extent of nerve cells in the hippocampus, and thus provide a new neuroprotective method in VD.

  17. Effect of 8 weeks Resistance Training on BDNF and TrkB in the Hippocampus of Adult Male Rats

    Directory of Open Access Journals (Sweden)

    S Mojtahedi

    2014-08-01

    Full Text Available Background & aim: Exercise enhances the synaptic plasticity and neuroprotective effects in the adult brain. However, it remains unknown that how plasticity molecules change following types of training. The purpose of this study was to determine the effect of eight weeks resistance training on protein levels of Brain Derived Neurotrophic Factor(BDNF and receptor of TrkB, in the hippocampus of adult male rats. Methods: In this experimental study, twelve adult male rats, 8 weeks of age, with an average weight of 200 to 225 grams were randomly divided into two groups, control and exercise respectively. The exercise was to increase the weight on the ladder. 24 hours after their last training session. The animals were killed and the hippocampus was removed for further testing. ELISA determined changes in protein levels. Data were analyzed by independent t test. Results: There was a significant difference between train and control groups In protein level of variables statically (p≤0.05. In addition, protein levels of BDNF and TrkB in the hippocampus of rats increased. Conclusion: Resistance training is beneficial for promoting hippocampal plasticity associated with BDNF signaling and consequently functional and cognitive benefits.

  18. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    International Nuclear Information System (INIS)

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J.

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 μM. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide

  19. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  20. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  1. Neuroprotective Effects of Kolaviron, a Biflavonoid Complex of Garcinia kola, on Rats Hippocampus against Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Ijomone, Omamuyovwi M.; Nwoha, Polycarp U.; Olaibi, Olayemi K.; Obi, Augustine U.; Alese, Margaret O.

    2012-01-01

    Aim: To investigate the protective effects of kolaviron on brain weight and behavioural performance and the histology of the hippocampus of adult Wistar rats following methamphetamine challenge.Materials and Methods: Twenty four adult Wistar rats weighing between 150-200 g, randomly assigned into four groups of six each (Groups A, B, C, D) were used for this research. Group A served as control, while groups B and C were given single dose methamphetamine (10 mg/kg) intraperitoneally after grou...

  2. Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.

    Science.gov (United States)

    Lee, Minchul; Soya, Hideaki

    2017-12-31

    Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition

  3. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats

    NARCIS (Netherlands)

    Alvandi, M.S.; Bourmpoula, M.; Homberg, J.R.; Fathollahi, Y.

    2017-01-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the

  4. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Differential effects of benzodiazepines on phospholipid methylation in hippocampus and cerebellum of rats

    Energy Technology Data Exchange (ETDEWEB)

    Tacconi, M.T.; Salmona, M.

    1988-01-01

    To elucidate the relationship between the occupancy of BDZ binding sites and phospholipid methylation in brain, the authors examined phosphatidylethanolamine-N-methyltransferase (PEMT) activity in synaptosomes of rat hippocampi and cerebella in the presence of BDZ ligands with different modes of action. We found that Ro 5-4864, a specific ligand for peripheral type receptors, increased PL methylation in hippocampal and cerebellar synaptosomes. This effect was directly related to receptor occupancy, since the specific antagonist PK11195 inhibited the rise in PEMT activity induced by Ro 5-4864. Clonazepam, on the other hand, tended to reduce PL production in cerebellum and hippocampus except for hiccocampal (/sup 3/H)-phosphatidyl-N-monomethylethanolamine which was elevated by 40 to 70% at doses ranging from 10/sup -9/ to 10/sup -6/M. When equimolar concentrations of the antagonist Ro 15-1788 were given in association the clonazepam-induced phosphatidyl-N-monomethylethanolamine increase was reduced by 70%. These data support the involvement of structural and functional membrane alterations in the action of BDZ. 20 references, 2 figures, 2 tables.

  6. Recent memory for socially transmitted food preferences in rats does not depend on the hippocampus.

    Science.gov (United States)

    Thapa, Rajat; Sparks, Fraser T; Hanif, Wahab; Gulbrandsen, Tine; Sutherland, Robert J

    2014-10-01

    The standard model of systems consolidation holds that the hippocampus (HPC) is involved only in the initial storage and retrieval of a memory. With time hippocampal-neocortical interactions slowly strengthen the neocortical memory, ultimately enabling retrieval of the memory without the HPC. Key support for this idea comes from experiments measuring memory recall in the socially-transmitted food preference (STFP) task in rats. HPC damage within a day or two of STFP learning can abolish recall, but similar damage five or more days after learning has no effect. We hypothesize that disruption of cellular consolidation outside the HPC could contribute to the amnesia with recent memories, perhaps playing a more important role than the loss of HPC. This view predicts that intraHPC infusion of Tetrodotoxin (TTX), which can block conduction of action potentials from the lesion sites, will block the retrograde amnesia in the STFP task. Here we confirm the previously reported retrograde amnesia with neurotoxic HPC damage within the first day after learning, but show that co-administration of TTX with the neurotoxin blocks the retrograde amnesia despite very extensive HPC damage. These results indicate that HPC damage disrupts cellular consolidation of the recent memory elsewhere; STFP memory may not ever depend on the HPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats.

    Science.gov (United States)

    Cigliano, Luisa; Spagnuolo, Maria Stefania; Crescenzo, Raffaella; Cancelliere, Rosa; Iannotta, Lucia; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2018-04-01

    The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.

  8. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats.

    Science.gov (United States)

    Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador

    2017-05-01

    This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Directory of Open Access Journals (Sweden)

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  10. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    Science.gov (United States)

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  11. Acute exposure to high-peak-power pulsed microwaves affecting the histamine H3 receptor expression in rat hippocampus

    International Nuclear Information System (INIS)

    Yu Xiaodong; Li Bo; Li Dehua; He Qiyi; Yu Zhengping

    2006-01-01

    In the Morris Water test, high-peak-power pulsed microwave (MW)-exposed rats displayed some learning and memory behavior dysfunctions, and their escape time and swimming distance to the submerged platform were longer than those of the sham-exposed rats. to understand the molecular mechanism involved, the reverse transcription-polymerase chain reation (RT-PCR) and the Western-blotting technique were used for investigating the mRNA and protein expression patterns of the histamine H 3 receptor (H 3 R) in rat hippocampus. High-peak-power pulsed microwave-exposure did not remarkably lead to the change in expression of H 3 R mRNA in rat hippocampi; however, it promoted the up-regulatory expression of the H 3 R protein, which was possibly triggered through the mitogen-activated protein kinase (MAPK) pathways. Therefore, further investigation of the molecular mechanism of the MW effects on the learning and memory behaviors is required. (authors)

  12. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  13. Local field potentials in the ventral tegmental area during cocaine-induced locomotor activation: Measurements in freely moving rats.

    Science.gov (United States)

    Harris Bozer, Amber L; Li, Ai-Ling; Sibi, Jiny E; Bobzean, Samara A M; Peng, Yuan B; Perrotti, Linda I

    2016-03-01

    The ventral tegmental area (VTA) has been established as a critical nucleus for processing behavioral changes that occur during psychostimulant use. Although it is known that cocaine induced locomotor activity is initiated in the VTA, not much is known about the electrical activity in real time. The use of our custom-designed wireless module for recording local field potential (LFP) activity provides an opportunity to confirm and identify changes in neuronal activity within the VTA of freely moving rats. The purpose of this study was to investigate the changes in VTA LFP activity in real time that underlie cocaine induced changes in locomotor behavior. Recording electrodes were implanted in the VTA of rats. Locomotor behavior and LFP activity were simultaneously recorded at baseline, and after saline and cocaine injections. Results indicate that cocaine treatment caused increases in both locomotor behavior and LFP activity in the VTA. Specifically, LFP activity was highest during the first 30 min following the cocaine injection and was most robust in Delta and Theta frequency bands; indicating the role of low frequency VTA activity in the initiation of acute stimulant-induced locomotor behavior. Our results suggest that LFP recording in freely moving animals can be used in the future to provide valuable information pertaining to drug induced changes in neural activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of environmental enrichment exposure on neuronal morphology of streptozotocin-induced diabetic and stressed rat hippocampus

    Directory of Open Access Journals (Sweden)

    Narendra Pamidi

    2014-08-01

    Full Text Available Background: Environmental enrichment (EE exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ-induced diabetic and stressed rat hippocampus. Methods: Male albino rats of Wistar strain (4-5 weeks old were grouped into normal control (NC, vehicle control (VC, diabetes (DI, diabetes + stress (DI + S, diabetes + EE (DI + E, and diabetes + stress + EE (DI + S + E groups (n = 8 in each group. Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg. Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH regions of hippocampus. Results: A significant (p < 0.001 decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02 as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21 group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03. A significant (p < 0.001 increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19 and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36 group rats compared to DI and DI + S groups, respectively. Conclusions: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.

  15. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    International Nuclear Information System (INIS)

    Xu Xiaohong; Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-01-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: → BPA rapidly extended the latency to step down from platform 1 h after footshock. → BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. → ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  16. Analgesic effects of tramadol, carprofen or multimodal analgesia in rats undergoing ventral laparotomy.

    Science.gov (United States)

    Zegre Cannon, Coralie; Kissling, Grace E; Goulding, David R; King-Herbert, Angela P; Blankenship-Paris, Terry

    2011-03-01

    In this study, the authors evaluated the analgesic efficacy of tramadol (an opioid-like analgesic), carprofen (a nonsteroidal anti-inflammatory drug) and a combination of both drugs (multimodal therapy) in a rat laparotomy model. The authors randomly assigned rats to undergo either surgery (abdominal laparotomy with visceral manipulation and anesthesia) or anesthesia only. Rats in each group were treated with tramadol (12.5 mg per kg body weight), carprofen (5 mg per kg body weight), a combination of tramadol and carprofen (12.5 mg per kg body weight and 5 mg per kg body weight, respectively) or saline (anesthesia control group only; 5 mg per kg body weight). The authors administered analgesia 10 min before anesthesia, 4 h after surgery or (for the rats that received anesthesia only) anesthesia and 24 h after surgery or anesthesia. They measured locomotor activity, running wheel activity, feed and water consumption, body weight and fecal corticosterone concentration of each animal before and after surgery. Clinical observations were made after surgery or anesthesia to evaluate signs of pain and distress. The authors found that carprofen, tramadol and a combination of carprofen and tramadol were all acceptable analgesia regimens for a rat laparotomy model.

  17. Influence of neuropathology on convection-enhanced delivery in the rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Svetlana Kantorovich

    Full Text Available Local drug delivery techniques, such as convention-enhanced delivery (CED, are promising novel strategies for delivering therapeutic agents otherwise limited by systemic toxicity and blood-brain-barrier restrictions. CED uses positive pressure to deliver infusate homogeneously into interstitial space, but its distribution is dependent upon appropriate tissue targeting and underlying neuroarchitecture. To investigate effects of local tissue pathology and associated edema on infusate distribution, CED was applied to the hippocampi of rats that underwent electrically-induced, self-sustaining status epilepticus (SE, a prolonged seizure. Infusion occurred 24 hours post-SE, using a macromolecular tracer, the magnetic resonance (MR contrast agent gadolinium chelated with diethylene triamine penta-acetic acid and covalently attached to albumin (Gd-albumin. High-resolution T1- and T2-relaxation-weighted MR images were acquired at 11.1 Tesla in vivo prior to infusion to generate baseline contrast enhancement images and visualize morphological changes, respectively. T1-weighted imaging was repeated post-infusion to visualize final contrast-agent distribution profiles. Histological analysis was performed following imaging to characterize injury. Infusions of Gd-albumin into injured hippocampi resulted in larger distribution volumes that correlated with increased injury severity, as measured by hyperintense regions seen in T2-weighted images and corresponding histological assessments of neuronal degeneration, myelin degradation, astrocytosis, and microglial activation. Edematous regions included the CA3 hippocampal subfield, ventral subiculum, piriform and entorhinal cortex, amygdalar nuclei, middle and laterodorsal/lateroposterior thalamic nuclei. This study demonstrates MR-visualized injury processes are reflective of cellular alterations that influence local distribution volume, and provides a quantitative basis for the planning of local therapeutic

  18. Ketamine attenuates the glutamatergic neurotransmission in the ventral posteromedial nucleus slices of rats.

    Science.gov (United States)

    Fu, Bao; Liu, Chengxi; Zhang, Yajun; Fu, Xiaoyun; Zhang, Lin; Yu, Tian

    2017-08-23

    Ketamine is a frequently used intravenous anesthetic, which can reversibly induce loss of consciousness (LOC). Previous studies have demonstrated that thalamocortical system is critical for information transmission and integration in the brain. The ventral posteromedial nucleus (VPM) is a critical component of thalamocortical system. Glutamate is an important excitatory neurotransmitter in the brain and may be involved in ketamine-induced LOC. The study used whole-cell patch-clamp to observe the effect of ketamine (30 μM-1000 μM) on glutamatergic neurotransmission in VPM slices. Ketamine significantly decreased the amplitude of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs), but only higher concentration of ketamine (300 μM and 1000 μM) suppressed the frequency of sEPSCs. Ketamine (100 μM-1000 μM) also decreased the amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs), without altering the frequency. In VPM neurons, ketamine attenuates the glutamatergic neurotransmission mainly through postsynaptic mechanism and action potential may be involved in the process.

  19. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  20. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats.

    Science.gov (United States)

    Faheem, Nermeen Mohammed; El Askary, Ahmad

    2017-06-01

    Diabetes mellitus causes impaired memory and cognitive functions. The hippocampus plays a key role in memory and learning. Curcumin attenuates diabetic nephropathy in vivo . Curcumin has shown a neurogenic effect and cognition-enhancing potential in aged rats. The aim of this study is to evaluate the possible protective role of curcumin on the histological and serological changes of the hippocampus in diabetic rats. Forty albino rats were divided into four groups, ten rats each. Group 1 control rats, group 2 rats received curcumin orally (200 mg/kg/day for six weeks), group 3 rats were injected intraperitoneally with streptozotocin (STZ) (100 mg/kg, single dose), group 4 received a single injection of STZ and received curcumin orally for six weeks. Paraffin sections of hippocampus were prepared and stained with hematoxylin and eosin stain, and immnunohistochemical staining for GFAP and caspase-3. Morphometrical and statistical analyses were performed. Glycemic status and parameters of oxidative stress was measured. Examination of hippocampus of diabetic rats showed disorganization of small pyramidal cells in CA1, many cellular losses in the pyramidal cells of CA3, many degenerated granule cells in the dentate gyrus. GFAP positive astrocyte and caspase-3 positive neuron counts were significantly increased. There were significant serum glucose elevation and significant lowered levels of oxidative stress parameters as compared to control rats. Curcumin administration improved the structural and serological alterations of the hippocampus with significant reduction in serum glucose level. Curcumin ameliorates the deterious effect of diabetes on the hippocampus through its antioxidant, antiapoptotic and anti-inflammatory efficacies.

  1. Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus.

    Science.gov (United States)

    Hernández-López, F; Rodríguez-Landa, J F; Puga-Olguín, A; Germán-Ponciano, L J; Rivadeneyra-Domínguez, E; Bernal-Morales, B

    Stereotactic surgery is used to place electrodes or cannulas in the brain in order to study the function of several brain structures in preclinical research. The hippocampus has been extensively studied with this methodology due to its involvement in a wide range of neurological, cognitive, emotional, and affective disorders. However, the effects of stereotactic surgery on coordination and motor activity should be evaluated in order to determine whether this surgical procedure causes any neurological alterations that may bias the results of studies incorporating this technique. We evaluated the effects of stereotactic surgery and implantation of a cannula into the hippocampus of female Wistar rats on the motor activity, forced swim, and rotarod tests. The stage of the oestrous cycle was included in the statistical analysis. Stereotactic surgery had no impact on any of the motor activity variables assessed in the open field (squares crossed, time spent in grooming, and rearing), forced swim (turning behaviour, lateral swimming, latency to first immobility, and time spent immobile), and rotarod (latency to fall) tests, compared with intact rats. Regardless of surgical manipulation, rats in the metestrus and diestrus stages crossed a greater number of squares and displayed longer immobility times than those in the proestrus and estrus stages. Stereotactic surgery for cannula placement in the dorsal hippocampus does not affect coordination and motor activity in rats. We can therefore conclude that this procedure has no neurological complications that may interfere in the interpretation of results of studies applying this technique. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Alteration in Inflammation-related miR-146a Expression in NF-KB Signaling Pathway in Diabetic Rat Hippocampus.

    Science.gov (United States)

    Habibi, Fatemeh; Ghadiri Soufi, Farhad; Ghiasi, Rafighe; Khamaneh, Amir Mahdi; Alipour, Mohammad Reza

    2016-03-01

    The purpose of the present study is to evaluate the expression of miR-146a gene, its adaptor genes (TRAF6, NF-KB, and IRAK1), and possible changes in the cellular signaling pathway in diabetic hippocampus tissue. Male Sprague-Dawley rats are randomly selected and divided into control and diabetic (n=6) groups. Diabetes induced by the single-dose injection of nicotinamide [110 mg/kg, (i.p.)], 15 min before streptozotocin (50 mg/kg; i.p.) in 12-h fasted rats. The rats are kept at the laboratory for two months. After anaesthetization, hippocampus of the rats was removed in order to measure the expression of miR-146a, NFK-B, IRAK1, and TRAF6 genes using real-time PCR and activity of NF-KB as well as amount of apoptosis rate using ELISA. The results indicated a reduction in expression of miR-146a and an increase in expression of IRAK1, NF-KB, and TRAF6 genes in the hippocampus of diabetic rats compared to control. Also it reveals an increase in the activity of NF-KB and apoptosis rate in the hippocampus of diabetic rats. Our results report the probability that reduction of miR-146a expression in the negative feedback loop between miR-146a and NF-KB increases NF-kB expression and thus intensifies inflammation and apoptosis in hippocampus.

  3. Metabotropic Glutamate Receptor 7 Modulates the Rewarding Effects of Cocaine in Rats: Involvement of a Ventral Pallidal GABAergic Mechanism

    Science.gov (United States)

    Li, Xia; Li, Jie; Peng, Xiao-Qing; Spiller, Krista; Gardner, Eliot L; Xi, Zheng-Xiong

    2013-01-01

    The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N’-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1–5 μg/μl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 μg/μl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082’s action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine’s acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082’s actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction. PMID:19158667

  4. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats.

    Science.gov (United States)

    Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L

    2011-09-01

    Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [Palcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may result, in part, from increased DA uptake and may be important for the maintenance of ethanol drinking. These adaptations

  5. Dual inhibitory action of enadoline (CI977) on release of amino acids in the rat hippocampus.

    Science.gov (United States)

    Millan, M H; Chapman, A G; Meldrum, B S

    1995-06-06

    The effect of the kappa-opioid receptor agonist enadoline (CI977, (5R)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrilidinyl)-1-oxaspiro [4,5]dec-8-yl-4-benzofuranacetamide monohydrochloride), on the release of amino acids was studied in the hippocampus of freely moving rats. K+, 100 mM, or veratrine, 100 microM, were applied for 10 min via the dialysis probe, either alone (control groups) or together with CI977 (after a 10 min pretreatment with CI977 in the perfusion medium). To test the specificity of the response to CI977, nor-binaltorphimine, a selective kappa-opioid receptor antagonist, was delivered together with CI977 in two groups of animals. To test the effect of systemic injection, CI977 was given subcutaneously 30 min prior to either stimulus. K(+)-induced release of glutamate and aspartate was significantly reduced by CI977, 2.5 mM; release of gamma-aminobutyric acid (GABA) was reduced by 250 microM CI977 in the probe. The effect of CI977 on release of glutamate and aspartate, but not of GABA, was reversed by nor-binaltorphimine (45 microM). Systemic treatment with CI977, 1 or 10 mg/kg, did not reduce K(+)-induced release of glutamate. Veratrine-induced release of aspartate and glutamate was significantly inhibited by 25 microM and release of GABA by 250 microM CI977 in the probe, and this effect was not modified by nor-binaltorphimine (58 microM). Systemic injection of CI977 1 mg/kg significantly reduced veratrine-induced release of glutamate. These results indicate that CI977 regulates release of amino acids by two independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine.

    Science.gov (United States)

    Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2017-07-15

    Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats' hippocampus.

    Science.gov (United States)

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Zadeh, Sadaf Sarraf; Pour, Marieh Hossein; Ahmadiani, Abolhassan; Khodagholi, Fariba; Ashabi, Ghorbangol; Alamdary, Shabnam Zeighamy; Samami, Elham

    2013-08-21

    Stress predisposes the brain to various neuropathological disorders. Fibrates like gemfibrozil, commonly used for hyperlipidemia, have not yet been examined for their protective/deteriorative potential against restraint stress-induced disturbances. Pretreatment of rats with a range of gemfibrozil concentrations showed significant protection against stress consequences at 90 mg/kg of gemfibrozil, as it resulted in the highest level of antioxidant defense system potentiation among other doses. It also reduced plasma corticosterone compared with the stressed animals. Administration of gemfibrozil (90 mg/kg) before stress induction was able to significantly induce the protein levels of some protective factors including hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone-1 (NQO-1) in the antioxidant nuclear factor erythroid-derived 2-like 2 (Nrf-2) pathway, as well as mitochondrial pro-survival proteins, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1). In parallel, the level of cleaved caspase-3 and apoptosis-inducing factor (AIF), two proteins involved in apoptotic cell death, and the number of damaged neurons detected in hematoxylin-eosin (H&E) stained hippocampus sections were suppressed in the presence of gemfibrozil. Herein, although gemfibrozil demonstrated protection against the restraint stress, considering its dose and context-dependent effects reported in the previous studies, as well as its common application in clinic, further investigations are essential to unravel its exact beneficial/deleterious effects in various neuronal contexts. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  9. Expression of S100A6 in Rat Hippocampus after Traumatic Brain Injury Due to Lateral Head Acceleration

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2014-04-01

    Full Text Available In a rat model of traumatic brain injury (TBI, we investigated changes in cognitive function and S100A6 expression in the hippocampus. TBI-associated changes in this protein have not previously been reported. Rat S100A6 was studied via immunohistochemical staining, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR after either lateral head acceleration or sham. Reduced levels of S100A6 protein and mRNA were observed 1 h after TBI, followed by gradual increases over 6, 12, 24, and 72 h, and then a return to sham level at 14 day. Morris water maze (MWM test was used to evaluate animal spatial cognition. TBI- and sham-rats showed an apparent learning curve, expressed as escape latency. Although TBI-rats displayed a relatively poorer cognitive ability than sham-rats, the disparity was not significant early post-injury. Marked cognitive deficits in TBI-rats were observed at 72 h post-injury compared with sham animals. TBI-rats showed decreased times in platform crossing in the daily MWM test; the performance at 72 h post-injury was the worst. In conclusion, a reduction in S100A6 may be one of the early events that lead to secondary cognitive decline after TBI, and its subsequent elevation is tightly linked with cognitive improvement. S100A6 may play important roles in neuronal degeneration and regeneration in TBI.

  10. Effect of Fluoxetine on the Hippocampus of Wistar Albino Rats in Cold Restraint Stress Model.

    Science.gov (United States)

    Jayakumar, Saikarthik; Raghunath, Gunapriya; Ilango, Saraswathi; Vijayakumar, J; Vijayaraghavan, R

    2017-06-01

    Stress has been known to be a potential modulator of learning and memory. Long term stress can lead to depression. Fluoxetine is a selective serotonin reuptake inhibitor group of drug used in the treatment of depression. The present study was conducted to evaluate the potential of Fluoxetine on cold restraint induced stress in the hippocampus of Wistar rats. A total of 18 male wistar albino rats were divided randomly into three groups (n=6). Group 1 was the control group which were kept in normal laboratory conditions. Group 2 was the negative control group which were given cold restraint stress for period of four weeks. Group 3 was the experimental group, where the animals were pretreated with fluoxetine 10 mg/kg for a period of one week followed by cold restraint stress for 30 minutes and cotreated with fluoxetine 10 mg/kg for a period of four weeks. The whole study was done for a period of five weeks followed by behavioural studies and subsequently sacrificed with removal of brain for various histological, Immunohistochemical (IHC), neurochemical and antioxidant analysis. The values were expressed as Mean±SEM. One-way analysis of variance followed by Tukey's multiple comparisons test was used for the comparison of means. A probability of 0.05 and less was taken as statistically significant using Prism Graphpad software version 6.01. The results show there was significant improvement in the Morris water maze test after treatment with fluoxetine in Group 2. Similar results were also noted in the levels of neurotransmitters and antioxidant levels in brain and also in the number of cells counted in IHC and histological studies by H&E when Group 3 was compared with Group 2. The treatment reversed the damage in Group 2 which was comparable with the control group. The results revealed that administration of fluoxetine 10 mg/kg given orally has a potential antistressor effect by improving the neurogenic and neuroprotective effect on the cold restraint stress induced

  11. Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus.

    Science.gov (United States)

    Radiske, Andressa; Gonzalez, Maria Carolina; Conde-Ocazionez, Sergio A; Feitosa, Anatildes; Köhler, Cristiano A; Bevilaqua, Lia R; Cammarota, Martín

    2017-10-04

    Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker. SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an

  12. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study.

    Science.gov (United States)

    Calderón, Naima; Betancourt, Luis; Hernández, Luis; Rada, Pedro

    2017-03-06

    The ketogenic diet (KD) is acknowledged as an unconventional option in the treatment of epilepsy. Several lines of investigation point to a possible role of glutamate and gamma-aminobutyric acid (GABA) as main contributors in this protective effect. Other biomolecules could also be involved in the beneficial consequence of the KD, for example, the diamine agmatine has been suggested to block imidazole and glutamate NMDA receptor and serves as an endogenous anticonvulsant in different animal models of epilepsy. In the present report, we have used microdialysis coupled to capillary electrophoresis to monitor microdialysate levels of GABA, glutamate and agmatine in the hippocampus of rats submitted to a KD for 15days compared to rats on a normal rat chow diet. A significant increase in GABA and agmatine levels while no change in glutamate levels was observed. These results support the notion that the KD modifies different transmitters favoring inhibitory over excitatory neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effect of tongluo xingnao effervescent tablet on learning and memory of AD rats and expression of insulin-degrading enzyme in hippocampus].

    Science.gov (United States)

    Zhang, Yin-Jie; Dai, Yuan; Hu, Yong; Ma, Yun-Tong; Xu, Shi-Jun; Wang, Yong-Yan

    2013-09-01

    To study the effect of Tongluo Xingnao effervescent tablet on learning and memory of dementia rats induced by injection of Abeta25-35 in hippocampus and expression of insulin-degrading enzyme in hippocampus, in order to provide basis for preventing and treating senile dementia. The dementia rat model was established by injecting Abeta25-35 in hippocampus. The rats were divided into the model control group, the Aricept (1.4 mg x kg(-1)) group, and Tongluo Xingnao effervescent tablet high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups. A sham operation group was established by injecting normal saline in hippocampus. The rats were orally given drugs for 90 days, once a day. Their learning and memory were tested by using Morris water maze. Immunohistochemistry and image analysis were utilized for a quantitative analysis on the expression of insulin-degrading enzyme in hippocampus. Tongluo Xingnao effervescent tablet could significantly shorten the escape latency of rats in the directional navigation test, prolong the retention time in the first quadrant dwell, decrease the retention time in the third quadrant dwell, increase the frequency of crossing the platform, show a more notable statistical significance than the model control group (P tablet has the effects of improving learning and memory capacity of AD rats and promoting the expression of insulin-degrading enzyme in hippocampus. Its effect in promoting intelligence will be related to increased insulin-degrading enzyme in hippocampus.

  14. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.

    Science.gov (United States)

    Andrews, Jessica L; Newell, Kelly A; Matosin, Natalie; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2015-12-03

    Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that

  15. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    OpenAIRE

    Käpyaho, K; Kallio, A; Jänne, J

    1984-01-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-ad...

  16. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  17. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  18. Adult onset-hypothyroidism increases response latency and long-term potentiation (LTP) in rat hippocampus

    Science.gov (United States)

    Thyroid hormones (TH) influence central nervous system (CNS) function during both development and in adulthood. The hippocampus is critical for some types of learning and memory and is particularly sensitive to thyroid hormone deficiency. Hypothyroidism in adulthood has been ass...

  19. The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Ko, Moon Yi; Jang, Eun Young; Lee, June Yeon; Kim, Soo Phil; Whang, Sung Hun; Lee, Bong Hyo; Kim, Hee Young; Yang, Chae Ha; Cho, Hee Jung; Gwak, Young S

    2018-04-20

    Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD 65/67 , c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.

  20. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    Science.gov (United States)

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  1. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    Science.gov (United States)

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  2. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  3. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation.

    Science.gov (United States)

    Beheshti, Siamak; Aslani, Neda

    2018-02-01

    It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance. Copyright © 2017. Published by Elsevier Ltd.

  4. Correlation between IL-10 and microRNA-187 expression in epileptic rat hippocampus and patients with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Walid A. Alsharafi

    2015-12-01

    Full Text Available Accumulating evidence is emerging that microRNAs (miRs are key regulators controlling neuroinflammatory processes, which are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE. The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL–10 as an anti-inflammatory cytokine and miR-187 and post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus (2 hours, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS and IL-10-stimulated neurons were prepared. Furthermore, we identified the effect of antagonizing of miR-187 by its antagomir on IL-10 secretion. Here we reported that that IL-10 secretion and miR-187 expression levels are inversely correlated after SE.. In patients with TLE, the expression levels of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10–dependent manner. On the other hand, antagonizing miR-187 reduced the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuro-inflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE.

  5. Hippocampus and cerebellum function following imipenem treatment in male and female rats: evaluation of sex differences during developmental stage.

    Science.gov (United States)

    Golchin, Leila; Golchin, Lale; Vahidi, Ali Asghar; Shabani, Mohammad

    2013-02-15

    The B-Lactam antibiotics have been suggested to have some degree of neurotoxicity in experimental animals as well as in clinical situations. This study has been elucidated the alteration in hippocampal and cerebellum function following adolescent imipenem exposure in male and female rats. Hippocampus and cerebellum related behavioral dysfunction in imipenem -treated [intraperitoneally, 40 and 80 mg/kg/day for one week from 23-day-old] rats were analyzed using explorative, motor function, learning and memory tasks [grasping, rotarod, open field shuttle box and Morris water maze tests]. Exposure to imipenem especially in high dosage impaired the motor coordination in male and female rats. There weren't any differences in grasping time in male and female rats. When the rearing and grooming frequency of their recorded in open field test, both males and females were dramatically affected by exposure to imipenem. Compared to the saline, male and female rats trained one week after imipenem injection showed significant memory deficits in the shuttle box and Morris water maze tests. Results in this study suggested that animals treated with imipenem suffer from motor activity and cognitive impairment. However, hippocampal and cerebellum functions of male and female rats were profoundly affected by exposure to imipenem while no sex-differences in the most variable were evident.

  6. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats.

    Science.gov (United States)

    Park, Collin R; Zoladz, Phillip R; Conrad, Cheryl D; Fleshner, Monika; Diamond, David M

    2008-04-01

    We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.

  7. Simultaneous Transplantation of Fetal Ventral Mesencephalic Tissue and Encapsulated Genetically Modified Cells Releasing GDNF in a Hemi-Parkinsonian Rat Model of Parkinson’s Disease

    DEFF Research Database (Denmark)

    Perez-Bouza, Alberto; Di Santo, Stefano; Seiler, Stefanie

    2017-01-01

    Transplantation of fetal ventral mesencephalic (VM) neurons for Parkinson's disease (PD) is limited by poor survival and suboptimal integration of grafted tissue into the host brain. In a 6-OHDA rat model of PD we investigated the feasibility of simultaneous transplantation of rat fetal VM tissue...... between groups were observed for the number of surviving TH-ir neurons or graft volume. In conclusion, our findings demonstrate that simultaneous transplantation of fetal VM tissue and encapsulated GDNF-releasing cells is feasible and support the graft survival and function. Pre-treatment of donor tissue...

  8. PPARa and PPAR¿ coactivation rapidly induces Egr-1 in the nuclei of the dorsal and ventral urinary bladder and kidney pelvis urothelium of rats

    DEFF Research Database (Denmark)

    Egerod, Frederikke Lihme; Svendsen, Jette Eldrup; Hinley, Jennifer

    2009-01-01

    in the dorsal and ventral bladder urothelium, arguing against involvement of urinary solids. Egr-1 induction sometimes occurred in a localized fashion, indicating physiological microheterogeneity in the urothelium. The rapid kinetics supported that Egr-1 induction occurred as a result of pharmacological...... activation of PPAR alpha and PPAR gamma, which are coexpressed at high levels in the rat urothelium. Finally, our demonstration of a nuclear localization supports that the Egr-1 induced by PPAR alpha and PPAR gamma coactivation in the rat urothelium may be biologically active....

  9. Biphasic functional regulation in hippocampus of rat with chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid artery.

    Directory of Open Access Journals (Sweden)

    Jihye Bang

    Full Text Available BACKGROUND: Chronic cerebral hypoperfusion induced by permanent occlusion of the bilateral common carotid artery (BCCAO in rats has been commonly used for the study of Alzheimer's disease and vascular dementia. Despite the apparent cognitive dysfunction in rats with BCCAO, the molecular markers or pathways involved in the pathological alternation have not been clearly identified. METHODS: Temporal changes (sham, 21, 35, 45, 55 and 70 days in gene expression in the hippocampus of rats after BCCAO were measured using time-course microarray analysis. Gene Ontology (GO and pathway analyses were performed to identify the functional involvement of temporally regulated genes in BCCAO. RESULTS: Two major gene expression patterns were observed in the hippocampus of rats after BCCAO. One pattern, which was composed of 341 early up-regulated genes after the surgical procedure, was dominantly involved in immune-related biological functions (false discovery rate [FDR]<0.01. Another pattern composed of 182 temporally delayed down-regulated genes was involved in sensory perception such as olfactory and cognition functions (FDR<0.01. In addition to the two gene expression patterns, the temporal change of GO and the pathway activities using all differentially expressed genes also confirmed that an immune response was the main early change, whereas sensory functions were delayed responses. Moreover, we identified FADD and SOCS3 as possible core genes in the sensory function loss process using text-based mining and interaction network analysis. CONCLUSIONS: The biphasic regulatory mechanism first reported here could provide molecular evidence of BCCAO-induced impaired memory in rats as well as mechanism of the development of vascular dementia.

  10. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in sprague dawely rats

    Directory of Open Access Journals (Sweden)

    Nermeen Mohammed Faheem

    2017-06-01

    Full Text Available Objective(s: Diabetes mellitus causes impaired memory and cognitive functions. The hippocampus plays a key role in memory and learning. Curcumin attenuates diabetic nephropathy in vivo. Curcumin has shown a neurogenic effect and cognition-enhancing potential in aged rats. The aim of this study is to evaluate the possible protective role of curcumin on the histological and serologicalchanges of the hippocampus in diabetic rats. Materials and Methods: Forty albino rats were divided into four groups, ten rats each. Group 1 control rats, group 2 rats received curcumin orally (200 mg/kg/day for six weeks, group 3 rats were injected intraperitoneally with streptozotocin (STZ (100 mg/kg, single dose, group 4 received a single injection of STZ and received curcumin orally for six weeks. Paraffin sections of hippocampus were prepared and stained with hematoxylin and eosin stain, and immnunohistochemical staining for GFAP and caspase-3. Morphometrical and statistical analyses were performed. Glycemic status and parameters of oxidative stress was measured. Results: Examination of hippocampus of diabetic rats showed disorganization of small pyramidal cells in CA1, many cellular losses in the pyramidal cells of CA3, many degenerated granule cells in the dentate gyrus. GFAP positive astrocyte and caspase-3 positive neuron counts were significantly increased.  There were significant serum glucose elevation and significant lowered levels of oxidative stress parameters as compared to control rats. Curcumin administration improved the structural and serological alterationsof the hippocampuswith significant reduction in serum glucose level. Conclusion: Curcumin ameliorates the deterious effect of diabetes on the hippocampus through its antioxidant, antiapoptotic and anti-inflammatory efficacies.

  11. Regulation of the kynurenine metabolism pathway by Xiaoyao San and the underlying effect in the hippocampus of the depressed rat.

    Science.gov (United States)

    Wang, Jiajia; Li, Xiaofang; He, Shugui; Hu, Lijun; Guo, Jiewen; Huang, Xiangning; Hu, Jinqing; Qi, Yaoqun; Chen, Bin; Shang, Dewei; Wen, Yuguan

    2018-03-25

    Xiaoyao San (XYS) is a classic Chinese herbal formula for treatment of depression. The present study aimed to investigate the antidepressant effects of XYS in a rat model of chronic unpredictable mild stress (CUMS) and the underlying mechanisms. A CUMS rat model of depression was established via 4 weeks of unpredictable stimulation. Then the rats were orally administered paroxetine and XYS for 2 weeks with continued stress. Behavioral assessments, including an open field test (OFT), sucrose preference test (SPT) and forced swim test (FST), were conducted to evaluate the antidepressant effects of XYS. The concentrations in rat plasma of tryptophan (Trp) and its metabolic products, including kynurenine (Kyn) and quinolinic acid (QUIN), were determined using high performance liquid chromatography tandem mass spectrometry with electrochemical detection (HPLC-MS/MS). The mRNA and protein levels in rat hippocampus of depression-related brain derived neurotrophic factor (BDNF), cyclic AMP response element binding protein (CREB) and nerve cell adhesion molecule (NCAM) were determined by real-time qPCR and Western blot, respectively. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the activities of indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) in rat plasma. The results showed that a successful CUMS rat model was established through 4 weeks of continuous unpredictable stimulation, as indicated by the significant decrease in locomotor activity and increase in immobility time in the OFT, reduction in body weight and food intake etc. Compared with the normal group, the concentrations of Kyn and QUIN had significantly (p KMO. Compared with the normal group, the mRNA of NCAM, CREB and BDNF were significantly down-regulated (p < 0.001) in the control group, BDNF gene was up-regulated by paroxetine or XYS treatment, NCAM and CREB gene did not change in XYS group, protein expressions of BDNF and CREB were significantly increased, and NCAM was

  12. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    Science.gov (United States)

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology

    Directory of Open Access Journals (Sweden)

    Matthew A. Timberlake

    2016-01-01

    Full Text Available The unfolded protein response (UPR is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4 and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH from resistance (non-learned helpless, NLH to develop depression. Rats were exposed to inescapable shock on day 1 and day 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC. Plasma corticosterone levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the corticosterone level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6 and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends towards upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior.

  14. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    International Nuclear Information System (INIS)

    Kodavanti, Prasada Rao S.; Osorio, Cristina; Royland, Joyce E.; Ramabhadran, Ram; Alzate, Oscar

    2011-01-01

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca 2+ -mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: ► We performed brain proteomic analysis of rats exposed to the neurotoxicant, Aroclor 1254. ► Cerebellum and

  15. Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation.

    Directory of Open Access Journals (Sweden)

    Heika Hildebrandt

    Full Text Available Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs in the anteroventral cochlear nucleus (AVCN is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.×10(9 SCZs per mm(3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential

  16. Hydrocephalus compacted cortex and hippocampus and altered their output neurons in association with spatial learning and memory deficits in rats.

    Science.gov (United States)

    Chen, Li-Jin; Wang, Yueh-Jan; Chen, Jeng-Rung; Tseng, Guo-Fang

    2017-07-01

    Hydrocephalus is a common neurological disorder in children characterized by abnormal dilation of cerebral ventricles as a result of the impairment of cerebrospinal fluid flow or absorption. Clinical presentation of hydrocephalus varies with chronicity and often shows cognitive dysfunction. Here we used a kaolin-induction method in rats and studied the effects of hydrocephalus on cerebral cortex and hippocampus, the two regions highly related to cognition. Hydrocephalus impaired rats' performance in Morris water maze task. Serial three-dimensional reconstruction from sections of the whole brain freshly froze in situ with skull shows that the volumes of both structures were reduced. Morphologically, pyramidal neurons of the somatosensory cortex and hippocampus appear to be distorted. Intracellular dye injection and subsequent three-dimensional reconstruction and analyses revealed that the dendritic arbors of layer III and V cortical pyramid neurons were reduced. The total dendritic length of CA1, but not CA3, pyramidal neurons was also reduced. Dendritic spine densities on both cortical and hippocampal pyramidal neurons were decreased, consistent with our concomitant findings that the expressions of both synaptophysin and postsynaptic density protein 95 were reduced. These cortical and hippocampal changes suggest reductions of excitatory connectivity, which could underlie the learning and memory deficits in hydrocephalus. © 2016 International Society of Neuropathology.

  17. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Science.gov (United States)

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  18. Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats.

    Science.gov (United States)

    Covelo, Ignacio R; Patel, Zaid I; Luviano, Jennifer A; Stratford, Thomas R; Wirtshafter, David

    2014-08-15

    Injections of the GABAA antagonist bicuculline into the medial ventral pallidum (VPm) induce marked increases in food intake, but nothing is known about the way in which these injections alter the distribution of intake in a macronutrient selection situation. We investigated this topic by adapting rats to a diet containing independent sources of protein, carbohydrate and fat, and then examining the effects of intra-VPm bicuculline on diet selection. Under these conditions, bicuculline produced a massive, preferential increase in fat intake with subjects consuming a mean of 97% of their calories from fat. Furthermore, all treated subjects ate fat before any other macronutrient, suggesting that the animals' behavior was directed selectively toward this dietary component even before consumption had begun. Similar effects were not observed following food deprivation, which exerted its largest effect on carbohydrate intake. To compare the intra-VPm bicuculline response to that seen after activation of GABA receptors in the nucleus accumbens shell (AcbSh), a major source of projections to the VPm, we conducted similar experiments with intra-AcbSh injections of muscimol and baclofen. These injections also enhanced food intake, but did not reproduce the selective preference for fat seen after intra-VPm bicuculline. These experiments provide the first demonstration of preferential enhancement of fat intake following manipulations of a nonpeptide neurotransmitter. Since mean intakes of fat under baseline conditions and after deprivation tended to be lower than those of carbohydrates, it seems unlikely that the effects of intra-VPm bicuculline are related to the intrinsic "rewarding" properties of fat, but might rather reflect the induction of a state of "fat craving." Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia.

    Science.gov (United States)

    Chambers, R Andrew; Self, David W

    2002-12-01

    The high prevalence of substance use disorders in schizophrenia relative to the general population and other psychiatric diagnoses could result from developmental neuropathology in hippocampal and cortical structures that underlie schizophrenia. In this study, we tested the effects of neonatal ventral hippocampal lesions on instrumental behavior reinforced by sucrose pellets and intravenous cocaine injections. Lesioned rats acquired sucrose self-administration faster than sham-lesioned rats, but rates of extinction were not altered. Lesioned rats also responded at higher rates during acquisition of cocaine self-administration, and tended to acquire self-administration faster. Higher response rates reflected perseveration of responding during the post-injection "time-out" periods, and a greater incidence of binge-like cocaine intake, which persisted even after cocaine self-administration stabilized. In contrast to sucrose, extinction from cocaine self-administration was prolonged in lesioned rats, and reinstatement of cocaine seeking induced by cocaine priming increased compared with shams. These results suggest that neonatal ventral hippocampal lesions facilitate instrumental learning for both natural and drug rewards, and reduce inhibitory control over cocaine taking while promoting cocaine seeking and relapse after withdrawal. The findings are discussed in terms of possible developmental or direct effects of the lesions, and both positive reinforcement (substance use vulnerability as a primary disease symptom) and negative reinforcement (self-medication) theories of substance use comorbidity in schizophrenia.

  20. Long term exposure to combination paradigm of environmental enrichment, physical exercise and diet reverses the spatial memory deficits and restores hippocampal neurogenesis in ventral subicular lesioned rats.

    Science.gov (United States)

    Kapgal, Vijayakumar; Prem, Neethi; Hegde, Preethi; Laxmi, T R; Kutty, Bindu M

    2016-04-01

    Subiculum is an important structure of the hippocampal formation and plays an imperative role in spatial learning and memory functions. We have demonstrated earlier the cognitive impairment following bilateral ventral subicular lesion (VSL) in rats. We found that short term exposure to enriched environment (EE) did not help to reverse the spatial memory deficits in water maze task suggesting the need for an appropriate enriched paradigm towards the recovery of spatial memory. In the present study, the efficacy of long term exposure of VSL rats to combination paradigm of environmental enrichment (EE), physical exercise and 18 C.W. diet (Combination Therapy - CT) in reversing the spatial memory deficits in Morris water maze task has been studied. Ibotenate lesioning of ventral subiculum produced significant impairment of performance in the Morris water maze and reduced the hippocampal neurogenesis in rats. Post lesion exposure to C.T. restored the hippocampal neurogenesis and improved the spatial memory functions in VSL rats. Our study supports the hypothesis that the combination paradigm is critical towards the development of an enhanced behavioral and cognitive experience especially in conditions of CNS insults and the associated cognitive dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The vasopressin receptor of the blood-brain barrier in the rat hippocampus is linked to calcium signalling

    DEFF Research Database (Denmark)

    Hess, J.; Jensen, Claus V.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2......Neuropathology, vasopressin receptor, VI subtype, blood-brain barrier, cerebral endothelium, hippocampus, Fura-2...

  2. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    Science.gov (United States)

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity

    International Nuclear Information System (INIS)

    Cattani, Daiane; Oliveira Cavalli, Liz Vera Lúcia de; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-01-01

    Graphical abstract: - Highlights: • Roundup ® induces Ca 2+ influx through L-VDCC and NMDA receptor activation. • The mechanisms underlying Roundup ® neurotoxicity involve glutamatergic excitotoxicity. • Kinase pathways participate in Roundup ® -induced neural toxicity. • Roundup ® alters glutamate uptake, release and metabolism in hippocampal cells. - Abstract: Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup ® (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30 min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup ® (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup ® (0.00005–0.1%) during 30 min and experiments were carried out to determine whether glyphosate affects 45 Ca 2+ influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, 14 C-α-methyl-amino-isobutyric acid ( 14 C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup ® (30 min) increases 45 Ca 2+ influx by activating NMDA receptors and voltage-dependent Ca 2+ channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup ® -induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup ® increased 3 H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup ® decreased 3 H-glutamate uptake and

  4. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    Science.gov (United States)

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P Betel shisanwei ingredients pill group indecreased significantly than those of model group (P Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  5. The influence of interleukin-1beta on gamma-glutamyl transpeptidase activity in rat hippocampus

    Czech Academy of Sciences Publication Activity Database

    Kaiser, M.; Mareš, Vladislav; Šťastný, František; Bubeníková-Valešová, V.; Lisá, Věra; Suchomel, P.; Balcar, V. J.

    2006-01-01

    Roč. 55, č. 4 (2006), s. 461-465 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NF7626 Institutional research plan: CEZ:AV0Z50110509 Keywords : interleukin-1beta * gamma- glutamyltranspeptidase * hippocampus Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  6. Decrease of extracellular taurine in the rat dorsal hippocampus after central nervous administration of vasopressin

    DEFF Research Database (Denmark)

    Brust, P; Christensen, Thomas; Diemer, Nils Henrik

    1992-01-01

    of the composition of the extracellular fluid. The concentrations of 16 amino acids were measured by HPLC in the perfusate samples. The level of taurine declined 20% in the right hippocampus during perfusion with vasopressin, whereas o-phosphoethanolamine decreased in both sides, the left 20% and the right 24...

  7. Distinct morphology and current patterns of astrocytes in the rat hippocampus after global cerebral ischemia

    Czech Academy of Sciences Publication Activity Database

    Anděrová, Miroslava; Pivoňková, Helena; Benešová, Jana; Butenko, Olena; Chvátal, Alexandr

    2009-01-01

    Roč. 57, č. 13 (2009), S58-S59 ISSN 0894-1491. [European Meeting on Glia l Cells in Health and Disease /9./. 09.09.2009-12.09.2009, Paris] Institutional research plan: CEZ:AV0Z50390703 Keywords : Hippocampus * Morphology Subject RIV: FH - Neurology

  8. Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat

    Czech Academy of Sciences Publication Activity Database

    Wesierska, M.; Dockery, Colleen; Fenton, André Antonio

    2005-01-01

    Roč. 25, č. 9 (2005), s. 2413-2419 ISSN 0270-6474 Grant - others:European Commission(XE) QLG3-CT-1999-00192 Institutional research plan: CEZ:AV0Z5011922 Keywords : cognition * hippocampus * cognitive disorganization Subject RIV: FH - Neurology Impact factor: 7.506, year: 2005

  9. GABAergic Neurons of the Rat Dorsal Hippocampus Express Muscarinic Acetylcholine Receptors

    NARCIS (Netherlands)

    van der Zee, E.A.; Luiten, P.G.M.

    1993-01-01

    The expression of muscarinic acetylcholine receptors (mAChRs) in glutamic acid decarboxylase (GAD)-positive cells in the different strata of CA1, CA3, and the dentate gyrus (DG) of the dorsal hippocampus is examined by way of quantitative immunofluorescent double labeling employing M35, the

  10. Lactation exposure to BDE-153 damages learning and memory, disrupts spontaneous behavior and induces hippocampus neuron death in adult rats.

    Science.gov (United States)

    Zhang, Hongmei; Li, Xin; Nie, Jisheng; Niu, Qiao

    2013-06-23

    To study the effects of 2,2',4,4',5,5'-hexa-brominated diphenyl ether (BDE-153) exposure during lactation on the learning and memory abilities, spontaneous behavior and brain cells of adult rats and to elicit basic information on PBDE's developmental neurotoxicity. Newborn male rat pups were randomly categorized into the following groups (15 pups per group), according to their weights and litters: a control group, and 1mg/kg, 5mg/kg and 10mg/kg BDE-153 groups. At postnatal day 10 (PND10), the pups in the BDE-153 groups were intraperitoneally injected once with BDE-153 plant oil solutions at 0.1ml/10g body weight, and the controls were injected with plant oil. Throughout the entire experiment, physiological measures were recorded, such as food and water consumption, body weight and clinical symptoms. At 1 month and 2 months after treatment, the learning and memory abilities of the rats were tested by the Morris water maze test, the step-down test, and the step-through test; spontaneous behavior was tested by the open-field test. After all tests were accomplished, rats were weighed and sacrificed, and the brain tissue was immediately isolated and divided into two parts. Sections were fabricated from one part, and changes in the morphology and ultrastructure in CA3 region of hippocampus were observed under an optical microscope and transmission electron microscope, along with the detection of apoptotic cells with the terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method. The tissue of the second part was digested into single-cell suspension liquid, and the cell apoptosis was assayed with flow cytometry and the lactate dehydrogenase (LDH) leakage was detected with spectrophotometry. There was no obvious change in food and water consumption, body weight and the ratio of brain to body weight, or any overt clinical symptoms in the BDE-153-treated rats. Compared to the control group, rats' latency time in the test session (LT2) in the step

  11. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    Science.gov (United States)

    Käpyaho, K; Kallio, A; Jänne, J

    1984-05-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.

  12. Acute exposure to high-peak-power pulsed microwaves affecting the histamine H3 receptor expression in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the Morris Water Maze test, high-peak-power pulsed microwave (MW)-exposed rats displayed some learning and memory behavior dysfunctions, and their escape time and swimming distance to the submerged platform were longer than those of the sham-exposed rats. To understand the molecular mechanism involved, the reverse transcription-polymerase chain reaction (RT-PCR) and the Western-blotting technique were used for investigating the mRNA and protein expression patterns of the histamine H3 receptor (H3R) in rat hippocampus. High-peak-power pulsed microwave-exposure did not remarkably lead to the change in expression of H3R mRNA in rat hippocampi;however, it promoted the up-regulatory expression of the H3R protein, which was possibly triggered through the mitogen-activated protein kinase (MAPK) pathways. Therefore, further investigation of the molecular mechanism of the MW effects on the learning and memory behaviors is required.

  13. SRXRF study of trace elements in hippocampus of pup rats after prenatal and postnatal exposure to low-level mercury

    International Nuclear Information System (INIS)

    Zhang Fang; Feng Weiyue; Chai Zhifang; Wang Meng; Shi Junwen; Huang Yuying; He Wei

    2005-01-01

    Since the pollution of mercury in the environment still keeps high, more and more concerns over mercury toxicity are focused on the potential risk associated with relatively low-dose and long-term mercury exposure in the environment. It is well known that fetus and developing children are the susceptive victims of mercury damage. Therefore, high attention is focused on whether the prenatal and postnatal exposure to relatively low level of mercury will be harmful to children development. Some epidemiological studies reported that the methylmercury-related neuropsychological deficits were mainly found in the domains of cognitional parts, such as language, attention, memory, and so forth, Our previous study found out that high level of mercury was accumulated in the pup hippocampus after their prenatal and postnatal exposure to low dose of inorganic mercury. Synchrotron radiation X-ray fluorescence technique (SRXRF) is characterized of its simultaneous determination of multi-elements, high sensitivity, small sampling amount and microanalysis. SRXRF does not cause the damage of irradiated samples. Thus, it makes possible to measure the distributions of trace elements in a selected area. In this study, in order to study the effects of low-level mercury exposure to pup rat brain, some oxidation-related elements, e.g. Cu, Fe and Mn in pup hippocampus after in utero and weaning exposure to low-level inorganic mercury were determined by SRXRF. The experiment was performed at a synchrotron radiation facility at Institute of High Energy Physics. And the spot size of the beam irradiating on the sample was adjusted to about 100 x 200 μm 2 , Each spot was irradiated for about 100 s. The spectra were analyzed by the AXIL program. Additionally, the activities of some important antioxidant enzymes, such as GSH-Px, SOD, CAT, were also measured together with the content of malondialdehyde (MDA). The results showed that mercury exposure could lead to significant increase of both

  14. A subpopulation of dopaminergic neurons co-expresses serotonin in ventral mesencephalic cultures but not after intrastriatal transplantation in a rat model of Parkinsons disease

    DEFF Research Database (Denmark)

    Di Santo, Stefano; Seiler, Stefanie; Ducray, Angélique

    2017-01-01

    Cell replacement therapy is a promising avenue into the investigation and treatment of Parkinson’s disease (PD) and in some cases significant long-term motor improvements have been demonstrated. The main source of donor tissue is the human fetal ventral mesencephalon (VM), which consists...... 30% of the dopaminergic neurons in the donor tissue co-expressed serotonin, no co-localization could be detected in grafts one month after intrastriatal transplantation into hemi-parkinsonian rats. In conclusion, a significant and susceptible sub-population of dopaminergic neurons in fetal VM tissues...... both fetal rat and human dissociated, organotypic and neurosphere VM cultures as well as an animal model of PD were investigated. In dissociated rat VM cultures approximately 30% of the TH positive neurons co-expressed serotonin, while no co-localization with GABA was observed. Interestingly, co...

  15. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  16. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    Science.gov (United States)

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of inhibitory avoidance trainning, ACTH, beta-endorphin and adrenaline on the incorporation of 14C-leucine into synaptosomal proteins of rat hypothalamus, amygdala and hippocampus

    International Nuclear Information System (INIS)

    Dalmaz, C.; Maia, H.M.M.; Izquierdo, I.

    1986-01-01

    'In vitro' incorporation of leucine to protein was studied in synaptosomes isolated from the hypothalamus, amygdala and hippocampus of rats submitted to inhibitory avoidance training or to the i.p. injection of ACTH, beta-endorphin or adrenaline; or in synaptosomes incubated with these substances. (M.A.C.) [pt

  18. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats.

    Science.gov (United States)

    Saadati, Hakimeh; Sheibani, Vahid; Esmaeili-Mahani, Saeed; Darvishzadeh-Mahani, Fatemeh; Mazhari, Shahrzad

    2014-11-01

    Previous studies indicated that brain-derived neurotrophic factor (BDNF) is the main candidate to mediate the beneficial effects of exercise on cognitive function in sleep deprived male rats. In addition, our previous findings demonstrate that female rats are more vulnerable to the deleterious effects of sleep deprivation on cognitive performance and synaptic plasticity. Therefore, the current study was designed to investigate the effects of treadmill exercise and/or sleep deprivation (SD) on the levels of BDNF mRNA and protein in the hippocampus of female rats. Intact and ovariectomized (OVX) female Wistar rats were used in the present experiment. The exercise protocol was four weeks treadmill running and sleep deprivation was accomplished using the multiple platform method. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis were used to evaluate the level of BDNF mRNA and protein in the rat hippocampus respectively. Our results showed that protein and mRNA expression of BDNF was significantly (psleep deprived OVX rats under exercise conditions had a significant (peffect against hippocampus-related functions and impairments induced by sleep deprivation probably by inducing BDNF expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Xinran Li

    2018-02-01

    Full Text Available Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC, Reactive Oxygen Species (ROS, and Malondialdehyde (MDA. Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3, Beclin-1, B-cell lymphoma-2 (Bcl-2, Bcl-2 Associated X Protein (Bax, Autophagy-related gene 4 (Atg4, Atg5, p62 (SQSTM1, and marker of autophagy Light Chain 3 (LC3. In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac. Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.

  20. Serotonin depletion results in a decrease of the neuronal activation caused by rivastigmine in the rat hippocampus

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Weikop, Pia; Moller, Arne

    2006-01-01

    nicotinic receptors located at nerve terminals. The aim of the present study was to determine in which areas and to what extent 5-HT mediates the neuronal response to ACh release. For this purpose, neuronal activity was measured in rats with rivastigmine-induced elevated ACh levels after a 95% 5-HT...... depletion obtained by dosing p-chlorophenylalanine followed by D,L-fenfluramine. Neuronal activation was quantified by stereological measurements of c-Fos immunoreactivity. The brain areas examined were medial prefrontal cortex, septum, dorsal hippocampus, and dorsal raphe nucleus. Rivastigmine...... brain areas examined. It is concluded that 5-HT mediates part of the ACh-induced hippocampal neuronal activation, possibly mediated via locally released 5-HT....

  1. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Fang Han

    Full Text Available BACKGROUND: Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD rats. Endoplasmic reticulum (ER stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP 78, caspase-12 and Ca(2+/CaM/CaMkinaseIIα (CaMkIIα. METHODS: Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM. Free intracellular Ca(2+ concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR. RESULTS: Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca(2+ concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS. CONCLUSION: SPS induced change in the expression levels of GRP78, caspase-12 and Ca(2+/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.

  2. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  3. The effect of chronic ozone exposure on the activation of endoplasmic reticulum stress and apoptosis in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Erika Rodríguez-Martínez

    2016-10-01

    Full Text Available The chronic exposure to low doses of ozone, like in environmental pollution, leads to a state of oxidative stress, which has been proposed to contribute to neurodegenerative disorders, including Alzheimer's disease. It induces an increase of calcium in the endoplasmic reticulum (ER, which produces ER stress. On the other hand, different studies show that, in diseases such as Alzheimer’s, there exist disturbances in protein folding where ER plays an important role. The objective of this study was to evaluate the state of chronic oxidative stress on ER stress and its relationship with apoptotic death in the hippocampus of rats exposed to low doses of ozone. We used 108 male Wistar rats randomly divided into five groups. The groups received one of the following treatments: 1 Control (air, 2 Ozone (O3 7 days, 3 O3 15 days, 4 O3 30 days, 5 O3 60 days, and 6 O3 90 days. Two hours after each treatment, the animals were sacrificed and the hippocampus was extracted. Afterwards, the tissue was processed for western blot and immunohistochemistry using the following antibodies: ATF6, GRP8 and caspase 12. It was also performed TUNEL assay and electronic microscopy. Our results show an increase in ATF6, GRP78 and caspase 12 as well as ER ultrastructural alterations and an increase of TUNEL positive cells after 60 and 90 days of exposure to ozone. With the obtained results, we can conclude that oxidative stress induced by chronic exposure to low doses of ozone leads to ER stress. ER stress activates ATF6 inducing the increase of GRP78 in the cytoplasm, which leads to the increase in the nuclear translocation of ATF6. Finally, the translocation creates a vicious cycle that, together with the activation of the cascade for apoptotic cell death, contributes to the maintenance of ER stress. These events potentially contribute in the neurodegeneration processes in diseases like Alzheimer’s Disease.

  4. Inhibition of GABA A receptor improved special memory impairment in the local model of demyelination in rat hippocampus.

    Science.gov (United States)

    Mousavi Majd, Alireza; Ebrahim Tabar, Forough; Afghani, Arghavan; Ashrafpour, Sahand; Dehghan, Samaneh; Gol, Mohammad; Ashrafpour, Manouchehr; Pourabdolhossein, Fereshteh

    2018-01-15

    Cognitive impairment and memory deficit are common features in multiple Sclerosis patients. The mechanism of memory impairment in MS is unknown, but neuroimaging studies suggest that hippocampal demyelination is involved. Here, we investigate the role of GABA A receptor on spatial memory in the local model of hippocampal demyelination. Demyelination was induced in male Wistar rats by bilaterally injection of lysophosphatidylcholine (LPC) 1% into the CA1 region of the hippocampus. The treatment groups were received daily intraventricular injection of bicuculline (0.025, 0.05μg/2μl/animal) or muscimol (0.1, 0.2μg/2μl/animal) 5days after LPC injection. Morris Water Maze was used to evaluate learning and memory in rats. We used Luxol fast blue staining and qPCR to assess demyelination extention and MBP expression level respectively. Immunohistochemistry (IHC) for CD45 and H&E staining were performed to assess inflammatory cells infiltration. Behavioral study revealed that LPC injection in the hippocampus impaired learning and memory function. Animals treated with both doses of bicuculline improved spatial learning and memory function; however, muscimol treatment had no effect. Histological and MBP expression studies confirmed that demylination in LPC group was maximal. Bicuculline treatment significantly reduced demyelination extension and increased the level of MBP expression. H&E and IHC results showed that bicuculline reduced inflammatory cell infiltration in the lesion site. Bicuculline improved learning and memory and decreased demyelination extention in the LPC-induced hippocampal demyelination model. We conclude that disruption of GABAergic homeostasis in hippocampal demyelination context may be involved in memory impairment with the implications for both pathophysiology and therapy. Copyright © 2017. Published by Elsevier B.V.

  5. Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    Gao Yong-Hui

    2012-12-01

    Full Text Available Abstract Background Evidence is building steadily on the effectiveness of acupuncture therapy in pain relief and repeated acupuncture-induced pain relief is accompanied by improvement of hippocampal neural synaptic plasticity. To further test the cellular and molecular changes underlying analgesic effect of acupuncture, the global change of acupuncture associated protein profiles in the hippocampus under neuropathic pain condition was profiled. Methods The chronic constrictive injury (CCI model was established by ligature of the unilateral sciatic nerve in adult Wistar rats. Rats were randomized into normal control (NC group, CCI group, and CCI with electroacupuncture (EA stimulation group. EA was applied to bilateral Zusanli (ST36 and Yanglingquan (GB34 in the EA group. Differentially expressed proteins in the hippocampus in the three groups were identified by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The functional clustering of the identified proteins was analyzed by Mascot software. Results After CCI, the thermal pain threshold of the affected hind footpad was decreased and was reversed gradually by 12 sessions of acupuncture treatment. Following EA, there were 19 hippocampal proteins identified with significant changes in expression (>2-fold, which are involved in metabolic, physiological, and cellular processes. The top three canonical pathways identified were “cysteine metabolism”, “valine, leucine, and isoleucine degradation” and “mitogen-activated protein kinase (MAPK signaling”. Conclusions These data suggest that the analgesic effect of EA is mediated by regulation of hippocampal proteins related to amino acid metabolism and activation of the MAPK signaling pathway.

  6. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    Science.gov (United States)

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus

  7. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats.

    Science.gov (United States)

    Li, Xiao-Heng; Liu, Neng-Bao; Zhang, Min-Hai; Zhou, Yan-Ling; Liao, Jia-Wan; Liu, Xiang-Qian; Chen, Hong-Wei

    2007-04-20

    The effect of chronic stress on cognitive functions has been one of the hot topics in neuroscience. But there has been much controversy over its mechanism. The aim of this study was to investigate the effects of chronic multiple stress on spatial learning and memory as well as the expression of Fyn, BDNF and TrkB in the hippocampus of rats. Adult rats were randomly divided into control and chronic multiple stressed groups. Rats in the multiple stressed group were irregularly and alternatively exposed to situations of vertical revolution, sleep expropriation and restraint lasting for 6 weeks, 6 hours per day with night illumination for 6 weeks. Before and after the period of chronic multiple stresses, the performance of spatial learning and memory of all rats was measured using the Morris Water Maze (MWM). The expression of Fyn, BDNF and TrkB proteins in the hippocampus was assayed by Western blotting and immunohistochemical methods. The levels of Fyn and TrkB mRNAs in the hippocampus of rats were detected by RT-PCR technique. The escape latency in the control group and the stressed group were 15.63 and 8.27 seconds respectively. The performance of spatial learning and memory of rats was increased in chronic multiple stressed group (P < 0.05). The levels of Fyn, BDNF and TrkB proteins in the stressed group were higher than those of the control group (P < 0.05). The results of immunoreactivity showed that Fyn was present in the CA3 region of the hippocampus and BDNF positive particles were distributed in the nuclei of CA1 and CA3 pyramidal cells as well as DG granular cells. Quantitative analysis indicated that level of Fyn mRNA was also upregulated in the hippocampus of the stressed group (P < 0.05). Chronic multiple stress can enhance spatial learning and memory function of rats. The expression of Fyn, BDNF and TrkB proteins and the level of Fyn mRNA are increased in the stessed rat hippocampus. These suggest that Fyn and BDNF/TrkB signal transduction pathways may

  8. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  9. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  10. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    International Nuclear Information System (INIS)

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-01-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  11. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States); Parsons, Loren [Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA (United States); Pope, Carey, E-mail: carey.pope@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States)

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  12. Rats use hippocampus to recognize positions of objects located in an inaccessible space

    Czech Academy of Sciences Publication Activity Database

    Levčík, David; Nekovářová, Tereza; Stuchlík, Aleš; Klement, Daniel

    2013-01-01

    Roč. 23, č. 2 (2013), s. 153-161 ISSN 1050-9631 R&D Projects: GA MZd(CZ) NT13386; GA ČR(CZ) GBP304/12/G069 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : hippocampus * object-position recognition * operant conditioning * muscimol * spatial cognition Subject RIV: FH - Neurology Impact factor: 4.302, year: 2013

  13. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    Science.gov (United States)

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, pGABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  14. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats.

    Science.gov (United States)

    Vanzella, Cláudia; Neves, Juliana Dalibor; Vizuete, Adriana Fernanda; Aristimunha, Dirceu; Kolling, Janaína; Longoni, Aline; Gonçalves, Carlos Alberto Saraiva; Wyse, Angela T S; Netto, Carlos Alexandre

    2017-09-15

    Clinical and pre-clinical studies indicate that exercise is beneficial to many aspects of brain function especially during aging. The present study investigated the effects of a treadmill running protocol in young (3month-old) and aged (22month-old) male Wistar rats, on: I) cognitive function, as assessed by spatial reference memory in the Morris water maze; II) oxidative stress parameters and the expression of neurotrophic factors BDNF, NT-3, IGF-1 and VEGF in the hippocampus. Animals of both ages were assigned to sedentary (non-exercised) and exercised (20min of daily running sessions, 3 times per week for 4weeks) groups. Cognition was assessed by a reference memory task run in the Morris water maze; twenty four hours after last session of behavioral testing hippocampi were collected for biochemical analysis. Results demonstrate that the moderate treadmill running exercise: I) prevented age-related deficits in reference memory in the Morris water maze; II) prevented the age-related increase of reactive oxygen species levels and lipid peroxidation in the hippocampus; III) caused an increase of BDNF, NT-3 and IGF-1 expression in the hippocampus of aged rats. Taken together, results suggest that both exercise molecular effects, namely the reduction of oxidative stress and the increase of neurotrophic factors expression in the hippocampus, might be related to its positive effect on memory performance in aged rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    NARCIS (Netherlands)

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  16. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about...... factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development....

  17. Temporal pattern of AP-1 DNA-binding activity in the rat hippocampus following a kindled seizure

    Energy Technology Data Exchange (ETDEWEB)

    Shomori, T. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Hayabara, T. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Ishihara, T. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Okada, S. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Akiyama, K. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Sato, K. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Kashihara, K. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan)

    1997-07-28

    DNA binding by transcripton factor AP-1 was enhanced remarkably following kindling stimulation in rat amygdala. Maximum increase occurred 2 h after stimulation with return to baseline within 24 h. Supershift and western analyses revealed that 38,000 mol. wt Fos-related antigen and JunD were the main components of the evoked AP-1 complexes at the time their induction reached maximum. AP-1 induction 2 h after the last kindling stimulation was more prominent in samples from previously kindled rats than in those from non-kindled rats. This study sought to establish the role of AP-1 in plastic changes of the hippocampus associated with kindling. Male Sprague-Dawley rats were kindled from the left amygdala until they exhibited Racine [15] class 5 generalized seizures. Nuclear proteins were extracted from dorsal hippocampi obtained from 0 to 24 h after final stimulations. From these, we evaluated the temporal pattern of DNA binding by AP-1 using a gel mobility-shift assay with a {sup 32}P-labelled AP-1 probe. Supershift and western analyses were added to investigate components of the seizure-evoked AP-1 complexes. Our results suggest that the basal level of AP-1 complexes is not associated with the seizure susceptibility in kindling. However, development of kindling appears to facilitate stimulus-evoked AP-1 induction, probably via plastic changes in the central nervous system. AP-1 may mediate such changes by regulating expression of certain genes. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels.

    Science.gov (United States)

    Stefanovic, Bojana; Spasojevic, Natasa; Jovanovic, Predrag; Jasnic, Nebojsa; Djordjevic, Jelena; Dronjak, Sladjana

    2016-10-01

    The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    Science.gov (United States)

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  20. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus.

    Science.gov (United States)

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Ahmed, Sahabuddin; Dwivedi, Durgesh; Saroha, Babita; Lahkar, Mangala

    2016-11-15

    Cisplatin is a chemotherapeutic agent used in the treatment of malignant tumors. A major clinical limitation of cisplatin is its potential toxic effects, including neurotoxicity. Edaravone, a potent free radical scavenger, has been reported to have the neuroprotective effect against neurological deficits. The aim of the present study was to determine the neuroprotective effect of edaravone against cisplatin-induced behavioral and biochemical anomalies in male Wistar rats. Our results showed that cisplatin (5mg/kg/week, i.p.) administration for seven weeks caused marked cognitive deficits and motor incoordination in rats. This was accompanied by oxido-nitrosative stress, neuroinflammation, NF-κB activation and down-regulation of Nrf2/HO-1 gene expression level in the hippocampus. Edaravone (10mg/kg/week, i.p.) treatment for seven weeks inhibited the aforementioned neurobehavioral and neurochemical deficits. Furthermore, edaravone was found to up-regulate the gene expression level of Nrf2/HO-1 and prevented the cisplatin-induced NF-κB activation. These findings demonstrated that oxido-nitrosative stress and inflammatory signaling mediators play a key role in the development of cisplatin-induced neurobehavioral deficits which were prevented by edaravone treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Chunmei Guo

    2010-01-01

    Full Text Available Neonatal blockade of N-methyl-D-aspartic acid (NMDA receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND 5 through 14. Open-field test was performed on PND 42, and PND 77 to examine the validity of the current model. BDNF protein levels in hippocampus and prefrontal cortex (PFC were analyzed on PND 15, PND 42, and PND 77. Results showed that neonatal challenge with MK-801 persistently elevated locomotor activity as well as BDNF expression; the alterations in BDNF expression varied at different developing stages and among brain regions. However, these findings provide neurochemical evidence that the blockade of NMDA receptors during brain development results in long-lasting alterations in BDNF expression and might contribute to neurobehavioral pathology of the present animal model for schizophrenia. Further study in the mechanisms and roles of the BDNF may lead to better understanding of the pathophysiology of schizophrenia.

  2. Antinociceptive Effect of Morphine Microinjections into the Dorsal Hippocampus in the Formalin-Induced Orofacial Pain in Rats

    Directory of Open Access Journals (Sweden)

    Emad Khalilzadeh

    2010-09-01

    Full Text Available In the present study, the effects of intra-hippocampal microinjections of morphine (an opioid agonist and naloxone (an opioid antagonist were investigated in the formalin-induced orofacial pain in rats. Orofacial pain was induced by subcutaneous injection of formalin (1 %, 50 μl in the upper lip region and the time spent of face rubbing was measured in 3-min blocks for 45 min. Formalin induced a biphasic (first phase: 0-3 min; second phase: 15-33 min pain response. Intra-hippocampal microinjections of morphine at doses of 2 and 4 μg significantly (P < 0.05 attenuated the first phase, and at doses of 1, 2 and 4 μg, morphine significantly (P < 0.05 suppressed both phases of formalin-induced orofacial pain response. Intra-hippocampal microinjections of naloxone (1 and 4 μg non-significantly increased pain when used alone, and in pretreatment microinjection, naloxone (4 μg reversed morphine (2 μg-induced antinociception. These results indicate that at the level of hippocampus of the brain, morphine through a naloxone-reversible mechanism produced an antinociceptive effect confronting the pain induced by formalin in the orofacial region in rats.

  3. Chronic restraint stress impairs endocannabinoid mediated suppression of GABAergic signaling in the hippocampus of adult male rats.

    Science.gov (United States)

    Hu, Wen; Zhang, Mingyue; Czéh, Boldizsár; Zhang, Weiqi; Flügge, Gabriele

    2011-07-15

    Chronic stress, a risk factor for the development of psychiatric disorders, is known to induce alterations in neuronal networks in many brain areas. Previous studies have shown that chronic stress changes the expression of the cannabinoid receptor 1 (CB1) in the brains of adult rats, but neurophysiological consequences of these changes remained unclear. Here we demonstrate that chronic restraint stress causes a dysfunction in CB1 mediated modulation of GABAergic transmission in the hippocampus. Using an established protocol, adult male Sprague Dawley rats were daily restrained for 21 days and whole-cell voltage clamp was performed at CA1 pyramidal neurons. When recording carbachol-evoked inhibitory postsynaptic currents (IPSCs) which presumably originate from CB1 expressing cholecystokinin (CCK) interneurons, we found that depolarization-induced suppression of inhibition (DSI) was impaired by the stress. DSI is a form of short-term plasticity at GABAergic synapses that is known to be CB1 mediated and has been suggested to be involved in hippocampal information encoding. Chronic stress attenuated the depolarization-induced suppression of the frequency of carbachol-evoked IPSCs. Incubation with a CB1 receptor antagonist prevented this DSI effect in control but not in chronically stressed animals. The stress-induced impairment of CB1-mediated short-term plasticity at GABAergic synapses may underlie cognitive deficits which are commonly observed in animal models of stress as well as in patients with stress-related psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effects of early postnatal X-irradiation of the hippocampus on discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.

    1980-01-01

    Rats with x-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure, but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task-difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task-difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task-difficulty) and reversal (moderate task-difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that hippocampal-damaged rats are inattentive due to hyperactivity

  5. Early postnatal x-irradiation of the hippocampus and discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.; Altman, J.

    1981-01-01

    Rats with X-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task difficulty) and reversal (moderate task difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that rats with hippocampal damage are inattentive due to hyperactivity

  6. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Bethany L Peterson

    Full Text Available Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6 and older (postnatal day 20 age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.

  7. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus.

    Science.gov (United States)

    Peterson, Bethany L; Larson, John; Buffenstein, Rochelle; Park, Thomas J; Fall, Christopher P

    2012-01-01

    Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.

  8. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of...... in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.......Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  9. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.

    Science.gov (United States)

    Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M

    2016-09-21

    Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior

  10. Avaliação fitoterápica da Jatropha gossypiifolia L. na cicatrização de suturas na parede abdominal ventral de ratos Phytotherapic evaluation of Jatropha gossypiifolia L. on rats ventral abdominal wall wound healing

    Directory of Open Access Journals (Sweden)

    José Ulcijara Aquino

    2006-01-01

    L., which is used in popular medicine is considered to have good diuretic effect in hypertension and is also used as a laxative drug. It seems to have a healing effect, although not proved till now. PURPOSE: To evaluate the influence of intraperitoneum administration of Jatropha Gossypiifolia L., in suture healing of ventral abdominal wall of rats, through tensiometric measurement, macro and microscopic aspect of post-operative period. METHODS: Forty wistar male rates were allocated in two groups of 20 animals . After the incision and exposure of abdominal cavity 1 ml/kg/weight of 0,9% sodium chloride solution was injected in control group, and in the other one the injection was of 1 ml/kg/weight of a gross ethanol extract of Jatropha gossypiifolia L. The suture of the abdominal wall was than performed with polypropylene separated stitches. The animals were followed-up and killed in the third and seventh days. The ventral abdominal wall was macroscopically analyzed, the resistance strength to strain was measured and it was also studied the histological aspects. RESULTS: On macroscopic examination more intense adhesion was found on the group of Jatropha in both third and seventh post-operative days. The strain evaluation was meanly greater on Jatropha group also in third and seventh days. CONCLUSION: The histological comparative analysis between the different groups showed that the acute inflammatory process was meanly greater for the Jatropha group in third and seventh post-operative days. The vascular neoformation was significantly greater in third pos-operative day of Jathopha group; the other histological parameters were just alike. The intraperitoneum injection of Jatropha extract did not have any significant improvement for the wound healing on ventral abdominal wall on the evaluated animals in this study, no matter if analyzed at the third or seventh pos-operative days.

  11. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  12. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    Directory of Open Access Journals (Sweden)

    Nattaporn Phunchago

    2015-01-01

    Full Text Available Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.

  13. The AMPA receptor potentiator Org 26576 modulates stress-induced transcription of BDNF isoforms in rat hippocampus.

    Science.gov (United States)

    Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A

    2012-02-01

    Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Lin

    Full Text Available NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia.

  15. Effect of microalga Spirulina platensis (Arthrospira platensis on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Telma Elita Bertolin

    2009-10-01

    Full Text Available Studies have been conducted on microalga Spirulina platensis (Arthrospira platensis due to its therapeutic potential in several areas, including the capacity for preventing and decreasing the damages caused by hyperlipidemia and the antioxidant activity. The aim of the study was to evaluate the effect of microalga Spirulina platensis on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia during 60 days. The measurement of hippocampus lipoperoxidation did not demonstrate significant difference (p>0.05 when Spirulina platensis was added to hypercholesterolemic diet. The evaluation of lipid profile showed that the administration of the microalga in therapeutic and preventive ways led to a significant protective effect (pA microalga Spirulina platensis (Arthrospira platensis vem sendo fonte de pesquisas devido a evidências de seu potencial terapêutico em diversas áreas, dentre elas a capacidade de prevenção e diminuição dos danos causados por dislipidemias e sua atividade antioxidante. Objetivou-se avaliar o efeito da microalga Spirulina platensis sobre a lipoperoxidação no hipocampo e perfil lipídico sérico em ratos com hipercolesterolemia induzida durante 60 dias. A dosagem da lipoperoxidação no hipocampo não demonstrou diferença significativa (p>0,05 quando Spirulina platensis foi adicionada na dieta hipercolêsterolemica. A avaliação do perfil lipídico demonstrou que a administração da microlaga de forma terapêutica e preventiva demonstrou efeito significativo (p<0,05 na proteção do desenvolvimento de hipercolesterolemia.

  16. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    Science.gov (United States)

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Histological studies of neuroprotective effects of Curcuma longa Linn. on neuronal loss induced by dexamethasone treatment in the rat hippocampus.

    Science.gov (United States)

    Issuriya, Acharaporn; Kumarnsit, Ekkasit; Wattanapiromsakul, Chatchai; Vongvatcharanon, Uraporn

    2014-10-01

    Long term exposure to dexamethasone (Dx) is associated with brain damage especially in the hippocampus via the oxidative stress pathway. Previously, an ethanolic extract from Curcuma longa Linn. (CL) containing the curcumin constituent has been reported to produce antioxidant effects. However, its neuroprotective property on brain histology has remained unexplored. This study has examined the effects of a CL extract on the densities of cresyl violet positive neurons and glial fibrillary acidic protein immunoreactive (GFAP-ir) astrocytes in the hippocampus of Dx treated male rats. It showed that 21 days of Dx treatment (0.5mg/kg, i.p. once daily) significantly reduced the densities of cresyl violet positive neurons in the sub-areas CA1, CA3 and the dentate gyrus, but not in the CA2 area. However, CL pretreatment (100mg/kg, p.o.) was found to significantly restore neuronal densities in the CA1 and dentate gyrus. In addition, Dx treatment also significantly decreased the densities of the GFAP-ir astrocytes in the sub-areas CA1, CA3 and the dentate gyrus. However, CL pretreatment (100mg/kg, p.o.) failed to protect the loss of astrocytes in these sub-areas. These findings confirm the neuroprotective effects of the CL extract and indicate that the cause of astrocyte loss might be partially reduced by a non-oxidative mechanism. Moreover, the detection of neuronal and glial densities was suitable method to study brain damage and the effects of treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors.

    Science.gov (United States)

    Postnikova, T Y; Zubareva, O E; Kovalenko, A A; Kim, K K; Magazanik, L G; Zaitsev, A V

    2017-03-01

    Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Real-time PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

  19. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location.

    Science.gov (United States)

    Albasser, Mathieu M; Dumont, Julie R; Amin, Eman; Holmes, Joshua D; Horne, Murray R; Pearce, John M; Aggleton, John P

    2013-12-01

    Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are "configural" as no individual cue or element predicts the solution (AC+, AD-, BD+, and BC-). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions ("structural learning"). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps. Copyright © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  20. Predator Exposure/Psychosocial Stress Animal Model of Post-Traumatic Stress Disorder Modulates Neurotransmitters in the Rat Hippocampus and Prefrontal Cortex

    Science.gov (United States)

    Wilson, C. Brad; Ebenezer, Philip J.; McLaughlin, Leslie D.; Francis, Joseph

    2014-01-01

    Post-Traumatic Stress Disorder (PTSD) can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT) may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE), 5-Hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), dopamine (DA), and 3,4-Dihydroxyphenylacetic acid (DOPAC), and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC). In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may cause a

  1. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    C Brad Wilson

    Full Text Available Post-Traumatic Stress Disorder (PTSD can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC. Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE, 5-Hydroxyindoleacetic acid (5-HIAA, homovanillic acid (HVA, dopamine (DA, and 3,4-Dihydroxyphenylacetic acid (DOPAC, and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC. In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may

  2. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  3. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2009-12-01

    The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (Pchronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.

  5. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  6. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-12-06

    Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization. © 2013 Published by Elsevier B.V.

  7. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  8. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus.

    Science.gov (United States)

    Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Haghir, Hossein

    2012-04-01

    Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.

  9. Effects of exercise on neurogenesis in the dentate gyrus and ability of learning and memory after hippocampus lesion in adult rats

    Institute of Scientific and Technical Information of China (English)

    Lin CHEN; Shan GONG; Li-Dong SHAN; Wei-Ping XU; Yue-Jin ZHANG; Shi-Yu GUO; Tadashi Hisamitsu; Qi-Zhang YIN; Xing-Hong JIANG

    2006-01-01

    Objective To explore the effects of exercise on dentate gyrus (DG) neurogenesis and the ability of learning and memory in hippocampus-lesioned adult rats. Methods Hippocampus lesion was produced by intrahippocampal microinjection of kainic acid (KA). Bromodeoxyuridine (BrdU) was used to label dividing cells. Y maze test was used to evaluate the ability of learning and memory. Exercise was conducted in the form of forced running in a motor-driven running wheel. The speed of wheel revolution was regulated at 3 kinds of intensity: lightly running, moderately running, or heavily running. Results Hippocampus lesion could increase the number of BrdU-labeled DG cells, moderately running after lesion could further enhance the number of BrdU-labeled cells and decrease the error number (EN) in Y maze test,while neither lightly running, nor heavily running had such effects. There was a negative correlation between the number of DG BrdU-labeled cells and the EN in the Y maze test after running. Conclusion Moderate exercise could enhance the DG neurogenesis and ameliorate the ability of learning and memory in hippocampus-lesioned rats.

  10. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  11. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    Science.gov (United States)

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  12. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    Science.gov (United States)

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-05

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Excitotoxic median raphe lesions aggravate working memory storage performance deficits caused by scopolamine infusion into the dentate gyrus of the hippocampus in the inhibitory avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Babar E.

    2002-01-01

    Full Text Available The interactions between the median raphe nucleus (MRN serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.

  14. Long Term Depression in Rat Hippocampus and the Effect of Ethanol during Fetal Life

    Directory of Open Access Journals (Sweden)

    Olivier Pierrefiche

    2017-11-01

    Full Text Available Alcohol (ethanol disturbs cognitive functions including learning and memory in humans, non-human primates, and laboratory animals such as rodents. As studied in animals, cellular mechanisms for learning and memory include bidirectional synaptic plasticity, long-term potentiation (LTP, and long-term depression (LTD, primarily in the hippocampus. Most of the research in the field of alcohol has analyzed the effects of ethanol on LTP; however, with recent advances in the understanding of the physiological role of LTD in learning and memory, some authors have examined the effects of ethanol exposure on this particular signal. In the present review, I will focus on hippocampal LTD recorded in rodents and the effects of fetal alcohol exposure on this signal. A synthesis of the findings indicates that prenatal ethanol exposure disturbs LTD concurrently with LTP in offspring and that both glutamatergic and γ-aminobutyric acid (GABA neurotransmissions are altered and contribute to LTD disturbances. Although the ultimate mode of action of ethanol on these two transmitter systems is not yet clear, novel suggestions have recently appeared in the literature.

  15. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  16. Dorsal hippocampus inactivation impairs spontaneous recovery of Pavlovian magazine approach responding in rats

    Science.gov (United States)

    Campese, Vincent D.; Delamater, Andrew R.

    2014-01-01

    Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1–4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. PMID:24742862

  17. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Science.gov (United States)

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  18. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  19. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  20. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... of newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress...

  1. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Soleymaninejad, Masoume; Joursaraei, Seyed Gholamali; Feizi, Farideh; Jafari Anarkooli, Iraj

    2017-01-01

    The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL ( p lycopene alone or together reduced the expression of Bax , but increased Bcl-2 and Bcl-x L levels in DI, DL, and DIL rats, especially when compared to group D ( p lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.

  2. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress.

    Science.gov (United States)

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2016-10-01

    Either developmental lead or ethanol exposure can impair learning and memory via induction of oxidative stress, which results in neuronal damage. we examined the effect of combined exposure with lead and ethanol on spatial learning and memory in offspring and oxidative stress in hippocampus. Rats were exposed to lead (0.2% in drinking water) or ethanol (4 g/kg) either individually or in combination in 5th day gestation through weaning. On postnatal days (PD) 30, rats were trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done. Also, oxidative stress markers in the hippocampus were also evaluated. Results demonstrated that lead + ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. There was significant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and increase of malondialdehyde (MDA) levels in hippocampus of animals co-exposed to lead and ethanol compared with their individual exposures. We suggest that maternal consumption of ethanol during lead exposure has pronounced detrimental effects on memory, which may be mediated by oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  3. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did...... dendrites of labelled neurons, suggesting monosynaptic connections between the rVRG and these nuclei.......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...

  4. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...... not label neurons in distant structures. Several brainstem ipsi- and contralateral structures were found to project to the rVRG, but three major respiratory-related structures, the nucleus of the solitary tract (NTS), the parabrachialis medialis and Kölliker-Fuse nuclei (PB/KF) and the caudal VRG, which...

  5. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus.

    Science.gov (United States)

    Pérez-Hernández, Mercedes; Fernández-Valle, María Encarnación; Rubio-Araiz, Ana; Vidal, Rebeca; Gutiérrez-López, María Dolores; O'Shea, Esther; Colado, María Isabel

    2017-05-15

    The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X 7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    Science.gov (United States)

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  7. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    Science.gov (United States)

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  8. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression.

    Science.gov (United States)

    Lim, Patrick H; Wert, Stephanie L; Tunc-Ozcan, Elif; Marr, Robert; Ferreira, Adriana; Redei, Eva E

    2018-02-25

    Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat. These rats consistently display depression-like behavior compared to the genetically close control, the Wistar Kyoto Less Immobile (WLI) strain. Hippocampus-dependent contextual fear memory did not differ between young WLI and WMI females, but, by middle-age, female WMIs showed memory deficits compared to same age WLIs. This deficit, measured as duration of freezing in the fear provoking-context was not related to activity differences between the strains prior to fear conditioning. Hippocampal expression of AD-related genes, such as amyloid precursor protein, amyloid beta 42, beta secretase, synucleins, total and dephosphorylated tau, and synaptophysin, did not differ between WLIs and WMIs in either age group. However, hippocampal transcript levels of catalase (Cat) and hippocampal and frontal cortex expression of insulin-like growth factor 2 (Igf2) and Igf2 receptor (Igf2r) paralleled fear memory differences between middle-aged WLIs and WMIs. This data suggests that chronic depression-like behavior that is present in this genetic model is a risk factor for early spatial memory decline in females. The molecular mechanisms of this early memory decline likely involve the interaction of aging processes with the genetic components responsible for the depression-like behavior in this model. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Miyuki eYoshiya

    2013-11-01

    Full Text Available Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes.We demonstrated rapid effects (~ 1 h of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500 and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.

  10. Environmental Enrichment during Gestation Improves Behavior Consequences and Synaptic Plasticity in Hippocampus of Prenatal-Stressed Offspring Rats

    International Nuclear Information System (INIS)

    Li, Mingbo; Wang, Miao; Ding, Siqing; Li, Changqi; Luo, Xuegang

    2012-01-01

    Prenatal stress can result in various behavior deficits in offspring. Here we tested the effects of environmental enrichment during gestation used as a preventive strategy on the behavior deficits of prenatal-stressed offspring rats as well as the underlying structure basis. We compared the effect size of environmental enrichment during gestation on prenatal-stressed offspring to that of environmental enrichment after weaning. Our results showed that environmental enrichment during gestation partially prevented anxiety and the damage in learning and memory in prenatal-stressed offspring as evaluated by elevated plus-maze test and Morris water maze test. At the same time, environmental enrichment during gestation inhibited the decrease in spine density of CA1 and dentate gyrus neurons and preserved the expression of synaptophysin and glucocorticoid receptors (GRs) in the hippocampus of prenatal-stressed offspring. There was no significant difference in offspring behavior between 7-day environmental enrichment during gestation and 14-day offspring environmental enrichment after weaning. These data suggest that environmental enrichment during gestation effectively prevented the behavior deficits and the abnormal synapse structures in prenatal-stressed offspring, and that it can be used as an efficient preventive strategy against prenatal stresses

  11. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study.

    Science.gov (United States)

    Hami, Javad; Kheradmand, Hamed; Haghir, Hossein

    2014-03-01

    Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.

  12. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    Directory of Open Access Journals (Sweden)

    Valentina eCorvino

    2015-11-01

    Full Text Available Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2 administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT administration (8mg/kg, characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg i.p. or vehicle, and were sacrificed 48h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48h upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, Cadherin and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad 67, neuropeptide Y (Npy, parvalbumin , Pgc-1α and Sirtuin 1genes, the latter involved in parvalbumin (PV synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.

  13. Lamotrigine increases the number of BrdU-labeled cellsinthe rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2010-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6±3.5 cells/slice) compared with valproate (31.6±2.8) and controls (32.2±3.1; P...

  14. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2011-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P...

  15. Neuronal cell death in hippocampus induced by homocysteic acid in immature rats

    Czech Academy of Sciences Publication Activity Database

    Langmeier, M.; Folbergrová, Jaroslava; Haugvicová, Renata; Pokorný, J.; Mareš, Pavel

    2003-01-01

    Roč. 44, č. 3 (2003), s. 299-304 ISSN 0013-9580 R&D Projects: GA ČR GA309/97/0518; GA ČR GA309/02/1238 Grant - others:GA UK(CZ) 32/2001/C/1.LF; RFBR(RU) 02-404-48903; RFBR(RU) NIOKR RT03-3.8-16 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 111100001 Keywords : homocysteic acid * immature rats * seizures Subject RIV: FH - Neurology Impact factor: 3.549, year: 2003

  16. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus

    DEFF Research Database (Denmark)

    Lauterborn, J C; Poulsen, F R; Stinis, C T

    1998-01-01

    Activity-induced brain-derived neurotrophic factor (BDNF) expression is negatively modulated by circulating adrenal steroids. The rat BDNF gene gives rise to four major transcript forms that each contain a unique 5' exon (I-IV) and a common 3' exon (V) that codes for BDNF protein. Exon-specific i......Activity-induced brain-derived neurotrophic factor (BDNF) expression is negatively modulated by circulating adrenal steroids. The rat BDNF gene gives rise to four major transcript forms that each contain a unique 5' exon (I-IV) and a common 3' exon (V) that codes for BDNF protein. Exon...... and in exon II-containing mRNA with 30-days survival. In the dentate gyrus granule cells, adrenalectomy markedly potentiated increases in exon I and II cRNA labeling, but not increases in exon III and IV cRNA labeling, elicited by one hippocampal afterdischarge. Similarly, for the granule cells and CA1...... no effect on exon IV-containing mRNA content. These results demonstrate that the negative effects of adrenal hormones on activity-induced BDNF expression are by far the greatest for transcripts containing exons I and II. Together with evidence for region-specific transcript expression, these results suggest...

  17. Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage

    Directory of Open Access Journals (Sweden)

    Alejandra Paola Torres-Manzo

    2018-01-01

    Full Text Available Thyroid hormones (TH are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.

  18. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Wei; Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Chia-Ying [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Chemistry, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang District, New Taipei City 24205, Taiwan (China); Huang, Shu-Kuei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan (China); Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan (China)

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{sub 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  19. Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats.

    Science.gov (United States)

    Kosasa, T; Kuriya, Y; Matsui, K; Yamanishi, Y

    1999-09-10

    The effects of oral administration of the centrally acting acetylcholinesterase (AChE) inhibitors, donepezil hydrochloride (donepezil: E2020: (+/-)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride), tacrine (9-amino-1,2,3,4-tetrahydroacridine hydrochloride) and ENA-713 (rivastigmine: (S)-N-ethyl-3-[(1-dimethyl-amino)ethyl]-N-methyl-phenylcarbamate hydrogentartrate), which have been developed for the treatment of Alzheimer's disease, on the extracellular acetylcholine concentration in the hippocampus of rats were evaluated by using a microdialysis technique without adding cholinesterase inhibitor to the perfusion solution. We also compared the inhibition of brain AChE and the brain concentrations of these drugs. Donepezil at 2.5 mg/kg and tacrine at 5 mg/kg showed significant effects for more than 6 h. At these doses, the maximum increases were observed at about 1.5 h after administration of donepezil, and at about 2 h with tacrine, and were 499% and 422% of the pre-level, respectively. ENA-713 produced significant effects at doses of 0.625, 1.25 and 2.5 mg/kg, which lasted for about 1, 2 and 4 h, respectively. The maximum increases produced by these doses at about 0.5 h after administration were 190, 346 and 458% of the pre-level, respectively. The time courses of brain AChE inhibition with donepezil at 2.5 mg/kg, tacrine at 10 mg/kg and ENA-713 at 2.5 mg/kg were mirror images of the extracellular acetylcholine-increasing action at the same doses. The time courses of the brain concentrations of drugs after oral administration of donepezil at 2.5 mg/kg and tacrine at 10 mg/kg were consistent with those of brain AChE inhibition at the same doses, and there was a linear relation between these parameters. Brain concentration of ENA-713 at 2.5 mg/kg was below the limit of quantification at all time points measured. These results suggest that oral administration of donepezil, tacrine and ENA-713 increases acetylcholine concentration in the

  20. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  1. Histopathological, Ultrastructural, and Immunohistochemical Assessment of Hippocampus Structures of Rats Exposed to TCDD and High Doses of Tocopherol and Acetylsalicylic Acid

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2015-01-01

    Full Text Available The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP and acetylsalicylic acid (ASA on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system.

  2. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    Science.gov (United States)

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  3. Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats.

    Science.gov (United States)

    Shirayama, Yukihiko; Muneoka, Katsumasa; Fukumoto, Makoto; Tadokoro, Shigenori; Fukami, Goro; Hashimoto, Kenji; Iyo, Masaomi

    2011-10-01

    Patients with depression showed a decrease in plasma and cerebrospinal fluid allopregnanolone (ALLO). But antidepressants increased the contents of ALLO in the rat brain. We examined the antidepressant-like effects of infusion of ALLO into the cerebral ventricle, hippocampus, amygdala, nucleus accumbens, or prefrontal cortex of learned helplessness (LH) rats (an animal model of depression). Of these regions, infusions of ALLO into the cerebral ventricle, the CA3 region of hippocampus, or the central region of amygdala exerted antidepressant-like effects. Infusion of ALLO into the hippocampal CA3 region or the central amygdala did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. It is well documented that ALLO exerts its effects through GABA receptors. Therefore, we examined the antagonistic effects of flumazenil (a GABA receptor antagonist) on the antidepressant-like effects of ALLO. Coinfusion of flumazenil with ALLO into the hippocampal CA3 region, but not into the central amygdala, blocked the antidepressant-like effects of ALLO. However, coinfusion of (+)MK801 (an NMDA receptor antagonist), but not cycloheximide (a protein synthesis inhibitor), blocked the antidepressant-like effects of ALLO in the central amygdala. These results suggest that ALLO exerts antidepressant-like effects in the CA3 region of hippocampus through the GABA system and in the central region of amygdala, dependently on the activation of the glutamatergic mechanisms. Copyright © 2010 Wiley-Liss, Inc.

  4. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2015-12-01

    Full Text Available We aimed to compare the effects of oral ethanol (Eth alone or combined with the phytoestrogen resveratrol (Rsv on the expression of various brain-derived neurotrophic factor (BDNF transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW/day dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  5. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    Science.gov (United States)

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Curcumin Protects against Monosodium Glutamate Neurotoxicity and Decreasing NMDA2B and mGluR5 Expression in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Rania M. Khalil

    2016-08-01

    Full Text Available Background: Monosodium glutamate (MSG is a flavor enhancer used in food industries. MSG is well documented to induce neurotoxicity. Curcumin (CUR reportedly possesses beneficial effects against various neurotoxic insults. Hence, this present study has been designed to evaluate the neuroprotective effect of curcumin on MSG-induced neurotoxicity in rats. Methods: Thirty-two male Wister rats were divided into four groups (n=8: Control group, MSG group, CUR group and MSG + CUR group. CUR (Curcumin 150 mg/kg, orally was given day after day for four weeks along with MSG (4 mg/kg, orally. After 4 weeks, rats were sacrificed and brain hippocampus was isolated immediately on ice. Inflammatory marker TNFα and acetylcholinesterase (AChE activity (marker for cholinergic function were estimated. Gene expressions of metabotropic glutamate receptor 5 (mGluR5 and N-methyl-D-aspartate receptor 2B (NMDA2B along with glutamate concentration were assessed. Results: Treatment with CUR significantly attenuated AChE activity and TNFα in MSG-treated animals. The anti-inflammatory properties of CUR may be responsible for this observed neuroprotective action. A possible role of CUR to attenuate both glutamate level and gene expression of NMDA2B and mGLUR5 in brain hippocampus was established when compared to MSG group. Conclusion: We concluded that CUR as flavor enhancer protects against MSG-induced neurotoxicity in rats.

  7. Effect of electroacupuncture on the expression of mTOR and eIF4E in hippocampus of rats with vascular dementia.

    Science.gov (United States)

    Zhu, Yanzhen; Zeng, Yanjun; Wang, Xuan; Ye, Xiaobao

    2013-07-01

    Clinically, electroacupuncture is proved to be an effective therapy for vascular dementia; however, their mechanisms remain uncertain. The aim of the current study was to investigate the mechanism of electroacupuncture therapy for vascular dementia. One month after a vascular dementia animal model was established by bilateral occlusion of common carotid arteries, electroacupuncture treatment was given at "Baihui" (DU20), "Dazhui" (DU14), and "Shenshu" (BL23). Morris water maze was used to assess the learning and memory ability of rats. Western blot assay was performed to detect the expression of mammalian target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E (eIF4E) in hippocampus of rats. Morris water maze test showed that electroacupuncture improved the learning ability of vascular dementia rats. Western blot assay revealed that the expression level of mTOR and eIF4E in the electroacupuncture group and sham-operated group was higher than that in the vascular dementia group (P Electroacupuncture improves learning and memory ability by up-regulating expression of mTOR and eIF4E in the hippocampus of vascular dementia rats.

  8. Agents that affect cAMP levels or protein kinase A activity modulate memory consolidation when injected into rat hippocampus but not amygdala

    Directory of Open Access Journals (Sweden)

    L. Bevilaqua

    1997-08-01

    Full Text Available Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala, these animals received microinfusions of SKF38393 (7.5 µg/side, SCH23390 (0.5 µg/side, norepinephrine (0.3 µg/side, timolol (0.3 µg/side, 8-OH-DPAT (2.5 µg/side, NAN-190 (2.5 µg/side, forskolin (0.5 µg/side, KT5720 (0.5 µg/side or 8-Br-cAMP (1.25 µg/side. Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.

  9. Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats

    Directory of Open Access Journals (Sweden)

    Alicia A Walf

    2012-12-01

    Full Text Available Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypothesized that rats exposed to gestational and acute stress may show behavioral inhibition, increased corticosterone, and altered androgen levels in the hippocampus. Subjects were adult, male offspring of rat dams that were restrained daily on gestational days 14-20, or did not experience this manipulation. Immediately before testing, rats were restraint-stressed for 20 minutes or not. During week 1, rats were tested in a battery of tasks, including the open field, elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks. During week 2, rats were trained and tested 24 hours later in the inhibitory avoidance task. Plasma corticosterone and androgen levels, and hippocampal androgen levels, were measured in all subjects. Gestational and acute restraint stress increased plasma levels of corticosterone, and reduced levels of testosterone’s 5α-reduced metabolites, dihydrotestosterone and 3α-androstanediol, but not the aromatized metabolite, estradiol, in plasma or the hippocampus. Gestational and acute restraint stress reduced central entries made in the open field, and latencies to enter the shock-associated side of the inhibitory avoidance chamber during testing. Gestational stress reduced time spent interacting with a conspecific. These data suggest that gestational and acute restraint stress can have actions to produce behavioral inhibition coincident with increased corticosterone and decreased 5α-reduced androgens of adult male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine response to acute stress in early adulthood.

  10. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    Science.gov (United States)

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  11. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Montserrat Batlle

    2015-01-01

    Full Text Available Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage.

  12. The effect of taurine and enriched environment on behaviour, memory and hippocampus of diabetic rats.

    Science.gov (United States)

    Rahmeier, Francine Luciano; Zavalhia, Lisiane Silveira; Tortorelli, Lucas Silva; Huf, Fernanda; Géa, Luiza Paul; Meurer, Rosalva Thereza; Machado, Aryadne Cardoso; Gomez, Rosane; Fernandes, Marilda da Cruz

    2016-09-06

    Diabetes mellitus (DM) has been studied recently as a major cause of cognitive deficits, memory and neurodegenerative damage. Taurine and enriched environment have stood out for presenting neuroprotective and stimulating effects that deserve further study. In this paper, we examined the effects of taurine and enriched environment in the context of diabetes, evaluating effects on behaviour, memory, death and cellular activity. Eighty-eight Wistar rats were divided into 2 groups (E=enriched environment; C=standard housing). Some animals (24/group) underwent induction of diabetes, and within each group, some animals (half of diabetics (D) and half of non-diabetics (ND)/group) were treated for 30days with taurine (T). Untreated animals received saline (S). In total, there were eight subgroups: DTC, DSC, NDTC, NDSC, DTE, DSE, NDTE and NDSE. During the experiment, short-term memory was evaluated. After 30th day of experiment, the animals were euthanized and was made removal of brains used to immunohistochemistry procedures for GFAP and cleaved caspase-3. As a result, we observed that animals treated with taurine showed better performance in behavioural and memory tasks, and the enriched environment had positive effects, especially in non-diabetic animals. Furthermore, taurine and enriched environment seemed to be able to interfere with neuronal apoptosis and loss of glial cells, and in some instances, these two factors seemed to have synergistic effects. From these data, taurine and enriched environment may have important neurostimulant and neuroprotective effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Dexamethasone enhances necrosis-like neuronal death in ischemic rat hippocampus involving μ-calpain activation

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Hasseldam, Henrik; Rasmussen, Rune Skovgaard

    2014-01-01

    - and necrosis-like cell death morphologies in CA1 of rats treated with dexamethasone prior to TFI (DPTI). In addition, apoptosis- (casp-9, casp-3, casp-3-cleaved PARP and cleaved α-spectrin 145/150 and 120kDa) and necrosis-related (calpain-specific casp-9 cleavage, μ-calpain upregulation and cleaved α......Transient forebrain ischemia (TFI) leads to hippocampal CA1 pyramidal cell death which is aggravated by glucocorticoids (GC). It is unknown how GC affect apoptosis and necrosis in cerebral ischemia. We therefore investigated the co-localization of activated caspase-3 (casp-3) with apoptosis......-spectrin 145/150kDa) cell death mechanisms were investigated by Western blot analysis. DPTI expedited CA1 neuronal death from day 4 to day 1 and increased the magnitude of CA1 neuronal death from 66.2% to 91.3% at day 7. Furthermore, DPTI decreased the overall (days 1-7) percentage of dying neurons displaying...

  14. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    Science.gov (United States)

    Batlle, Montserrat; Ferri, Lorenzo; Andrade, Carmen; Ortega, Francisco-Javier; Vidal-Taboada, Jose M.; Pugliese, Marco; Mahy, Nicole; Rodríguez, Manuel J.

    2015-01-01

    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage. PMID:25977914

  15. Prenatal exposure to a novel antipsychotic quetiapine: impact on neuro-architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats.

    Science.gov (United States)

    Singh, K P; Tripathi, Nidhi

    2015-05-01

    Reports on prenatal exposure to some of the first generation antipsychotic drugs like, haloperidol, their effects on fetal neurotoxicity and functional impairments in the offspring, are well documented. But studies on in utero exposure to second generation antipsychotics, especially quetiapine, and its effects on fetal neurotoxicity, apoptotic neurodegeneration, postnatal developmental delay and neurobehavioral consequences are lacking. Therefore, the present study was undertaken to evaluate the effect of prenatal administration to equivalent therapeutic doses of quetiapine on neuro-architectural abnormalities, neurohistopathological changes, apoptotic neurodegeneration in fetal hippocampus, and postnatal development and growth as well as its long-lasting imprint on cognitive impairment in young-adult offspring. Pregnant Wistar rats (n=24) were exposed to selected doses (55 mg, 80 mg and 100mg/kg) of quetiapine, equivalent to human therapeutic doses, from gestation day 6 to 21 orally with control subjects. Half of the pregnant subjects of each group were sacrificed at gestation day 21 for histopathological, confocal and electron microscopic studies and rest of the dams were allowed to deliver naturally. Their pups were reared postnatally up to 10 weeks of age for neurobehavioral observations. In quetiapine treated groups, there was significant alterations in total and differential thickness of three typical layers of hippocampus associated with neuronal cells deficit and enhanced apoptotic neurodegeneration in the CA1 area of fetal hippocampus. Prenatally drug treated rat offspring displayed post-natal developmental delay till postnatal day 70, and these young-adult rats displayed cognitive impairment in Morris water maze and passive avoidance regimes as long-lasting impact of the drug. Therefore, quetiapine should be used with cautions considering its developmental neurotoxicological and neurobehavioral potential in animal model, rat. Copyright © 2015 Elsevier

  16. Effects of a normolipidic diet containing trans fatty acids during perinatal period on the growth, hippocampus fatty acid profile, and memory of young rats according to sex.

    Science.gov (United States)

    de Souza, Amanda Santos; Rocha, Mônica Santos; Tavares do Carmo, Maria das Graças

    2012-04-01

    To investigate whether dietary trans fatty acids (TFAs) are incorporated in the hippocampus and its effects on the growth and aversive and spatial memories of young rats. Wistar rat offspring whose mothers were fed with normolipidic diets containing soybean oil (soy group) or hydrogenated vegetable oil (trans group) during gestation and lactation were used. Male and female pups received the same diets as their mothers until the end of behavioral testing. The composition of fatty acids in the total lipids of the diets and hippocampus was quantified by gas chromatography. The results were evaluated by Student's t test or analysis of variance followed by the Bonferroni correction. The trans male and female body weights were higher during lactation and after weaning, with trans males having the lower body weight of the two. There was incorporation of 0.11% and 0.17% of TFAs in the hippocampi of male and female rats, respectively. During passive avoidance test, there was no significant difference. In the water maze test, there was no significant difference between male groups in the training and retention phases, except on day 4, when there was a significant decrease in latency in trans males. Trans females were worse on day 2 only and showed an improvement in spatial memory during the probe trial. The TFAs were incorporated in small amounts in the hippocampus and did not affect aversive memory. However, spatial memory was modified in young rats fed with a diet rich in TFAs. These findings suggested that, in addition to the TFA content of the diet provided, it is important to consider the provision of essential fatty acids and the ω-6/ω-3 ratio. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Alpha-Adrenoceptor Antagonists Improve Memory by Activating -methyl-D-Aspartate-Induced Ion Currents in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Chang Hee Kim

    2015-12-01

    Full Text Available Purpose: Alpha1 (α1-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, α1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an α1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats. Methods: The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA, and kainate receptors, in hippocampal CA1 neurons. Results: Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin. Conclusions: Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder.

  19. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats.

    Science.gov (United States)

    Li, Ziyue; Song, Yilin; Xiao, Guihua; Gao, Fei; Xu, Shengwei; Wang, Mixia; Zhang, Yu; Guo, Fengru; Liu, Jie; Xia, Yang; Cai, Xinxia

    2018-06-01

    Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, characterized by sudden, repeated and transient central nervous system dysfunction. For better understanding of TLE, bio-nanomodified microelectrode arrays (MEA) are designed, for the achievement of high-quality simultaneous detection of glutamate signals (Glu) and multi-channel electrophysiological signals including action potentials (spikes) and local field potentials (LFPs). The MEA was fabricated by Micro-Electro-Mechanical System fabrication technology and all recording sites were modified with platinum black nano-particles, the average impedance decreased by nearly 90 times. Additionally, glutamate oxidase was also modified for the detection of Glu. The average sensitivity of the electrode in Glu solution was 1.999 ± 0.032 × 10 -2 pA/μM·μm 2 (n = 3) and linearity was R = 0.9986, with a good selectivity of 97.82% for glutamate and effective blocking of other interferents. In the in-vivo experiments, the MEA was subjected in hippocampus to electrophysiology and Glu concentration detection. During seizures, the fire rate of spikes increases, and the interspike interval is concentrated within 30 ms. The amplitude of LFPs increases by 3 times and the power increases. The Glu level (4.22 μM, n = 4) was obviously higher than normal rats (2.24 μM, n = 4). The MEA probe provides an advanced tool for the detection of dual-mode signals in the research of neurological diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  1. Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro.

    Science.gov (United States)

    Buhl, E H; Szilágyi, T; Halasy, K; Somogyi, P

    1996-01-01

    Basket and bistratified cells form two anatomically distinct classes of GABAergic local-circuit neurons in the CA1 region of the rat hippocampus. A physiological comparison was made of intracellularly recorded basket (n = 13) and bistratified neurons (n = 6), all of which had been anatomically defined by their efferent target profile (Halasy et al., 1996). Basket cells had an average resting membrane potential of -64.2 +/- 7.2 vs. -69.2 +/- 4.6 mV in bistratified cells. The latter had considerably higher mean input resistances (60.2 +/- 42.1 vs. 31.3 +/- 10.9 M Ohms) and longer membrane time constants (18.6 +/- 8.1 vs. 9.8 +/- 4.5 ms) than basket cells. Differences were also apparent in the duration of action potentials, those of basket cells being 364 +/- 77 and those of bistratified cells being 527 +/- 138 microseconds at half-amplitude. Action potentials were generally followed by prominent, fast after-hyperpolarizing potentials which in basket cells were 13.5 +/- 6.7 mV in amplitude vs. 10.5 +/- 5.1 in bistratified cells. The differences in membrane time constant, resting membrane potential, and action potential duration reached statistical significance (P D-aspartate (NMDA) receptors, whereas the remaining slow-rise EPSP could be abolished by an NMDA receptor antagonist. Increasing stimulation intensity elicited biphasic inhibitory postsynaptic potentials (IPSPs) in both basket and bistratified cells. In conclusion, basket and bistratified cells in the CA1 area show prominent differences in several of their membrane and firing properties. Both cell classes are activated by Schaffer collateral/commissural axons in a feedforward manner and receive inhibitory input from other, as yet unidentified, local-circuit neurons.

  2. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats.

    Science.gov (United States)

    Nahas, Ziad; Jiang, Yan; Zeidan, Youssef H; Bielawska, Alicja; Szulc, Zdzislaw; Devane, Lindsay; Kalivas, Peter; Hannun, Yusuf A

    2009-01-30

    Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.

  3. Activity of Protein Kinase C is Important for 3α,5α-THP’s Actions at Dopamine Type 1-like and/or GABAA receptors in the Ventral Tegmental Area for Lordosis of Rats

    Science.gov (United States)

    Frye, Cheryl A.; Walf, Alicia A.

    2008-01-01

    In the ventral tegmental area, progestogens facilitate sexual receptivity of rodents via actions at dopamine type 1-like and/or γ-aminobutyric type A receptors and activation of downstream signal transduction molecules. In the present study, we investigated whether effects of progesterone’s metabolite, 3α,5α-THP, to enhance lordosis via actions at these receptors in the ventral tegmental area requires phospholipase C-dependent protein kinase C. The objective of this study was to test the hypothesis that: if progestogens’ actions through dopamine type 1-like and/or γ-aminobutyric type A receptors in the ventral tegmental area for lordosis require protein kinase C, then inhibiting protein kinase C in the ventral tegmental area should reduce 3α,5α-THP-facilitated lordosis and its enhancement by dopamine type 1-like or γ-aminobutyric type A receptor agonists. Ovariectomized, E2 (10 μg s.c. at hr 0)-primed rats were tested for their baseline lordosis responses and then received a series of three infusions to the ventral tegmental area: first, bisindolylmaleimide (75 nM/side) or vehicle; second, SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; third, 3α,5α-THP (100, 200 ng) or vehicle. Rats were pre-tested for lordosis and motor behavior and then tested for lordosis after each infusion and 10 and 60 mins after the last infusion. Rats were tested for motor behavior following their last lordosis test. As has been previously demonstrated, 3α,5α-THP infusions to the ventral tegmental area increased lordosis and effects were further enhanced by infusions of SKF38393 and muscimol. Infusions of bisindolylmaleimide to the ventral tegmental area attenuated 3α,5α-THP-, SKF38393-, and/or muscimol-facilitated lordosis. Effects on lordosis were not solely due to changes in general motor behavior. Thus, 3α,5α-THP’s actions in the ventral tegmental area through membrane receptors may require activity of protein kinase C. PMID:18675324

  4. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats.

    Science.gov (United States)

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory scores, hippocampal neuronal survival, antioxidant enzymes and lipid peroxidation amount were evaluated by one and two way analysis of variance (ANOVA). It seemed that RE (100mg/kg) could recover the spatial memory retrieval score (prosemary extract (40% carnosic acid) may improve the memory score and oxidative stress activity in middle aged rats in a dose dependent manner, especially in 100mg/kg.

  5. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    Science.gov (United States)

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  6. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats.

    Science.gov (United States)

    Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna

    2018-06-01

    The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure

  7. Effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of hippocampus of rats after sleep deprivation

    Directory of Open Access Journals (Sweden)

    Jiang-hua SI

    2014-04-01

    Full Text Available Objective To investigate the effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of the hippocampus of Wistar rats in sleep deprivation (SD.  Methods SD was induced in Wistar rats by employing "flower pot" technique. Sixty-four rats were randomly divided into 2 groups: Lanzhou group (at an altitude of 1520 m and Kekexili group (at an altitude of 4767 m, and each group was further divided into 4 subgroups according to the time of SD (0, 1, 3 and 5 d. The behaviors of rats were studied by Morris water maze test at given time points. The ultrastructure of hippocampal neurons was observed by transmission electron microscope (TEM.  Results 1 Compared with Lanzhou group, rat behavior of Kekexili group presented excitement-irritation-suppression changes with the extension of SD time, but the extent was weakened gradually, and time of sleepiness increased obviously. 2 Compared with Lanzhou group, neurons in CA1 region of hippocampus showed enlarged cell body, disappeared nuclear membrane, shrunken nuclei and decreased organelle. End-feet of glia cells sticking to capillaries swelled and ruptured, and the typical synaptic structure disappeared. 3 Morris water maze test: as compared with Lanzhou group, the escape latency of Kekexili group prolonged (P < 0.05, for all, the ability of distance exploration increased (P < 0.05, for all, and the times across plot decreased (P < 0.05, for all in 1, 3 and 5 d of SD.  Conclusions High-altitude environment may significantly influence the cognitive function of rats in SD, and there was close correlation between the cognitive disorders and the changes in the ultrastructure of hippocampal CA1 region. doi: 10.3969/j.issn.1672-6731.2014.04.012

  8. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands, local estradiol synthesis (P450 aromatase and estrogen reception (ER. Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b and complement (C3, factor B, properdin genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu

  9. Paradoxical sleep deprivation in rats causes a selective reduction in the expression of type-2 metabotropic glutamate receptors in the hippocampus.

    Science.gov (United States)

    Panaccione, Isabella; Iacovelli, Luisa; di Nuzzo, Luigi; Nardecchia, Francesca; Mauro, Gianluca; Janiri, Delfina; De Blasi, Antonio; Sani, Gabriele; Nicoletti, Ferdinando; Orlando, Rosamaria

    2017-03-01

    Paradoxical sleep deprivation in rats is considered as an experimental animal model of mania endowed with face, construct, and pharmacological validity. We induced paradoxical sleep deprivation by placing rats onto a small platform surrounded by water. This procedure caused the animal to fall in the water at the onset of REM phase of sleep. Control rats were either placed onto a larger platform (which allowed them to sleep) or maintained in their home cage. Sleep deprived rats showed a substantial reduction in type-2 metabotropic glutamate (mGlu2) receptors mRNA and protein levels in the hippocampus, but not in the prefrontal cortex or corpus striatum, as compared to both groups of control rats. No changes in the expression of mGlu3 receptor mRNA levels or mGlu1α and mGlu5 receptor protein levels were found with exception of an increase in mGlu1α receptor levels in the striatum of SD rats. Moving from these findings we treated SD and control rats with the selective mGlu2 receptor enhancer, BINA (30mg/kg, i.p.). SD rats were also treated with sodium valproate (300mg/kg, i.p.) as an active comparator. Both BINA and sodium valproate were effective in reversing the manic-like phenotype evaluated in an open field arena in SD rats. BINA treatment had no effect on motor activity in control rats, suggesting that our findings were not biased by a non-specific motor-lowering activity of BINA. These findings suggest that changes in the expression of mGlu2 receptors may be associated with the enhanced motor activity observed with mania. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of Ascorbic Acid on the Amplitude of Ventral Tegmental Area Field Action Potential in Morphine-Exposed Rats (An Electrophysiology Study

    Directory of Open Access Journals (Sweden)

    K Saadipour

    2010-07-01

    Full Text Available Introduction & Objective: Evidences have indicated that the Ventral Tegmental Area (VTA is the major source of dopamine (DA neurons projecting to cortical and limbic regions involved in cognitive and motivational aspects of addiction. Also, studies have indicated that the Ascorbic acid (vitamin C can reduce the dependency symptoms of opioids such as morphine via effect of activity on dopaminergic neuron in VTA. For this reason, the aim of this study was to assess the effects of ascorbic acid on the amplitude of Ventral Tegmental Area field action potential in morphine-exposed rats. Materials & Methods: Forty male Wistar’s rats were used in this experimental study conducted at Yasuj University of Medical Sciences in 2010. Animals were randomly divided into four groups after electrode implantation and recovery period: 1. No- Vit C and No-Addicted group (nVitC.nA 2. Vit C and No-Addicted group (VitC.nA 3. No- Vit C and Addicted group (nVitCA 4.Vit C and Addicted (VitC.A, The Vit C groups received 500 mg/kg of Vit C during 20 days. For addicted groups morphine was administrated once daily for 20 days. In the 20th day, the field potential recording was accomplished. Two-way ANOVA was used for data analysis followed by the Tukey test for post hoc analysis. Results were considered significant at P < 0.05. Results: This study shows the exposure to morphine declined the power of Delta and Beta bands (p<0.05 and Vit C solely enhance power of Theta and Beta (p<0.05, p<0.001 in VTA nuclei. Furthermore, Vit C could alter power of some bands which were affected by morphine. Therefore it seems that Vit C has an increasing effects on them (p<0.05. Conclusion: Although the effect of Vit C on power of the VTA bands is not well known, but it is supposed that this phenomenon can be related to alteration in activity of dopaminergic neuron in the brain.

  11. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Science.gov (United States)

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings. PMID:26649198

  12. Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors

    Directory of Open Access Journals (Sweden)

    Letícia Scheidt

    2015-09-01

    Full Text Available Objective:To investigate the effects of ethanol exposure in adolescent rats during adulthood by assesssing aggression and anxiety-like behaviors and measuring the levels of inflammatory markers.Methods:Groups of male Wistar rats (mean weight 81.4 g, n = 36 were housed in groups of four until postnatal day (PND 60. From PNDs 30 to 46, rats received one of three treatments: 3 g/kg of ethanol (15% w/v, orally, n = 16, 1.5 g/kg of ethanol (12.5% w/v, PO, n = 12, or water (n = 12 every 48 hours. Animals were assessed for aggressive behavior (resident x intruder test and anxiety-like behaviors (elevated plus maze during adulthood.Results:Animals that received low doses of alcohol showed reduced levels of brain-derived neurotrophic factor (BDNF in the hippocampus as compared to the control group. No significant difference was found in prefrontal cortex.Conclusions:Intermittent exposure to alcohol during adolescence is associated with lower levels of BDNF in the hippocampus, probably due the episodic administration of alcohol, but alcohol use did not alter the level agression toward a male intruder or anxiety-like behaviors during the adult phase.

  13. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Niara da Silva Medeiros

    2015-01-01

    Full Text Available Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS, protein oxidation (carbonyl, sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  14. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus-dependent memory in rats.

    Science.gov (United States)

    Zoladz, Phillip R; Woodson, James C; Haynes, Vernon F; Diamond, David M

    2010-01-01

    The persistent intrusion of remote traumatic memories in people with post-traumatic stress disorder (PTSD) may contribute to the impairment of their ongoing hippocampal and prefrontal cortical functioning. In the current work, we have developed a rodent analogue of the intrusive memory phenomenon. We studied the influence of the activation of a remote traumatic memory in rats on their ability to retrieve a newly formed hippocampus-dependent memory. Adult male Sprague-Dawley rats were given inhibitory avoidance (IA) training, and then 24 h or 1, 6 or 12 months later, the same rats were trained to learn, and then remember across a 30-min delay period, the location of a hidden escape platform in the radial-arm water maze (RAWM). When IA-trained rats spent the 30-min delay period in the IA apparatus, they exhibited intact remote (1-year old) memory of the shock experience. More importantly, activation of the rats' memory of the shock experience profoundly impaired their ability to retrieve the newly formed spatial memory of the hidden platform location in the RAWM. Our finding that reactivation of a remote emotional memory exerted an intrusive effect on new spatial memory processing in rats provides a novel approach toward understanding how intrusive memories of traumatic experiences interfere with ongoing cognitive processing in people with PTSD.

  15. Bisphenol A Modifies the Regulation Exerted by Testosterone on 5α-Reductase Isozymes in Ventral Prostate of Adult Rats

    Directory of Open Access Journals (Sweden)

    Pilar Sánchez

    2013-01-01

    Full Text Available The development, growth, and function of the prostate gland depend on androgen stimulation. The primary androgen in prostate is 5-dihydrotestosterone (DHT which is synthesized from circulating testosterone (T through the action of 5-reductase (5-R. Although 5-R occurs as five isozymes, only 5-R1 and 5-R2 are physiologically involved in steroidogenesis. The endocrine disruptor bisphenol A (BPA alters sexual organs, including the prostate. Our previous findings indicated that BPA decreased the expression of 5-R1 and 5-R2 in rat prostate but also circulating T. Thus, it is unclear whether BPA exerts this effect on 5-R isozymes by reducing circulating T or by any other mechanism. In this study, we examine the effects of short-term exposure to BPA at doses below 25 g/Kg/d and above 300 g/Kg/d of the TDI on mRNA levels of 5-R1 and 5-R2 in prostate of adult castrated rats supplemented with T to achieve constant circulating T levels. mRNA levels were measured by absolute quantitative RT-PCR, T levels by RIA, and DHT levels by ELISA. Our results indicated that in castrated rats treated with T BPA at the two doses studied significantly decreased the mRNA levels of both 5-R isozymes in a dose-dependent manner without modifications in circulating T.

  16. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    Science.gov (United States)

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  17. Effects of chronic stress on the brain – the evidence from morphological examinations of hippocampus in a chronic unpredictable stress (CUS model in rats

    Directory of Open Access Journals (Sweden)

    Joanna Sekita-Krzak

    2016-12-01

        Abstract Background. Chronic stress exposure deteriorates memory and increases the risk of psychiatric disorders, including depression. Objectives. The objective of this study was to perform morphological studies in experimental model of neuropsychiatric disorder and to assess histologically the effect of chronic unpredictable stress procedure (CUS influence on hippocampus. Material and methods. Chronic unpredictable stress procedure (CUS was applied for 8 weeks in rats by the modified method described by Katz et al. Experimental model of neuropsychiatric disorder was used based on morphological studies of hippocampal formation. Results. Stress-induced alterations were observed in the hippocampus. Nerve cell changes included  neuron shrinkage and dendritic remodeling. The most vulnerable hippocampal cells to chronic stress were CA3 and CA4 pyramidal neurons. In dentate gyrus chronic stress led to granule neuron shrinkage and slight exacerbation of apoptosis in the polygonal cell layer. CUS led to statistically significant changes in quantitative characteristics of the CA3 and CA4 neuron size and nuclei diameter. Conclusions. Chronic stress induces degeneration of hippocampal neurons. The observed neuronal changes indicate the damage of the neurons did not involve neither apoptosis nor necrosis Similarity between histological changes obtained in 8-week long CUS procedure applied in our research and morphological changes described in depressed patients confirms the usefulness of the applied stress procedure as the experimental model of depression.   Key words: stress, depression, hippocampus, chronic unpredictable stress procedure (CUS, animal model, morphology.

  18. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  19. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress

    Directory of Open Access Journals (Sweden)

    Sanoara Mazid

    2016-12-01

    Full Text Available Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs. Immediately after acute immobilization stress (AIS or one-day after chronic immobilization stress (CIS, the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar

  20. Immunolocalization of androgen and oestrogen receptors in the ventral lobe of rat (Rattus norvegicus) prostate after long-term treatment with ethanol and nicotine.

    Science.gov (United States)

    Fávaro, W J; Cagnon, V H A

    2008-12-01

    Nicotine and alcohol adversely affect prostate gland function. In this work, immunohistochemistry was used to investigate the immunoreactivity and distribution of androgen and alpha, beta-oestrogen receptors following chronic treatment with alcohol, nicotine or a combination of both substances, as well as to relate these results to the development of possible prostatic pathologies. Forty male rats were divided into four groups: the Control group received tap water; the Alcoholic group received diluted 10% Gay Lussac ethanol; the Nicotine group received a 0.125 mg/100 g body weight dose of nicotine injected subcutaneously on a daily basis (Sigma Chemical Company, St. Louis, MO, USA); the Nicotine-Alcohol group received simultaneous alcohol and nicotine treatment. After 90 days of treatment, samples of the ventral lobe of the prostate were collected and processed for immunohistochemistry, light microscopy and the quantification of serum hormonal concentrations. The results showed significantly decreased serum testosterone levels and increased serum oestrogen levels in the animals from the nicotine-alcohol, the alcoholic and the nicotine groups, as well as their hormonal receptor levels. Then, it was concluded that ethanol and nicotine compromised the prostatic hormonal balance, which is a crucial factor to maintain the morphological and physiological features of this organ.

  1. Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zimmer, Jens; Wahlberg, Lars U

    2008-01-01

    Tissue blocks containing neural precursor cells were isolated from the rat forebrain subventricular zone (SVZ) and ventral mesencephalon (VM) and propagated as neural tissue-spheres (NTS). In the presence of fibroblast growth factor-2 (FGF2) and epidermal growth factor (EGF), SVZ-derived NTS were...... propagated and maintained for more than 6 months with a cell population doubling time of 21.5 days. The replacement of EGF by leukemia inhibitory factor (LIF) resulted in a cell population doubling time of 19.8 days, corresponding to a 10-fold increase in estimated cell numbers over a period of 70 days......, at which point these NTS ceased to grow. In the presence of FGF2 and LIF, VM-derived NTS displayed a cell population doubling time of 24.6 days, which was maintained over a period of more than 200 days. However, when LIF was replaced by EGF, the cell numbers only increased 1.2 fold over 50 days. Using...

  2. Investigating N-Butanol and Ethyl Acetate Fractions of Nigella Sativa on Motoneurons’ Density of Spinal Cord Ventral Horn in Rats with Compressived Injury of Sciatic Nerve

    Directory of Open Access Journals (Sweden)

    M Ferdosi makan

    2015-02-01

    Methods: In this study, 24 Wistar male rats with average body weight of 250gr to 300gr were divided into four groups of six: control, compression, A(compression + n-butanol fraction 75mg/kg and B(compression+ethyl acetate fraction75mg/kg. In compression and treatment groups, sciatic nerve of the right leg underwent compression (30sec. In fact, the extract was injected intraperitoneally twice after the compression. After 28days, lumbar segments of spinal cord L2-L4 were sampled under perfusion method. After going through tissue processes, they were cut in serial sections (7µ, and stained with toluidine blue. Then, the density of alpha-motoneurons of spinal cord ventral horn was measured by using dissector method. Conclusion: The study findings revealed that n-butanol fraction of Nigella sativa caused an increase in neuronal density which posesses neuroprotective effects. This could be due to antioxidant and anti inflammatory effects of this herb. However, increases in neuronal density in ethyl acetate fraction didn’t prove to be significant.

  3. Effect of Paullinia cupana Mart. Commercial Extract During the Aging of Middle Age Wistar Rats: Differential Effects on the Hippocampus and Striatum.

    Science.gov (United States)

    Mingori, Moara Rodrigues; Heimfarth, Luana; Ferreira, Charles Francisco; Gomes, Henrique Mautone; Moresco, Karla Suzana; Delgado, Jeferson; Roncato, Sabrina; Zeidán-Chuliá, Fares; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2017-08-01

    During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.

  4. Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-α impairments in hippocampus of rat.

    Science.gov (United States)

    Noorbakhshnia, Maryam; Karimi-Zandi, Leila

    2017-02-01

    There is a growing body of evidence that neuroinflammation can impair memory. It has been indicated that Portulaca oleracea Linn. (POL), possess anti-inflammatory activity and might improve memory disruption caused by inflammation. In this study the effect of pre-treatment with the hydro-alcoholic extract of POL on memory retrieval investigated in lipopolysaccharide (LPS) treated rats. Male Wistar rats (200-220g) received either a control diet or a diet containing of POL (400mg/kg, p.o.) for 14days. Then, they received injections of either saline or LPS (1mg/kg, i.p.). In all the experimental groups, 4h following the last injection, passive avoidance learning (PAL) and memory test was performed. The retention test was done 24h after the training and then the animals were sacrificed. Hippocampal TNF-α levels measured using ELISA as one criteria of LPS-induced neuroinflammation. The results indicated that LPS significantly impaired PAL and memory and increased TNF-α levels in hippocampus tissue. Pre-treatment with POL improved memory in control rats and prevented memory and TNF-α deterioration in LPS treated rats. Taken together, the results of this study suggest that the hydro-alcoholic extract of POL may improve memory deficits in LPS treated rats, possibly via inhibition of TNF-α and anti-inflammatory activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Effect of Corydalis Rhizoma and L-tetrahydropalmatine on dopamine system of hippocampus and striatum in morphine-induced conditioned place preference rats].

    Science.gov (United States)

    Yu, Shou-Yang; Bai, Wei-Feng; Tu, Ping; Qiu, Cheng-Kai; Yang, Pei-Run; Luo, Su-Yuan

    2016-10-01

    To investigate the effects of Corydalis Rhizoma and L-tetrahydropalma-tine (L-THP) on the levels of dopamine neurotransmitter (DA), dopamine transporter (DAT) and the second dopamine receptor (D2R) in learning and memory-related brain areas, hippocampus and striatum, the DA, DAT and D2R were detected in conditioned place preference (CPP) rats suffered from morphine. And comparation the degree of similarity and consistency of the pharmacological effects was also studied. The rats were trained in black compartments and white ones (drug-paired compartment) with the increasing doses of morphine for 10 days (hypodermically injected from 10 mg•kg⁻¹ to 100 mg•kg⁻¹). Models of CPP were validated in those psychological dependence rats after 48 h training. The dopamine contents were detected as soon as the materials of hippocampus and striatum are harvested from rats of NS control group and model group. The DAT and D2R levels are measured by Western blot. The high, medium and low dose group of Corydalis Rhizoma are given Corydalis Rhizoma 2, 1, 0.5 g•kg⁻¹ water extraction liquid respectively (which contains L-THP were 0.274, 0.137 and 0.137 mg respectively), and the high, medium and low dose group of L-THP were given L-THP 3.76, 1.88, 0.94 mg•kg⁻¹ lavage treatment respectively, NS treatment group were lavaged normal saline for 6 days and they were killed after test of CPP, again tested DA levels and expression of DAT and D2R similar to the front of materials. The reduction effects of CPP were observed in the groups of both Corydalis Rhizoma (2, 1 g•kg⁻¹) and L-THP (3.76, 1.88 mg•kg⁻¹) subjected to medicine for 6 days (Peffect of L-THP. The similar effects were observed on the neurotransmitter dopamine, DAT and D2R in learning and memory-related brain areas, hippocampus and striatum of the morphine- dependent rats. Copyright© by the Chinese Pharmaceutical Association.

  6. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats.

    Science.gov (United States)

    Lei, Shan; Zhang, Pengbo; Li, Weisong; Gao, Ming; He, Xijing; Zheng, Juan; Li, Xu; Wang, Xiao; Wang, Ning; Zhang, Junfeng; Qi, Cunfang; Lu, Haixia; Chen, Xinlin; Liu, Yong

    2014-01-01

    Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p edaravone also decreased apoptosis of NSPCs (p edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Pre- and Posttreatment With Edaravone Protects CA1 Hippocampus and Enhances Neurogenesis in the Subgranular Zone of Dentate Gyrus After Transient Global Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Shan Lei

    2014-11-01

    Full Text Available Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15, control (n = 15, and edaravone-treated (n = 15 groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05. Treatment with edaravone also decreased apoptosis of NSPCs (p < .01. Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.

  8. Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats.

    Science.gov (United States)

    Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt

    2014-08-01

    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Histopathological, immunohistochemical, and stereological analysis of the effect of Ginkgo biloba (Egb761) on the hippocampus of rats exposed to long-term cellphone radiation.

    Science.gov (United States)

    Gevrek, Fikret

    2018-05-01

    Cellular phones are major sources of electromagnetic radiation (EMR) that can penetrate the human body and pose serious health hazards. The increasingly widespread use of mobile communication systems has raised concerns about the effects of cellphone radiofrequency (RF) on the hippocampus because of its close proximity to radiation during cellphone use. The effects of cellphone EMR exposure on the hippocampus of rats and the possible counteractive effects of Ginkgo biloba (Egb761) were aimed to investigate. Rats were divided into three groups: Control, EMR, and EMR+Egb761. The EMR and EMR+Egb761 groups were exposed to cellphone EMR for one month. Egb761 was also administered to the EMR+Egb761 group. Specifically, we evaluated the effect of RF exposure on rat hippocampi at harmful EMR levels (0.96 W/kg specific absorption rate [SAR]) for one month and also investigated the possible impact of Ginkgo biloba (Egb761) using stereological, TUNEL-staining, and immunohistochemical methods. An increase in apoptotic proteins (Bax, Acas-3) and a decrease in anti-apoptotic protein (Bcl-2) immunoreactivity along with a decrease in the total granule and pyramidal cell count were noted in the EMR group. A decrease in Bax and Acas-3 and an increase in Bcl-2 immunoreactivity were observed in rats treated with Egb761 in addition to a decrease in TUNEL-stained apoptotic cells and a higher total viable cell number. In conclusion, chronic cellphone EMR exposure may affect hippocampal cell viability, and Egb761 may be used to mitigate some of the deleterious effects.

  10. Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus.

    Science.gov (United States)

    Song, Xiaoyu; Liu, Bo; Cui, Lingyu; Zhou, Biao; Liu, Weiwei; Xu, Fanxing; Hayashi, Toshihiko; Hattori, Shunji; Ushiki-Kaku, Yuko; Tashiro, Shin-Ichi; Ikejima, Takashi

    2017-10-01

    Depression is one of the most frequent psychiatric disorders of Alzheimer's disease (AD). Depression and anxiety are associated with increased risk of developing AD. Silibinin, a flavonoid derived from milk thistle (Silybum marianum), has been used as a hepato-protectant in the clinical treatment of liver diseases. In this study, the effect of silibinin on Aβ-induced anxiety/depression-like behaviors in rats was investigated. Silibinin significantly attenuated anxiety/depression-like behaviors caused by Aβ1-42-treatment as shown in tail suspension test (TST), elevated plus maze (EPM) and forced swimming tests (FST). Moreover, silibinin was able to attenuate the neuronal damage in the hippocampus of Aβ1-42-injected rats. Silibinin-treatment up-regulated the function through BDNF/TrkB pathway and attenuated autophagy in the hippocampus. Our study provides a new insight into the protective effects of silibinin in the treatment of anxiety/depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Low doses of dextromethorphan attenuate morphine-induced rewarding via the sigma-1 receptor at ventral tegmental area in rats.

    Science.gov (United States)

    Chen, Shiou-Lan; Hsu, Kuei-Ying; Huang, Eagle Yi-Kung; Lu, Ru-Band; Tao, Pao-Luh

    2011-09-01

    Chronic use of morphine causes rewarding and behavioral sensitization, which may lead to the development of psychological craving. In our previous study, we found that a widely used antitussive dextromethorphan (known as a low affinity NMDA receptor antagonist), at doses of 10-20 mg/kg (i.p.), effectively decreased morphine rewarding in rats. In this study, we further investigated the effects and mechanisms of low doses of DM (μg/kg range) on morphine rewarding and behavioral sensitization. A conditioned place preference test was used to determine the rewarding and a locomotor activity test was used to determine the behavioral sensitization induced by the drug(s) in rats. When a low dose of DM (3 or 10 μg/kg, i.p.) was co-administered with morphine (5 mg/kg, s.c.), the rewarding effect, but not behavioral sensitization, induced by morphine was inhibited. The inhibiting effect of DM could be blocked by systemically administering a sigma-1 receptor antagonist, BD1047 (3 mg/kg, i.p.). When BD1047 (5 nmole/site) was locally given at the VTA, it also blocked the effects of a low dose of DM in inhibiting morphine rewarding. Our findings suggest that the activation of the sigma-1 receptor at the VTA may be involved in the mechanism of low doses of DM in inhibiting the morphine rewarding effect and the possibility of using extremely low doses of DM in treatment of opioid addiction in clinics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. 牛磺酸拮抗铅对大鼠海马NOS阳性神经元数目的影响%The effect of taurine to NOS vigor in hippocampus of rat induced lead lesion

    Institute of Scientific and Technical Information of China (English)

    李积胜; 杨峰; 刘亚华

    2004-01-01

    Objective: To study taurine resist lead impact ability of learning and memory. Methods: Using NADPH - dhistochemistry method to study the quantity change of the rat's NOS positive neuron in hippocampus , the rat in experi-ment sections which are feeded with distinct dosage lead acetate in drinking (0.02, 0.2g/L) and feed contain distinctdosage taurine (5, 10g/kg). Results: Taurine could increase NOS positive neuron quantity obviously in hippocampus ofrat induced lead lesion. Conclusion: Taurine could resist lead impact ability of learning and memory obviously.

  13. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    Science.gov (United States)

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins were significantly increased in the model group (P Fluoxetine and Fluoxetine + SP 600125 groups, the expression levels of hippocampal MKK 4 and MKK 7 proteins in the Fluoxetine + SP 600125 group, and those of p-JNK protein in the acupuncture, acupuncture + SP 600125, model + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups were considerably decreased (P Fluoxetine and Fluoxetine + SP 600125 groups in the

  14. Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats

    DEFF Research Database (Denmark)

    Ladefoged, Ole; Hougaard, Karin Sørig; Hass, Ulla

    2004-01-01

    the offspring for developmental neurotoxicity and level of apoptosis in the brain. The number of apoptotic cells in cerebellum postnatal day 22, 24, and 27 and in hippocampus (postnatal day 22, 24, and 27) were counted after visualization by the TUNEL staining or measured by DNA-laddering technique. Caspase-3...

  15. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.

    Science.gov (United States)

    Zhang, Songyun; Li, Hongyan; Zhang, Lihui; Li, Jie; Wang, Ruiying; Wang, Mian

    2017-02-15

    Increasing evidence demonstrates an association between diabetes and hippocampal neuron damage. This study aimed to determine the effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits (GCLM and GCLC) in the hippocampus of streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. At 12weeks after streptozotocin injection, T1DM rats were randomly divided into 4 groups (n=15 each group) to receive no treatment (T1DM), saline (T1DM+saline), alpha-lipoic acid (T1DM+alpha-lipoic acid), and troxerutin (T1DM+troxerutin), respectively, for 6weeks. Meanwhile, 10 control animals (NC group) were assessed in parallel. Learning performance was evaluated by the Morris water maze. After treatment, hippocampi were collected for pathological examination by hematoxylin and eosin (H&E) staining. Next, hippocampal superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and glutathione (GSH) levels were assessed. Finally, glutamate cysteine ligase catalytic (GCLC) and glutamate cysteine ligase modifier (GCLM) subunit mRNA and protein levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Compared with T1DM and T1DM+saline groups, escape latency was overtly reduced in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Significantly increased GCLM and GCLC mRNA levels, GCLC protein amounts, SOD activity, and GSH levels, and reduced MDA amounts were observed in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. In T1DM and T1DM+saline groups, H&E staining showed less pyramidal cells in the hippocampus, with disorganized layers, karyopyknosis, decreased endochylema, and cavitation, effects relieved in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Troxerutin alleviates oxidative stress and promotes learning in streptozotocin-induced T1DM rats, a process involving GCLC expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effects of electromagnetic pulse on the protein levels of tight junction associated-proteins in the cerebral cortex, hippocampus, heart, lung, and testis of rats.

    Science.gov (United States)

    Qiu, LianBo; Chen, Chen; Ding, GuiRong; Zhou, Yan; Zhang, MengYao

    2011-08-01

    To investigate changes in the expression of tight junction (TJ) proteins in the cerebral cortex, hippocampus, heart, lung, and testes of rats after exposure to electromagnetic pulse (EMP). Eighteen adult male Sprague-Dawley rats were divided into sham and exposure groups. The exposure groups received EMP at 200 kV/m for 200 pulses with a repetition rate of 1 Hz. The expression of TJ proteins (ZO-1, occludin, actin) in the several organs was examined by western blotting. ZO-1 levels in the cerebral cortex decreased 1 h and 3 h after EMP exposure compared with sham group (P<0.05). No significant difference was observed for occludin and actin. ZO-1 levels in the hippocampus increased 1 h and 3 h post-exposure (P<0.05), and occludin decreased after 3 h (P<0.05); however, actin was unaffected. ZO-1 levels in the heart increased 3 h post-exposure (P<0.05), occludin decreased 3 h post-exposure (P<0.05), and actin increased 1 h and 3 h post-exposure (P<0.05). ZO-1, occludin and actin levels in the lung decreased compared with those in the sham group (P<0.05). ZO-1 and occludin levels in the testes decreased 1 h and 3 h post-exposure (P<0.05), but actin showed no significant change. Exposure to EMP altered the expression levels of TJ proteins, particularly ZO-1, in the organs of adult male rats, which may induce changes in barrier structure and function. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  17. Dynamic regulation effect of long non-coding RNA-UCA1 on NF-kB in hippocampus of epilepsy rats.

    Science.gov (United States)

    Wang, H-K; Yan, H; Wang, K; Wang, J

    2017-07-01

    We aimed to discuss the mechanism of occurrence and progression of epilepsy through analyzing the expression changes of UCA1 and NF-Kb in temporal hippocampus and UCA1 in peripheral blood in rats with epilepsy induced by lithium chloride-pilocarpine. The lithium chloride-pilocarpine-induced epilepsy rat model was established; 1, 7, 14, 30, and 60 d after status epilepticus were selected as the time points of research. The expression levels of UCA1 and NF-kB in the hippocampus of rats and UCA1 in peripheral blood were detected and analyzed using quantitative Real-time PCR (qRT-PCR). The differences and correlations between expression levels of UCA1 and NF-kB at each time point of research in experimental group and control group were analyzed statistically. Results showed that mRNA expression levels of UCA1 and NF-kB in brain tissues in experimental group were higher than those in control group at each time point. The change trend of expression levels of UCA1 and NF-kB with time was consistent. The expression level of UCA1 in peripheral blood in experimental group at each time point was higher than that in control group, and mRNA expression level of UCA1 in peripheral blood in experimental group was positively correlated with that in brain tissue. The expressions of UCA1 and NF-Kb are in the dynamic change in the formation of epilepsy, suggesting that UCA1 may participate in the pathogenesis of epilepsy, so as to provide a potentially feasible new direction for guiding the clinical diagnosis and treatment of epilepsy.

  18. Pioglitazone improves the ability of learning and memory via activating ERK1/2 signaling pathway in the hippocampus of T2DM rats.

    Science.gov (United States)

    Gao, F; Zang, L; Wu, D Y; Li, Y J; Zhang, Q; Wang, H B; Tian, G L; Mu, Y M

    2017-06-09

    To explore the correlation between effect of PIO (pioglitazone, PIO) on learning as well as memory and ERK1/2 (extracellular signal regulated kinase 1/2, ERK1/2) pathway in T2DM (type 2 diabetes mellitus, T2DM) rats, further to elucidate the potential mechanism of PIO in improvement of learning and memory. 12-week-old male SD rats (number of 10 per group) were randomly divided into control group (CON), T2DM group (DM) and T2DM +PIO group (DM+PG). Rats in DM and DM+PG groups were given high fat diet for 20 weeks, then treated with Streptozotocin (27mg/kg) by intraperitoneal injection at 21week. After 72h, the FBG (fasting blood glucose, FBG) was greater than 7.0mmol/L can considered T2DM rats. DM+PG group was treated with PIO (10 mg·kg -1 ·d -1 ) by gavage daily. After Hyperinsulinemic-Euglycemic Clamp Study and Morris water maze test at 30-week, all of animals were sacrificed. The expressions of RKIP (Raf-1 kinase inhibitor protein, RKIP) and ERK1/2 in hippocampus were detected using Western Blot and real-time PCR. The FBG level: DM group (7.68±0.54mmol/L) was higher than CON group (5.35±0.63mmol/L) and DM+PG group (6.07±0.84mmol/L), the differences were considered statistically significant (P 0.05); The relative content of p-ERK1/2 protein in CON group and DM+PG group rats dorsal were higher than those in group DM, the difference was considered statistically significant (P0.05). Activation of ERK1/2 signal transduction pathway via reducing RKIP in the hippocampus may be one of the mechanisms of PIO to improve the learning and memory of the T2DM rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Corrie, Lu W; Rogers, Jessica A; Yamada, Hidetaka

    2011-06-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure was used to assess the effects of insulin and leptin on the reward system. Elevations in brain reward thresholds are indicative of a decrease in brain reward function. The bilateral administration of leptin into the VTA (15-500 ng/side) or Arc (15-150 ng/side) decreased food intake for 72 h. The infusion of leptin into the VTA or Arc resulted in weight loss during the first 48 (VTA) or 24 h (Arc) after the infusions. The administration of insulin (0.005-5 mU/side) into the VTA or Arc decreased food intake for 24 h but did not affect body weights. The bilateral administration of low, but not high, doses of leptin (15 ng/side) or insulin (0.005 mU/side) into the VTA elevated brain reward thresholds. Neither insulin nor leptin in the Arc affected brain reward thresholds. These studies suggest that a small increase in leptin or insulin levels in the VTA leads to a decrease in brain reward function. A relatively large increase in insulin or leptin levels in the VTA or Arc decreases food intake. Published by Elsevier B.V.

  20. Effects of unilatral- and bilateral inhibition of rostral ventral tegmental area and central nucleus of amygdala on morphine-induced place conditioning in male Wistar rat.

    Science.gov (United States)

    Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh

    2017-03-01

    The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.

  1. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn

    Science.gov (United States)

    Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.

    2015-01-01

    Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID

  2. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  4. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Science.gov (United States)

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The preBötzinger complex as a hub for network activity along the ventral respiratory column in the neonate rat.

    Science.gov (United States)

    Gourévitch, Boris; Mellen, Nicholas

    2014-09-01

    In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at

  6. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  7. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  8. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    Science.gov (United States)

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  9. Kainate receptors in the rat hippocampus: A distribution and time course of changes in response to unilateral lesions of the entorhinal cortex

    International Nuclear Information System (INIS)

    Ulas, J.; Monaghan, D.T.; Cotman, C.W.

    1990-01-01

    The response of kainate receptors to deafferentation and subsequent reinnervation following unilateral entorhinal cortex lesions was studied in the rat hippocampus using quantitative in vitro autoradiography. The binding levels of [3H]kainic acid (KA) and changes in the distribution of KA sites were investigated in the dentate gyrus molecular layer (ML) and in various terminal zones in the CA1 field at 1, 3, 7, 14, 21, 30, and 60 d postlesion. The data from both the ipsilateral and contralateral hippocampus were compared with those from unoperated controls. The first changes in KA receptor distribution were observed 21 d postlesion when the dense band of KA receptors occupying the inner one-third of the ML expanded into the denervated outer two-thirds of the ipsilateral ML. The spreading of the KA receptor field into previously unoccupied zones continued 30 and 60 d postlesion. At these time points, the zone enriched in [3H]KA binding sites became significantly (on average 50%) wider than in unoperated controls. No changes were observed in either the distribution or binding levels in other hippocampal areas or in the contralateral hippocampus at any studied time point. Saturation analysis of binding in the ipsilateral ML 60 d postlesion revealed changes in the maximum number of receptor sites (Bmax) without changes in KA receptor affinity (Kd). The data suggest that the elevation of the [3H]KA binding in the outer two-thirds of the ML reflects an increase in the number of both low and high affinity receptor binding sites. The pattern of KA receptor redistribution was similar to the well-characterized pattern of sprouting of commissural/associational systems from the inner one-third into the outer two-thirds of the ML after entorhinal lesions

  10. Effects of x irradiation on the postnatally-forming granule cell populations in the olfactory bulb, hippocampus, and cerebellum of the rat

    International Nuclear Information System (INIS)

    Bayer, S.A.; Altman, J.

    1975-01-01

    Beginning on the second postnatal day, either two (2X group), four (4X group) or six (6X group) daily or alternate daily exposures to low-level x irradiation (150 to 200 R) were used to interfere with the acquisition of granule cells in the olfactory bulb, hippocampus, and cerebellum of the rat. At 60 days of age, the relationship between post-irradiation recovery and permanent granule cell loss was assessed with two quantitative techniques. First, the total number of granule cells was determined to estimate the magnitude of permanent loss. Secondly, the number of labeled granule cells were counted on day 60 after a 3 H-thymidine injection given on either day 15 or on day 20 to estimate differential rates of cell proliferation during the recovery period. Permanent loss of granule cells was sustained in all regions by all schedules of irradiation. The time for the most effective exposures was earlier in the hippocampus and olfactory bulb than in the cerebellum. In all regions, both the irradiated groups and the controls showed a decrease in the level of cell proliferation between 15 and 20 days. The number of cells that could be labeled after either the 15 or 20 day injection was below control levels for all groups in the hippocampus, at control levels for all groups in the cerebellum, and either at (2X and 4X) or below (6X) control levels in the olfactory bulb. These results are discussed in the light of the formation time of the granule cells in each region

  11. Effects of x-irradiation on the postnatally-forming granule cell populations in the olfactory bulb, hippocampus, and cerebellum of the rat

    International Nuclear Information System (INIS)

    Bayer, S.A.; Altman, J.

    1975-01-01

    Beginning on the second postnatal day, either two (2X group), four (4X group) or six (6X group) daily or alternate daily exposures to low-level x irradiation (150-200 r) were used to interfere with the acquisition of granule cells in the olfactory bulb, hippocampus, and cerebellum of the rat. At 60 days of age, the relationship between post-irradiation recovery and permanent granule cell loss was assessed with two quantitative techniques. First, the total number of granule cells was determined to estimate the magnitude of permanent loss. Secondly, the number of labeled granule cells were counted on day 60 after a 3 H-thymidine injection given on either day 15 or on day 20 to estimate differential rates of cell proliferation during the recovery period. Permanent loss of granule cells was sustained in all regions by all schedules of irradiation. The time for the most effective exposures was earlier in the hippocampus and olfactory bulb than in the cerebellum. In all regions, both the irradiated groups and the controls showed a decrease in the level of cell proliferation between 15 and 20 days. The number of cells that could be labeled after either the 15 or 20 day injection was below control levels for all groups in the hippocampus, at control levels for all groups in the cerebellum, and either at (2X and 4X) or below (6X) control levels in the olfactory bulb. These results are discussed in the light of the formation time of the granule cells in each region

  12. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin.

    Science.gov (United States)

    Srivastava, Pranay; Dhuriya, Yogesh K; Kumar, Vivek; Srivastava, Akriti; Gupta, Richa; Shukla, Rajendra K; Yadav, Rajesh S; Dwivedi, Hari N; Pant, Aditya B; Khanna, Vinay K

    2018-04-30

    Protective efficacy of curcumin in arsenic induced NMDA receptor dysfunctions and PI3K/Akt/ GSK3β signalling in hippocampus has been investigated in vivo and in vitro. Exposure to sodium arsenite (in vivo - 20 mg/kg, body weight p.o. for 28 days; in vitro - 10 μM for 24 h) and curcumin (in vivo - 100 mg/kg body weight p.o. for 28 days; in vitro - 20 μM for 24 h) was carried out alone or simultaneously. Treatment with curcumin ameliorated sodium arsenite induced alterations in the levels of NMDA receptors, its receptor subunits and synaptic proteins - pCaMKIIα, PSD-95 and SynGAP both in vivo and in vitro. Decreased levels of BDNF, pAkt, pERK1/2, pGSK3β and pCREB on sodium arsenite exposure were also protected by curcumin. Curcumin was found to decrease sodium arsenite induced changes in hippocampus by modulating PI3K/Akt/GSK3β neuronal survival pathway, known to regulate various cellular events. Treatment of hippocampal cultures with pharmacological inhibitors for ERK1/2, GSK3β and Akt individually inhibited levels of CREB and proteins associated with PI3K/Akt/GSK3β pathway. Simultaneous treatment with curcumin was found to improve sodium arsenite induced learning and memory deficits in rats assessed by water maze and Y-maze. The results provide evidence that curcumin exercises its neuroprotective effect involving PI3K/Akt pathway which may affect NMDA receptors and downstream signalling through TrKβ and BDNF in arsenic induced cognitive deficits in hippocampus. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of subchronic benzo(a)pyrene exposure on neurotransmitter receptor gene expression in the rat hippocampus related with spatial learning and memory change.

    Science.gov (United States)

    Qiu, Chongying; Cheng, Shuqun; Xia, Yinyin; Peng, Bin; Tang, Qian; Tu, Baijie

    2011-11-18

    Exposure of laboratory rats to Benzo(a)pyrene (BaP), an environmental contaminant with its high lipophilicify which is widely dispersed in the environment and can easily cross the blood brain barrier presenting in the central nervous system, is associated with impaired learning and memory. The purpose of the research was to examine whether subchronic exposure to BaP affects spatial learning and memory, and how it alters normal gene expression in hippocampus, as well as selection of candidate genes involving neurotransmitter receptor attributed to learning and memory. Morris water maze (MWM) was used to evaluate behavioral differences between BaP-treated and vehicle-treated groups. To gain a better insight into the mechanism of BaP-induced neurotoxicity on learning and memory, we used whole genome oligo microarrays as well as Polymerase Chain Reaction (PCR) to assess the global impact of gene expression. Male Sprague-Dawley rats were intraperitoneally injected with 6.25mg/kg of BaP or vehicle for 14 weeks. The results from the Morris water maze (MWM) test showed that rats treated with BaP exhibited significantly higher mean latencies as compared to vehicle controls. BaP exposure significantly decreased the number of crossing the platform and the time spent in the target area. After the hippocampus was collected from each rat, total RNA was isolated. Microarray and PCR revealed that exposure to BaP affected mRNA expression of neurotransmitter receptors. The web tool DAVID was used to analyze the significantly enriched gene ontology (GO) and KEGG pathways in the differentially expressed genes. Analysis showed that the most significantly affected gene ontology category was behavior. Furthermore, the fourth highest significantly affected gene ontology category was learning and memory. KEGG molecular pathway analysis showed that "neuroactive ligand-receptor interaction" was affected by BaP with highest statistical significance, and 9 candidate neurotransmitter receptor

  14. Assessing competence of broccoli consumption on inflammatory and antioxidant pathways in restraint-induced models: estimation in rat hippocampus and prefrontal cortex.

    Science.gov (United States)

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Sarraf Zadeh, Sadaf; Pour, Marieh Hossein; Ashabi, Ghorbangol; Khodagholi, Fariba; Ahmadiani, Abolhassan

    2013-01-01

    A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  15. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats.

    Science.gov (United States)

    Ahmed, Nawal A; Radwan, Nasr M; Aboul Ezz, Heba S; Salama, Noha A

    2017-01-01

    Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm 2 , SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.

  16. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.

    Science.gov (United States)

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O

    2013-01-01

    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  17. The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate.

    Science.gov (United States)

    Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Fukui, Shinji; Otani, Naoki; Osumi, Atsushi; Toyooka, Terushige; Shima, Katsuji

    2006-10-01

    We studied the fate of Nissl-stained dark neurons (N-DNs) following traumatic brain injury (TBI). N-DNs were investigated in the cerebral neocortex and the hippocampus using a rat lateral fluid percussion injury model. Nissl stain, acid fuchsin stain and immunohistochemistry with phosphorylated extracellular signal-regulated protein kinase (pERK) antibody were used in order to assess posttraumatic neurons. In the neocortex, the number of dead neurons at 24 h postinjury was significantly less than that of the observed N-DNs in the earlier phase. Only a few N-DNs increased their pERK immunoreactivity. On the other hand, in the hippocampus the number of dead neurons was approximately the same number as that of the N-DNs, and most N-DNs showed an increased pERK immunoreactivity. These data suggest that not all N-DNs inevitably die especially in the neocortex after TBI. The fate of N-DNs is thus considered to differ depending on brain subfields.

  18. Assessing Competence of Broccoli Consumption on Inflammatory and Antioxidant Pathways in Restraint-Induced Models: Estimation in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Leila Khalaj

    2013-01-01

    Full Text Available A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2 antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  19. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  20. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Directory of Open Access Journals (Sweden)

    Mariane Wohlenberg

    2014-04-01

    Full Text Available In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4. The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract.

  1. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    Science.gov (United States)

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  2. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  3. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats.

    Science.gov (United States)

    Alfaro-Rodríguez, Alfonso; González-Piña, Rigoberto; Bueno-Nava, Antonio; Arch-Tirado, Emilio; Ávila-Luna, Alberto; Uribe-Escamilla, Rebeca; Vargas-Sánchez, Javier

    2011-09-01

    The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.

  4. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil. Electrophysiological...

  5. Indicaxanthin from Opuntia ficus-indica Crosses the Blood-Brain Barrier and Modulates Neuronal Bioelectric Activity in Rat Hippocampus at Dietary-Consistent Amounts.

    Science.gov (United States)

    Allegra, Mario; Carletti, Fabio; Gambino, Giuditta; Tutone, Marco; Attanzio, Alessandro; Tesoriere, Luisa; Ferraro, Giuseppe; Sardo, Pierangelo; Almerico, Anna Maria; Livrea, Maria Antonia

    2015-08-26

    Indicaxanthin is a bioactive and bioavailable betalain pigment from the Opuntia ficus-indica fruits. In this in vivo study, kinetic measurements showed that indicaxanthin is revealed in the rat brain within 1 h from oral administration of 2 μmol/kg, an amount compatible with a dietary consumption of cactus pear fruits in humans. A peak (20 ± 2.4 ng of indicaxanthin per whole brain) was measured after 2.5 h; thereafter the molecule disappeared with first order kinetics within 4 h. The potential of indicaxanthin to affect neural activities was in vivo investigated by a microiontophoretic approach. Indicaxanthin, administered in a range between 0.085 ng and 0.34 ng per neuron, dose-dependently modulated the rate of discharge of spontaneously active neurons of the hippocampus, with reduction of the discharge and related changes of latency and duration of the effect. Indicaxanthin (0.34 ng/neuron) showed inhibitory effects on glutamate-induced excitation, indicating activity at the level of glutamatergic synapses. A molecular target of indicaxanthin is suggested by in silico molecular modeling of indicaxanthin with N-methyl-D-aspartate receptor (NMDAR), the most represented of the glutamate receptor family in hippocampus. Therefore, at nutritionally compatible amounts indicaxanthin (i) crosses the rat BBB and accumulates in brain; (ii) can affect the bioelectric activity of hippocampal neurons locally treated with amounts comparable with those measured in the brain; and (iii) modulates glutamate-induced neuronal excitation. The potential of dietary indicaxanthin as a natural neuromodulatory agent deserves further mechanistic and neurophysiologic investigation.

  6. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.

    Science.gov (United States)

    Yoo, Sang Bae; Kim, Bom-Taeck; Kim, Jin Young; Ryu, Vitaly; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2013-06-01

    This study was conducted to examine if fluoxetine, a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor, would reverse adverse behavioral effects of neonatal maternal separation in female rats. Sprague-Dawley pups were separated from dam daily for 3h during postnatal day (PND) 1-14 (maternal separation; MS) or left undisturbed (non-handled; NH). Female NH and MS pups received intraperitoneal injection of fluoxetine (10mg/kg) or vehicle daily from PND 35 until the end of the whole experimental period. Rats were either subjected to behavioral tests during PND 44-54, or sacrificed for neurochemical analyses during PND 43-45. Daily food intake and weight gain of both NH and MS pups were suppressed by fluoxetine, with greater effects in MS pups. MS experience increased immobility and decrease swimming in forced swim test. Swimming was increased, although immobility was not significantly decreased, in MS females by adolescence fluoxetine. However, adolescence fluoxetine increased immobility during forced swim test and decreased time spent in open arms during elevated plus maze test in NH females. Fluoxetine normalized MS-induced decrease of the raphe 5-HT levels and increased 5-HT metabolism in the hippocampus in MS females, and increased the hypothalamic 5-HT both in NH and MS. Fluoxetine decreased the raphe 5-HT and increased the plasma corticosterone in NH females. Results suggest that decreased 5-HTergic activity in the raphe nucleus is implicated in the pathophysiology of depression-like behaviors, and increased 5-HTergic activities in the raphe-hippocampus axis may be a part of anti-depressant efficacy of fluoxetine, in MS females. Also, an extra-hypothalamic 5-HTergic activity may contribute to the increased anorectic efficacy of fluoxetine in MS females. Additionally, decreased 5-HT in the raphe and elevated plasma corticosterone may be related with fluoxetine-induced depression- and/or anxiety-like behaviors in NH females. Copyright © 2012 Elsevier Ltd

  7. The Effect of Lorazepam and Aqueous Extract of Melissa officinalis on Histological Changes in the Hippocampus and Spatial Memory in Male Rats

    Directory of Open Access Journals (Sweden)

    Sakine Heydarifar

    2016-06-01

    Full Text Available Background and Objectives: Hippocampus is the most important part of learning and memory in the brain. Melissa officinalis naturally affects the nervous system and induces calmness. Lorazepam is also used in the treatment of insomnia and anxiety. In this study, the effect of Lorazepam and aqueous extract of Melissa officinalis (AEMO was investigated on hippocampus tissue and spatial memory in male rats using radial maze method. Methods: In this experimental study, 24 male Wistar rats were randomly divided into four groups. Control group received normal diet and water, the second group received lorazepam (dose. 10mg/kg, and two other groups received AEMO (at doses of 10 and 100mg/kg by gavage for 18 days. Then, their spatial memory were tested in an 8 arm radial maze (RAM. The level of lipid peroxidation of homogenized brain tissue was assessed, and hippocampal tissue sections were prepared and after H&E staining, DG area was investigated under a microscope. Data were analyzed using one-way ANOVA and Tukey statistical tests. The level of significance was set at p<0.05. Results: There was no significant difference in learning level between animals received lorazepam and control group. The results of the experiments showed the positive effect of low dose of AEMO (10mg/kg on spatial memory, while high dose of Melissa officinalis (100mg/kg prevented memory formation. Conclusion: The results of this research showed that AEMO can increase short-term memory at low dose (10mg/kg, but it may prevent spatial memory formation at high doses.

  8. Hippocampus and serum metabolomic studies to explore the regulation of Chaihu-Shu-Gan-San on metabolic network disturbances of rats exposed to chronic variable stress.

    Science.gov (United States)

    Su, Zhi-heng; Jia, Hong-mei; Zhang, Hong-wu; Feng, Yu-Fei; An, Lei; Zou, Zhong-mei

    2014-03-04

    Chaihu-Shu-Gan-San (CSGS), a traditional Chinese medicine formula, has been effectively used for the treatment of depression. However, studies of its anti-depressive mechanism are challenging, due to the complex pathophysiology of depression, and complexity of CSGS with multiple constituents acting on different receptors. In the present work, metabolomic studies of biochemical changes in the hippocampus and serum of chronic variable stress (CVS)-induced depression rats after treatment with CSGS were performed using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Partial least squares-discriminate analysis indicated that the metabolic perturbation induced by CVS was reduced by treatment with CSGS. A total of twenty-six metabolites (16 from the hippocampus and 10 from serum) were considered as potential biomarkers involved in the development of depression. Among them, 11 were first reported to have potential relevance in the pathogenesis of depression, and 25 may correlate to the regulation of CSGS treatment on depression. The results combined with a previous study indicated that CSGS mediated synergistically abnormalities of the metabolic network, composed of energy metabolism, synthesis of neurotransmitters, tryptophan, phospholipids, fatty acid and bile acid metabolism, bone loss and liver detoxification, which may be helpful for understanding its mechanism of action. Furthermore, the extracellular signal-regulated kinase (ERK) signal pathway, involved in the neuronal protective mechanism of depression related to energy metabolism, was investigated by western blot analysis. The results showed that CSGS reversed disruptions of BDNF, ERK1/2 and pERK1/2 in CVS rats, which provides the first evidence that the ERK signal system may be one of the targets related to the antidepressant action of CSGS.

  9. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia

    Directory of Open Access Journals (Sweden)

    Seyedeh Farzaneh Moniri

    2018-01-01

    Full Text Available Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR, vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract. Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001. Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001. Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  10. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats.

    Science.gov (United States)

    Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein

    2018-03-06

    This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    Science.gov (United States)

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  12. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats.

    Science.gov (United States)

    Ebrahimzadeh-Bideskan, Ali Reza; Mansouri, Somaieh; Ataei, Mariam Lale; Jahanshahi, Mehrdad; Hosseini, Mahmoud

    2018-03-01

    The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.

  13. Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats.

    Directory of Open Access Journals (Sweden)

    Shuai Zhang

    Full Text Available Isoflurane anesthesia has been shown to be responsible for cognitive impairment in Alzheimer's disease (AD and development of AD in the older age groups. However, the pathogenesis of AD-related cognitive impairments induced by isoflurane anesthesia remains elusive. Thus, this study was designed to investigate the mechanism by which isoflurane anesthesia caused AD-related cognitive impairments. Aged Wistar rats were randomly divided into 6 groups (n = 12, 1 control group (CONT and 5 isoflurane treated (ISO groups (ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D. The CONT group inhaled 30% O2 for 2 h without any anesthesia. ISO groups were placed under anesthesia with 3% isoflurane and then exposed to 1.5% isoflurane delivered in 30% O2 for 2 h. Rats in each ISO group were then analyzed immediately (ISO 0 or at various time points (0.5, 1, 3 or 7 day after this exposure. Cognitive function was assessed using the Morris water maze test. Protein levels of amyloid precursor protein (APP, β-site APP cleavage enzyme-1 (BACE-1 and Aβ42 peptide were analyzed in hippocampal samples by Western blot. β-Amyloid (Abeta plaques were detected in hippocampal sections by Congo red staining. Compared with controls, all ISO groups showed increased escape latency and impaired spatial memory. Isoflurane increased APP mRNA expression and APP protein depletion, promoting Aβ42 overproduction, oligomerization and accumulation. However, isoflurane did not affect BACE-1 expression. Abeta plaques were observed only in those ISO groups sacrificed at 3 or 7 d. Our data indicate that aged rats exposed to isoflurane had increased APP mRNA expression and APP protein depletion, with Aβ42 peptide overproduction and oligomerization, resulting in formation of Abeta plaques in the hippocampus. Such effects might have contributed to cognitive impairments, including in spatial memory, observed in these rats after isoflurane anesthesia.

  14. Study The Effect of 4 weeks of Special Aerobic Training on CBS and SAM Levels in Hippocampus of Rats with Alzheimer-induced Disease with Aβ1-42 Injection

    Directory of Open Access Journals (Sweden)

    Farhad Azimi

    2018-03-01

    Full Text Available Abstract Background: H2S plays a key role in the pathogenesis of the Alzheimer’s disease. The aim of the present study was to investigate the effects of 4 weeks of the special aerobic training after induction of Alzheimer’s disease by Aβ1-42 injection on CBS and SAM levels in hippocampus of Wistar male rats. Materials and Methods: Twenty male Wistar rats (8 weeks old and weight 195 ± 20 g were divided into four groups including: healthy control, Alzheimer’s control, Alzheimer’s + training and sham. To induce Alzheimer’s disease, Aβ1-42 was infused into the hippocampus of rats. Training group trained for 4-week. For data analysis, one-way ANOVA was used and Eta and Omega squared tests were used to determine the effect size (p<0.05. Results: Findings revealed that 4 weeks of special aerobic training increased significantly the CBS and SAM levels in hippocampus of Alzheimer’s rats compared to the control Alzheimer’s rats ( ES=53; p= 0.007, ES= 92.22; p= 0.001. Also, we showed 4 weeks of special aerobic training increased CBS level in hippocampus of Alzheimer’s rats compared to the healthy cotrol group (ES= 44.07; p= 0.014. Conclusion: It seems that the special aerobic training can be used as a useful non-pharmacologically effective therapeutic treatment for Alzheimer's patients through positive regulation of hydrogen sulfide via CBS and SAM enzymes.

  15. Brain Circuits of Methamphetamine Pl