WorldWideScience

Sample records for rat tail-tendon collagen

  1. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    Science.gov (United States)

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  2. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  3. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, M.B.; Lokanathan, Y. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Aminuddin, B.S. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor (Malaysia); Ruszymah, B.H.I. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Chowdhury, S.R., E-mail: shiplu@ppukm.ukm.edu.my [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia)

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35 M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. - Highlights: • Isolated collagen from ovine tendon was characterized as collagen type I. • Collagen film was fabricated via air drying of ovine tendon collagen. • Collagen fibril alignment was realized via unidirectional platform rocker. • Orientation of cells was attained depending on collagen fibril direction in the film. • Collagen films

  4. Changes in type I collagen following laser welding.

    Science.gov (United States)

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  5. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2007-01-01

    greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon......Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF......-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7...

  6. Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon

    Science.gov (United States)

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey; Akins, Tiffany L.; Diffee, Gary; Aiken, Judd; Vanderby, Ray; Lakes, Roderic S.

    2013-01-01

    Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress). PMID:23549897

  7. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  8. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2009-01-01

    Tendon tissue and the extracellular matrix of skeletal muscle respond to mechanical loading by increased collagen expression and synthesis. This response is likely a secondary effect of a mechanically induced expression of growth factors, including transforming growth factor-beta1 (TGF-beta1......) and insulin-like growth factor-I (IGF-I). It is not known whether unloading of tendon tissue can reduce the expression of collagen and collagen-inducing growth factors. Furthermore, the coordinated response of tendon and muscle tissue to disuse, followed by reloading, is unclear. Female Sprague-Dawley rats...... tissue growth factor (CTGF), myostatin, and IGF-I isoforms were measured by real-time RT-PCR in Achilles tendon and soleus muscle. The tendon mass was unchanged, while the muscle mass was reduced by 50% after HS (P

  9. Age-dependent effects of systemic administration of oxytetracycline on the viscoelastic properties of rat tail tendons as a mechanistic basis for pharmacological treatment of flexural limb deformities in foals.

    Science.gov (United States)

    Wintz, Leslie R; Lavagnino, Michael; Gardner, Keri L; Sedlak, Aleksa M; Arnoczky, Steven P

    2012-12-01

    To describe the effect of systemically administered oxytetracycline on the viscoelastic properties of rat tail tendon fascicles (TTfs) to provide a mechanistic rationale for pharmacological treatment of flexural limb deformities in foals. TTfs from ten 1-month-old and ten 6-month-old male Sprague-Dawley rats. 5 rats in each age group were administered oxytetracycline (50 mg/kg, IP, q 24 h) for 4 days. The remaining 5 rats in each age group served as untreated controls. Five days after initiation of oxytetracycline treatment, TTfs were collected and their viscoelastic properties were evaluated via a stress-relaxation protocol. Maximum modulus and equilibrium modulus were compared via a 2-way ANOVA. Collagen fibril size, density, and orientation in TTfs were compared between treated and control rats. Viscoelastic properties were significantly decreased in TTfs from 1-month-old oxytetracycline-treated rats, compared with those in TTfs from 1-month-old control rats. Oxytetracycline had no effect on the viscoelastic properties of TTfs from 6-month-old rats. Collagen fibril size, density, and orientation in TTfs from 1-month-old rats did not differ between oxytetracycline-treated and control rats. Results confirmed that systemically administered oxytetracycline decreased the viscoelastic properties of TTfs from 1-month-old rats but not those of TTfs from 6-month-old rats. The decrease in viscoelastic properties associated with oxytetracycline treatment does not appear to be caused by altered collagen fibril diameter or organization. The age-dependent effect of oxytetracycline on the viscoelastic properties of tendons may be related to its effect on the maturation of the extracellular matrix of developing tendons.

  10. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  11. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  12. Variation in the Helical Structure of Native Collagen

    Science.gov (United States)

    2014-02-24

    notochord were obtained in previous studies [4,10,20–22]. The scaled amplitudes of the central, meridional section of each data set were used to...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of...also a possible consequence of the type II collagen notochord samples being stretched, perhaps to a greater extant then the type I tendon samples to aid

  13. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    Science.gov (United States)

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  14. Glutaraldehyde Cross-Linking of TendonMechanical Effects at the Level of the Tendon Fascicle and Fibril

    DEFF Research Database (Denmark)

    Hansen, P.; Svensson, R.B.; Aagaard, P.

    2009-01-01

    were examined by atomic force microscopy. Peak forces increased from 1379 to 2622 pN while an extended Hertz fit of force-indentation data showed a 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross-linking on the tensile properties of a single collagen fibril......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from 8 MPa to 39 MPa. The mechanical effects of glutaraldehyde at the tendon fibril level...

  15. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    Science.gov (United States)

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  16. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Diego Pulzatto Cury

    Full Text Available Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  17. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  18. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes.

    Science.gov (United States)

    Pari, Leelavinothan; Murugan, Pidaran

    2007-12-01

    Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late-stage complications in diabetics. Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, exhibiting many of the same physiological and pharmacological activities of curcumin and in some systems may exert greater antioxidant activity than curcumin. In diabetic rats, hydroxyproline and collagen content as well as its degree of cross-linking were increased, as shown by increased extent of glycation, collagen-linked fluorescence, neutral salt collagen, and decreased acid and pepsin solubility. Administration of THC for 45 days to diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effects of THC were comparable with those of curcumin. In conclusion, administration of THC had a positive influence on the content of collagen and its properties in streptozotocin- and nicotinamide-induced diabetic rats. THC was found to be more effective than curcumin.

  19. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.

    Science.gov (United States)

    Baldwin, Samuel J; Quigley, Andrew S; Clegg, Charlotte; Kreplak, Laurent

    2014-10-21

    Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.

  20. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  1. [On the influence of D-penicillamine on collage metabolism - investigations of the rupture of strength in tailfibre in rats of several ages (author's transl)].

    Science.gov (United States)

    Trzenschik, K; Lindenhayn, K; Mühlbach, R; Napieralski, P; Noack, K

    1980-01-01

    The tensile strength of rat tail tendons of animals wtih a different age is more influenced by D-Penicillamine (DPA) in younger rats than in elderly rats. DPA has the best effect in the regions with the highest collagen turnover. After the use of DPA the collagen of tails of the elderly rats resembles the collagen of the younger animals. The reason of this alteration is probably a lower degree of cross-links of the collagen after the use of DPA.

  2. Tendon collagen synthesis declines with immobilization in elderly humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Boesen, Anders P; Reitelseder, Søren

    2017-01-01

    -80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal...... intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased (P ... immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only (P collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this...

  3. Dextrose prolotherapy and corticosteroid injection into rat Achilles tendon.

    Science.gov (United States)

    Martins, C A Q; Bertuzzi, R T; Tisot, R A; Michelin, A F; do Prado, J M; Stroher, A; Burigo, M

    2012-10-01

    To assess the mechanical behavior and the histology of collagen fibers after prolotherapy with 12.5% dextrose into rat Achilles tendons and to compare with those of corticosteroid treatment. Out of 60 adult female Wistar rats (70 tendons), 15 received 12.5% dextrose (group I); 15 were treated with corticosteroid injection (group II); and 15 were given 0.9% saline injection (group III), all into the right Achilles tendon, whereas 13 animals received no injections (group IV). Three doses of each substance (groups I, II, and III) were given at a 5-day interval. Collagen fiber color was quantitatively assessed in three samples from each group and in five samples from the control group using picrosirius red staining under polarized and nonpolarized light. Twelve tendons from each group treated with the test substance and 20 tendons from the control group were submitted to the tensile strength test. There was no statistical difference across the groups with respect to maximum load at failure (n.s.) and absorbed energy (n.s.). With respect to tendon rupture, there was no difference between the myotendinous and the tendinous regions (n.s.). However, hematoxylin-eosin staining revealed statistical significance in lymphocytic inflammatory infiltrate (P = 0.008) and in parallel fiber orientation (P = 0.003) when comparing groups to the control group, without significance for either neovascularization (n.s.) or the presence of fibroblasts (n.s.). Likewise, there was no significant difference between the percentage of mature (n.s.) and immature (n.s.) fibers. Dextrose was not deleterious to the tendinous tissue, as it did not change the mechanical and histological properties of Achilles tendons in rats. The data obtained in this study may help clinicians in their daily work as they suggest that injections of 12.5% dextrose caused no harm to the tendons, although the clinical importance in humans still needs to be defined.

  4. The effect of acute exercise on collagen turnover in human tendons

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Pingel, Jessica; Boesen, Mikael

    2013-01-01

    Mechanical loading of human tendon stimulates collagen synthesis, but the relationship between acute loading responses and training status of the tendon is not clear. We tested the effect of prolonged load deprivation on the acute loading-induced collagen turnover in human tendons, by applying...... the contra-lateral leg was used habitually. Following the procedure both Achilles tendons and calf muscles were loaded with the same absolute load during a 1-h treadmill run. Tissue collagen turnover was measured by microdialysis performed post-immobilization but pre-exercise around both Achilles tendons...... and compared to values obtained by 72-h post-exercise. Power Doppler was used to monitor alterations in intratendinous blood flow velocity of the Achilles tendon and MRI used to quantitate changes in tendon cross-section area. Acute loading resulted in an increased collagen synthesis 72 h after the run in both...

  5. Glutaraldehyde cross-linking of tendon mechanical effects at the level of the tendon fascicle and fibril

    DEFF Research Database (Denmark)

    Hansen, Philip; Hassenkam, Tue; Svensson, Rene Bruggebusch

    2009-01-01

    at the tendon fibril level were examined by atomic force microscopy. Peak forces increased from approximately 1379 to approximately 2622 pN while an extended Hertz fit of force-indentation data showed a approximately 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from approximately 8 MPa to approximately 39 MPa. The mechanical effects of glutaraldehyde...

  6. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing......, but the effect of local IGF-I administration on tendon collagen synthesis in human has not been studied. The purpose of this study was to study whether local injections of IGF-I would have a stimulating effect on tendon collagen synthesis. Twelve healthy nonsmoking men [age 62 ± 1 years (mean ± SEM), BMI 27 ± 1......] participated. Two injections of either human recombinant IGF-I (0.1 mL Increlex©) or saline (control) into each patellar tendon were performed 24-h apart, respectively. Tendon collagen fractional synthesis rate (FSR) was measured by stable isotope technique in the hours after the second injection...

  7. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L.; Eliasson, Pernilla

    2015-01-01

    OBJECTIVE: Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We...... investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. DESIGN: Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission...... electron microscopy) were determined at 7, 10, 14, 21 and 28 days. RESULTS: IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development...

  8. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  9. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  10. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    Science.gov (United States)

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the

  11. The effect of eccentric exercise on injured patellar tendon healing in rats: a gene expression study

    OpenAIRE

    Yagishita, Masafumi

    2011-01-01

    Recently, clinical studies have suggested that eccentric exercise can be beneficial for patellar tendinopathy. It is known that loading induces collagen synthesis in tendon, but the mechanisms responsible for mediating this effect are still unclear. We hypothesized that loading-induced expression of collagen depends on a specific contraction type. Eccentric exercise induces a more beneficial healing response than concentric exercise. Two longitudinal incisions were made in rat patellar tendon...

  12. Collagen crosslink location: a molecular marker for fibrosis in lungs of rats with experimental silicosis

    International Nuclear Information System (INIS)

    Gerriets, J.E.; Reiser, K.M.; Last, J.A.

    1986-01-01

    Collagen content is increased in lungs of animals with experimental silicosis. They hypothesize that the collagen deposited in such fibrotic lungs differs structurally from normal lung collagen. Silicotic lung collagen shows an increase in lysine hydroxylation. In addition, the ratio of the difunctional crosslinks DHLNL (dihydroxylysinonorleucine) to HLNL (hydroxylysinonorleucine) is sharply elevated compared to that in control lungs. The peptide α1(I)CB7 x α2(I)CB1 crosslinked by HLNL was demonstrated in NaB 3 H 4 -reduced, CNBr-digested collagen from rat tail tendon by peptide purification, followed by periodate oxidation and amino acid analysis. Further structural analysis of this peptide was obtained by digestion of the crosslinked peptide with trypsin and purification of the tryptic peptide containing this crosslink followed by amino acid analysis. They then examined the analogous collagenous peptide in normal and silicotic lungs and analyzed the crosslink it contained. They observed that DHLNL was present at specific sites previously containing HLNL; that is, the collagen in fibrotic lungs is altered at specific sites by post-translational modification of a lysine residue by hydroxylation in a predictable way. They conclude that such unusual hydroxylation of a specific lysine residue in the α2 chain provides a molecular marker for fibrotic lung collagen

  13. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  14. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon.

    Science.gov (United States)

    Reddy, G Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174-180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (r values ranging from.61 to.94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from.22 to.84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross

  15. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBing; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, ChangLong

    2009-05-29

    Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.

  16. Evaluating adhesion reduction efficacy of type I/III collagen membrane and collagen-GAG resorbable matrix in primary flexor tendon repair in a chicken model.

    Science.gov (United States)

    Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D

    2015-09-01

    Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

  17. Implications of obesity for tendon structure, ultrastructure and biochemistry: a study on Zucker rats.

    Science.gov (United States)

    Biancalana, Adriano; Velloso, Lício Augusto; Taboga, Sebastião Roberto; Gomes, Laurecir

    2012-02-01

    The extracellular matrix consists of collagen, proteoglycans and non-collagen proteins. The incidence of obesity and associated diseases is currently increasing in developed countries. Obesity is considered to be a disease of modern times, and genes predisposing to the disease have been identified in humans and animals. The objective of the present study was to compare the morphological and biochemical aspects of the deep digital flexor tendon of lean (Fa/Fa or Fa/fa) and genetically obese (fa/fa) Zucker rats. Ultrastructural analysis showed the presence of lipid droplets in both groups, whereas disorganized collagen fibril bundles were observed in obese animals. Lean animals presented a larger amount of non-collagen proteins and glycosaminoglycans than obese rats. We propose that the overweight and lesser physical activity in obese animals may have provoked the alterations in the composition and organization of extracellular matrix components but a genetic mechanism cannot be excluded. These alterations might be related to organizational and structural modifications in the collagen bundles that influence the mechanical properties of tendons and the progression to a pathological state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon

    DEFF Research Database (Denmark)

    Pingel, Jessica; Lu, Yinhui; Starborg, Tobias

    2014-01-01

    with regards to changes in the content of collagen type I and III (the major collagens in tendon), and changes in tendon fibroblast (tenocyte) shape and organization of the extracellular matrix (ECM). To gain new insights, we took biopsies from the tendinopathic region and flanking healthy region of Achilles...... block face-scanning electron microscopy were made on two individuals. In the tendinopathic regions, compared with the flanking healthy tissue, we observed: (i) an increase in the ratio of collagen III : I proteins; (ii) buckling of the collagen fascicles in the ECM; (iii) buckling of tenocytes...... and their nuclei; and (iv) an increase in the ratio of small-diameter : large-diameter collagen fibrils. In summary, load-induced non-rupture tendinopathy in humans is associated with localized biochemical changes, a shift from large- to small-diameter fibrils, buckling of the tendon ECM, and buckling of the cells...

  19. Ethinyl oestradiol administration in women suppresses synthesis of collagen in tendon in response to exercise

    DEFF Research Database (Denmark)

    Hansen, Mette; Koskinen, Satu O; Petersen, Susanne G

    2008-01-01

    24 h post-exercise through microdialysis catheters placed anterior to the patellar tendon in both legs and subsequently analysed for the amino-terminal propeptide of type I collagen (PINP), a marker of tendon collagen synthesis. To determine the long-term effect of OC usage, patellar tendon cross......-OC 24 h post-exercise is consistent with the hypothesis that oestradiol inhibits exercise-induced collagen synthesis in human tendon. The mechanism behind this is either a direct effect of oestradiol, or an indirect effect via a reduction in levels of free IGF-I. However, the data did not indicate any......Women are at greater risk than men of sustaining certain kinds of injury and diseases of collagen-rich tissues. To determine whether a high level of oestradiol has an acute influence on collagen synthesis in tendons at rest and in response to exercise, one-legged kicking exercise was performed...

  20. [Changes of dentin, dental pulp and periodontium tissue in tail-suspended rats].

    Science.gov (United States)

    Yuan, Lin-tian; Wen, Ling-ying; Luo, Ya-ning; Hu, Pei-zhen; Jiang, Wei-zhong; Wu, Xing-yu

    2003-08-01

    To investigate the metabolic changes of calcium and phosphorus in dentin, dental pulp and periodontium in tail-suspended rats, and the functions of TGF-beta 1, c-fos, collagen-I and collagen IV in dentin, dental pulp and periodontium. Relative percentage contents of Ca, P in dentin, dental pulp and periodontium were measured with scanning electron microscope and energy spectrum analytical system in 3 groups of rats. The expression of TGF-beta 1, c-fos, collagen-I and collagen IV were also observed. In the suspension group, the relative percentage content of Ca declined significantly, while P increased slightly. There were no significant differences of Ca, P in alveolar bone. The expressions of TGF-beta 1, c-fos and collagen-I declined, but the expression of collagen-IV in pulp vessel increased. There were no significant changes of expressions of TGF-beta 1, c-fos, collagen-I and collagen-IV in the vicinity of PDL. After adopting artificial countermeasures, the above expressions restored partly. Weightlessness might cause abnormal mineralization in dentin, and 1.5 G artificial countermeasures could eliminate the above changes of mineral metabolism. The poor mineralization of dentin might be associated with the reduced secretion of TGF-beta 1, c-fos and collagen-I in tail-suspended rats.

  1. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    Science.gov (United States)

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors

  2. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    Science.gov (United States)

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses.

    Science.gov (United States)

    Zhang, J; Yuan, T; Zheng, N; Zhou, Y; Hogan, M V; Wang, J H-C

    2017-04-01

    After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes

  4. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    Science.gov (United States)

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Corticosteroid administration alters the mechanical properties of isolated collagen fascicles in rat-tail tendon

    DEFF Research Database (Denmark)

    Haraldsson, B T; Aagaard, P; Crafoord-Larsen, D

    2009-01-01

    Overload tendon injuries are frequent in recreational and elite sports. The optimal treatment strategy remains unknown, but local administration of corticosteroids is one common treatment option. The direct effects of the corticosteroid administration on the tissue are not fully understood...

  6. Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture

    Directory of Open Access Journals (Sweden)

    Érika Satomi

    2008-01-01

    Full Text Available INTRODUCTION: Posterior tibial tendon dysfunction is a common cause of adult flat foot deformity, and its etiology is unknown. PURPOSE: In this study, we characterized the morphologic pattern and distribution of types I, III and V collagen in posterior tibial tendon dysfunction. METHOD: Tendon samples from patients with and without posterior tibial tendon dysfunction were stained by immunofluorescence using antibodies against types I, III and V collagen. RESULTS: Control samples showed that type V deposited near the vessels only, while surgically obtained specimens displayed type V collagen surrounding other types of collagen fibers in thicker adventitial layers. Type III collagen levels were also increased in pathological specimens. On the other hand, amounts of collagen type I, which represents 95% of the total collagen amount in normal tendon, were decreased in pathological specimens. CONCLUSION: Fibrillogenesis in posterior tibial tendon dysfunction is altered due to higher expression of types III and V collagen and a decreased amount of collagen type I, which renders the originating fibrils structurally less resistant to mechanical forces.

  7. Orthotopic Transplantation of Achilles Tendon Allograft in Rats

    Science.gov (United States)

    Aynardi, Michael; Zahoor, Talal; Mitchell, Reed; Loube, Jeffrey; Feltham, Tyler; Manandhar, Lumanti; Paudel, Sharada; Schon, Lew; Zhang, Zijun

    2018-01-01

    The biology and function of orthotopic transplantation of Achilles tendon allograft are unknown. Particularly, the revitalization of Achilles allograft is a clinical concern. Achilles allografts were harvested from donor rats and stored at −80 °C. Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of mesenchymal stem cells (MSCs). MSCs were cultured with growth differentiation factor-5 (GDF-5) and applied onto Achilles allografts on the day of transplantation. After the native Achilles tendon was resected from the left hind limb of the rats, Achilles allograft, with or without autologous MSCs, was implanted and sutured with calf muscles proximally and calcaneus distally. Animal gait was recorded presurgery and postsurgery weekly. The animals were sacrificed at week 4, and the transplanted Achilles allografts were collected for biomechanical testing and histology. The operated limbs had altered gait. By week 4, the paw print intensity, stance time, and duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs were mostly recovered to the baselines recorded before surgery. Maximum load of failure was not different between Achilles allografts, with or without MSCs, and the native tendons. The Achilles allograft supplemented with MSCs had higher cellularity than the Achilles allograft without MSCs. Deposition of fine collagen (type III) fibers was active in Achilles allograft, with or without MSCs, but it was more evenly distributed in the allografts that were incubated with MSCs. In conclusion, orthotopically transplanted Achilles allograft healed with host tissues, regained strength, and largely restored Achilles function in 4 wk in rats. It is therefore a viable option for the reconstruction of a large Achilles tendon defect. Supplementation of MSCs improved repopulation of Achilles allograft, but large animal models, with long-term follow up and cell tracking, may be required to fully

  8. Evolutionary origins of C-terminal (GPPn 3-hydroxyproline formation in vertebrate tendon collagen.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    Full Text Available Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPPn in addition to the fully occupied A1 site at Pro986. The C-terminal (GPPn motif has five consecutive GPP triplets in α1(I, four in α2(I and three in α1(II, all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin and type II collagen (cartilage and notochord were examined by mass spectrometry. The (GPPn domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human, up to five 3-hydroxyproline residues per (GPPn motif were found in α1(I and four in α2(I, with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPPn site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.

  9. Functional grading of mineral and collagen in the attachment of tendon to bone.

    Science.gov (United States)

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  10. [Effects of exogenous prostaglandin E2 on collagen content of Achilles tendon of rabbits in vivo].

    Science.gov (United States)

    Li, Hui; Tang, Kanglai; Deng, Yinshuan; Xie, Meiming; Chang, Dehai; Tao, Xu; Xu, Jianzhong

    2012-03-01

    Prostaglandin E2 (PGE2) production increases in human tendon fibroblasts after the tendon injuries and repetitive mechanical loading in vitro. To analyze the relations between PGE2 and tendinopathy by observing the changes of collagen content and proportion after the Achilles tendon of rabbits is repeatedly exposed to PGE2. Twenty-four Japanese rabbits (aged 3-4 months, weighing 2.0-2.5 kg, and male or female) were equally randomized into 2 groups according to injection dose of PGE2: low dose group (50 ng) and high dose group (500 ng). Corresponding PGE2 (0.2 mL) was injected into the middle segment of the Achilles tendon of hindlimb, the same dose saline into the same site of the other side as controls once a week for 4 weeks or 8 weeks. The Achilles tendons were harvested at 4 and 8 weeks after injection. HE staining was used to observe the cell structure and matrix, and picric acid-sirius red staining to observe the distribution and types of collagen fibers, and transmission electron microscopy was used to measure the density of the unit area and diameter of collagen fibers. HE staining showed that collagen structural damage was observed in low dose and high dose groups. Picric acid-sirius red staining showed that the content of type I collagen significantly decreased while the content of type III collagen significantly increased in experimental side of 2 groups at 4 and 8 weeks after injection when compared with control sides (P Achilles tendon of rabbit to PGE2 can cause the decrease of type I collagen, the increase of type III collagen, the reverse ratio of type I to type III, reduced unit density of collagen fibers, and thinner collagen fibers diameter, which is related with tendinopathy.

  11. Effect of prostaglandin E2 injection on the structural properties of the rat patellar tendon

    Directory of Open Access Journals (Sweden)

    Ferry Scott T

    2012-01-01

    Full Text Available Abstract Background Increased tendon production of the inflammatory mediator prostaglandin E2 (PGE2 has been suggested to be a potential etiologic agent in the development of tendinopathy. Repeated injection of PGE2 into tendon has been proposed as a potential animal model for studying treatments for tendinopathy. In contrast, nonsteroidal anti-inflammatory drugs (NSAIDs which inhibit PGE2 production and are commonly prescribed in treating tendinopathy have been shown to impair the healing of tendon after acute injury in animal models. The contradictory literature suggests the need to better define the functional effects of PGE2 on tendon. Our objective was to characterize the effects of PGE2 injection on the biomechanical and biochemical properties of tendon and the activity of the animals. Our hypothesis was that weekly PGE2 injection to the rat patellar tendon would lead to inferior biomechanical properties. Methods Forty rats were divided equally into four groups. Three groups were followed for 4 weeks with the following peritendinous injection procedures: No injection (control, 4 weekly injections of saline (saline, 4 weekly injections of 800 ng PGE2 (PGE2-4 wks. The fourth group received 4 weekly injections of 800 ng PGE2 initially and was followed for a total of 8 weeks. All animals were injected bilaterally. The main outcome measurements included: the structural and material properties of the patellar tendon under tensile loading to failure, tendon collagen content, and weekly animal activity scores. Results The ultimate load of PGE2-4 wks tendons at 4 weeks was significantly greater than control or saline group tendons. The stiffness and elastic modulus of the PGE2 injected tendons at 8 weeks was significantly greater than the control or saline tendons. No differences in animal activity, collagen content, or mean fibril diameter were observed between groups. Conclusions Four weekly peritendinous injections of PGE2 to the rat patellar

  12. Advanced age diminishes tendon-to-bone healing in a rat model of rotator cuff repair.

    Science.gov (United States)

    Plate, Johannes F; Brown, Philip J; Walters, Jordan; Clark, John A; Smith, Thomas L; Freehill, Michael T; Tuohy, Christopher J; Stitzel, Joel D; Mannava, Sandeep

    2014-04-01

    Advanced patient age is associated with recurrent tearing and failure of rotator cuff repairs clinically; however, basic science studies have not evaluated the influence of aging on tendon-to-bone healing after rotator cuff repair in an animal model. Hypothesis/ This study examined the effect of aging on tendon-to-bone healing in an established rat model of rotator cuff repair using the aged animal colony from the National Institute on Aging of the National Institutes of Health. The authors hypothesized that normal aging decreases biomechanical strength and histologic organization at the tendon-to-bone junction after acute repair. Controlled laboratory study. In 56 F344xBN rats, 28 old and 28 young (24 and 8 months of age, respectively), the supraspinatus tendon was transected and repaired. At 2 or 8 weeks after surgery, shoulder specimens underwent biomechanical testing to compare load-to-failure and load-relaxation response between age groups. Histologic sections of the tendon-to-bone interface were assessed with hematoxylin and eosin staining, and collagen fiber organization was assessed by semiquantitative analysis of picrosirius red birefringence under polarized light. Peak failure load was similar between young and old animals at 2 weeks after repair (31% vs 26% of age-matched uninjured controls, respectively; P > .05) but significantly higher in young animals compared with old animals 8 weeks after repair (86% vs 65% of age-matched uninjured controls, respectively; P repair, fibroblasts appeared more organized and uniformly aligned in young animals on hematoxylin and eosin slides compared with old animals. Collagen birefringence analysis of the tendon-to-bone junction demonstrated that young animals had increased collagen fiber organization and similar histologic structure compared with age-matched controls (53.7 ± 2.4 gray scales; P > .05). In contrast, old animals had decreased collagen fiber organization and altered structure compared with age

  13. Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.

    Directory of Open Access Journals (Sweden)

    David M Kietrys

    Full Text Available We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.

  14. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja M; Holm, Lars

    2010-01-01

    young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P ...RNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates...... matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue....

  15. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    DEFF Research Database (Denmark)

    Couppé, C; Hansen, P; Kongsgaard, M

    2009-01-01

    were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic......Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...

  16. Metabolic activity and collagen turnover in human tendon in response to physical activity

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, H; Miller, B F

    2005-01-01

    Connective tissue of the human tendon plays an important role in force transmission. The extracellular matrix turnover of tendon is influenced by physical activity. Blood flow, oxygen demand, and the level of collagen synthesis and matrix metalloproteinases increase with mechanical loading. Gene...... of overuse tendon injuries occurring during sport, work or leisure-related activities....

  17. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Hansen, Mette; Boesen, Anders; Holm, Lars

    2013-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing, but t...

  18. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering.

    Science.gov (United States)

    Sharifi-Aghdam, Maryam; Faridi-Majidi, Reza; Derakhshan, Mohammad Ali; Chegeni, Arash; Azami, Mahmoud

    2017-07-01

    The main objective of this study was to prepare a hybrid three-dimensional scaffold that mimics natural tendon tissues. It has been found that a knitted silk shows good mechanical strength; however, cell growth on the bare silk is not desirable. Hence, electrospun collagen/polyurethane combination was used to cover knitted silk. A series of collagen and polyurethane solutions (4%-7% w/v) in aqueous acetic acid were prepared and electrospun. According to obtained scanning electron microscopy images from pure collagen and polyurethane nanofibers, concentration was set constant at 5% (w/v) for blend solutions of collagen/polyurethane. Afterward, blend solutions with the weight ratios of 75/25, 50/50 and 25/75 were electrospun. Scanning electron microscopy images demonstrated the smooth and uniform morphology for the optimized nanofibers. The least fibers diameter among three weight ratios was found for collagen/polyurethane (25/75) which was 100.86 ± 40 nm and therefore was selected to be electrospun on the knitted silk. Attenuated total reflectance-Fourier transform infrared spectra confirmed the chemical composition of obtained electrospun nanofibers on the knitted silk. Tensile test of the specimens including blend nanofiber, knitted silk and commercial tendon substitute examined and indicated that collagen/polyurethane-coated knitted silk has appropriate mechanical properties as a scaffold for tendon tissue engineering. Then, Alamar Blue assay of the L929 fibroblast cell line seeded on the prepared scaffolds demonstrated appropriate viability of the cells with a significant proliferation on the scaffold containing more collagen content. The results illustrate that the designed structure would be promising for being used as a temporary substitute for tendon repair.

  19. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean

    2017-01-01

    Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated the rela......Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated...... the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50-fold higher...... than HFD The mice were sacrificed at week 40 and Achilles and tail tendons were carefully excised to compare weight and nonweight-bearing tendons. The amount of the AGEs carboxymethyllysine (CML), methylglyoxal-derived hydroimidazolone (MG-H1) and carboxyethyllysine (CEL) in Achilles and tail tendon...

  20. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  1. Calcaneal Tendon Collagen Fiber Morphometry and Aging

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Daniel; Janáček, Jiří; Filová, Eva; Lopot, F.; Paesen, R.; Fanta, O.; Jarman, A.; Nečas, A.; Ameloot, M.; Jelen, K.

    2017-01-01

    Roč. 23, č. 5 (2017), s. 1040-1047 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA16-14758S; GA MŠk(CZ) LO1309; GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 ; RVO:68378041 Keywords : collagen * aging * crimp * fiber orientation * tendon Subject RIV: EB - Genetics ; Molecular Biology; BO - Biophysics (UEM-P) OBOR OECD: Developmental biology; Biophysics (UEM-P) Impact factor: 1.891, year: 2016

  2. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men

    DEFF Research Database (Denmark)

    Vestergaard, P; Jørgensen, J.O.L.; Olesen, J.L.

    2012-01-01

    Tendon collagen content and circulating growth hormone (GH) are reduced in elderly. In a placebo-controlled, double-blinded study, we examined if local injections of rhGH enhance collagen synthesis in healthy elderly men (61 ± 1 yr). Two injections of rhGH or saline (control) were injected into e...

  3. From mechanical loading to collagen synthesis, structural changes and function in human tendon

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, H; Heinemeier, K

    2009-01-01

    The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists...

  4. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  5. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load

    Directory of Open Access Journals (Sweden)

    Sarah Dex

    2017-06-01

    Full Text Available Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues.

  6. The effect of a collagen-elastin matrix on adhesion formation after flexor tendon repair in a rabbit model.

    Science.gov (United States)

    Wichelhaus, Dagmar Alice; Beyersdoerfer, Sascha Tobias; Gierer, Philip; Vollmar, Brigitte; Mittlmeier, Th

    2016-07-01

    The outcome of flexor tendon surgery is negatively affected by the formation of adhesions which can occur during the healing of the tendon repair. In this experimental study, we sought to prevent adhesion formation by wrapping a collagen-elastin scaffold around the repaired tendon segment. In 28 rabbit hind legs, the flexor tendons of the third and fourth digits were cut and then repaired using a two-strand suture technique on the fourth digit and a four-strand technique on the third digit. Rabbits were randomly assigned to study and control groups. In the control group, the operation ended by closing the tendon sheath and the skin. In the study group, a collagen-elastin scaffold was wrapped around the repaired tendon segment in both digits. After 3 and 8 weeks, the tendons were harvested and processed histologically. The range of motion of the digits and the gap formation between the repaired tendon ends were measured. The formation of adhesions, infiltration of leucocytes and extracellular inflammatory response were quantified. At the time of tendon harvesting, all joints of the operated toes showed free range of motion. Four-strand core sutures lead to significantly less diastasis between the repaired tendon ends than two-strand core suture repairs. The collagen-elastin scaffold leads to greater gapping after 3 weeks compared to the controls treated without the matrix. Within the tendons treated with the collagen-elastin matrix, a significant boost of cellular and extracellular inflammation could be stated after 3 weeks which was reflected by a higher level of CAE positive cells and more formation of myofibroblasts in the αSMA stain in the study group. The inflammatory response subsided gradually and significantly until the late stage of the study. Both the cellular and extracellular inflammatory response was emphasized with the amount of material used for the repair. The use of a collagen-elastin matrix cannot be advised for the prevention of adhesion

  7. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.

    Science.gov (United States)

    Patterson-Kane, J C; Parry, D A; Birch, H L; Goodship, A E; Firth, E C

    1997-01-01

    The superficial digital flexor tendon is the most commonly injured tendon in the racing Thoroughbred. Despite the clinical significance of this structure, only limited data exist regarding normal age-related morphology of the tensile units, the collagen fibrils. The age at which these collagen fibrils become mature in composition and structure may be of importance. Consequently, the association of age and collagen fibril crosslink composition, diameter distribution and crimp morphology in the superficial and deep digital flexor tendons of Thoroughbreds up to and including three years of age has been studied. Replacement of immature crosslinks, peaking of the collagen fibril mass-average diameter and collagen fibril index, and stabilization of collagen crimp morphology changes supported the hypothesis that both digital flexor tendons become mature in structure by two years of age.

  8. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied...... collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage...... of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise...

  9. Effects of stress-shielding on the dynamic viscoelasticity and ordering of the collagen fibers in rabbit Achilles tendon.

    Science.gov (United States)

    Ikoma, Kazuya; Kido, Masamitsu; Nagae, Masateru; Ikeda, Takumi; Shirai, Toshiharu; Ueshima, Keiichiro; Arai, Yuji; Oda, Ryo; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2013-11-01

    We investigated the effects of stress-shielding on both viscoelastic properties and microstructure of collagen fibers in the Achilles tendon by proton double-quantum filtered ((1) H-DQF) NMR spectroscopy. The right hind-limbs of 20 Japanese white rabbits were immobilized for 4 weeks in a cast with the ankle in plantarflexion. Dynamic viscoelasticity of the Achilles tendons was measured using a viscoelastic spectrometer. Proton DQF NMR signals were analyzed to determine the residual dipolar coupling of bound water molecules in the Achilles tendons. Both the dynamic storage modulus (E') and dynamic loss modulus (E″) decreased significantly in the Achilles tendons of the stress-shielding group. The results of the (1) H-DQF NMR examination demonstrated significantly reduced residual dipolar coupling in the Achilles tendons of this same group. The disorientation of collagen fibers by stress-shielding should contribute to degradation of the dynamic storage and loss moduli. The alterations of the collagen fiber orientation that contributed to the function of tendinous tissue can be evaluated by performing an analysis of (1) H DQF NMR spectroscopy. © 2013 Orthopaedic Research Society.

  10. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  11. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair.

    Science.gov (United States)

    Zhang, Wenyuan; Yang, Yadong; Zhang, Keji; Li, Ying; Fang, Guojian

    2015-02-01

    Natural silk fibroin fiber scaffolds have excellent mechanical properties, but degrade slowly. In this study, we used poly(lactide-co-glycolide) (PLGA, 10:90) fibers to adjust the overall degradation rate of the scaffolds and filled them with collagen to reserve space for cell growth. Silk fibroin-PLGA (36:64) mesh scaffolds were prepared using weft-knitting, filled with type I collagen, and incubated with rabbit autologous bone marrow-derived mesenchymal stem cells (MSCs). These scaffold-cells composites were implanted into rabbit Achilles tendon defects. At 16 weeks after implantation, morphological and histological observations showed formation of tendon-like tissues that expressed type I collagen mRNA and a uniformly dense distribution of collagen fibers. The maximum load of the regenerated Achilles tendon was 58.32% of normal Achilles tendon, which was significantly higher than control group without MSCs. These findings suggest that it is feasible to construct tissue engineered tendon using weft-knitted silk fibroin-PLGA fiber mesh/collagen matrix seeded with MSCs for rabbit Achilles tendon defect repair.

  12. A long-term in vivo investigation on the effects of xenogenous based, electrospun, collagen implants on the healing of experimentally-induced large tendon defects.

    Science.gov (United States)

    Oryan, A; Moshiri, A; Parizi Meimandi, A; Silver, I A

    2013-09-01

    This study was designed to investigate the effect of novel 3-dimensional (3-D) collagen implants on the healing of large, experimentally-induced, tendon-defects in rabbits. Forty mature male white New Zealand rabbits were divided randomly into treated and control groups. Two cm of the left Achilles tendon was excised and the gap was spanned by Kessler suture. In the treated group, a novel 3-D collagen implant was inserted between the cut ends of the tendon. No implant was used in the control group. During the course of the experiment the bioelectrical characteristics of the healing and normal tendons of both groups were investigated weekly. At 120 days post injury (DPI), the tendons were dissected and inspected for gross pathology, examined by transmission and scanning electron microscopy, and their biomechanical properties, percentage dry matter and hydroxyproline concentration assessed. The collagen implant significantly improved the bioelectrical characteristics, gross appearance and tissue alignment of the healed, treated tendons, compared to the healed, control scars. It also significantly increased fibrillogenesis, diameter and density of the collagen fibrils, dry matter content, hydroxyproline concentration, maximum load, stiffness, stress and modulus of elasticity of the treated tendons, as compared to the control tendons. Treatment also significantly decreased peri-tendinous adhesions, and improved the hierarchical organization of the tendon from the collagen fibril to fibre-bundle level. 3-D xenogeneic-based collagen implants induced newly regenerated tissue that was ultrastructurally and biomechanically superior to tissue that was regenerated by natural unassisted healing. This type of bioimplant was biocompatible, biodegradable and appeared suitable for clinical use.

  13. Evidence of structurally continuous collagen fibrils in tendon

    DEFF Research Database (Denmark)

    Svensson, Rene B; Herchenhan, Andreas; Starborg, Tobias

    2017-01-01

    favor continuity. This study initially set out to trace the full length of individual fibrils in adult human tendons, using serial block face-scanning electron microscopy. But even with this advanced technique the required length could not be covered. Instead a statistical approach was used on a large...... volume of fibrils in shorter image stacks. Only a single end was observed after tracking 67.5 mm of combined fibril lengths, in support of fibril continuity. To shed more light on this observation, the full length of a short tendon (mouse stapedius, 125 μm) was investigated and continuity of individual...... fibrils was confirmed. In light of these results, possible mechanisms that could reconcile the opposing findings on fibril continuity are discussed. STATEMENT OF SIGNIFICANCE: Connective tissues hold all parts of the body together and are mostly constructed from thin threads of the protein collagen...

  14. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    International Nuclear Information System (INIS)

    Haroun, Mahdi A.; Khirstova, Palmina K.; Gasmelseed, Gurashi A.; Covington, Antony D.

    2009-01-01

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine

  15. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    Energy Technology Data Exchange (ETDEWEB)

    Haroun, Mahdi A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang (Malaysia)], E-mail: Mahdiupm@hotmail.com; Khirstova, Palmina K. [People' s Hall 11113, P.O. Box 6272, Khartoum (Sudan); Gasmelseed, Gurashi A. [Juba University, Leather Dept. P.O. Box 12327 Khartoum (Sudan); Covington, Antony D. [Leather Centre, University College Northampton, Northampton (United Kingdom)

    2009-02-20

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine.

  16. Interactions between tenocytes and monosodium urate monohydrate crystals: implications for tendon involvement in gout.

    Science.gov (United States)

    Chhana, Ashika; Callon, Karen E; Dray, Michael; Pool, Bregina; Naot, Dorit; Gamble, Greg D; Coleman, Brendan; McCarthy, Geraldine; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2014-09-01

    Advanced imaging studies have demonstrated that urate deposition in periarticular structures, such as tendons, is common in gout. The aim of this study was to investigate the effects of monosodium urate monohydrate (MSU) crystals on tenocyte viability and function. The histological appearance of tendons in joints affected by advanced gout was examined using light microscopy. In vitro, colorimetric assays and flow cytometry were used to assess cell viability in primary rat and primary human tenocytes cultured with MSU crystals. Real-time PCR was used to determine changes in the relative mRNA expression levels of tendon-related genes, and Sirius red staining was used to measure changes in collagen deposition in primary rat tenocytes. In joint samples from patients with gout, MSU crystals were identified within the tendon, adjacent to and invading into tendon, and at the enthesis. MSU crystals reduced tenocyte viability in a dose-dependent manner. MSU crystals decreased the mRNA expression of tendon collagens, matrix proteins and degradative enzymes and reduced collagen protein deposition by tenocytes. These data indicate that MSU crystals directly interact with tenocytes to reduce cell viability and function. These interactions may contribute to tendon damage in people with advanced gout. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  20. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    Science.gov (United States)

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  1. Avastin exhibits therapeutic effects on collagen-induced arthritis in rat model.

    Science.gov (United States)

    Wang, Yong; Da, Gula; Li, Hongbin; Zheng, Yi

    2013-12-01

    Avastin is the monoclonal antibody for vascular endothelial growth factor (VEGF). This study aimed to investigate therapeutic effect of Avastin on type II collagen-induced arthritis. Type II chicken collagen was injected into the tails of Wistar rats, and 60 modeled female rats were randomly divided into three groups (n = 20): Avastin group, Etanercept group, and control group. Arthritis index and joint pad thickness were scored, and the pathology of back metapedes was analyzed. The results showed that compared to control group, the arthritis index, target-to-non-target ratio, synovial pathological injury index, serum levels of VEGF and tumor necrosis factor alpha, and VEGF staining were decreased significantly 14 days after Avastin or Etanercept treatment, but there were no significant differences between Avastin group and Etanercept group. These data provide evidence that Avastin exhibits similar effects to Etanercept to relieve rheumatoid arthritis in rat model and suggest that Avastin is a promising therapeutic agent for rheumatoid arthritis.

  2. Effect of anti-inflammatory medication on the running-induced rise in patella tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dandanell, Sune; Kjaer, Michael

    2011-01-01

    was to elucidate the possible effects of NSAID intake on healthy tendon collagen turnover in relation to a strenuous bout of endurance exercise. Fifteen healthy young men were randomly assigned into two experimental groups, with one group receiving indomethacin (oral 2 × 100 mg Confortid daily for 7 days; NSAID; n......NSAIDs are widely used in the treatment of inflammatory diseases as well as of tendon diseases associated with pain in sports and labor. However, the effect of NSAID intake, and thus blockade of PGE(2) production, on the tendon tissue adaptation is unknown. The purpose of the present study...... = 7) and a placebo group (n = 8). Both groups were exposed to a prolonged bout of running (36 km). The collagen synthesis NH2-terminal propeptide of type I (PINP) and PGE2 concentrations were measured before and 72 h following the run in the patella tendon by microdialysis. The peritendinous...

  3. Effect of exercise on age-related changes in collagen fibril diameter distributions in the common digital extensor tendons of young horses.

    Science.gov (United States)

    Edwards, Lindsey J; Goodship, Allen E; Birch, Helen L; Patterson-Kane, Janet C

    2005-04-01

    To determine whether specific treadmill exercise regimens would accelerate age-related changes in collagen fibril diameter distributions in the common digital extensor tendon (CDET) of the forelimbs of young Thoroughbreds. 24 female Thoroughbreds. Horses were trained for 18 weeks (6 horses; short term) or 18 months (5 horses; long term) on a high-speed treadmill; 2 age-matched control groups (6 horses/group) performed walking exercise only. Horses were (mean +/- SD) 24 +/- 1 months and 39 +/- 1 months old at termination of the short-term and long-term regimens, respectively. Midmetacarpal CDET specimens were obtained and processed for transmission electron microscopy. Diameter and area of at least 1,000 collagen fibrils/specimen were measured by use of computerized image analysis. Mass-average diameter (MAD) of collagen fibrils and collagen fibril index were calculated for each horse. Collagen fibril MAD for the older horses was significantly less than that for the younger horses. Exercise did not significantly affect fibril diameter or distributions in either age group, and collagen fibril index did not differ significantly between groups. Age-related reduction in collagen fibril MAD agreed with findings for other tendons and species. Training did not accelerate age-related change in the CDET in contrast to a reported decrease in collagen fibril MAD in the superficial digital flexor tendon of horses trained long term. Our results support the concept that the functionally distinct nature of the CDET and superficial digital flexor tendon in horses results in fundamentally different responses to high-speed exercise regimens.

  4. In vitro tendon tissue development from human fibroblasts demonstrates collagen fibril diameter growth associated with a rise in mechanical strength

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L; Svensson, René B

    2013-01-01

    Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human...

  5. Can green solvents be alternatives for thermal stabilization of collagen?

    Science.gov (United States)

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons.

    Science.gov (United States)

    Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J

    2017-12-01

    Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  8. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

    DEFF Research Database (Denmark)

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-lin...

  9. Mechanical Properties of Human Patellar Tendon at the Hierarchical levels of Tendon and Fibril

    DEFF Research Database (Denmark)

    Svensson, Rene Brüggebusch; Hansen, Philip; Hassenkam, Tue

    2012-01-01

    Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its...... distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n=5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young...... that of tendon supports that fibrillar rather than interfibrillar properties govern sub-failure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition...

  10. Structural and functional assessment of intense therapeutic ultrasound effects on partial Achilles tendon transection

    Science.gov (United States)

    Barton, Jennifer K.; Rice, Photini S.; Howard, Caitlin C.; Koevary, Jen W.; Danford, Forest; Gonzales, David A.; Vande Geest, Jon; Latt, L. Daniel; Szivek, John A.; Amodei, Richard; Slayton, Michael

    2018-02-01

    Tendinopathies and tendon tears heal slowly because tendons have a limited blood supply. Intense therapeutic ultrasound (ITU) is a treatment modality that creates very small, focal coagula in tissue, which can stimulate a healing response. This pilot study investigated the effects of ITU on rabbit and rat models of partial Achilles tendon rupture. The right Achilles tendons of 20 New Zealand White rabbits and 118 rats were partially transected. Twenty-four hours after surgery, ITU coagula were placed in the tendon and surrounding tissue, alternating right and left legs. At various time points, the following data were collected: ultrasound imaging, optical coherence tomography (OCT) imaging, mechanical testing, gene expression analysis, histology, and multiphoton microscopy (MPM) of sectioned tissue. Ultrasound visualized cuts and treatment lesions. OCT showed the effect of the interventions on birefringence banding caused by collagen organization. MPM showed inflammatory infiltrate, collagen synthesis and organization. By day 14- 28, all tendons had a smooth appearance and histology, MPM and OCT still could still visualize residual healing processes. Few significant results in gene expression were seen, but trends were that ITU treatment caused an initial decrease in growth and collagen gene expression followed by an increase. No difference in failure loads was found between control, cut, and ITU treatment groups, suggesting that sufficient healing had occurred by 14 days to restore all test tissue to control mechanical properties. These results suggest that ITU does not cause harm to tendon tissue. Upregulation of some genes suggests that ITU may increase healing response.

  11. Effects of aging and resistance training in rat tendon remodeling.

    Science.gov (United States)

    Marqueti, Rita C; Durigan, João L Q; Oliveira, Anderson José S; Mekaro, Marcelo Shinyu; Guzzoni, Vinicius; Aro, Andrea A; Pimentel, Edson Rosa; Selistre-de-Araujo, Heloisa S

    2018-01-01

    In elderly persons, weak tendons contribute to functional limitations, injuries, and disability, but resistance training can attenuate this age-related decline. We evaluated the effects of resistance training on the extracellular matrix (ECM) of the calcaneal tendon (CT) in young and old rats and its effect on tendon remodeling. Wistar rats aged 3 mo (young, n = 30) and 20 mo (old, n = 30) were divided into 4 groups: young sedentary, young trained, old sedentary (OS), and old trained (OT). The training sessions were conducted over a 12-wk period. Aging in sedentary rats showed down-regulation in key genes that regulated ECM remodeling. Moreover, the OS group showed a calcification focus in the distal region of the CT, with reduced blood vessel volume density. In contrast, resistance training was effective in up-regulating connective tissue growth factor, VEGF, and decorin gene expression in old rats. Resistance training also increased proteoglycan content in young and old rats in special small leucine-rich proteoglycans and blood vessels and prevented calcification in OT rats. These findings confirm that resistance training is a potential mechanism in the prevention of aging-related loss in ECM and that it attenuates the detrimental effects of aging in tendons, such as ruptures and tendinopathies.-Marqueti, R. C., Durigan, J. L. Q., Oliveira, A. J. S., Mekaro, M. S., Guzzoni, V., Aro, A. A., Pimentel, E. R., Selistre-de-Araujo, H. S. Effects of aging and resistance training in rat tendon remodeling. © FASEB.

  12. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  13. Effectiveness of hybridized nano- and microstructure biodegradable, biocompatible, collagen-based, three-dimensional bioimplants in repair of a large tendon-defect model in rabbits.

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdulhamid; Silver, Ian A; Tanideh, Nader; Golestani, Navid

    2016-06-01

    This study was designed to investigate the effectiveness of hybridized, three-dimensional (3D) collagen implants in repair of experimentally-induced tendon defects in rabbits. Seventy-five mature New Zealand albino rabbits were divided into treated (n = 50) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. In treated animals defects were filled with hybridized collagen implants and repaired with sutures. In control rabbits tendon defects were sutured similarly but the gap was left untreated. Changes in injured and normal contralateral tendons were assessed weekly by ultrasonography. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 (n = 5 at each time interval) and the remainder (n = 20) at 60 days post-injury. All control animals were euthanized at 60 days. Tendon lesions of all animals were examined morphologically and histologically immediately after death. Those of the experimental groups (n = 20 for each) were examined for gross pathological, histopathological and ultrastructural changes together with dry matter content at 60 days post-injury, as were the normal, contralateral tendons of both groups. In comparison with healing lesions of control animals, the treated tendons showed greater numbers of mature tenoblasts and tenocytes, minimal peritendinous adhesions and oedema, together with greater echogenicity, homogeneity and fibril alignment. Fewer chronic inflammatory cells were present in treated than control tendons. Hybridized collagen implants acted as scaffolds for tenoblasts and longitudinally-orientated newly-formed collagen fibrils, which encouraged tendon repair with homogeneous, well-organized highly aligned scar tissue that was histologically and ultrastructurally more mature than in untreated controls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Effects of immobilization and whole-body vibration on rat serum Type I collagen turnover.

    Science.gov (United States)

    Dönmez, Gürhan; Doral, Mahmut Nedim; Suljevic, Şenay; Sargon, Mustafa Fevzi; Bilgili, Hasan; Demirel, Haydar Ali

    2016-08-01

    The aim of this study was to investigate the effects of short-term, high-magnitude whole-body vibration (WBV) on serum type I collagen turnover in immobilized rats. Thirty Wistar albino rats were randomly divided into the following 5 groups: immobilization (IS), immobilization + remobilization (IR), immobilization + WBV (IV), control (C), and WBV control (CV). Immobilization was achieved by casting from the crista iliaca anterior superior to the lower part of the foot for 2 weeks. The applied WBV protocol involved a frequency of 45 Hz and amplitude of 3 mm for 7 days starting a day after the end of the immobilization period. Serum type I collagen turnover markers were measured by using ELISA kits. Serum NH2-terminal propeptide of type I collagen (PINP) levels were significantly lower in the immobilization groups (p immobilization groups. Similarly, serum COOH-terminal telopeptide of type I collagen (CTX) levels were higher in the WBV controls than their own controls (p Immobilization led to deterioration of tendon tissue, as observed by histopathological analysis with a transmission electron microscope. Although 1 week of WBV had a positive effect on type I collagen turnover in controls, it is not an efficient method for repairing tissue damage in the early stage following immobilization. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  15. An engineering, multiscale constitutive model for fiber-forming collagen in tension.

    Science.gov (United States)

    Annovazzi, Lorella; Genna, Francesco

    2010-01-01

    This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.

  16. Orthotopic Transplantation of Achilles Tendon Allograft in Rats: With or without Incorporation of Autologous Mesenchymal Stem Cells.

    Science.gov (United States)

    Aynardi, Michael; Zahoor, Talal; Mitchell, Reed; Loube, Jeffrey; Feltham, Tyler; Manandhar, Lumanti; Paudel, Sharada; Schon, Lew; Zhang, Zijun

    2018-02-01

    The biology and function of orthotopic transplantation of Achilles tendon allograft are unknown. Particularly, the revitalization of Achilles allograft is a clinical concern. Achilles allografts were harvested from donor rats and stored at -80 °C. Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of mesenchymal stem cells (MSCs). MSCs were cultured with growth differentiation factor-5 (GDF-5) and applied onto Achilles allografts on the day of transplantation. After the native Achilles tendon was resected from the left hind limb of the rats, Achilles allograft, with or without autologous MSCs, was implanted and sutured with calf muscles proximally and calcaneus distally. Animal gait was recorded presurgery and postsurgery weekly. The animals were sacrificed at week 4, and the transplanted Achilles allografts were collected for biomechanical testing and histology. The operated limbs had altered gait. By week 4, the paw print intensity, stance time, and duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs were mostly recovered to the baselines recorded before surgery. Maximum load of failure was not different between Achilles allografts, with or without MSCs, and the native tendons. The Achilles allograft supplemented with MSCs had higher cellularity than the Achilles allograft without MSCs. Deposition of fine collagen (type III) fibers was active in Achilles allograft, with or without MSCs, but it was more evenly distributed in the allografts that were incubated with MSCs. In conclusion, orthotopically transplanted Achilles allograft healed with host tissues, regained strength, and largely restored Achilles function in 4 wk in rats. It is therefore a viable option for the reconstruction of a large Achilles tendon defect. Supplementation of MSCs improved repopulation of Achilles allograft, but large animal models, with long-term follow up and cell tracking, may be required to fully

  17. Histomorphometric analysis of the Achilles tendon of Wistar rats treated with laser therapy and eccentric exercise

    Directory of Open Access Journals (Sweden)

    Maria V. de Souza

    2015-12-01

    Full Text Available Abstract: Low-level laser therapy is recommended for the treatment of tendinopathies despite the contradictory results related to the ideal dose of energy, wavelength and time of application. This study aimed to assess the effects of laser therapy and eccentric exercise on tendinopathy of the Achilles tendon of Wistar rats. Forty-eight adult male rats were randomly distributed into four groups (L= laser; E= eccentric exercise; LE = laser and eccentric exercise; and R= rest. Laser therapy (904nm/3J/cm2 and/or eccentric exercise (downhill walking; 15o incline treadmill; 12m/min; 50min/day was started 24h after induction of unilateral tendinopathy and remained for 20 days. At 3, 7, 14 and 21 days after lesion induction, three rats from each group were euthanized and the tendons were collected for histological and morphometric analyses. There was no difference among groups or among times for the characteristics hemorrhage (p=0.4154, fibrinous adhesion formation (p=0.0712, and organization of collagen fibers (p=0.2583 and of the connective tissue (p=0.1046. For these groups, regardless of the time, eccentric exercise led to epitenon thickening (p=0.0204, which was lower in the group treated with laser therapy. Histological analysis revealed differences (p=0.0032 in the number of inflammatory cells over time. They were more numerous in the group that only exercised. This result was confirmed by morphometric analysis, which showed a significant interaction (groups x time for this characteristic. Eccentric exercise increased (p=0.0014 the inflammatory infiltrate over time (3 and 21 days. However, association with laser therapy reduced inflammatory reaction. On the other hand, the combination of the treatments increased angiogenesis in morphometric (p=0.0000 and histological (p=0.0006 analyses compared with the other groups, while the isolated application of low-level laser reduced this characteristic over time. Animals maintained at rest presented the

  18. A collagenolytic streptomycete.

    Science.gov (United States)

    Mukhopadhyay, R P; Chandra, A L

    1996-11-01

    A soil streptomycete (Streptomyces sp. A11) degraded collagen isolated from bovine Achilles tendon, calf skin, human placenta, carp swim bladder and rat tail tendon and released appreciable quantities of hydroxyproline. It also degraded hide powder and vegetable tanned leather. The organism was taxonomically characterized, compared with allied species, identified and designated as Streptomyces wartii.

  19. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  20. Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women

    DEFF Research Database (Denmark)

    Hansen, M; Miller, B F; Holm, L

    2009-01-01

    concentrations of estradiol and progesterone (control, n = 12). Subjects performed 1 h of one-legged kicking exercise. The next day collagen fractional synthesis rates (FSR) in tendon and muscle connective tissue were measured after a flooding dose of [(13)C]proline followed by biopsies from the patellar tendon......, body composition, and exercise-training status were included. The two groups were either habitual users of oral contraceptives exposed to a high concentration of synthetic estradiol and progestogens (OC, n = 11), or non-OC-users tested in the follicular phase of the menstrual cycle characterized by low...... bioavailability of IGF-I in OC. In conclusion, synthetic female sex hormones administered as OC had an inhibiting effect on collagen synthesis in tendon, bone, and muscle connective tissue, which may be related to a lower bioavailability of IGF-I....

  1. Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes

    DEFF Research Database (Denmark)

    Heinemeier, K M; Skovgaard, D; Bayer, M L

    2012-01-01

    was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-ß1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles...... tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading....

  2. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise

    OpenAIRE

    Souza, Maria Verônica de; Silva, Carlos Henrique Osório; Silva, Micheline Ozana da; Costa, Marcela Bueno Martins da; Dornas, Raul Felipe; Borges, Andréa Pacheco Batista; Natali, Antônio José

    2015-01-01

    ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking) on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric e...

  3. Uncoupled regulation of fibronectin and collagen synthesis in Rous sarcoma virus transformed avian tendon cells

    International Nuclear Information System (INIS)

    Parry, G.; Soo, W.J.; Bissell, M.J.

    1979-01-01

    The regulation of fibronectin and procollagen synthesis has been investigated in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. Whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells was thus examined. It was found that while the synthesis of both pro α 1 and pro α 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules

  4. Role of tissue-engineered artificial tendon in healing of a large Achilles tendon defect model in rabbits.

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2013-09-01

    Treatment of large Achilles tendon defects is technically demanding. Tissue engineering is an option. We constructed a collagen-based artificial tendon, covered it with a polydioxanon (PDS) sheath, and studied the role of this bioimplant on experimental tendon healing in vivo. A 2-cm tendon gap was created in the left Achilles tendon of rabbits (n = 120). The animals were randomly divided into 3 groups: control (no implant), treated with tridimensional-collagen, and treated with tridimensional-collagen-bidimensional-PDS implants. Each group was divided into 2 subgroups of 60 and 120 days postinjury (DPI). Another 50 pilot animals were used to study the host-implant interaction. Physical activity of the animals was scored and ultrasonographic and bioelectrical characteristics of the injured tendons were investigated weekly. After euthanasia, macro, micro, and nano morphologies and biophysical and biomechanical characteristics of the healing tendons were studied. Treatment improved function of the animals, time dependently. At 60 and 120 DPI, the treated tendons showed significantly higher maximum load, yield, stiffness, stress, and modulus of elasticity compared with controls. The collagen implant induced inflammation and absorbed the migrating fibroblasts in the defect area. By its unique architecture, it aligned the fibroblasts and guided their proliferation and collagen deposition along the stress line of the tendon and resulted in improved collagen density, micro-amp, micro-ohm, water uptake, and delivery of the regenerated tissue. The PDS-sheath covering amplified these characteristics. The implants were gradually absorbed and replaced by a new tendon. Minimum amounts of peritendinous adhesion, muscle atrophy, and fibrosis were observed in the treated groups. Some remnants of the implants were preserved and accepted as a part of the new tendon. The implants were cytocompatible, biocompatible, biodegradable, and effective in tendon healing and regeneration. This

  5. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean

    2017-01-01

    the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50-fold higher......Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated...... was measured using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and pentosidine with high-pressure liquid chromatography (HPLC) with fluorescent detection. AGEs in Achilles tendon were higher than in tail tendon for CML (P

  6. p38 MAPK signaling in postnatal tendon growth and remodeling.

    Directory of Open Access Journals (Sweden)

    Andrew J Schwartz

    Full Text Available Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.

  7. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Experimental diabetes induces structural, inflammatory and vascular changes of Achilles tendons.

    Directory of Open Access Journals (Sweden)

    Rodrigo R de Oliveira

    Full Text Available This study aims to demonstrate how the state of chronic hyperglycemia from experimental Diabetes Mellitus can influence the homeostatic imbalance of tendons and, consequently, lead to the characteristics of tendinopathy. Twenty animals were randomly divided into two experimental groups: control group, consisting of healthy rats and diabetic group constituted by rats induced to Diabetes Mellitus I. After twenty-four days of the induction of Diabetes type I, the Achilles tendon were removed for morphological evaluation, cellularity, number and cross-sectional area of blood vessel, immunohistochemistry for Collagen type I, VEGF and NF-κB nuclear localization sequence (NLS and nitrate and nitrite level. The Achilles tendon thickness (µm/100g of diabetic animals was significantly increased and, similarly, an increase was observed in the density of fibrocytes and mast cells in the tendons of the diabetic group. The average number of blood vessels per field, in peritendinous tissue, was statistically higher in the diabetic group 3.39 (2.98 vessels/field when compared to the control group 0.89 (1.68 vessels/field p = 0.001 and in the intratendinous region, it was observed that blood vessels were extremely rare in the control group 0.035 (0.18 vessels/field and were often present in the tendons of the diabetic group 0.89 (0.99 vessels/field. The immunohistochemistry analysis identified higher density of type 1 collagen and increased expression of VEGF as well as increased immunostaining for NFκB p50 NLS in the nucleus in Achilles tendon of the diabetic group when compared to the control group. Higher levels of nitrite/nitrate were observed in the experimental group induced to diabetes. We conclude that experimental DM induces notable structural, inflammatory and vascular changes in the Achilles tendon which are compatible with the process of chronic tendinopathy.

  9. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Haddad, Fadia

    2006-01-01

    Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon...... because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle....... However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal...

  10. An improved collagen zymography approach for evaluating the collagenases MMP-1, MMP-8, and MMP-13.

    Science.gov (United States)

    Inanc, Seniz; Keles, Didem; Oktay, Gulgun

    2017-10-01

    Collagen zymography is an SDS-PAGE-based method for detecting both the proenzyme and active forms of collagenases. Although collagen zymography is used for assessment of the matrix metalloproteinases MMP-1 and MMP-13, it can be difficult to detect these collagenases due to technical issues. Moreover, it remains unclear whether the collagenase activity of MMP-8 can be detected by this method. Here, we present an improved collagen zymography method that allows quantification of the activities of MMP-1, MMP-8, and MMP-13. Activities of recombinant collagenases could be detected in collagen zymogram gels copolymerized with 0.3 mg/mL type I collagen extracted from rat tail tendon. This improved method is sensitive enough to detect the activity of as little as 1 ng of collagenase. We generated standard curves for the three collagenases to quantify the collagenolytic activity levels of unknown samples. To validate our improved method, we investigated MMP-1 activity levels in human thyroid cancer (8505C) and normal thyroid (Nthy-ori-3-1) cell lines, finding that the proenzyme and active MMP-1 levels were greater in 8505C cells than in Nthy-ori-3-1 cells. Taken together, our data show that collagen zymography can be used in both molecular and clinical investigations to evaluate collagenase activities in various pathological conditions.

  11. The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity

    International Nuclear Information System (INIS)

    Usha, R.; Ramasami, T.

    2004-01-01

    The effect of urea and n-propanol on circular dichroism (CD) and viscosity of purified type1 collagen solution at various temperatures and differential scanning calorimetry (DSC) of rat-tail tendon (RTT) collagen fibre have been studied. CD reveals a spectrum with a positive peak at around 220 nm and a negative peak at 200 nm characteristics of collagen triple helix. The molar ellipticity decreases as the concentration of urea increases up to particular concentration (collagen solution treated with 265 μM of urea) and after that it increases (collagen solution treated with 500 μM of urea). There is a linear decrease in molar ellipticity as the concentration of n-propanol increases. Denaturation temperature of urea and n-propanol treated with purified collagen solution has been studied using viscosity method. Additives such as urea and n-propanol decrease the thermal stability of collagen triple helix in solution and in RTT collagen fibre. Thermal helix to coil transition of urea and n-propanol treated collagen depends on the degree of hydration and the concentration of these additives. Thermodynamic parameters such as the peak temperature, enthalpy of activation, and energy of activation for collagen-gelatin transition for native, urea and n-propanol treated RTT collagen fibre has been calculated using DSC. The change in the thermodynamic parameters has been observed for native, urea and n-propanol treated RTT collagen fibres. The experimental results show that the change in the water structure, dehydration and desolvation induced by different additives such as urea and n-propanol on RTT may vary with the type of denaturation

  12. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    Science.gov (United States)

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  13. Sex Hormones and Tendon

    DEFF Research Database (Denmark)

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood....... The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet...... has also been linked to a reduced responsiveness to relaxin. The present chapter will focus on sex difference in tendon injury risk, tendon morphology and tendon collagen turnover, but also on the specific effects of estrogen and androgens....

  14. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.

    Science.gov (United States)

    Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre

    2017-05-01

    The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation

  15. Polycyclic aromatic hydrocarbon-protein interactions. Progress report, March 1, 1979-February 28, 1980

    International Nuclear Information System (INIS)

    Fujimori, E.

    1979-10-01

    As bovine serum albumin (BSA) undergoes acid- or base-induced conformational changes, the binding of benzo(a)pyrene (BaP) to BSA, as well as the type II uv fluorescence (380 nm) due to pyrene-like oxidation products, increases. The presence of fatty acids also enhances the binding of BaP to BSA at neutral pH, whereas the visible fluorescence of BaP is effectively quenched by fatty acids. L-Tryptophan, which is specifically bound to BSA, enhances the BaP binding and particularly the formation of pyrene-type products. Upon removal of oxygen, the production of the type I uv fluorescence (340, 357, 378 nm) probably due to BaP radicals is diminished and hydroxy-BaP derivatives are not formed. While BaP undergoes oxygen-dependent reactions with cysteine, non-carcinogenic benzo(e)pyrene does not react with cysteine. The BaP fluorescence of young collagen (from 4 to 6 weeks old rat tail tendon) is more intense than that of old collagen (from about 2 years old rat tail tendon). With increasing temperature, the former fluorescence decreases, whereas the latter increases. The denaturation temperature of both BaP-collagen and uv (365 nm)-irradiated BaP-collagen complexes does not differ from that of collagen itself

  16. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kairui; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Li, Qianqian [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Yang, Jun [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, 421 Hospital of PLA, Guangzhou 510318 (China); Dong, Weiqiang [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, The First Affiliated Hospital to Guangzhou Medical University, Guangzhou 510120 (China); Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Qiang, E-mail: 1780468505@qq.com [Department of Orthopaedics, Subei People’s Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, Jiangsu Province 225001 (China); Yu, Bin, E-mail: carryzhang1985@live.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2014-07-18

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.

  17. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    International Nuclear Information System (INIS)

    Zhang, Kairui; Zhang, Sheng; Li, Qianqian; Yang, Jun; Dong, Weiqiang; Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed; Wang, Qiang; Yu, Bin

    2014-01-01

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation

  18. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits.

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Koohi-Hosseinabadi, Omid

    2014-08-01

    Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host-graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the injured limb when compared with the controls (p Achilles tendon in rabbit. This strategy may be a valuable option in the

  19. Platelet-derived Growth-factor-releasing Aligned Collagen-nanoparticle Fibers Promote the Proliferation and Tenogenic Differentiation of Adipose-derived Stem Cells

    Science.gov (United States)

    2013-11-27

    among the most common ortho- pedic injuries to soldiers due to repeated exercise , heavy-duty work and battlefield injuries [1,2]. Tendon /ligament...longer, sustained effect on cells. This is highly desirable because tendons /ligaments tend to need a longer time to healing due to the lack of...C). A rat Achilles tendon can sustain a maximum force of 32 N. Depending on the outcome of mechanical evaluation, the aligned collagen fiber scaffold

  20. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  1. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  2. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  3. Implantation of a novel biologic and hybridized tissue engineered bioimplant in large tendon defect: an in vivo investigation.

    Science.gov (United States)

    Oryan, Ahmad; Moshiri, Ali; Parizi, Abdolhamid Meimandi; Maffulli, Nicola

    2014-02-01

    Surgical reconstruction of large Achilles tendon defects is technically demanding. There is no standard method, and tissue engineering may be a valuable option. We investigated the effects of 3D collagen and collagen-polydioxanone sheath (PDS) implants on a large tendon defect model in rabbits. Ninety rabbits were divided into three groups: control, collagen, and collagen-PDS. In all groups, 2 cm of the left Achilles tendon were excised and discarded. A modified Kessler suture was applied to all injured tendons to retain the gap length. The control group received no graft, the treated groups were repaired using the collagen only or the collagen-PDS prostheses. The bioelectrical characteristics of the injured areas were measured at weekly intervals. The animals were euthanized at 60 days after the procedure. Gross, histopathological and ultrastructural morphology and biophysical characteristics of the injured and intact tendons were investigated. Another 90 pilot animals were also used to investigate the inflammatory response and mechanism of graft incorporation during tendon healing. The control tendons showed severe hyperemia and peritendinous adhesion, and the gastrocnemius muscle of the control animals showed severe atrophy and fibrosis, with a loose areolar connective tissue filling the injured area. The tendons receiving either collagen or collagen-PDS implants showed lower amounts of peritendinous adhesion, hyperemia and muscle atrophy, and a dense tendon filled the defect area. Compared to the control tendons, application of collagen and collagen-PDS implants significantly improved water uptake, water delivery, direct transitional electrical current and tissue resistance to direct transitional electrical current. Compared to the control tendons, both prostheses showed significantly increased diameter, density and alignment of the collagen fibrils and maturity of the tenoblasts at ultrastructure level. Both prostheses influenced favorably tendon healing

  4. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric exercise, rest, contralateral tendon, and healthy tendon. Unilateral tendinopathy was surgically induced by transversal compression followed by scarification of tendon fibers. The treatments laser therapy (904 nm, 3J/cm² and/or eccentric exercise (downhill walking; 12 m/min; 50 min/day; 15o inclination treadmill began 24 hours after surgery and remained for 20 days. Clinical and biomechanical analyzes were conducted. Achilles tendon was macroscopically evaluated and the transversal diameter measured. Euthanasia was performed 21 days after lesion induction. Tendons of both limbs were collected and frozen at -20°C until biomechanical analysis, on which the characteristic of maximum load (N, stress at ultimate (MPa and maximum extension (mm were analyzed.Results:Swelling was observed within 72 hours postoperative. No fibrous adhesions were observed nor increase in transversal diameter of tendons. Animals with the exercised tendons, but not treated with laser therapy, presented lower (p=0.0000 locomotor capacity. No difference occurred be-tween groups for the biomechanical characteristics maximum load (p=0.4379, stress at ultimate (p=0.4605 and maximum extension (p=0.3820 evaluated, even considering healthy and contralateral tendons.Conclusion:The concomitant use of low-level laser and the eccentric exercise of downhill walking, starting 24 hours after surgically induced tendinopathy, do not result in a tendon with the same biomechanical resistance or elasticity

  5. Tendon tissue engineering: Adipose 1 derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Science.gov (United States)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable when combined with readily available autologous cells may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stromal cells (ADSCs) that were cultured on poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker was upregulated 7 – 8 fold at 1 week with GDF-5 treatment when cultured on 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by 4 fold starting at 1 week on treatment with 100ng/mL GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration. PMID:21436509

  6. Increased mast cell numbers in a calcaneal tendon overuse model

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Kongsgaard Madsen, Mads

    2013-01-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats...... = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density...... (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further...

  7. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    OpenAIRE

    Reddy, G. Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendo...

  8. Tendon Force Transmission at the Nanoscale

    DEFF Research Database (Denmark)

    Svensson, René

    2013-01-01

    of connective tissue function that are poorly understood. One such aspect is the microscopic mechanisms of force transmission through tendons over macroscopic distances. Force transmission is at the heart of tendon function, but the large range of scales in the hierarchical structure of tendons has made...... it difficult to tackle. The tendon hierarchy ranges from molecules (2 nm) over fibrils (200 nm), fibers (2 μm) and fascicles (200 μm) to tendons (10 mm), and to derive the mechanisms of force transmission it is necessary to know the mechanical behavior at each hierarchical level. The aim of the present work...... was to elucidate the mechanisms of force transmission in tendons primarily by investigating the mechanical behavior at the hierarchical level of collagen fibrils. To do so we have developed an atomic force microscopy (AFM) method for tensile testing of native collagen fibrils. The thesis contains five papers...

  9. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    International Nuclear Information System (INIS)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL -1 GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  10. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems.

    Science.gov (United States)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-04-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL(-1) GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  11. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    James, R [Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 (United States); Kumbar, S G; Laurencin, C T [Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030 (United States); Balian, G; Chhabra, A B, E-mail: ac2h@hscmail.mcc.virginia.edu [Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908 (United States)

    2011-04-15

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL{sup -1} GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  12. Effect of adipose-derived mesenchymal stromal cells on tendon healing in aging and estrogen deficiency: an in vitro co-culture model.

    Science.gov (United States)

    Veronesi, Francesca; Della Bella, Elena; Torricelli, Paola; Pagani, Stefania; Fini, Milena

    2015-11-01

    Aging and estrogen deficiency play a pivotal role in reducing tenocyte proliferation, collagen turnover and extracellular matrix remodeling. Mesenchymal stromal cells are being studied as an alternative for tendon regeneration, but little is known about the molecular events of adipose-derived mesenchymal stromal cells (ADSCs) on tenocytes in tendons compromised by aging and estrogen deficiency. The present in vitro study aims to compare the potential therapeutic effects of ADSCs, harvested from healthy young (sham) and aged estrogen-deficient (OVX) subjects, for tendon healing. An indirect co-culture system was set up with ADSCs, isolated from OVX or sham rats, and tenocytes from OVX rats. Cell proliferation, healing rate and gene expression were evaluated in both a standard culture condition and a microwound-healing model. It was observed that tenocyte proliferation, healing rate and collagen expression improved after the addition of sham ADSCs in both culture situations. OVX ADSCs also increased tenocyte proliferation and healing rate but less compared with sham ADSCs. Decorin and Tenascin C expression increased in the presence of OVX ADSCs. Findings suggest that ADSCs might be a promising treatment for tendon regeneration in advanced age and estrogen deficiency. However, some differences between allogenic and autologous cells were found and should be investigated in further in vivo studies. It appears that allogenic ADSCs improve tenocyte proliferation, collagen expression and the healing rate more than autologous cells. Autologous cells increase collagen expression only in the absence of an injury and increase Decorin and Tenascin C more than allogenic cells. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Bevacizumab Improves Achilles Tendon Repair in a Rat Model

    Directory of Open Access Journals (Sweden)

    Herbert Tempfer

    2018-04-01

    Full Text Available Background/Aims: Effective wound-healing generally requires efficient re-vascularization after injury, ensuring sufficient supply with oxygen, nutrients, and various cell populations. While this applies to most tissues, tendons are mostly avascular in nature and harbor relatively few cells, probably contributing to their poor regenerative capacity. Considering the minimal vascularization of healthy tendons, we hypothesize that controlling angiogenesis in early tendon healing is beneficial for repair tissue quality and function. Methods: To address this hypothesis, Bevacizumab, a monoclonal antibody blocking VEGF-A signaling, was locally injected into the defect area of a complete tenotomy in rat Achilles tendon. At 28 days post-surgery, the defect region was investigated using immunohistochemistry against vascular and lymphatic epitopes. Polarization microscopy and biomechanical testing was used to determine tendon integrity and gait analysis for functional testing in treated vs non-treated animals. Results: Angiogenesis was found to be significantly reduced in the Bevacizumab treated repair tissue, accompanied by significantly reduced cross sectional area, improved matrix organization, increased stiffness and Young’s modulus, maximum load and stress. Further, we observed an improved gait pattern when compared to the vehicle injected control group. Conclusion: Based on the results of this study we propose that reducing angiogenesis after tendon injury can improve tendon repair, potentially representing a novel treatment-option.

  14. Automated registration of tail bleeding in rats.

    Science.gov (United States)

    Johansen, Peter B; Henriksen, Lars; Andresen, Per R; Lauritzen, Brian; Jensen, Kåre L; Juhl, Trine N; Tranholm, Mikael

    2008-05-01

    An automated system for registration of tail bleeding in rats using a camera and a user-designed PC-based software program has been developed. The live and processed images are displayed on the screen and are exported together with a text file for later statistical processing of the data allowing calculation of e.g. number of bleeding episodes, bleeding times and bleeding areas. Proof-of-principle was achieved when the camera captured the blood stream after infusion of rat whole blood into saline. Suitability was assessed by recording of bleeding profiles in heparin-treated rats, demonstrating that the system was able to capture on/off bleedings and that the data transfer and analysis were conducted successfully. Then, bleeding profiles were visually recorded by two independent observers simultaneously with the automated recordings after tail transection in untreated rats. Linear relationships were found in the number of bleedings, demonstrating, however, a statistically significant difference in the recording of bleeding episodes between observers. Also, the bleeding time was longer for visual compared to automated recording. No correlation was found between blood loss and bleeding time in untreated rats, but in heparinized rats a correlation was suggested. Finally, the blood loss correlated with the automated recording of bleeding area. In conclusion, the automated system has proven suitable for replacing visual recordings of tail bleedings in rats. Inter-observer differences can be eliminated, monotonous repetitive work avoided, and a higher through-put of animals in less time achieved. The automated system will lead to an increased understanding of the nature of bleeding following tail transection in different rodent models.

  15. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  16. Increased mast cell numbers in a calcaneal tendon overuse model.

    Science.gov (United States)

    Pingel, J; Wienecke, J; Kongsgaard, M; Behzad, H; Abraham, T; Langberg, H; Scott, A

    2013-12-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats were divided in two groups: running group (n = 12); sedentary control group (n = 12). The running-group was exposed to the HIUR exercise protocol for 7 weeks. The calcaneal tendons of both hind limbs were dissected. The right tendon was used for histologic analysis using Bonar score, immunohistochemistry, and second harmonic generation microscopy (SHGM). The left tendon was used for quantitative polymerase chain reaction (qPCR) analysis. An increased tendon cell density in the runners were observed compared to the controls (P = 0.05). Further, the intensity of immunostaining of protein kinase B, P = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further that these changes are associated with an increased mast cell density. © 2013 The Authors. Scand J Med Sci Sports published by John Wiley & Sons Ltd.

  17. Biomechanical and structural parameters of tendons in rats subjected to swimming exercise.

    Science.gov (United States)

    Bezerra, M A; Santos de Lira, K D; Coutinho, M P G; de Mesquita, G N; Novaes, K A; da Silva, R T B; de Brito Nascimento, A K; Inácio Teixeira, M F H B; Moraes, S R A

    2013-12-01

    The aim of this study was to evaluate the effect of swimming exercise, without overloading, on the biomechanical parameters of the calcaneal tendon of rats. 27 male Wistar rats (70 days) were distributed randomly into 2 groups, Control Group (CG; n=15) with restricted movements inside the cage and Swimming Group (SG; n=12), subjected to exercise training in a tank with a water temperature of 30±1°C, for 1 h/day, 5 days/week for 8 weeks. All animals were kept in a reversed light/dark cycle of 12 h with access to food and water ad libitum. After that, they were anesthetized and had their calcaneus tendons collected from their left rear paws. The tendon was submitted to a mechanical test on a conventional test machine. From the stress vs. strain curve, the biomechanical data were analyzed. For the statistical analysis, the Student-T test was used (penergy of deformation/tendon cross sectional area (p=0.017) and elastic modulus of the tendon (p=0.013) showed positive outcomes in SG. There was no difference in the other parameters. The results indicate that the swimming exercise training, without overloading, was an important stimulus for improving the biomechanical parameters and structural properties of the calcaneal tendon. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Reactivity of the isolated perfused rat tail vascular bed

    Directory of Open Access Journals (Sweden)

    A.S. França

    1997-07-01

    Full Text Available Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg and heparinized (500 U. The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE (0.5, 1, 2 and 5 µg, bolus injection was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min. The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml. There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity

  19. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease......-beta and IL-6 is enhanced following exercise. For tendons, metabolic activity (e.g. detected by positron emission tomography scanning), circulatory responses (e.g. as measured by near-infrared spectroscopy and dye dilution) and collagen turnover are markedly increased after exercise. Tendon blood flow...... is regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis...

  20. Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study.

    Science.gov (United States)

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali

    2013-01-01

    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (Ptendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice.

  1. Effect of eccentric exercise on the healing process of injured patellar tendon in rats

    OpenAIRE

    Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro

    2008-01-01

    Background. Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Methods. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise cont...

  2. FIBRILLINS IN TENDON

    Directory of Open Access Journals (Sweden)

    Betti Giusti

    2016-10-01

    Full Text Available Tendons among connective tissue, mainly collagen, contain also elastic fibres made of fibrillin 1, fibrillin 2 and elastin that are broadly distributed in tendons and represent 1-2% of the dried mass of the tendon. Only in the last years, studies on structure and function of elastic fibres in tendons have been performed. Aim of this review is to revise data on the organization of elastic fibres in tendons, in particular fibrillin structure and function, and on the clinical manifestations associated to alterations of elastic fibres in tendons. Indeed, microfibrils may contribute to tendon mechanics; therefore, their alterations may cause joint hypermobility and contractures which have been found to be clinical features in patients with Marfan syndrome and Beals syndrome. The two diseases are caused by mutations in genes FBN1 and FBN2 encoding fibrillin 1 and fibrillin 2, respectively.

  3. Reconstruction of Ligament and Tendon Defects Using Cell Technologies.

    Science.gov (United States)

    Chailakhyan, R K; Shekhter, A B; Ivannikov, S V; Tel'pukhov, V I; Suslin, D S; Gerasimov, Yu V; Tonenkov, A M; Grosheva, A G; Panyushkin, P V; Moskvina, I L; Vorob'eva, N N; Bagratashvili, V N

    2017-02-01

    We studied the possibility of restoring the integrity of the Achilles tendon in rabbits using autologous multipotent stromal cells. Collagen or gelatin sponges populated with cells were placed in a resorbable Vicryl mesh tube and this tissue-engineered construct was introduced into a defect of the middle part of the Achilles tendon. In 4 months, histological analysis showed complete regeneration of the tendon with the formation of parallel collagen fibers, spindle-shaped tenocytes, and newly formed vessels.

  4. Time course of collagen peak in bile duct-ligated rats.

    Science.gov (United States)

    Tarcin, Orhan; Basaranoglu, Metin; Tahan, Veysel; Tahan, Gülgün; Sücüllü, Ilker; Yilmaz, Nevin; Sood, Gagan; Snyder, Ned; Hilman, Gilbert; Celikel, Cigdem; Tözün, Nurdan

    2011-04-28

    One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials. Of the 53 male Wistar rats, 8 (Group 0) were used as a healthy control group. Bile duct ligation (BDL) had been performed in the rest. Bile duct-ligated rates were sacrificed 7 days later in group 1 (10 rats), 14 days later in group 2 (9 rats), 21 days later in group 3(9 rats) and 28 days later in group 4 (9 rats). Eight rats underwent sham-operation (Sham). Hepatic collagen measurements as well as serum levels of liver enzymes and function tests were all analysed. The peak level of collagen was observed biochemically and histomorphometricly at the end of third week (P fibrosis in bile duct-ligated rats is transient, i.e. reverses spontaneously after 3 weeks. This contrasts any situation in patients where hepatic fibrosis is progressive and irreversible as countless studies performed by many investigators in the same animal model.

  5. Structure and component alteration of rabbit Achilles tendon in tissue culture.

    Science.gov (United States)

    Hosaka, Yoshinao; Ueda, Hiromi; Yamasaki, Tadatsugu; Suzuki, Daisuke; Matsuda, Naoya; Takehana, Kazushige

    2005-12-01

    The aim of this study was to investigate alterations of cultured tendon tissues to determine whether tissue culture is a useful method for biological analyses of the tendon. Tendon tissues for tissue culture were isolated from Achilles tendons of rabbits. The tendon segments were placed one segment per well and incubated in growth medium consisting of Dullbecco's modified Eagle's medium supplemented with 5% fetal bovine serum at 37 degrees C in a humidified atmosphere with 5% CO(2) for various periods. The alignment of collagen fibrils was preserved for 48 h, but tendon structure has disintegrated at 96 h. Alcian blue staining and gelatine zymography revealed that proteoglycan markedly diminished and that matrix metalloproteinase (MMPs) activity was upregulated sharply at 72 and 96 h. The ratio of collagen fibrils with large diameter had increased and the mean diameter and mass average diameter value had reached maximum at 48 h. The values then decreased and mean diameters at 72 and 96 h were significantly different from that at 48 h. At 96 h, the ratio of collagen fibrils with small diameters had increased and collagen fibrils with large diameters had disappeared. These findings indicate that structural alteration is possible to be induced by disintegration of collagen fibrils and disappearance of glycosaminoglycans from extracellular matrix (ECM), subsequent of upregulation of MMPs activity. Although the study period is limited, the tissue culture method is available for investigating cell-ECM interaction in tendons.

  6. rhPDGF-BB promotes early healing in a rat rotator cuff repair model.

    Science.gov (United States)

    Kovacevic, David; Gulotta, Lawrence V; Ying, Liang; Ehteshami, John R; Deng, Xiang-Hua; Rodeo, Scott A

    2015-05-01

    Tendon-bone healing after rotator cuff repair occurs by fibrovascular scar tissue formation, which is weaker than a normal tendon-bone insertion site. Growth factors play a role in tissue formation and have the potential to augment soft tissue healing in the perioperative period. Our study aim was to determine if rhPDGF-BB delivery on a collagen scaffold can improve tendon-to-bone healing after supraspinatus tendon repair compared with no growth factor in rats as measured by (1) gross observations; (2) histologic analysis; and (3) biomechanical testing. Ninety-five male Sprague-Dawley rats underwent acute repair of the supraspinatus tendon. Rats were randomized into one of five groups: control (ie, repair only), scaffold only, and three different platelet-derived growth factor (PDGF) doses on the collagen scaffold. Animals were euthanized 5 days after surgery to assess cellular proliferation and angiogenesis. The remaining animals were analyzed at 4 weeks to assess repair site integrity by gross visualization, fibrocartilage formation with safranin-O staining, and collagen fiber organization with picrosirius red staining, and to determine the biomechanical properties (ie, load-to-failure testing) of the supraspinatus tendon-bone construct. The repaired supraspinatus tendon was in continuity with the bone in all animals. At 5 days, rhPDGF-BB delivery on a scaffold demonstrated a dose-dependent response in cellular proliferation and angiogenesis compared with the control and scaffold groups. At 28 days, with the numbers available, rhPDGF-BB had no effect on increasing fibrocartilage formation or improving collagen fiber maturity at the tendon-bone insertion site compared with controls. The control group had higher tensile loads to failure and stiffness (35.5 ± 8.8 N and 20.3 ± 4.5 N/mm) than all the groups receiving the scaffold, including the PDGF groups (scaffold: 27 ± 6.4 N, p = 0.021 and 13 ± 5.7 N/mm, p = 0.01; 30 µg/mL PDGF: 26.5 ± 7.5 N, p = 0.014 and 13

  7. Effects of training on collagen fibril populations in the suspensory ligament and deep digital flexor tendon of young thoroughbreds.

    Science.gov (United States)

    Patterson-Kane, J C; Firth, E C; Parry, D A; Wilson, A M; Goodship, A E

    1998-01-01

    To determine the effect of a specific galloping exercise regimen on collagen fibril mass-average diameters (MAD) in the deep digital flexor tendon (DDFT) and suspensory ligament (SL) of young Thoroughbreds. 12 Thoroughbred fillies, 21 +/- 1 (mean +/- SD) months old. 6 horses underwent a specific 18-month treadmill training program involving galloping exercise. The remaining 6 horses served as controls, undertaking low-volume walking exercise over the same period. Sections were excised from the midpoint of the DDFT and SL, and small strips were dissected from central and peripheral locations for each structure. Fibril diameters were measured from micrographs of transverse ultrathin sections, using a computerized image analysis program. An MAD value was calculated for the central and peripheral regions of the DDFT and SL for each horse. Values for both regions were compared between exercised and control horses. The MAD did not change significantly with exercise for either the DDFT or the SL. Loading of the DDFT as a result of this exercise regimen was not sufficient to stimulate collagen fibril hypertrophy, in keeping with current data that indicate this tendon, compared with the SL and superficial digital flexor tendon (SDFT), is subjected to low loads. Microtrauma, in terms of reduction in fibril MAD, may have occurred in the SL at a site different from that sampled. Another possibility is that, between the trot and the gallop, loading of the SL does not increase to the same extent as that of the SDFT.

  8. Time course of collagen peak in bile duct-ligated rats

    Directory of Open Access Journals (Sweden)

    Snyder Ned

    2011-04-01

    Full Text Available Abstract Background One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials. Methods Of the 53 male Wistar rats, 8 (Group 0 were used as a healthy control group. Bile duct ligation (BDL had been performed in the rest. Bile duct-ligated rates were sacrificed 7 days later in group 1 (10 rats, 14 days later in group 2 (9 rats, 21 days later in group 3(9 rats and 28 days later in group 4 (9 rats. Eight rats underwent sham-operation (Sham. Hepatic collagen measurements as well as serum levels of liver enzymes and function tests were all analysed. Results The peak level of collagen was observed biochemically and histomorphometricly at the end of third week (P Conclusion We have shown that fibrosis in bile duct-ligated rats is transient, i.e. reverses spontaneously after 3 weeks. This contrasts any situation in patients where hepatic fibrosis is progressive and irreversible as countless studies performed by many investigators in the same animal model.

  9. Effect of methylprednisolone use on the rotator cuff in rats: biomechanical and histological study

    Directory of Open Access Journals (Sweden)

    Gustavo Vinícius Ghellioni

    2015-06-01

    Full Text Available OBJECTIVE: To evaluate the influence of treatment with different doses of methylprednisolone on the mechanical resistance and possible histological alterations of the rotator cuff tendon in rats.METHODS: Male Wistar rats were divided randomly into four treatment groups: sham, vehicle or 0.6 mg/kg or 6.0 mg/kg of methylprednisolone. Changes to mechanical resistance (in N and histological parameters (fibrillar appearance, presence of collagen, edema and vascular proliferation of the rotator cuff tendon were evaluated. The analyses were conducted after administration of one treatment (24 h afterwards, two treatments (7 days afterward or three treatments (14 days afterwards, into the subacromial space.RESULTS: Seven and fourteen days after the treatments were started, it was found that in a dose-dependent manner, methylprednisolone reduced the mechanical resistance of the rotator cuff tendon (p < 0.05 in relation to the vehicle group. Modifications to the histological parameters were observed on the 7th and 14th days after the first infiltration, especially regarding the presence of collagen and vascular proliferation, for the dose of 0.6 mg/kg of methylprednisolone, and also regarding the presence of collagen, edema and vascular proliferation for the dose of 6.0 mg/kg of corticoid.CONCLUSION: The results obtained demonstrated a relationship between methylprednisolone use through infiltration into the subacromial space and reduction of the mechanical resistance of and histological modifications to the rotator cuff tendon in rats.

  10. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair.

    Science.gov (United States)

    Juncosa-Melvin, Natalia; Boivin, Gregory P; Galloway, Marc T; Gooch, Cindi; West, John R; Butler, David L

    2006-04-01

    The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity. Autogenous tissue-engineered constructs were fabricated in culture between posts in the wells of silicone dishes at four cell-to-collagen ratios by seeding mesenchymal stem cells (MSC) from 18 adult rabbits at each of two seeding densities (0.1 x 10(6) and 1 x 10(6) cell/mL) in each of two collagen concentrations (1.3 and 2.6 mg/mL). After 5 days of contraction, constructs having the two highest ratios (0.4 and 0.8 M/mg) were damaged by excessive cell traction forces and could not be used in subsequent in vivo studies. Constructs at the lower ratios (0.04 and 0.08 M/mg) were implanted in bilateral, 2 cm long gap defects in the rabbit's lateral Achilles tendon. At 12 weeks after surgery, both repair tissues were isolated and either failed in tension (n = 13) to determine their biomechanical properties or submitted for histological analysis (n = 5). No significant differences were observed in any structural or mechanical properties or in histological appearance between the two repair conditions. However, the average maximum force and maximum stress of these repairs achieved 50 and 85% of corresponding values for the normal AT and exceeded the largest peak in vivo forces (19% of failure) previously recorded in the rabbit AT. Average stiffness and modulus were 60 and 85% of normal values, respectively. New constructs with lower cell densities and higher scaffold stiffness that do not excessively contract and tear in culture and that further improve the repair stiffness needed to withstand various levels of expected in vivo loading are currently being investigated.

  11. Effect of platelet-rich plasma on tendon-to-bone healing after rotator cuff repair in rats: an in vivo experimental study.

    Science.gov (United States)

    Hapa, Onur; Cakıcı, Hüsamettin; Kükner, Aysel; Aygün, Hayati; Sarkalan, Nazlı; Baysal, Gökhan

    2012-01-01

    The purpose of this experimental study was to analyze the effects of local autologous platelet-rich plasma (PRP) injection on tendon-to-bone healing in a rotator cuff repair model in rats. Rotator cuff injury was created in 68 left shoulders of rats. PRP was obtained from the blood of an additional 15 rats. The 68 rats were divided into 4 groups with 17 rats in each group; PRP group (Week 2), control group (Week 2), PRP group (Week 4), and control group (Week 4). Platelet-rich plasma or saline was injected to the repair area intraoperatively. Rats were sacrificed 2 and 4 weeks after the surgery. Histological analysis using a semiquantitative scoring was performed on 7 rats per group. Tendon integrity and increases in vascularity and inflammatory cells and the degree of new bone formation were evaluated and compared between the groups. The remaining tendons (n=10) were mechanically tested. Degree of inflammation and vascularity were less in the study group at both time intervals (protator cuff tendon-to-bone healing and enhance initial tendon-to-bone healing remodeling. This may represent a clinically important improvement in rotator cuff repair.

  12. Eccentric exercise: acute and chronic effects on healthy and diseased tendons.

    Science.gov (United States)

    Kjaer, Michael; Heinemeier, Katja M

    2014-06-01

    Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive to differences in type and/or amount of mechanical stimulus with regard to expression of collagen, regulatory factors for collagen, and cross-link regulators. In overused (tendinopathic) human tendon, eccentric exercise training has a beneficial effect, but the mechanism by which this is elicited is unknown, and slow concentric loading appears to have similar beneficial effects. It may be that tendinopathic regions, as long as they are subjected to a certain magnitude of load at a slow speed, independent of whether this is eccentric or concentric in nature, can reestablish their normal tendon fibril alignment and cell morphology. Copyright © 2014 the American Physiological Society.

  13. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect

  14. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  15. Hyperuricemic PRP in Tendon Cells

    Directory of Open Access Journals (Sweden)

    I. Andia

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP is injected within tendons to stimulate healing. Metabolic alterations such as the metabolic syndrome, diabetes, or hyperuricemia could hinder the therapeutic effect of PRP. We hypothesise that tendon cells sense high levels of uric acid and this could modify their response to PRP. Tendon cells were treated with allogeneic PRPs for 96 hours. Hyperuricemic PRP did not hinder the proliferative actions of PRP. The gene expression pattern of inflammatory molecules in response to PRP showed absence of IL-1b and COX1 and modest expression of IL6, IL8, COX2, and TGF-b1. IL8 and IL6 proteins were secreted by tendon cells treated with PRP. The synthesis of IL6 and IL8 proteins induced by PRP is decreased significantly in the presence of hyperuricemia (P = 0.017 and P = 0.012, resp.. Concerning extracellular matrix, PRP-treated tendon cells displayed high type-1 collagen, moderate type-3 collagen, decorin, and hyaluronan synthase-2 expression and modest expression of scleraxis. Hyperuricemia modified the expression pattern of extracellular matrix proteins, upregulating COL1 (P = 0.036 and COMP (P = 0.012 and downregulating HAS2 (P = 0.012. Positive correlations between TGF-b1 and type-1 collagen (R = 0.905, P = 0.002 and aggrecan (R = 0.833, P = 0.010 and negative correlations between TGF-b1 and IL6 synthesis (R = −0.857, P = 0.007 and COX2 (R = −0.810, P = 0.015 were found.

  16. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair.

    Science.gov (United States)

    Kovacevic, David; Fox, Alice J; Bedi, Asheesh; Ying, Liang; Deng, Xiang-Hua; Warren, Russell F; Rodeo, Scott A

    2011-04-01

    Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. Controlled laboratory study. Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. The delivery of TGF-β(3) with an injectable Ca-P matrix

  17. Healing of rotator cuff tendons using botulinum toxin A and immobilization in a rat model.

    Science.gov (United States)

    Gilotra, Mohit N; Shorofsky, Michael J; Stein, Jason A; Murthi, Anand M

    2016-03-15

    We evaluated effects of botulinum toxin A (Botox) and cast immobilization on tendon healing in a rat model. Injection of Botox into rat supraspinatus was hypothesized to reduce muscle active force and improved healing. Eighty-four supraspinatus tendons were surgically transected and repaired in 42 Sprague-Dawley rats (transosseous technique). After repair, supraspinatus muscle was injected with saline or Botox (3 or 6 U/kg). Half the shoulders were cast-immobilized for the entire postoperative period; half were allowed free cage activity. Histology was examined at 2, 4, 8, and 12 weeks. A healing zone cross-sectional area was measured, and biomechanical testing of repair strength and tendon viscoelastic properties was conducted at 4 and 12 weeks. Botox alone and cast immobilization alone exhibited increased ultimate load compared with controls (saline injection, no immobilization) at 4 weeks. No difference in ultimate load occurred between Botox-only and cast-only groups. At 12 weeks, the Botox (6 U/kg) plus cast immobilization group was significantly weakest (p < 0.05). A trend was shown toward decreased healing zone cross-sectional areas in casted groups. Supraspinatus Botox injection after rotator cuff repair might help protect the repair. However, cast immobilization plus Botox administration is harmful to rotator cuff healing in a rat tendon model.

  18. Growth and maturational changes in dense fibrous connective tissue following 14 days of rhGH supplementation in the dwarf rat

    Science.gov (United States)

    Kyparos, Antonios; Orth, Michael W.; Vailas, Arthur C.; Martinez, Daniel A.

    2002-01-01

    The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.

  19. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Science.gov (United States)

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  20. Tendon Contraction After Cyclic Elongation Is an Age-Dependent Phenomenon: In Vitro and In Vivo Comparisons.

    Science.gov (United States)

    Lavagnino, Michael; Bedi, Asheesh; Walsh, Christopher P; Sibilsky Enselman, Elizabeth R; Sheibani-Rad, Shahin; Arnoczky, Steven P

    2014-06-01

    Tendons are viscoelastic tissues that deform (elongate) in response to cyclic loading. However, the ability of a tendon to recover this elongation is unknown. Tendon length significantly increases after in vivo or in vitro cyclic loading, and the ability to return to its original length through a cell-mediated contraction mechanism is an age-dependent phenomenon. Controlled laboratory study. In vitro, rat tail tendon fascicles (RTTfs) from Sprague-Dawley rats of 3 age groups (1, 3, and 12 months) underwent 2% cyclic strain at 0.17 Hz for 2 hours, and the percentages of elongation were determined. After loading, the RTTfs were suspended for 3 days under tissue culture conditions and photographed daily to determine the amount of length contraction. In vivo, healthy male participants (n = 29; age, 19-49 years) had lateral, single-legged weightbearing radiographs taken of the knee at 60° of flexion immediately before, immediately after, and 24 hours after completing eccentric quadriceps loading exercises on the dominant leg to fatigue. Measurements of patellar tendon length were taken from the radiographs, and the percentages of tendon elongation and subsequent contraction were calculated. In vitro, cyclic loading increased the length of all RTTfs, with specimens from younger (1 and 3 months) rats demonstrating significantly greater elongation than those from older (12 months) rats (P = .009). The RTTfs contracted to their original length significantly faster (P fashion, with younger animals contracting faster. In vivo, repetitive eccentric loading exercises significantly increased patellar tendon length (P 30 years). Cyclic tendon loading results in a significant increase in tendon elongation under both in vitro and in vivo conditions. Tendons in both conditions demonstrated an incomplete return to their original length after 24 hours, and the extent of this return was age dependent. The age- and time-dependent contraction of tendons, elongated after repetitive

  1. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model.

    Science.gov (United States)

    Deng, Dan; Wang, Wenbo; Wang, Bin; Zhang, Peihua; Zhou, Guangdong; Zhang, Wen Jie; Cao, Yilin; Liu, Wei

    2014-10-01

    Adipose derived stem cells (ASCs) are an important cell source for tissue regeneration and have been demonstrated the potential of tenogenic differentiation in vitro. This study explored the feasibility of using ASCs for engineered tendon repair in vivo in a rabbit Achilles tendon model. Total 30 rabbits were involved in this study. A composite tendon scaffold composed of an inner part of polyglycolic acid (PGA) unwoven fibers and an outer part of a net knitted with PGA/PLA (polylactic acid) fibers was used to provide mechanical strength. Autologous ASCs were harvested from nuchal subcutaneous adipose tissues and in vitro expanded. The expanded ASCs were harvested and resuspended in culture medium and evenly seeded onto the scaffold in the experimental group, whereas cell-free scaffolds served as the control group. The constructs of both groups were cultured inside a bioreactor under dynamic stretch for 5 weeks. In each of 30 rabbits, a 2 cm defect was created on right side of Achilles tendon followed by the transplantation of a 3 cm cell-seeded scaffold in the experimental group of 15 rabbits, or by the transplantation of a 3 cm cell-free scaffold in the control group of 15 rabbits. Animals were sacrificed at 12, 21 and 45 weeks post-surgery for gross view, histology, and mechanical analysis. The results showed that short term in vitro culture enabled ASCs to produce matrix on the PGA fibers and the constructs showed tensile strength around 50 MPa in both groups (p > 0.05). With the increase of implantation time, cell-seeded constructs gradually form neo-tendon and became more mature at 45 weeks with histological structure similar to that of native tendon and with the presence of bipolar pattern and D-periodic structure of formed collagen fibrils. Additionally, both collagen fibril diameters and tensile strength increased continuously with significant difference among different time points (p tendon tissue with fibril structure observable only at 45 weeks

  2. Region-specific mechanical properties of the human patella tendon

    DEFF Research Database (Denmark)

    Haraldsson, B T; Aagaard, P; Krogsgaard, M

    2004-01-01

    The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig...... portion of the tendon, indicating region-specific material properties....

  3. Micromechanical properties and collagen composition of ruptured human achilles tendon

    DEFF Research Database (Denmark)

    Hansen, Philip; Kovanen, Vuokko; Hölmich, Per

    2013-01-01

    The Achilles tendon is one of the strongest tendons in the human body, and yet it frequently ruptures, which is a substantial clinical problem. However, the cause of ruptures remains elusive.......The Achilles tendon is one of the strongest tendons in the human body, and yet it frequently ruptures, which is a substantial clinical problem. However, the cause of ruptures remains elusive....

  4. In-situ Damage Assessment of Collagen within Ancient Manuscripts Written on Parchment: A Polarized Raman Spectroscopy Approach

    Science.gov (United States)

    Schütz, R.; Rabin, I.; Hahn, O.; Fratzl, P.; Masic, A.

    2010-08-01

    native and gelatinized (random coiled collagen), stretched and not stretched rat tail tendon (RTT), bovine skin collagen, new and artificially aged parchments and collagen fibers from the Temple scroll (Figure 1).

  5. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    International Nuclear Information System (INIS)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik; Kjaer, Andreas

    2009-01-01

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. 18 F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance≥1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  6. Tissue-Engineered Tendon for Enthesis Regeneration in a Rat Rotator Cuff Model

    Directory of Open Access Journals (Sweden)

    Michael J. Smietana

    2017-06-01

    Full Text Available Healing of rotator cuff (RC injuries with current suture or augmented scaffold techniques fails to regenerate the enthesis and instead forms a weaker fibrovascular scar that is prone to subsequent failure. Regeneration of the enthesis is the key to improving clinical outcomes for RC injuries. We hypothesized that the utilization of our tissue-engineered tendon to repair either an acute or a chronic full-thickness supraspinatus tear would regenerate a functional enthesis and return the biomechanics of the tendon back to that found in native tissue. Engineered tendons were fabricated from bone marrow-derived mesenchymal stem cells utilizing our well-described fabrication technology. Forty-three rats underwent unilateral detachment of the supraspinatus tendon followed by acute (immediate or chronic (4 weeks retracted repair by using either our engineered tendon or a trans-osseous suture technique. Animals were sacrificed at 8 weeks. Biomechanical and histological analyses of the regenerated enthesis and tendon were performed. Statistical analysis was performed by using a one-way analysis of variance with significance set at p < 0.05. Acute repairs using engineered tendon had improved enthesis structure and lower biomechanical failures compared with suture repairs. Chronic repairs with engineered tendon had a more native-like enthesis with increased fibrocartilage formation, reduced scar formation, and lower biomechanical failure compared with suture repair. Thus, the utilization of our tissue-engineered tendon showed improve enthesis regeneration and improved function in chronic RC repairs compared with suture repair. Clinical Significance: Our engineered tendon construct shows promise as a clinically relevant method for repair of RC injuries.

  7. Use of cis-[18F] fluoro-proline for assessment of exercise-related collagen synthesis in musculoskeletal connective tissue

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Andreas; Heinemeier, Katja Maria

    2011-01-01

    Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[(18)F]fluoro-proline (cis-Fpro), for non-invasive assess......Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[(18)F]fluoro-proline (cis-Fpro), for non......-invasive assessment of collagen synthesis in rat musculoskeletal tissues at rest and following short-term (3 days) treadmill running. Musculoskeletal collagen synthesis was studied in rats at rest and 24 h post-exercise. At each session, rats were PET scanned at two time points following injection of cis-FPro: (60...... and 240 min p.i). SUV were calculated for Achilles tendon, calf muscle and tibial bone. The PET-derived results were compared to mRNA expression of collagen type I and III. Tibial bone had the highest SUV that increased significantly (p...

  8. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-02-01

    Full Text Available Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs and tendon cells (TCs. Methods: The effect of continuous passive motion (CPM therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.

  9. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction.

    Directory of Open Access Journals (Sweden)

    Prabhat Tiwari

    Full Text Available Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV and BM-40 from hemocytes and fat cells.

  10. Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance.

    Science.gov (United States)

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali

    2013-05-14

    Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits. Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI. This novel collagen implant was biodegradable, biocompatible and possibly could be considered as a substitute for auto and allografts in clinical practice in near future.

  11. Fluoroquinolones impair tendon healing in a rat rotator cuff repair model: a preliminary study.

    Science.gov (United States)

    Fox, Alice J S; Schär, Michael O; Wanivenhaus, Florian; Chen, Tony; Attia, Erik; Binder, Nikolaus B; Otero, Miguel; Gilbert, Susannah L; Nguyen, Joseph T; Chaudhury, Salma; Warren, Russell F; Rodeo, Scott A

    2014-12-01

    Recent studies suggest that fluoroquinolone antibiotics predispose tendons to tendinopathy and/or rupture. However, no investigations on the reparative capacity of tendons exposed to fluoroquinolones have been conducted. Fluoroquinolone-treated animals will have inferior biochemical, histological, and biomechanical properties at the healing tendon-bone enthesis compared with controls. Controlled laboratory study. Ninety-two rats underwent rotator cuff repair and were randomly assigned to 1 of 4 groups: (1) preoperative (Preop), whereby animals received fleroxacin for 1 week preoperatively; (2) pre- and postoperative (Pre/Postop), whereby animals received fleroxacin for 1 week preoperatively and for 2 weeks postoperatively; (3) postoperative (Postop), whereby animals received fleroxacin for 2 weeks postoperatively; and (4) control, whereby animals received vehicle for 1 week preoperatively and for 2 weeks postoperatively. Rats were euthanized at 2 weeks postoperatively for biochemical, histological, and biomechanical analysis. All data were expressed as mean ± standard error of the mean (SEM). Statistical comparisons were performed using either 1-way or 2-way ANOVA, with P repair response that has potential clinical implications for patients who are exposed to fluoroquinolones before tendon repair surgery. © 2014 The Author(s).

  12. Tail position affects the body temperature of rats during cold exposure in a low-energy state.

    Science.gov (United States)

    Uchida, Yuki; Tokizawa, Ken; Nakamura, Mayumi; Lin, Cheng-Hsien; Nagashima, Kei

    2012-02-01

    Rats place their tails underneath their body trunks when cold (tail-hiding behavior). The aim of the present study was to determine whether this behavior is necessary to maintain body temperature. Male Wistar rats were divided into 'fed' and '42-h fasting' groups. A one-piece tail holder (8.4 cm in length) that prevented the tail-hiding behavior or a three-piece tail holder (2.8 cm in length) that allowed for the tail-hiding behavior was attached to the tails of the rats. The rats were exposed to 27°C for 180 min or to 20°C for 90 min followed by 15°C for 90 min with continuous body temperature and oxygen consumption measurements. Body temperature decreased by -1.0 ± 0.1°C at 15°C only in the rats that prevented tail-hiding behavior of the 42-h fasting group, and oxygen consumption increased at 15°C in all animals. Oxygen consumption was not different between the rats that prevented tail-hiding behavior and the rats that allowed the behavior in the fed and 42-h fasting groups under ambient conditions. These results show that the tail-hiding behavior is involved in thermoregulation in the cold in fasting rats.

  13. Effect of eccentric exercise on the healing process of injured patellar tendon in rats.

    Science.gov (United States)

    Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro

    2008-07-01

    Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise controls (group N; n = 20); concentric exercise group (group C; n = 20); eccentric exercise group (group E; n = 20). Each rat was taught to run uphill or downhill for 14 days. Patellar tendons were removed 1, 4, 7, 10, and 14 days following injury. Vascular endothelial growth factor (VEGF), angiopoietin-1, and angiopoietin-2 were measured by reverse transcription polymerase chain reaction. In group C, VEGF mRNA was increased 1 and 4 days following injury but was decreased on days 7, 10, and 14. In group E, VEGF mRNA was elevated only on day 1. In group N, VEGF mRNA remained at a low level throughout all 14 days. The angiopoietin-2/angiopoietin-1 ratio was higher for group C than for group E. In the presence of VEGF, angiopoietin-1 promotes vessel stability, whereas angiopoietin-2 has the opposite effect. Eccentric exercise contributes to stabilized angiogenesis during the early phase of tendon injury. Conversely, concentric exercise, which induces destabilized angiogenesis, leads to a delayed healing response. Initiation of eccentric exercise immediately after tendon injury may help improve healing by reducing vascularity.

  14. Acceleration of tendon healing using US guided intratendinous injection of bevacizumab: First pre-clinical study on a murine model

    International Nuclear Information System (INIS)

    Dallaudière, Benjamin; Lempicki, Marta; Pesquer, Lionel; Louedec, Liliane; Preux, Pierre Marie; Meyer, Philippe; Hess, Agathe; Durieux, Marie Hèlène Moreau; Hummel, Vincent; Larbi, Ahmed; Deschamps, Lydia

    2013-01-01

    Purpose: Tendinopathy shows early disorganized collagen fibers with neo-angiogenesis on histology. Peri-tendinous injection of corticosteroid is the commonly accepted strategy despite the abscence of inflammation in tendinosis. The aim of our study was to assess the potential of intratendinous injection of an anti-angiogenic drug (bevacizumab, AA) to treat tendinopathy in a murine model of patellar and Achilles tendinopathy, and to evaluate its local toxicity. Materials and method: Forty rats (160 patellar and Achilles tendons) were used for this study. We induced tendinosis (T+) in 80 tendons by injecting under ultrasonography (US) guidance Collagenase 1 ® (day 0 = D0, patellar = 40 and Achilles = 40). Clinical examination and tendon US were performed at D3, immediately followed by either AA (AAT+, n = 40) or physiological serum (PST+, n = 40, control) US-guided intratendinous injection. Follow-up at D6 and D13 using clinical, US and histology, and comparison between the 2 groups were performed. To study AA toxicity we compared the 80 remaining normal tendons (T−) after injecting AA in 40 (AAT−). Results: All AAT+ showed a better joint mobilization compared to PST+ at D6 (p = 0.004) with thinner US tendon diameters (p < 0.004), and less disorganized collagen fibers and neovessels on histology (p < 0.05). There was no difference at D13 regarding clinical status, US tendon diameter and histology (p > 0.05). Comparison between AAT− and T− showed no AA toxicity on tendon (p = 0.18). Conclusion: Our study suggests that high dose mono-injection of AA in tendinosis, early after the beginning of the disease, accelerates tendon's healing, with no local toxicity

  15. Acceleration of tendon healing using US guided intratendinous injection of bevacizumab: First pre-clinical study on a murine model

    Energy Technology Data Exchange (ETDEWEB)

    Dallaudière, Benjamin, E-mail: bendallau64@hotmail.fr [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Inserm U698, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Lempicki, Marta [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Pesquer, Lionel [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Louedec, Liliane [Inserm U698, Hôpital universitaire Bichat, Paris (France); Preux, Pierre Marie [Laboratoire de Biostatistiques, Faculté de médecine, Limoges (France); Meyer, Philippe [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Hess, Agathe [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Université de Médecine Paris Diderot (France); Durieux, Marie Hèlène Moreau [Centre d’Imagerie Ostéo Articulaire, Clinique du Sport de Bordeaux-Mérignac (France); Hummel, Vincent; Larbi, Ahmed [Service de Radiologie, Hôpital universitaire Bichat, Paris (France); Deschamps, Lydia [Service d’ Anatomopathologie, Hôpital universitaire Bichat, Paris (France); and others

    2013-12-01

    Purpose: Tendinopathy shows early disorganized collagen fibers with neo-angiogenesis on histology. Peri-tendinous injection of corticosteroid is the commonly accepted strategy despite the abscence of inflammation in tendinosis. The aim of our study was to assess the potential of intratendinous injection of an anti-angiogenic drug (bevacizumab, AA) to treat tendinopathy in a murine model of patellar and Achilles tendinopathy, and to evaluate its local toxicity. Materials and method: Forty rats (160 patellar and Achilles tendons) were used for this study. We induced tendinosis (T+) in 80 tendons by injecting under ultrasonography (US) guidance Collagenase 1{sup ®} (day 0 = D0, patellar = 40 and Achilles = 40). Clinical examination and tendon US were performed at D3, immediately followed by either AA (AAT+, n = 40) or physiological serum (PST+, n = 40, control) US-guided intratendinous injection. Follow-up at D6 and D13 using clinical, US and histology, and comparison between the 2 groups were performed. To study AA toxicity we compared the 80 remaining normal tendons (T−) after injecting AA in 40 (AAT−). Results: All AAT+ showed a better joint mobilization compared to PST+ at D6 (p = 0.004) with thinner US tendon diameters (p < 0.004), and less disorganized collagen fibers and neovessels on histology (p < 0.05). There was no difference at D13 regarding clinical status, US tendon diameter and histology (p > 0.05). Comparison between AAT− and T− showed no AA toxicity on tendon (p = 0.18). Conclusion: Our study suggests that high dose mono-injection of AA in tendinosis, early after the beginning of the disease, accelerates tendon's healing, with no local toxicity.

  16. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix?

    DEFF Research Database (Denmark)

    Kjaer, Michael; Bayer, Monika L; Eliasson, Pernilla

    2013-01-01

    Mechanical loading can influence tendon collagen homeostasis in animal models, while the dynamics of the human adult tendon core tissue are more debatable. Currently available data indicate that human tendon adaptation to loading may happen primarily in the outer tendon region. A role of inflamma......Mechanical loading can influence tendon collagen homeostasis in animal models, while the dynamics of the human adult tendon core tissue are more debatable. Currently available data indicate that human tendon adaptation to loading may happen primarily in the outer tendon region. A role...... of inflammation in this peritendinous adaptation is supported by a rise in inflammatory mediators in the peritendinous area after physiological mechanical loading in humans. This plays a role in the exercise-induced rise in tendon blood flow and peritendinous collagen synthesis. Although inflammatory activity can...... activate proteolytic pathways in tendon, mechanical loading can protect against matrix degradation. Acute tendon injury displays an early inflammatory response that seems to be lowered when mechanical loading is applied during regeneration of tendon. Chronically overloaded tendons (tendinopathy) do neither...

  17. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  18. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis.

    Science.gov (United States)

    Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M

    2007-02-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, Ptendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; Peccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a relation between collagen metabolism and recovery from injury in human tendons.

  19. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  20. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  1. Nonlinear model for viscoelastic behavior of Achilles tendon.

    Science.gov (United States)

    Kahn, Cyril J F; Wang, Xiong; Rahouadj, Rachid

    2010-11-01

    Although the mechanical properties of ligament and tendon are well documented in research literature, very few unified mechanical formulations can describe a wide range of different loadings. The aim of this study was to propose a new model, which can describe tendon responses to various solicitations such as cycles of loading, unloading, and reloading or successive relaxations at different strain levels. In this work, experiments with cycles of loading and reloading at increasing strain level and sequences of relaxation were performed on white New Zealand rabbit Achilles tendons. We presented a local formulation of thermodynamic evolution outside equilibrium at a representative element volume scale to describe the tendon's macroscopic behavior based on the notion of relaxed stress. It was shown that the model corresponds quite well to the experimental data. This work concludes with the complexity of tendons' mechanical properties due to various microphysical mechanisms of deformation involved in loading such as the recruitment of collagen fibers, the rearrangement of the microstructure (i.e., collagens type I and III, proteoglycans, and water), and the evolution of relaxed stress linked to these mechanisms.

  2. Co-effect of silk and amniotic membrane for tendon repair.

    Science.gov (United States)

    Seo, Young-Kwon; Kim, Jun-Hyung; Eo, Su-Rak

    2016-08-01

    The objective of the present study was to determine the feasibility and biocompatibility of a silk scaffold and a composite silk scaffold in terms of new tendon generation using a rabbit Achilles tendon model. The silk scaffold was constructed using a weaving machine, then soaked in a 1% collagen-hyaluronan (HA) solution and air-dried, whereas the composite silk scaffold was composed of a silk scaffold containing a lyophilized collagen-HA substrate. Tenocytes were cultured in vitro to compare cell populations in the two groups. The cellular densities on composite silk scaffolds were 40% higher on average than those on silk scaffolds in 30-day tenocyte cultures. The tendon scaffolds had implanted into Achilles tendon defects in 16 white New Zealand rabbits. Rabbits were randomly divided into the following three groups: group I, silk scaffold alone; group II, composite silk scaffold; and group III, composite silk scaffold wrapped by an amniotic membrane. Implants were harvested 2, 8, and 12 weeks post-implantation. Histological examinations were conducted using hematoxylin-eosin (H&E), Masson's trichrome, and by performing immunohistochemical staining for CD34. After 12 weeks, the three groups were distinguishable based on gross examination. The histological examination revealed more organized collagen fibrils in groups III, which showed a dense, parallel, linear organization of collagen bundles. CD34 staining revealed neoangiogenesis in groups III. The results of this research showed that collagen-HA substrates with amniotic membrane accelerate cellular migration and angiogenesis in neotendons.

  3. Tendon synovial cells secrete fibronectin in vivo and in vitro

    International Nuclear Information System (INIS)

    Banes, A.J.; Link, G.W.; Bevin, A.G.; Peterson, H.D.; Gillespie, Y.; Bynum, D.; Watts, S.; Dahners, L.

    1988-01-01

    The chemistry and cell biology of the tendon have been largely overlooked due to the emphasis on collagen, the principle structural component of the tendon. The tendon must not only transmit the force of muscle contraction to bone to effect movement, but it must also glide simultaneously over extratendonous tissues. Fibronectin is classified as a cell attachment molecule that induces cell spreading and adhesion to substratum. The external surface of intact avian flexor tendon stained positively with antibody to cellular fibronectin. However, if the surface synovial cells were first removed with collagenase, no positive reaction with antifibronectin antibody was detected. Analysis of immunologically stained frozen sections of tendon also revealed fibronectin at the tendon synovium, but little was associated with cells internal in tendon. The staining pattern with isolated, cultured synovial cells and fibroblasts from the tendon interior substantiated the histological observations. Analysis of polyacrylamide gel profiles of 35 S-methionine-labeled proteins synthesized by synovial cells and internal fibroblasts indicated that fibronectin was synthesized principally by synovial cells. Fibronectin at the tendon surface may play a role in cell attachment to prevent cell removal by the friction of gliding. Alternatively, fibronectin, with its binding sites for hyaluronic acid and collagen, may act as a complex for boundary lubrication

  4. Attachment, Proliferation, and Morphological Properties of Human Dermal Fibroblasts on Ovine Tendon Collagen Scaffolds: A Comparative Study.

    Science.gov (United States)

    Busra, Fauzi Mh; Lokanathan, Yogeswaran; Nadzir, Masrina Mohd; Saim, Aminuddin; Idrus, Ruszymah Bt Hj; Chowdhury, Shiplu Roy

    2017-03-01

    Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds. This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions. The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions. OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

  5. Kartogenin with PRP promotes the formation of fibrocartilage zone in the tendon-bone interface.

    Science.gov (United States)

    Zhou, Yiqin; Zhang, Jianying; Yang, Jinsong; Narava, Manoj; Zhao, Guangyi; Yuan, Ting; Wu, Haishan; Zheng, Nigel; Hogan, MaCalus V; Wang, James H-C

    2017-12-01

    Treatment of tendon-bone junction injuries is a challenge because tendon-bone interface often heals poorly and the fibrocartilage zone, which reduces stress concentration, at the interface is not formed. In this study, we used a compound called kartogenin (KGN) with platelet-rich plasma (PRP) to induce the formation of fibrocartilage zone in a rat tendon graft-bone tunnel model. The experimental rats received KGN-PRP or PRP injections in the tendon graft-bone tunnel interface. The control group received saline. After 4, 8 and 12 weeks, Safranin O staining of the tendon graft-bone tunnels revealed abundant proteoglycans in the KGN-PRP group indicating the formation of cartilage-like transition zone. Immunohistochemical and immuno-fluorescence staining revealed collagen types I (Col-I) and II (Col-II) in the newly formed fibrocartilage zone. Both fibrocartilage zone formation and maturation were healing time dependent. In contrast, the PRP and saline control groups had no cartilage-like tissues and minimal Col-I and Col-II staining. Some gaps were also present in the saline control group. Finally, pull-out strength in the KGN-PRP-treated group at 8 weeks was 1.4-fold higher than the PRP-treated group and 1.6-fold higher than the saline control group. These findings indicate that KGN, with PRP as a carrier, promotes the formation of fibrocartilage zone between the tendon graft and bone interface. Thus, KGN-PRP may be used as a convenient cell-free therapy in clinics to promote fibrocartilage zone formation in rotator calf repair and anterior cruciate ligament reconstruction, thereby enhancing the mechanical strength of the tendon-bone interface and hence the clinical outcome of these procedures. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    Science.gov (United States)

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  7. Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, Mette; Kongsgaard, Mads; Holm, Lars

    2009-01-01

    and fibril characteristics were determined by MRI and transmission electron microscopy, whereas tendon biomechanical properties were measured during isometric maximal voluntary contraction by ultrasound recording. Tendon FSR was markedly higher in ERT-users (P

  8. Dietary ascorbic acid normalizes ribosomal efficiency for collagen production in skin of streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Schneir, M.; Imberman, M.; Ramamurthy, N.; Golub, L.

    1987-01-01

    The objective of this study was to quantify the contribution of both ribosome amount and ribosomal efficiency to decreased collagen production in skin of diabetic rats and diabetic rats treated with dietary ascorbic acid. Male Sprague-Dawley rats were distributed equally into the following categories: non-diabetic controls; diabetics; ascorbic acid-treated diabetics. On day-20, all rats were injected with ( 3 H)proline and killed after 2 h. Absolute rate of collagen production, ribosome content, and ribosomal efficiency of collagen production were quantified. Also ribosomal efficiency was quantified for ribosomes in sucrose-gradient fractionated post-mitochondrial supernatants. The results indicate that decreased ribosomal efficiency was responsible for 70% of the decreased collagen production with 30% caused by decreased ribosome content, when measured for total skin or sucrose gradient-isolated ribosomes. At both levels of analysis, ascorbic acid treatment normalized ribosomal efficiency, indicating diabetes-mediated decreased ribosomal efficiency for collagen production is related to a co-translational event, such as procollagen underhydroxylation

  9. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  10. Adaptive Remodeling of Achilles Tendon: A Multi-scale Computational Model.

    Directory of Open Access Journals (Sweden)

    Stuart R Young

    2016-09-01

    Full Text Available While it is known that musculotendon units adapt to their load environments, there is only a limited understanding of tendon adaptation in vivo. Here we develop a computational model of tendon remodeling based on the premise that mechanical damage and tenocyte-mediated tendon damage and repair processes modify the distribution of its collagen fiber lengths. We explain how these processes enable the tendon to geometrically adapt to its load conditions. Based on known biological processes, mechanical and strain-dependent proteolytic fiber damage are incorporated into our tendon model. Using a stochastic model of fiber repair, it is assumed that mechanically damaged fibers are repaired longer, whereas proteolytically damaged fibers are repaired shorter, relative to their pre-damage length. To study adaptation of tendon properties to applied load, our model musculotendon unit is a simplified three-component Hill-type model of the human Achilles-soleus unit. Our model results demonstrate that the geometric equilibrium state of the Achilles tendon can coincide with minimization of the total metabolic cost of muscle activation. The proposed tendon model independently predicts rates of collagen fiber turnover that are in general agreement with in vivo experimental measurements. While the computational model here only represents a first step in a new approach to understanding the complex process of tendon remodeling in vivo, given these findings, it appears likely that the proposed framework may itself provide a useful theoretical foundation for developing valuable qualitative and quantitative insights into tendon physiology and pathology.

  11. [Effect of tail-suspension on the reproduction of adult male rats].

    Science.gov (United States)

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  12. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model.

    Science.gov (United States)

    Peltz, Cathryn D; Sarver, Joseph J; Dourte, Leann M; Würgler-Hauri, Carola C; Williams, Gerald R; Soslowsky, Louis J

    2010-07-01

    Rotator cuff tears are a common clinical problem that can result in pain and disability. Previous studies in a rat model showed enhanced tendon to bone healing with postoperative immobilization. The objective of this study was to determine the effect of postimmobilization activity level on insertion site properties and joint mechanics in a rat model. Our hypothesis was that exercise following a short period of immobilization will cause detrimental changes in insertion site properties compared to cage activity following the same period of immobilization, but that passive shoulder mechanics will not be affected. We detached and repaired the supraspinatus tendon of 22 Sprague-Dawley rats, and the injured shoulder was immobilized postoperatively for 2 weeks. Following immobilization, rats were prescribed cage activity or exercise for 12 weeks. Passive shoulder mechanics were determined, and following euthanasia, tendon cross-sectional area and mechanical properties were measured. Exercise following immobilization resulted in significant decreases compared to cage activity in range of motion, tendon stiffness, modulus, percent relaxation, and several parameters from both a structurally based elastic model and a quasi-linear viscoelastic model. Therefore, we conclude that after a short period of immobilization, increased activity is detrimental to both tendon mechanical properties and shoulder joint mechanics, presumably due to increased scar production. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  13. Lateral force transmission between human tendon fascicles

    DEFF Research Database (Denmark)

    Haraldsson, Bjarki T; Aagaard, Per; Qvortrup, Klaus

    2008-01-01

    Whether adjacent collagen fascicles transmit force in parallel is unknown. The purpose of the present study was to examine the magnitude of lateral force transmission between adjacent collagen fascicles from the human patellar and Achilles tendon. From each sample two adjacent strands of fascicles...... was transversally cut while the other fascicle and the fascicular membrane were kept intact. Cycle 3: both fascicles were cut in opposite ends while the fascicular membrane was left intact. A decline in peak force of 45% and 55% from cycle 1 to cycle 2, and 93% and 92% from cycle 2 to cycle 3 was observed...... in the patellar and Achilles tendon fascicles, respectively. A decline in stiffness of 39% and 60% from cycle 1 to cycle 2, and of 93% and 100% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. The present data demonstrate that lateral force transmission between...

  14. Collagen synthesis in rat gingiva during tooth movement

    International Nuclear Information System (INIS)

    Boisson, M.; Gianelly, A.A.

    1981-01-01

    The response of the gingiva to an increased interdental space was studied by creating a diastema between the central incisors of rats and analyzing autoradiographically the incorporation of H3 proline in the gingiva to detect increased collagen production. In addition, conventional histologic methods were used to determine changes in the gingival architecture. The results indicate that the gingiva responds to an increased space in at least two ways. One is the production of more collagen fibers. The other involves the reorientation of the existing fibers in a horizontal plane as the gingival papilla becomes flattened

  15. Involvement of Indian hedgehog signaling in mesenchymal stem cell-augmented rotator cuff tendon repair in an athymic rat model.

    Science.gov (United States)

    Zong, Jian-Chun; Mosca, Michael J; Degen, Ryan M; Lebaschi, Amir; Carballo, Camila; Carbone, Andrew; Cong, Guang-Ting; Ying, Liang; Deng, Xiang-Hua; Rodeo, Scott A

    2017-04-01

    Bone marrow aspirate has been used in recent years to augment tendon-to-bone healing, including in rotator cuff repair. However, the healing mechanism in cell-based therapy has not been elucidated in detail. Sixteen athymic nude rats were randomly allocated to 2 groups: experimental (human mesenchymal stem cells in fibrin glue carrier) and control (fibrin glue only). Animals were sacrificed at 2 and 4 weeks. Immunohistochemical staining was performed to evaluate Indian hedgehog (Ihh) signaling and SOX9 signaling in the healing enthesis. Macrophages were identified using CD68 and CD163 staining, and proliferating cells were identified using proliferating cell nuclear antigen staining. More organized and stronger staining for collagen II and a higher abundance of SOX9 + cells were observed at the enthesis in the experimental group at 2 weeks. There was significantly higher Gli1 and Patched1 expression in the experimental group at the enthesis at 2 weeks and higher numbers of Ihh + cells in the enthesis of the experimental group vs control at both 2 weeks and 4 weeks postoperatively. There were more CD68 + cells localized to the tendon midsubstance at 2 weeks compared with 4 weeks, and there was a higher level of CD163 staining in the tendon midsubstance in the experimental group than in the control group at 4 weeks. Stem cell application had a positive effect on fibrocartilage formation at the healing rotator cuff repair site. Both SOX9 and Ihh signaling appear to play an important role in the healing process. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    Science.gov (United States)

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries.

    Science.gov (United States)

    Vieira, M H C; Oliveira, R J; Eça, L P M; Pereira, I S O; Hermeto, L C; Matuo, R; Fernandes, W S; Silva, R A; Antoniolli, A C M B

    2014-12-12

    Rupture of the Achilles tendon diminishes quality of life. The gold-standard therapy is a surgical suture, but this presents complications, including wound formation and inflammation. These complications spurred evaluation of the therapeutic potential of mesenchymal stem cells (MSCs) from adipose tissue. New Zealand rabbits were divided into 6 groups (three treatments with two time points each) evaluated at either 14 or 28 days after surgery: cross section of the Achilles tendon (CSAT); CSAT + Suture; and CSAT + MSC. A comparison between all groups at both time points showed a statistically significant increase in capillaries and in the structural organization of collagen in the healed tendon in the CSAT + Suture and CSAT + MSC groups at the 14-day assessment. Comparison between the two time points within the same group showed a statistically significant decrease in the inflammatory process and an increase in the structural organization of collagen in the CSAT and CSAT + MSC groups. A study of the genomic integrity of the cells suggested a linear correlation between an increase of injuries and culture time. Thus, MSC transplantation is a good alternative for treatment of Achilles tendon ruptures because it may be conducted without surgery and tendon suture and, therefore, has no risk of adverse effects resulting from the surgical wound or inflammation caused by nonabsorbable sutures. Furthermore, this alternative treatment exhibits a better capacity for wound healing and maintaining the original tendon architecture, depending on the arrangement of the collagen fibers, and has important therapeutic potential.

  18. [Experiment study on ultrashort wave for treating vascular crisis after rat tail replantation].

    Science.gov (United States)

    Tan, Long; Gao, Wenshan; Xi, Ali; Wang, Cong; Chen, Shouying; Zhao, Yanyan; Di, Keqian; Yang, Xincai; Weng, Shengbin

    2012-10-01

    To explore the effect and mechanism of ultrashort wave (USW) for prevention and treatment of vascular crisis after rat tail replantation. Eighty 3-month old female Sprague Dawley rats (weighing 232.8-289.6 g) were randomly divided into 5 groups. In each group, based on the caudal vein and the coccyx was retained, the tail was cut off. The tail artery was ligated in group A; the tail artery was anastomosed in groups B, C, D, and E to establish the tail replantation model. After surgery, the rats of group B were given normal management; the rats of group C were immediately given intraperitoneal injection (3.125 mL/kg) of diluted papaverine hydrochloride injection (1 mg/mL); the rats of groups D and E were immediately given the local USW treatment (once a day) at anastomotic site for 5 days at the dosage of 3 files and 50 mA for 20 minutes (group D) and 2 files and 28 mA for 20 minutes (group E). The survival rate of the rat tails was observed for 10 days after the tail replantation. The tail skin temperature difference between proximal and distal anastomosis was measured at pre- and post-operation; the change between postoperative and preoperative temperature difference was calculated. The blood plasma specimens were collected from the inner canthus before operation and from the tip of the tail at 8 hours after operation to measure the content of nitric oxide (NO). The survival rates of the rat tails were 0 (0/14), 36.4% (8/22), 57.1% (8/14), 22.2% (4/18), and 75.0% (9/12) in groups A, B, C, D, and E, respectively, showing significant overall differences among 5 groups (chi2 = 19.935, P = 0.001); the survival rate of group E was significantly higher than that of group B at 7 days (P 0.05). At preoperation, there was no significant difference in tail skin temperature difference among 5 groups (P > 0.05); at 8 hours, 5 days, 6 days, and 7 days after operation, significant overall difference was found in the change of the skin temperature difference among groups (P

  19. [Flexor tendon repair: a short story].

    Science.gov (United States)

    Moutet, F; Corcella, D; Forli, A; Mesquida, V

    2014-12-01

    This short story of flexor tendon repair aims to illustrate hesitations and wanderings of this surgery. Obviously tendon repair was very early considered, but it developed and diffused rather lately. It became a routine practice only in 20th century. This was due on the one hand, in Occident, to the Galen's dogmatic interdiction, on the other hand, to the repair difficulties of this paradoxical structure. Actually tendon is made of fibroblasts and collagen (sticky substances), and then its only goal is to move. According to this necessity, whatever the used techniques are, gliding is the final purpose. Technical evolutions are illustrated by historical contributions to flexor tendon surgery of several "giants" of hand surgery. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Regulation of collagen production in freshly isolated cell populations from normal and cirrhotic rat liver: Effect of lactate

    International Nuclear Information System (INIS)

    Cerbon-Ambriz, J.; Cerbon-Solorzano, J.; Rojkind, M.

    1991-01-01

    Previous work has shown that lactic acid, and to a lesser extent pyruvic acid, is able to increase collagen synthesis significantly in liver slices of CCl4-treated rats but not normal rats. The purpose of this report is to document which cells in the cirrhotic liver are responsible for the lactate-stimulated increase in collagen synthesis. It was found that (a) incorporation of 3H-proline into protein-bound 3H-hydroxyproline is increased threefold to fourfold in hepatocytes from CCl4-treated rats as compared with normal rat hepatocytes; (b) neither the hepatocytes from normal nor those from CCl4-treated rats modify their collagen synthesizing capacity when 30 mmol/L lactic acid was added to the incubation medium; (c) nonparenchymal cells obtained from livers of CCl4-treated rats synthesize much less collagen than hepatocytes, but their synthesis is stimulated twofold by lactic acid; (d) from the different nonparenchymal cells, only fat-storing (Ito) cells increase collagen synthesis when lactic acid is present in the incubation medium. These results suggest that the increased lactic acid levels observed in patients with alcoholic hepatic cirrhosis may play an important role in the development of fibrosis by stimulating collagen production by fat-storing (Ito) cells

  1. GH and IGF-I levels are positively associated with musculotendinous collagen expression: Experiments in acromegalic and GHD patients

    DEFF Research Database (Denmark)

    Doessing, Simon; Holm, Lars; Heinemeier, Katja

    2010-01-01

    OBJECTIVE: Disproportionate growth of musculoskeletal tissue is a major cause of morbidity in both acromegalic (ACRO) and GH-deficient (GHD) patients. GH/IGF1 is likely to play an important role in the regulation of tendon and muscle collagen. We hypothesized that the local production of collagen...... is associated with the level of GH/IGF1.DESIGN AND METHODS: As primary outcomes, collagen mRNA expression and collagen protein fractional synthesis rate (FSR) were determined locally in skeletal muscle and tendon in nine ACRO and nine GHD patients. Moreover, muscle myofibrillar protein synthesis and tendon...... collagen morphology were determined.RESULTS AND CONCLUSIONS: Muscle collagen I and III mRNA expression was higher in ACRO patients versus GHD patients (PIGF1Ea and IGF1Ec...

  2. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue

    Science.gov (United States)

    Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.

    2014-01-01

    Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669

  3. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model.

    Science.gov (United States)

    Li, Shengkun; Ma, Kui; Li, Hong; Jiang, Jia; Chen, Shiyi

    2016-01-01

    The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET) artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA) is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  4. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    Shengkun Li

    2016-01-01

    Full Text Available The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  5. The effect of platelet-rich plasma on Achilles tendon healing in a rabbit model.

    Science.gov (United States)

    Takamura, Masaki; Yasuda, Toshito; Nakano, Atsushi; Shima, Hiroaki; Neo, Masashi

    2017-01-01

    The aim of the present study was to evaluate the effects of PRP on Achilles tendon healing in rabbits during the inflammatory, proliferative, and remodeling phases by histological examination and quantitative assessments. Fifty mature male Japanese albino rabbits with severed Achilles tendons were divided into two equal groups and treated with platelet-rich plasma (PRP) or left untreated. Tendon tissue was harvested at 1, 2, 3, 4, and 6 weeks after treatment, and sections were stained with hematoxylin-eosin and monoclonal antibodies against CD31 and type I collagen. Collagen fibers proliferated more densely early after severance, and subsequent remodeling of the collagen fibers and approximation of normal tendinous tissue occurred earlier in the PRP group than in the control group. The fibroblast number was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Similarly, the area ratio of CD31-positive cells was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Positive staining for type I collagen was more intense in the PRP group than in the control group after 3 weeks, indicating tendon maturation. Administration of PRP shortened the inflammatory phase and promoted tendon healing during the proliferative phase. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  6. DNA isolation from rat tail or ear

    NARCIS (Netherlands)

    Cuppen, E.

    2010-01-01

    This protocol describes a rapid procedure for isolating DNA from rat tail or ear punches. The simplest version of the protocol can be scaled for use in 96-well (deep-well) plates. The quality of the DNA is sufficient for any polymerase chain reaction (PCR)-based genotyping approach.

  7. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury.

    Science.gov (United States)

    Davies, Michael R; Ravishankar, Bharat; Laron, Dominique; Kim, Hubert T; Liu, Xuhui; Feeley, Brian T

    2015-07-01

    Rotator cuff tears (RCTs) are among the most common musculoskeletal injuries seen by orthopaedic surgeons. Clinically, massive cuff tears lead to unique pathophysiological changes in rotator cuff muscle, including atrophy, and massive fatty infiltration, which are rarely seen in other skeletal muscles. Studies in a rodent model for RCT have demonstrated that these histologic findings are accompanied by activation of the Akt/mammalian target of rapamycin (mTOR) and transforming growth factor-β (TGF-β) pathways following combined tendon-nerve injury. The purpose of this study was to compare the histologic and molecular features of rotator cuff muscle and gastrocnemius muscle--a major hindlimb muscle, following combined tendon-nerve injury. Six weeks after injury, the rat gastrocnemius did not exhibit notable fatty infiltration compared to the rotator cuff. Likewise, the adipogenic markers SREBP-1 and PPARγ as well as the TGF-β canonical pathway were upregulated in the rotator cuff, but not the gastrocnemius. Our study suggests that the rat rotator cuff and hindlimb muscles differ significantly in their response to a combined tendon-nerve injury. Clinically, these findings highlight the unique response of the rotator cuff to injury, and may begin to explain the poor outcomes of massive RCTs compared to other muscle-tendon injuries. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.

    Science.gov (United States)

    Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2017-02-01

    To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The role of spinal pathways in dopamine mediated alteration in the tail-flick reflex in rats

    DEFF Research Database (Denmark)

    Jensen, T S; Schrøder, H D; Smith, D F

    1984-01-01

    The latency of the tail-flick, following intrathecal infusion of the dopamine (DA) agonist, R-apomorphine was measured in rats with intact spinal cord or with spinal cord lesions. Apomorphine failed to influence the tail-flick response in intact rats, whereas it elevated the latency of the tail-f...

  10. Medial versus lateral supraspinatus tendon properties: implications for double-row rotator cuff repair.

    Science.gov (United States)

    Wang, Vincent M; Wang, Fan Chia; McNickle, Allison G; Friel, Nicole A; Yanke, Adam B; Chubinskaya, Susan; Romeo, Anthony A; Verma, Nikhil N; Cole, Brian J

    2010-12-01

    Rotator cuff repair retear rates range from 25% to 90%, necessitating methods to improve repair strength. Although numerous laboratory studies have compared single-row with double-row fixation properties, little is known regarding regional (ie, medial vs lateral) suture retention properties in intact and torn tendons. A torn supraspinatus tendon will have reduced suture retention properties on the lateral aspect of the tendon compared with the more medial musculotendinous junction. Controlled laboratory study. Human supraspinatus tendons (torn and intact) were randomly assigned for suture retention mechanical testing, ultrastructural collagen fibril analysis, or histologic testing after suture pullout testing. For biomechanical evaluation, sutures were placed either at the musculotendinous junction (medial) or 10 mm from the free margin (lateral), and tendons were elongated to failure. Collagen fibril assessments were performed using transmission electron microscopy. Intact tendons showed no regional differences with respect to suture retention properties. In contrast, among torn tendons, the medial region exhibited significantly higher stiffness and work values relative to the lateral region. For the lateral region, work to 10-mm displacement (1592 ± 261 N-mm) and maximum load (265 ± 44 N) for intact tendons were significantly higher (P .05). Regression analyses for the intact and torn groups revealed generally low correlations between donor age and the 3 biomechanical indices. For both intact and torn tendons, the mean fibril diameter and area density were greater in the medial region relative to the lateral (P ≤ .05). In the lateral tendon, but not the medial region, torn specimens showed a significantly lower fibril area fraction (48.3% ± 3.8%) than intact specimens (56.7% ± 3.6%, P row after double-row repair. Larger diameter collagen fibrils as well as greater fibril area fraction in the medial supraspinatus tendon may provide greater resistance to

  11. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  12. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  13. Effect of age on fatty infiltration of supraspinatus muscle after experimental tendon release in rats

    Directory of Open Access Journals (Sweden)

    Farshad Mazda

    2011-12-01

    Full Text Available Abstract Background Rotator cuff tendon tear is a leading cause for atrophy, fibrosis and fatty infiltration of the rotator cuff muscles. The pathophysiology of fatty muscle infiltration is not well understood. An animal model suited to study cellular and molecular mechanisms would therefore be desirable. While a rat model has been established for chronic rotator cuff tendon pathology, sufficient and easily identifiable fatty infiltration of the muscle has not yet been shown in rats. As younger animals regenerate better, we hypothesized that the absence of a sufficient amount of fatty infiltration in previous experiments was due to the selection of young animals and that older animals would exhibit higher amounts of fatty infiltration after tendon tear. Findings The supraspinatus tendon was released using tenotomy in 3 young (6 weeks old and in 3 aged (24 months old Sprague Dawley rats (group I and II. Another 3 aged (24 months old rats underwent sham surgery and served as a control group (group III. In group I and II retraction of the musculotendinous unit was allowed for 6 weeks. All animals were sacrificed 6 weeks after surgery and the supraspinatus muscles were harvested. Each sample was examined for fatty infiltration of the muscle by histological methods and micro-CT. In histology, fat cells were counted with a 10-fold magnification in 6 fields of view twice. An adjusted measurement setup was developed for the use of micro-CT to quantify the absorption coefficient of the muscle as a reciprocal indicator for fatty infiltration, based on the established procedure for quantification of fatty infiltration on CT in humans. Tenotomy resulted in an insignificant increase of fat cells in histological sections in both, aged and young rats. Micro-CT was able to quantify small differences in the absorption coefficients of muscle samples; the absorption coefficient was 8.1% ± 11.3% lower in retracted muscles (group I and II compared with the control

  14. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.

    Science.gov (United States)

    Zhao, Song; Peng, Lingjie; Xie, Guoming; Li, Dingfeng; Zhao, Jinzhong; Ning, Congqin

    2014-08-01

    The current nature of tendon-bone healing after rotator cuff (RC) repair is still the formation of granulation tissue at the tendon-bone interface rather than the formation of fibrocartilage, which is the crucial structure in native tendon insertion and can be observed after knee ligament reconstruction. The interposition of calcium phosphate materials has been found to be able to enhance tendon-bone healing in knee ligament reconstruction. However, whether the interposition of these kinds of materials can enhance tendon-bone healing or even change the current nature of tendon-bone healing after RC repair still needs to be explored. The interposition of calcium phosphate materials during RC repair would enhance tendon-bone healing or change its current nature of granulation tissue formation into a more favorable process. Controlled laboratory study. A total of 144 male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon, followed by delayed repair after 3 weeks. The animals were allocated into 1 of 3 groups: (1) repair alone, (2) repair with Ca5(PO4)2SiO4 (CPS) bioceramic interposition, or (3) repair with hydroxyapatite (HA) bioceramic interposition at the tendon-bone interface. Animals were sacrificed at 2, 4, or 8 weeks postoperatively, and microcomputed tomography (micro-CT) was used to quantify the new bone formation at the repair site. New fibrocartilage formation and collagen organization at the tendon-bone interface was evaluated by histomorphometric analysis. Biomechanical testing of the supraspinatus tendon-bone complex was performed. Statistical analysis was performed using 1-way analysis of variance. Significance was set at P repair, CPS bioceramic significantly increased the area of fibrocartilage at the tendon-bone interface compared with the control and HA groups. Moreover, CPS and HA bioceramics had significantly improved collagen organization. Biomechanical tests indicated that the CPS and HA groups have greater ultimate

  15. Time course of collagen peak in bile duct-ligated rats

    OpenAIRE

    Tarcin, Orhan; Basaranoglu, Metin; Tahan, Veysel; Tahan, Gülgün; Sücüllü, Ilker; Yilmaz, Nevin; Sood, Gagan; Snyder, Ned; Hilman, Gilbert; Celikel, Cigdem; Tözün, Nurdan

    2011-01-01

    Abstract Background One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials. Methods Of the 53 male Wistar rats, 8 (Group 0) were used as a healthy control group. Bile duct...

  16. Anabolic androgenic steroids reverse the beneficial effect of exercise on tendon biomechanics: an experimental study.

    Science.gov (United States)

    Tsitsilonis, Serafim; Chatzistergos, Panayiotis E; Panayiotis, Chatzistergos E; Mitousoudis, Athanasios S; Athanasios, Mitousoudis S; Kourkoulis, Stavros K; Stavros, Kourkoulis K; Vlachos, Ioannis S; Ioannis, Vlachos S; Agrogiannis, George; George, Agrogiannis; Fasseas, Konstantinos; Konstantinos, Fasseas; Perrea, Despina N; Despina, Perrea N; Zoubos, Aristides B; Aristides, Zoubos B

    2014-06-01

    The effect of anabolic androgenic steroids on tendons has not yet been fully elucidated. Aim of the present study was the evaluation of the impact of anabolic androgenic steroids on the biomechanical and histological characteristics of Achilles tendons. Twenty-four male Wistar rats were randomized into four groups with exercise and anabolic steroids (nandrolone decanoate) serving as variables. Protocol duration was 12 weeks. Following euthanasia, tendons' biomechanical properties were tested with the use of a modified clamping configuration. Histological examination with light and electron microscopy were also performed. In the group of anabolic steroids and exercise the lowest fracture stress values were observed, while in the exercise group the highest ones. Histological examination by light and electron microscopy revealed areas of collagen dysplasia and an increased epitendon in the groups receiving anabolic steroids and exercise. These findings suggest that anabolic androgenic steroids reverse the beneficial effect of exercise, thus resulting in inferior maximal stress values. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  17. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    OpenAIRE

    Wan Chen; Hong Tang; Xiangzhou Liu; Mei Zhou; Jiqiang Zhang; Kanglai Tang

    2015-01-01

    Background/Aims: Dexamethasone (Dex)-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs) to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: ...

  18. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  19. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    Science.gov (United States)

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  20. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  1. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts

    DEFF Research Database (Denmark)

    Svensson, René B; Hassenkam, Tue; Grant, Colin A

    2010-01-01

    loading direction of tendon is along its longitudinal axis. Thus, in this study, we focus on the tensile mechanical properties of two hierarchical levels from human patellar tendon, namely: individual collagen fibrils and fascicles. Investigations on collagen fibrils and fascicles were made at pH 7...... was observed at the highest phosphate-buffered saline concentration for both the fibrils and fascicles, indicating a stabilizing effect of ionic screening, but changes were much less than reported for radial compression. Due to the small magnitude of the effects, the tensile mechanical properties of collagen...

  2. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  3. The Effect of Sodium Hyaluronate plus Sodium Chondroitin Sulfate Solution on Peritendinous Adhesion and Tendon Healing: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Hacı Bayram Tosun

    2016-06-01

    Full Text Available Background: Adhesion formation following tendon injury is a serious clinical problem. Aims: In this experimental study, the effects of the combination of sodium hyaluronate (HA and chondroitin sulfate (CS on peritendinous adhesion and tendon healing were evaluated. Study Design: Animal experimentation. Methods: Twenty-one mature Sprague Dawley male rats were randomly divided into three equal groups. The rats’ Achilles tendons were cut and repaired with a modified Kessler technique. About 0.25 and 0.50 mL of the HA and CS (HA+CS combination were injected subcutaneously into the repair site of the rats in groups 1 and 2, respectively, on days 0, 3, 7, and 10. The subjects in group 3 were used as the control group. At 6 weeks, all rats were euthanized. The tenotomy site was examined macroscopically in all animal subjects. Four samples were assigned to the histopathological examination group, and the others were assigned to the biomechanical assessment group. Results: Inflammation and adhesion in both treatment groups were observed at a lower rate than in the control group. The collagen filaments in both treatment groups were regular and the number was low when compared to the control group. However, there was no statistically significant difference between group 1 and the control group. The quantity, quality, and grade of the adhesions were statistically significantly lower in group 2 when compared with the other groups. The mean maximum stress strength in group 2 was statistically significantly higher than that in group 1 and the control group. Conclusion: Local administration of the HA+CS combination solution is a valid tool for preventing peritendinous adhesion after extrasynovial tendon repair such as Achilles tendon, and is a treatment option in such cases.

  4. Influence of repetitive mechanical loading on MMP2 activity in tendon fibroblasts.

    Science.gov (United States)

    Huisman, Elise; Lu, Alex; Jamil, Sarwat; Mousavizadeh, Rouhollah; McCormack, Robert; Roberts, Clive; Scott, Alex

    2016-11-01

    Matrix metalloproteinase2 has been implicated in tendon pathology caused by repetitive movements. However, its activity in the early stages of the tendon's response to overuse, and its presence in the circulation as a possible indicator of tendon degradation, remain unknown. Human tendon cells were repetitively stretched for 5 days, and the rabbit Achilles tendon complex underwent repetitive motion 3× per week for 2 weeks. Quantitative polymer chain reaction analysis was performed to detect matrix metalloproteinase2/14 and tissue inhibitor of matrix metalloproteinase2 messenger ribonucleic acid of cells and rabbit tissue, and matrix metalloproteinase2 protein levels were determined with an enzyme linked immunoassay. Matrix metalloproteinase2 activity was examined using zymography of the conditioned media, tendon and serum. Immunohistochemistry was used to localize matrix metalloproteinase2 in tendon tissue, and the density of fibrillar collagen in tendons was examined using second harmonic generation microscopy. Tendon cells stretched with high strain or high frequency demonstrated increased matrix metalloproteinase2 messenger ribonucleic acid and protein levels. Matrix metalloproteinase2 activity was increased in the rabbit Achilles tendon tissue at weeks 1 and 2; however, serum activity was only increased at week 1. After 2 weeks of exercise, the collagen density was lower in specific regions of the exercised rabbit Achilles tendon complex. Matrix metalloproteinase2 expression in exercised rabbit Achilles tendons was detected surrounding tendon fibroblasts. Repetitive mechanical stimulation of tendon cells results in a small increase in matrix metalloproteinase2 levels, but it appears unlikely that serum matrix metalloproteinase2 will be a useful indicator of tendon overuse injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1991-2000, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Tendon overuse syndrome: imaging diagnosis

    International Nuclear Information System (INIS)

    Huber, W.; Nehrer, S.; Muellner, T.; Kainberger, F.; Ulreich, N.; Bernhard, C.; Imhof, H.

    2001-01-01

    Injuries of muscles and tendons occur commonly during various sporting activities and in most cases the athletes feel such an accident to be sudden and unavoidable. The rupture of a tendon, however, has to be considered in many cases as the final stage of a long-standing progressive degeneration of collagen fibers. This process con be described as 'tendon overuse syndrome (TOS)'. Diagnostic imaging modalities, especially sonography and MRI, are suitable to detect and analyse the different stages of this syndrome and the degree of morphological abnormalities. The first stage is painful functional derangement, followed by tendovaginitis, peritendinitis, or bursitis. The third stage is tendinosis resulting from biomechanical or ischaemic injury of tendon fibers which may eventually be followed by partial or complete rupture. Regional or individual specifications of these four stages may occur at anatomically predisposing sites, so-called critical zones, or during periods of specific proneness, the vulnerable phases. (author)

  6. Mineral distributions at the developing tendon enthesis.

    Science.gov (United States)

    Schwartz, Andrea G; Pasteris, Jill D; Genin, Guy M; Daulton, Tyrone L; Thomopoulos, Stavros

    2012-01-01

    Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral

  7. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure

    DEFF Research Database (Denmark)

    Nielsen, R H; Clausen, N M; Schjerling, P

    2014-01-01

    transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and m......The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant......-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon...

  8. Direct lentiviral-cyclooxygenase 2 application to the tendon-bone interface promotes osteointegration and enhances return of the pull-out tensile strength of the tendon graft in a rat model of biceps tenodesis.

    Directory of Open Access Journals (Sweden)

    Charles H Rundle

    Full Text Available This study sought to determine if direct application of the lentiviral (LV-cyclooxygenase 2 (COX2 vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an

  9. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Herchenhan, Andreas

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro......-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors...... were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads...

  10. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Rao, J S; Rao, V H [Central Leather Research Inst., Madras (India)

    1981-01-01

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of /sup 3/H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of /sup 3/H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls.

  11. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon.

    Science.gov (United States)

    Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James

    2011-03-01

    Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.

  12. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    International Nuclear Information System (INIS)

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-01-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total 3 H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats

  13. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    Science.gov (United States)

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  14. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.

    Science.gov (United States)

    Spalazzi, Jeffrey P; Vyner, Moira C; Jacobs, Matthew T; Moffat, Kristen L; Lu, Helen H

    2008-08-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-alpha-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-beta3 (TGF-beta3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.

  16. Tendinopathy of the long head of the biceps tendon: histopathologic analysis of the extra-articular biceps tendon and tenosynovium.

    Science.gov (United States)

    Streit, Jonathan J; Shishani, Yousef; Rodgers, Mark; Gobezie, Reuben

    2015-01-01

    Bicipital tendinitis is a common cause of anterior shoulder pain, but there is no evidence that acute inflammation of the extra-articular long head of the biceps (LHB) tendon is the root cause of this condition. We evaluated the histologic findings of the extra-articular portion of the LHB tendon and synovial sheath in order to compare those findings to known histologic changes seen in other tendinopathies. Twenty-six consecutive patients (mean age 45.4±13.7 years) underwent an open subpectoral biceps tenodesis for anterior shoulder pain localized to the bicipital groove. Excised tendons were sent for histologic analysis. Specimens were graded using a semiquantitative scoring system to evaluate tenocyte morphology, the presence of ground substance, collagen bundle characteristics, and vascular changes. Chronic inflammation was noted in only two of 26 specimens, and no specimen demonstrated acute inflammation. Tenocyte enlargement and proliferation, characterized by increased roundness and size of the cell and nucleus with proteoglycan matrix expansion and myxoid degenerative changes, was found in all 26 specimens. Abundant ground substance, collagen bundle changes, and increased vascularization were visualized in all samples. Anterior shoulder pain attributed to the biceps tendon does not appear to be due to an inflammatory process in most cases. The histologic findings of the extra-articular portion of the LHB tendon and synovial sheath are similar to the pathologic findings in de Quervain tenosynovitis at the wrist, and may be due to a chronic degenerative process similar to this and other tendinopathies of the body.

  17. Effect of androgenic-anabolic steroids and heavy strength training on patellar tendon morphological and mechanical properties.

    Science.gov (United States)

    Seynnes, Olivier R; Kamandulis, Sigitas; Kairaitis, Ramutis; Helland, Christian; Campbell, Emma-Louise; Brazaitis, Marius; Skurvydas, Albertas; Narici, Marco V

    2013-07-01

    Combined androgenic-anabolic steroids (AAS) and overloading affects tendon collagen metabolism and ultrastructure and is often associated with a higher risk of injury. The aim of this prospective study was to investigate whether such effects would be reflected in the patellar tendon properties of individuals with a history of long-term resistance training and AAS abuse (RTS group), compared with trained (RT) and untrained (CTRL) nonsteroids users. Tendon cross-sectional area (CSA), stiffness, Young's modulus, and toe limit strain were measured in vivo, from synchronized ultrasonography and dynamometry data. The patellar tendon of RT and RTS subjects was much stiffer and larger than in the CTRL group. However, stiffness and modulus were higher in the RTS group (26%, P < 0.05 and 30%, P < 0.01, respectively) than in the RT group. Conversely, tendon CSA was 15% (P < 0.05) larger in the RT group than in RTS, although differences disappeared when this variable was normalized to quadriceps maximal isometric torque. Yet maximal tendon stress was higher in RTS than in RT (15%, P < 0.05), without any statistical difference in maximal strain and toe limit strain between groups. The present lack of difference in toe limit strain does not substantiate the hypothesis of changes in collagen crimp pattern associated with AAS abuse. However, these findings indicate that tendon adaptations from years of heavy resistance training are different in AAS users, suggesting differences in collagen remodeling. Some of these adaptations (e.g., higher stress) could be linked to a higher risk of tendon injury.

  18. Tendinopathy of the long head of the biceps tendon: histopathologic analysis of the extra-articular biceps tendon and tenosynovium

    Directory of Open Access Journals (Sweden)

    Streit JJ

    2015-03-01

    Full Text Available Jonathan J Streit,1 Yousef Shishani,1 Mark Rodgers,2 Reuben Gobezie1 1The Cleveland Shoulder Institute, 2Department of Pathology, University Hospitals of Cleveland, Cleveland, OH, USA Background: Bicipital tendinitis is a common cause of anterior shoulder pain, but there is no evidence that acute inflammation of the extra-articular long head of the biceps (LHB tendon is the root cause of this condition. We evaluated the histologic findings of the extra-articular portion of the LHB tendon and synovial sheath in order to compare those findings to known histologic changes seen in other tendinopathies. Methods: Twenty-six consecutive patients (mean age 45.4±13.7 years underwent an open subpectoral biceps tenodesis for anterior shoulder pain localized to the bicipital groove. Excised tendons were sent for histologic analysis. Specimens were graded using a semiquantitative scoring system to evaluate tenocyte morphology, the presence of ground substance, collagen bundle characteristics, and vascular changes. Results: Chronic inflammation was noted in only two of 26 specimens, and no specimen demonstrated acute inflammation. Tenocyte enlargement and proliferation, characterized by increased roundness and size of the cell and nucleus with proteoglycan matrix expansion and myxoid degenerative changes, was found in all 26 specimens. Abundant ground substance, collagen bundle changes, and increased vascularization were visualized in all samples. Conclusion: Anterior shoulder pain attributed to the biceps tendon does not appear to be due to an inflammatory process in most cases. The histologic findings of the extra-articular portion of the LHB tendon and synovial sheath are similar to the pathologic findings in de Quervain tenosynovitis at the wrist, and may be due to a chronic degenerative process similar to this and other tendinopathies of the body. Keywords: biceps tendinitis, biceps tendinopathy, tenosynovium, anterior shoulder pain, long head biceps

  19. The collagen microfibril model, a tool for biomaterials scientists

    Science.gov (United States)

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  20. Functional morphology of the aardvark tail.

    Science.gov (United States)

    Endo, H; Mori, K; Koyabu, D; Kawada, S; Komiya, T; Itou, T; Koie, H; Kitagawa, M; Sakai, T

    2013-04-01

    The musculoskeletal system of the aardvark (Orycteropus afer) tail was morphologically examined in two adult specimens. The tail musculature comprised three muscular groups, viz. a dorsal sacrocaudal system that consisted of the irregularly oriented Musculus sacrocaudalis dorsalis medialis and M. sacrocaudalis dorsalis lateralis, a lateral inter-vertebral connecting system, and a ventral sacrocaudal system characterized by the thick M. sacrocaudalis ventralis lateralis and M. sacrocaudalis ventralis medialis. Both the dorsal and ventral systems possessed large tendon groups that strengthened the tail structure. Computed tomography (CT) examination showed the presence of large but homogeneous cartilaginous inter-vertebral discs, whereas V-shaped bones were situated at the ventral aspect of the caudal vertebrae at the level of the inter-vertebral discs. CT visualization of the tendons and V-shaped bones in various tail positions suggested that these structures contribute to the tunnel digging action by bearing the trunk weight and lending force when the aardvark are displacing the soil by means of the forelimbs. © 2012 Blackwell Verlag GmbH.

  1. Experimental and Computational Investigation of Viscoelasticity of Native and Engineered Ligament and Tendon

    Science.gov (United States)

    Ma, J.; Narayanan, H.; Garikipati, K.; Grosh, K.; Arruda, E. M.

    The important mechanisms by which soft collagenous tissues such as ligament and tendon respond to mechanical deformation include non-linear elasticity, viscoelasticity and poroelasticity. These contributions to the mechanical response are modulated by the content and morphology of structural proteins such as type I collagen and elastin, other molecules such as glycosaminoglycans, and fluid. Our ligament and tendon constructs, engineered from either primary cells or bone marrow stromal cells and their autogenous matricies, exhibit histological and mechanical characteristics of native tissues of different levels of maturity. In order to establish whether the constructs have optimal mechanical function for implantation and utility for regenerative medicine, constitutive relationships for the constructs and native tissues at different developmental levels must be established. A micromechanical model incorporating viscoelastic collagen and non-linear elastic elastin is used to describe the non-linear viscoelastic response of our homogeneous engineered constructs in vitro. This model is incorporated within a finite element framework to examine the heterogeneity of the mechanical responses of native ligament and tendon.

  2. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  3. Effects of Redox Modulation on Cell Proliferation, Viability, and Migration in Cultured Rat and Human Tendon Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Yuk Wa Lee

    2017-01-01

    Full Text Available Tendon healing is slow and usually results in inferior fibrotic tissue formation. Recently, application of tendon derived stem cells (TDSCs improved tendon healing in animal studies. In a chicken model, local injection of antioxidants reduced tendon adhesion after tendon injury. An in vitro study demonstrated that supplementation of H2O2 reduced tenogenic marker expression in TDSCs. These findings suggested that the possibility of TDSCs is involved in tendon healing and the cellular activities of TDSCs might be affected by oxidative stress of the local environment. After tendon injury, oxidative stress is increased. Redox modulation might affect healing outcomes via affecting cellular activities in TDSCs. To study the effect of oxidative stress on TDSCs, the cellular activities of rat/human TDSCs were measured under different dosages of vitamin C or H2O2 in this study. Lower dose of vitamin C increased cell proliferation, viability and migration; H2O2 affected colony formation and suppressed cell migration, cell viability, apoptosis, and proliferation. Consistent with previous studies, oxidative stresses (H2O2 affect both recruitment and survival of TDSCs, while the antioxidant vitamin C may exert beneficial effects at low doses. In conclusion, redox modulation affected cellular activities of TDSCs and might be a potential strategy for tendon healing treatment.

  4. Dynamic adaptation of tendon and muscle connective tissue to mechanical loading

    DEFF Research Database (Denmark)

    Mackey, Abigail; Heinemeier, Katja Maria; Koskinen, Satu Osmi Anneli

    2008-01-01

    The connective tissue of tendon and skeletal muscle is a crucial structure for force transmission. A dynamic adaptive capacity of these tissues in healthy individuals is evident from reports of altered gene expression and protein levels of the fibrillar and network-forming collagens, when subjected...... in this article provide strong evidence for the highly adaptable nature of connective tissue in muscle and tendon....

  5. Morpho-functional changes in human tendon tissue

    Directory of Open Access Journals (Sweden)

    I Galliani

    2009-12-01

    Full Text Available Insertion tissue biopsies of right arm common extensor tendons from 11 patients with chronic lateral epicondylitis were processed for light and electron microscopy. The subjects were aged between 38 and 54 years (only one was 25. The specimens showed a variety of structural changes such as biochemical and spatial alteration of collagen, hyaline degeneration, loss of tenocytes, fibrocartilage metaplasia, calcifying processes, neovascularization and vessel wall modifications. Tissue alterations were evident in limited zones of the tendon fibrocartilage in which the surgical resection was generally visible. The areas where the degenerative processes were localized, were restricted and in spatial contiguity with morphologically normal ones. The observed cases presented histological and electron microscopic findings that characterize lateral epicondylitis as a degenerative phenomenon involving all tendon components.

  6. Effect of aging and exercise on the tendon

    DEFF Research Database (Denmark)

    Svensson, Rene B; Heinemeier, Katja Maria; Couppé, Christian

    2016-01-01

    Here, we review the literature on how tendons respond and adapt to ageing and exercise. With respect to aging, there are considerable changes early in life, but this seems to be maturation rather than aging per se. In vitro data indicate that aging is associated with a decreased potential for cel...... and modulus of the tendon and may reduce the amount of glycation. Exercise thereby tends to counteract the effects of aging.......Here, we review the literature on how tendons respond and adapt to ageing and exercise. With respect to aging, there are considerable changes early in life, but this seems to be maturation rather than aging per se. In vitro data indicate that aging is associated with a decreased potential for cell...... glycation-derived cross-links increase substantially. Mechanically, aging appears to be associated with a reduction in modulus and strength. With respect to exercise, tendon cells respond by producing growth factors, and there is some support for a loading-induced increase in tendon collagen synthesis...

  7. Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Rosendal, L; Kjaer, M

    2001-01-01

    1. Acute exercise is found to increase collagen type I formation locally in peritendinous connective tissue of the Achilles' tendon in humans, as determined from changes in interstitial concentrations of collagen propeptide (PICP) and a collagen degradation product (ICTP) by the use of microdialy...

  8. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons.

    Science.gov (United States)

    Boswell, Stacie G; Schnabel, Lauren V; Mohammed, Hussni O; Sundman, Emily A; Minas, Tom; Fortier, Lisa A

    2014-01-01

    Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Controlled laboratory study. Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase-3 and -13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that

  9. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis.

    Science.gov (United States)

    Breidenbach, Andrew P; Aschbacher-Smith, Lindsey; Lu, Yinhui; Dyment, Nathaniel A; Liu, Chia-Feng; Liu, Han; Wylie, Chris; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Jiang, Rulang; Butler, David L

    2015-08-01

    Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation. Here, we investigate how inactivating the Hh pathway in tendon cells affects adult (12-week) murine patellar tendon (PT) enthesis mechanics, fibrocartilage morphology, and collagen fiber organization. We show that ablating Hh signaling resulted in greater than 100% increased failure insertion strain (0.10 v. 0.05 mm/mm, p<0.01) as well as sub-failure biomechanical deficiencies. Although collagen fiber orientation appears overtly normal in the midsubstance, ablating Hh signaling reduces mineralized fibrocartilage by 32%, leading to less collagen embedded within mineralized tissue. Ablating Hh signaling also caused collagen fibers to coalesce at the insertion, which may explain in part the increased strains. These results indicate that Ihh signaling plays a critical role in the mineralization process of fibrocartilaginous entheses and may be a novel therapeutic to promote tendon-to-bone healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Collagen fibril size and crimp morphology in ruptured and intact Achilles tendons

    DEFF Research Database (Denmark)

    Magnusson, S P; Qvortrup, K; Larsen, Jytte Overgaard

    2002-01-01

    tendons. Crimp angle did not display any region-specific differences, or any difference between the rupture and intact tendons. In conclusion, these data suggest that although crimp morphology is unchanged there appears to be a site-specific loss of larger fibrils in the core and periphery of the Achilles...

  11. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2015-10-01

    diagnosis, staging, and treatment of numerous connective tissue disorders and diseases. Standard antibody staining methods that rely on epitopes of a...CMP can be used to detect mechanical damage to collagen in tendon which could be used for diagnostic and therapeutics of musculoskeletal injury which...13. SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of the proposed work is to develop new PCa imaging methods based on the collagen mimetic peptide

  12. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    Surgical repairs of torn rotator cuff tendons frequently fail. Immobilization has been shown to improve tissue mechanical properties in an animal model of rotator cuff repair, and passive motion has been shown to improve joint mechanics in animal models of flexor tendon repair. Our objective was to determine if daily passive motion would improve joint mechanics in comparison with continuous immobilization in a rat rotator cuff repair model. We hypothesized that daily passive motion would result in improved passive shoulder joint mechanics in comparison with continuous immobilization initially and that there would be no differences in passive joint mechanics or insertion site mechanical properties after four weeks of remobilization. A supraspinatus injury was created and was surgically repaired in sixty-five Sprague-Dawley rats. Rats were separated into three postoperative groups (continuous immobilization, passive motion protocol 1, and passive motion protocol 2) for two weeks before all underwent a remobilization protocol for four weeks. Serial measurements of passive shoulder mechanics (internal and external range of motion and joint stiffness) were made before surgery and at two and six weeks after surgery. After the animals were killed, collagen organization and mechanical properties of the tendon-to-bone insertion site were determined. Total range of motion for both passive motion groups (49% and 45% of the pre-injury values) was less than that for the continuous immobilization group (59% of the pre-injury value) at two weeks and remained significantly less following four weeks of remobilization exercise. Joint stiffness at two weeks was increased for both passive motion groups in comparison with the continuous immobilization group. At both two and six weeks after repair, internal range of motion was significantly decreased whereas external range of motion was not. There were no differences between the groups in terms of collagen organization or mechanical

  14. Composition and structure of porcine digital flexor tendon-bone insertion tissues.

    Science.gov (United States)

    Chandrasekaran, Sandhya; Pankow, Mark; Peters, Kara; Huang, Hsiao-Ying Shadow

    2017-11-01

    Tendon-bone insertion is a functionally graded tissue, transitioning from 200 MPa tensile modulus at the tendon end to 20 GPa tensile modulus at the bone, across just a few hundred micrometers. In this study, we examine the porcine digital flexor tendon insertion tissue to provide a quantitative description of its collagen orientation and mineral concentration by using Fast Fourier Transform (FFT) based image analysis and mass spectrometry, respectively. Histological results revealed uniformity in global collagen orientation at all depths, indicative of mechanical anisotropy, although at mid-depth, the highest fiber density, least amount of dispersion, and least cellular circularity were evident. Collagen orientation distribution obtained through 2D FFT of histological imaging data from fluorescent microscopy agreed with past measurements based on polarized light microscopy. Results revealed global fiber orientation across the tendon-bone insertion to be preserved along direction of physiologic tension. Gradation in the fiber distribution orientation index across the insertion was reflective of a decrease in anisotropy from the tendon to the bone. We provided elemental maps across the fibrocartilage for its organic and inorganic constituents through time-of-flight secondary ion mass spectrometry (TOF-SIMS). The apatite intensity distribution from the tendon to bone was shown to follow a linear trend, supporting past results based on Raman microprobe analysis. The merit of this study lies in the image-based simplified approach to fiber distribution quantification and in the high spatial resolution of the compositional analysis. In conjunction with the mechanical properties of the insertion tissue, fiber, and mineral distribution results for the insertion from this may potentially be incorporated into the development of a structural constitutive approach toward computational modeling. Characterizing the properties of the native insertion tissue would provide the

  15. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-02-25

    Piezoresponse force microscopy was applied to directly study individual type I collagen fibrils with diameters of approximately 100 nm isolated from bovine Achilles tendon. It was revealed that single collagen fibrils behave predominantly as shear piezoelectric materials with a piezoelectric coefficient on the order of 1 pm V(-1), and have unipolar axial polarization throughout their entire length. It was estimated that, under reasonable shear load conditions, the fibrils were capable of generating an electric potential up to tens of millivolts. The result substantiates the nanoscale origin of piezoelectricity in bone and tendons, and implies also the potential importance of the shear load-transfer mechanism, which has been the principle basis of the nanoscale mechanics model of collagen, in mechanoelectric transduction in bone.

  16. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise

    DEFF Research Database (Denmark)

    Heinemeier, K M; Bjerrum, S S; Schjerling, P

    2013-01-01

    Acute kicking exercise induces collagen synthesis in both tendon and muscle in humans, but it is not known if this relates to increased collagen transcription and if other matrix genes are regulated. Young men performed 1 h of one-leg kicking at 67% of max workload. Biopsies were taken from...... the patellar tendon and vastus lateralis muscle of each leg at 2 (n = 10), 6 (n = 11), or 26 h (n = 10) after exercise. Levels of messenger ribonucleic acid mRNA for collagens, noncollagenous matrix proteins, and growth factors were measured with real-time reverse transcription polymerase chain reaction...

  17. Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Gemmer, Carsten

    2007-01-01

    Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin......-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both...... and exercise groups after 48 h (P human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling...

  18. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization.

    Science.gov (United States)

    Berthet, Ellora; Chen, Carol; Butcher, Kristin; Schneider, Richard A; Alliston, Tamara; Amirtharajah, Mohana

    2013-09-01

    TGFβ plays a critical role in tendon formation and healing. While its downstream effector Smad3 has been implicated in the healing process, little is known about the role of Smad3 in normal tendon development or tenocyte gene expression. Using mice deficient in Smad3 (Smad3(-/-) ), we show that Smad3 ablation disrupts tendon architecture and has a dramatic impact on normal gene and protein expression during development as well as in mature tendon. In developing and adult tendon, loss of Smad3 results in reduced protein expression of the matrix components Collagen 1 and Tenascin-C. Additionally, when compared to wild type, tendon from adult Smad3(-/-) mice shows a down regulation of key tendon marker genes. Finally, we have established that Smad3 has the ability to physically interact with the critical transcriptional regulators Scleraxis and Mohawk. Together these results indicate a central role for Smad3 in normal tendon formation and in the maintenance of mature tendon. Copyright © 2013 Orthopaedic Research Society.

  19. The anabolic effects of insulin on type II collagen synthesis of Swarm rat chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Bembenek, M.E.; Liberti, J.P.

    1984-01-01

    The anabolic effects of insulin on collagen production of freshly isolated Swarm rat chondrosarcoma chondrocytes were investigated. The specific radioactivity of newly synthesized collagen was not increased by insulin, indicating that the hormone has no effect on the specific radioactivity of the aminoacyl tRNA pool. Results of further studies obtained from collagen degradation experiments demonstrated that insulin did not alter the rate of [3H]collagen degradation. Together, these results clearly indicate that insulin stimulates collagen biosynthesis. Polyacrylamide gel analysis of the newly synthesized collagen of both control and insulin-stimulated cells revealed a large-molecular-weight component which migrated with authentic alpha 1(II) collagen and was collagenase-sensitive. Additional studies showed that, although insulin increased the processing and secretion of collagen, the hormone did not cause a shift in the distribution of the extracellular and intracellular collagen pools. Finally, results of studies conducted with the transcriptional inhibitor, actinomycin D, indicated that the anabolic effects of insulin on collagen and non-collagen proteins were mediated at a post-transcriptional site

  20. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3.

    Science.gov (United States)

    Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E

    2010-10-01

    Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  1. Effect of Basic Fibroblast Growth Factor on Achilles Tendon Healing in Rabbit.

    Science.gov (United States)

    Najafbeygi, Arash; Fatemi, Mohammad Javad; Lebaschi, Amir Hussein; Mousavi, Seyed Jaber; Husseini, Seyed Abouzar; Niazi, Mitra

    2017-01-01

    Tendon injuries are common and it takes a long time for an injured tendon to heal. Adverse phenomena such as adhesion and rupture are associated with these injuries. Finding a method to reduce the time required for healing which improves the final outcome, will lead to decreased frequency and intensity of adverse consequences. This study was designed to investigate the effects of basic fibroblast growth factor on the healing of the Achilles tendon in rabbits. In 10 New Zealand white rabbits, Achilles tendon was cut at the intersection of the distal and middle thirds on both hind legs. One microgram of recombinant basic fibroblast growth factor (bFGF) was injected in the proximal and distal stumps of the cut tendon on the right side (study group). Normal saline of equal volume was injected on the left side in the same way (control group). Then the tendons were repaired with 5/0 nylon using modified Kessler technique. A cast was made to immobilize each leg. On day 42, rabbits were euthanized and both hind legs were amputated. Tensometry and histopathologic examination were done on specimens. In tensometric studies, more force was required to rupture the repair site in study group. In histopathologic examination, collagen fibers had significantly better orientation and organization in the study group. No difference was noted regarding number of fibroblast and fibrocytes, and degree of angiogenesis in the two groups. Application of basic fibroblast growth factor at tendon repair site improves the healing process through improvement of collagen fiber orientation and increase in biomechanical resistance.

  2. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression

    DEFF Research Database (Denmark)

    Sullivan, B.E.; Carroll, C.C.; Jemiolo, B.

    2009-01-01

    Sullivan BE, Carroll CC, Jemiolo B, Trappe SW, Magnusson SP, Dossing S, Kjaer M, Trappe TA. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. J Appl Physiol 106: 468-475, 2009. First published November 20, 2008; doi: 10.1152/japplphysiol.......91341.2008.-Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases ( MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism...... and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP...

  3. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qian [College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China); Chen Denglong [College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China); Yang Zhiming [Division of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Li Min, E-mail: mli@fjnu.edu.cn [College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China)

    2009-06-01

    In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.

  4. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

    International Nuclear Information System (INIS)

    Fang Qian; Chen Denglong; Yang Zhiming; Li Min

    2009-01-01

    In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.

  5. Stimulation of tendon repair by platelet concentrate, CDMP-2 and mechanical loading in animal models

    OpenAIRE

    Virchenko, Olena

    2007-01-01

    Growth factor delivery may be useful to accelerate the rate of tendon healing. We studied Platelet Concentrate, which in effect can be regarded as a cocktail of growth factors relevant for tendon healing. In a rat Achilles tendon transection model, one postoperative injection of Platelet Concentrate resulted in increased strength even 3 weeks later. Mechanical stimulation improves the repair of ruptured tendons. We studied the effects of platelets upon Achilles tendon regenerates in rats 3, 5...

  6. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Science.gov (United States)

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Human Achilles tendon glycation and function in diabetes

    DEFF Research Database (Denmark)

    Couppe, Christian; Svensson, Rene Brüggebusch; Kongsgaard, Mads

    2016-01-01

    Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between...... tissue cross-linking were greater in diabetic patients compared to controls. The higher foot pressure indicates that material stiffness of tendon and other tissue (e.g skin and joint capsule) may influence on foot gait. The difference in foot pressure distribution may contribute to the development...... of foot ulcers in diabetic patients....

  8. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH...... exercise (P insertion was markedly delayed by exercise compared with the decay seen in resting subjects...

  9. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model.

    Science.gov (United States)

    Chong, Alphonsus K S; Ang, Abel D; Goh, James C H; Hui, James H P; Lim, Aymeric Y T; Lee, Eng Hin; Lim, Beng Hai

    2007-01-01

    A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.

  10. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model.

    Science.gov (United States)

    Kamiya, Seitaro; Hagimori, Masayori; Ogasawara, Masayoshi; Arakawa, Masayuki

    2010-01-01

    Thrombosis is characterized by congenital and acquired procatarxis. Nattokinase inhibits thrombus formation in vitro. However, in vivo evaluation of the therapeutic efficacy of nattokinase against thrombosis remains to be conducted. Subcutaneous nattokinase injections of 1 or 2 mg/ml were administered to the tails of rats. Subsequently, κ-carrageenan was intravenously administered to the tails at 12 h after nattokinase injections. The mean length of the infarcted regions in the tails of rats was significantly shorter in rats administered 2 mg/ml of nattokinase than those in control rats. Nattokinase exhibited significant prophylactic antithrombotic effects. Previously, the in vitro efficacy of nattokinase against thrombosis had been reported; now our study has revealed the in vivo efficacy of nattokinase against thrombosis. Copyright © 2010 S. Karger AG, Basel.

  11. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair.

    Directory of Open Access Journals (Sweden)

    Michael B Geary

    Full Text Available Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1 expression in the antagonist group, along with decreases in type I collagen (Col1a1. Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism

  12. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    Science.gov (United States)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  13. Histological study of the influence of plasma rich in growth factors (PRGF) on the healing of divided Achilles tendons in sheep.

    Science.gov (United States)

    Fernández-Sarmiento, J Andrés; Domínguez, Juan M; Granados, María M; Morgaz, Juan; Navarrete, Rocío; Carrillo, José M; Gómez-Villamandos, Rafael J; Muñoz-Rascón, Pilar; Martín de Las Mulas, Juana; Millán, Yolanda; García-Balletbó, Montserrat; Cugat, Ramón

    2013-02-06

    The use of plasma rich in growth factors (PRGF) has been proposed to improve the healing of Achilles tendon injuries, but there is debate about the effectiveness of this therapy. The objective of the present study was to evaluate the histological effects of PRGF, which is a type of leukocyte-poor platelet-rich plasma, on tendon healing. The Achilles tendons of twenty-eight sheep were divided surgically. The animals were randomly divided into four groups of seven animals each. The repaired tendons in two groups received an infiltration of PRGF intraoperatively and every week for the following three weeks under ultrasound guidance. The tendons in the other two groups received injections with saline solution. The animals in one PRGF group and one saline solution group were killed at four weeks, and the animals in the remaining two groups were killed at eight weeks. The Achilles tendons were examined histologically, and the morphometry of fibroblast nuclei was calculated. The fibroblast nuclei of the PRGF-treated tendons were more elongated and more parallel to the tendon axis than the fibroblast nuclei of the tendons in the saline solution group at eight weeks. PRGF-treated tendons showed more packed and better oriented collagen bundles at both four and eight weeks. In addition to increased maturation of the collagen structure, fibroblast density was significantly lower in PRGF-infiltrated tendons. PRGF-treated tendons exhibited faster vascular regression than tendons in the control groups, as demonstrated by a lower vascular density at eight weeks. PRGF was associated with histological changes consistent with an accelerated early healing process in repaired Achilles tendons in sheep after experimental surgical disruption. PRGF-treated tendons showed improvements in the morphometric features of fibroblast nuclei, suggesting a more advanced stage of healing. At eight weeks, histological examination revealed more mature organization of collagen bundles, lower vascular

  14. SMOOTH MYOCYTES AND COLLAGENOUS FIBERS OF THE URINARY BLADDER OF RATS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Nadiya Tokaruk

    2015-12-01

    Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine   Key words: diabetes mellitus; smooth myocytes; collagenous fibers.   Introduction. Diabetes mellitus (DM causes diabetic cystopathy, which is associated with detrusor dysfunction and the content of collagenous fibers. The results of the performed studies are ambiguous and often contradictory, requiring objective data which could be obtained on the basis of the simultaneous determination of relative areas of smooth myocytes and collagenous fibers and their ultrastructural study. Objective: To determine the peculiarities of the structural and metric organization of smooth myocytes and collagenous fibers of the urinary bladder (UB of rats during different stages of DM. Materials and methods. DM was modeled by streptozotocin in Wistar rats. Relative areas of the studied structures were defined on digital images of histological sections of UB stained by Mason using the original automatic way. Smooth myocytes were studied ultrastructurally. Results. During the 14th-28th day of DM development the percent of collagenous fibers area decreases and the percentage of smooth myocytes area of UB wall increases. The expanding of intercellular spaces and the development of vacuolar degeneration of myocytes are observed. During the 42nd-56th days the percentage of collagenous fibers area increases and the percentage of the area of smooth myocytes decreases. Ultrastructurally subsiding of vacuolar dystrophy, short-term baloon dystrophy, the appearance of dark myocytes, moderate karyorrhexis were observed. During the 70th day of the experiment the percentage of collagenous fibers and smooth myocytes areas does not change significantly, most dark myocytes are involutive, there are local fibrosis and myocyte sequestration areas. Conclusions. Ultrastructural changes are characterized by a pronounced polymorphism and have a chronological relationship. Author’s worked out original method of determination of the

  15. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats

    DEFF Research Database (Denmark)

    Oturai, P S; Christensen, M; Rolin, B

    2000-01-01

    ), and a breaker of already formed AGE cross-links, N-phenacylthiazolium bromide (PTB), were investigated in streptozotocin-diabetic female Wistar rats. Diabetes for 24 weeks resulted in decreased tail collagen pepsin solubility, reflecting the formation of AGE cross-linking. Collagen solubility was significantly...... ameliorated by treatment with NNC39-0028, whereas PTB had no effect. Increased urinary albumin excretion (UAE) in diabetic rats was observed in serial measurements throughout the study period, and was not reduced by any treatment. Vascular dysfunction in the eye, measured as increased clearance of 125I......-albumin, was induced by diabetes. NNC39-0028 did not affect this abnormality. This study demonstrated a pharmacological inhibition of collagen solubility alterations in diabetic rats without affecting diabetes-induced pathophysiology such as the increase in UAE or albumin clearance. Treatment with PTB, a specific...

  16. Icariin Promotes Tendon-Bone Healing during Repair of Rotator Cuff Tears: A Biomechanical and Histological Study.

    Science.gov (United States)

    Ye, Chenyi; Zhang, Wei; Wang, Shengdong; Jiang, Shuai; Yu, Yuanbin; Chen, Erman; Xue, Deting; Chen, Jianzhong; He, Rongxin

    2016-10-25

    To investigate whether the systematic administration of icariin (ICA) promotes tendon-bone healing after rotator cuff reconstruction in vivo, a total of 64 male Sprague Dawley rats were used in a rotator cuff injury model and underwent rotator cuff reconstruction (bone tunnel suture fixation). Rats from the ICA group ( n = 32) were gavage-fed daily with ICA at 0.125 mg/g, while rats in the control group ( n = 32) received saline only. Micro-computed tomography, biomechanical tests, serum ELISA (calcium; Ca, alkaline phosphatase; AP, osteocalcin; OCN) and histological examinations (Safranin O and Fast Green staining, type I, II and III collagen (Col1, Col2, and Col3), CD31, and vascular endothelial growth factor (VEGF)) were analyzed two and four weeks after surgery. In the ICA group, the serum levels of AP and OCN were higher than in the control group. More Col1-, Col2-, CD31-, and VEGF-positive cells, together with a greater degree of osteogenesis, were detected in the ICA group compared with the control group. During mechanical testing, the ICA group showed a significantly higher ultimate failure load than the control group at both two and four weeks. Our results indicate that the systematic administration of ICA could promote angiogenesis and tendon-bone healing after rotator cuff reconstruction, with superior mechanical strength compared with the controls. Treatment for rotator cuff injury using systematically-administered ICA could be a promising strategy.

  17. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application.

  18. Noninvasive Cu-64-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, D.; Kjaer, M.; Madsen, J.

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1 alpha and CAIII using real-time polymerase chain reaction. Results: Immediately after the contractions, uptake of Cu-64-ATSM......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer Cu-64-diacetyl bis(N-4-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1 alpha (HIF1 alpha) and carbonic anhydrase III (CAIII). Methods: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, Cu-64-ATSM was injected...

  19. Noninvasive 64Cu-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; Madsen, Jacob

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1alpha and CAIII using real-time polymerase chain reaction. RESULTS: Immediately after the contractions, uptake of (64)Cu......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer (64)Cu-diacetyl bis(N(4)-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1alpha (HIF1alpha) and carbonic anhydrase III (CAIII). METHODS: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, (64)Cu-ATSM was injected...

  20. Effect of Vaginal or Systemic Estrogen on Dynamics of Collagen Assembly in the Rat Vaginal Wall1

    Science.gov (United States)

    Montoya, T. Ignacio; Maldonado, P. Antonio; Acevedo, Jesus F.; Word, R. Ann

    2014-01-01

    ABSTRACT The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support. PMID:25537371

  1. Imaging method of minute injured area at achilles tendon from multiple MR Images

    International Nuclear Information System (INIS)

    Tokui, Takahiro; Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Oguchi, Makoto; Fujiwara, Kazuhisa; Tabata, Yoshito; Ishigaki, Rikuta

    2011-01-01

    Ruptures of Achilles tendon frequently occur while doing sports. Since two-thirds of the people who suffered from the rupture of Achilles tendon feel the pain at Achilles tendon before rupture, to detect the predictor of the rupture is possible. Achilles tendon is soft tissue consisting of unidirectionally-aligned collagen fibers. Therefore, ordinary MRI scanner, ultrasonic instrument or X-ray scanner cannot acquire medical images of Achilles tendon. However, because MR signal intensity changes according to the angle between static magnetic field direction and fiber orientation, MR device can detect strong signal when the angle is 55 deg. In this research, the authors propose the imaging method to detect injured area at Achilles tendon. The method calculates and visualizes the value representing fiber tropism from the matching between MR signal intensity and the model of signal intensity of angle dependence. (author)

  2. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    Science.gov (United States)

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  3. Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model.

    Science.gov (United States)

    Sasabe, Ryo; Sakamoto, Junya; Goto, Kyo; Honda, Yuichiro; Kataoka, Hideki; Nakano, Jiro; Origuchi, Tomoki; Endo, Daisuke; Koji, Takehiko; Okita, Minoru

    2017-09-01

    The purpose of this study was to examine the time-dependent changes in the development of joint capsule fibrosis and in the number of myofibroblasts in the joint capsule after immobilization, using a rat knee contracture model. Both knee joints were fixed in full flexion for 1, 2, and 4 weeks (immobilization group). Untreated rats were bred for each immobilization period (control group). Histological analysis was performed to evaluate changes in the amount and density of collagen in the joint capsule. The changes in type I and III collagen mRNA were examined by in situ hybridization. The number of myofibroblasts in the joint capsule was assessed by immunohistochemical methods. In the immobilization group, the amount of collagen increased within 1 week and the density of collagen increased within 2 weeks, as compared with that in the control group. Type I collagen mRNA-positive cell numbers in the immobilization group increased at all time points. However, type III collagen mRNA-positive cell numbers did not increase. Myofibroblasts in the immobilization group significantly increased compared with those in the control group at all time points, and they increased significantly with the period of immobilization. These results suggest that joint capsule fibrosis with overexpression of type I collagen occurs and progresses within 1 week after immobilization, and an increase in myofibroblasts is related to the mechanism of joint capsule fibrosis. The findings suggest the need for a treatment targeting accumulation of type I collagen associated with an increase in myofibroblasts. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1998-2006, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    Science.gov (United States)

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  5. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    Science.gov (United States)

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  6. Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue

    DEFF Research Database (Denmark)

    Koskinen, S O A; Heinemeier, K M; Olesen, J L

    2004-01-01

    Microdialysis studies indicate that mechanical loading of human tendon tissue during exercise or training can affect local synthesis and degradation of type I collagen. Degradation of collagen and other extracellular matrix proteins is controlled by an interplay between matrix metalloproteinases...... (MMPs) and their tissue inhibitors (TIMPs). However, it is unknown whether local levels of MMPs and TIMPs are affected by tendon loading in humans in vivo. In the present experiment, six healthy young men performed 1 h of uphill (3%) treadmill running. Dialysate was collected from microdialysis probes...... (placed in the peritendinous tissue immediately anterior to the Achilles tendon) before, immediately after, 1 day after, and 3 days after an exercise bout. MMP-2 and MMP-9 were measured in dialysate by gelatin zymography, and amounts were quantified by densitometry in relation to total protein...

  7. Effect of Footprint Preparation on Tendon-to-Bone Healing: A Histologic and Biomechanical Study in a Rat Rotator Cuff Repair Model.

    Science.gov (United States)

    Nakagawa, Haruhiko; Morihara, Toru; Fujiwara, Hiroyoshi; Kabuto, Yukichi; Sukenari, Tsuyoshi; Kida, Yoshikazu; Furukawa, Ryuhei; Arai, Yuji; Matsuda, Ken-Ichi; Kawata, Mitsuhiro; Tanaka, Masaki; Kubo, Toshikazu

    2017-08-01

    To compare the histologic and biomechanical effects of 3 different footprint preparations for repair of tendon-to-bone insertions and to assess the behavior of bone marrow-derived cells in each method of insertion repair. We randomized 81 male Sprague-Dawley rats and green fluorescent protein-bone marrow chimeric rats into 3 groups. In group A, we performed rotator cuff repair after separating the supraspinatus tendon from the greater tuberosity and removing the residual tendon tissue. In group B, we also drilled 3 holes into the footprint. The native fibrocartilage was preserved in groups A and B. In group C, we excavated the footprint until the cancellous bone was exposed. Histologic repair of the tendon-to-bone insertion, behavior of the bone marrow-derived cells, and ultimate force to failure were examined postoperatively. The areas of metachromasia in groups A, B, and C were 0.033 ± 0.019, 0.089 ± 0.022, and 0.002 ± 0.001 mm 2 /mm 2 , respectively, at 4 weeks and 0.029 ± 0.022, 0.090 ± 0.039, and 0.003 ± 0.001 mm 2 /mm 2 , respectively, at 8 weeks. At 4 and 8 weeks postoperatively, significantly higher cartilage matrix production was observed in group B than in group C (4 weeks, P = .002; 8 weeks, P repair tissue and biomechanical strength at the tendon-to-bone insertion after rotator cuff repair in an animal model. Drilling into the footprint and preserving the fibrocartilage can enhance repair of tendon-to-bone insertions. This method may be clinically useful in rotator cuff repair. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Exercise-related alterations in crimp morphology in the central regions of superficial digital flexor tendons from young thoroughbreds: a controlled study.

    Science.gov (United States)

    Patterson-Kane, J C; Wilson, A M; Firth, E C; Parry, D A; Goodship, A E

    1998-01-01

    Injury to the core of the mid-metacarpal region of the superficial digital flexor tendon in Thoroughbred racehorses is a very frequent but poorly understood condition. It has been suggested that subclinical changes induced by galloping exercise weaken the collagen in this region of the tendon, predisposing it to rupture. The longitudinally arranged collagen fibrils in tendon follow a planar waveform, termed the crimp. Fibril bundles with a smaller crimp angle fail at a lower level of strain than those with a larger crimp angle. This study tested the hypothesis that a specific 18 month exercise programme would result in significant reduction of collagen fibril crimp angle and period length in the core region of the superficial digital flexor tendon of young Thoroughbreds (21 +/- 1 months), compared to the normal change in these parameters with age. Central region crimp angle and length were significantly lower in exercised horses than in control horses (P < 0.05). The crimp angle was significantly lower in this central region than in the peripheral region of the tendon in 4 of the 5 exercised horses, as was the crimp length in 3 of the 4 horses. The crimp angle in the peripheral region was significantly greater in exercised horses than in the controls (P < 0.05), which may indicate functional adaptation due to differing mechanical environment between the 2 tendon regions. The results of this study supported previous evidence that galloping exercise modifies normal age-related changes in crimp morphology in the core of the superficial digital flexor tendon. Such changes are indicative of microtrauma and would be detrimental to tendon strength.

  9. Enalapril alters the formation of the collagen matrix in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Alfredo de Souza Bomfim

    2003-07-01

    Full Text Available OBJECTIVE: To assess the effect of the inhibition of the angiotensin-converting enzyme on the collagen matrix (CM of the heart of newborn spontaneously hypertensive rats (SHR during embryonic development. METHODS: The study comprised the 2 following groups of SHR (n=5 each: treated group - rats conceived from SHR females treated with enalapril maleate (15 mg. kg-1.day-1 during gestation; and nontreated group - offspring of nontreated females. The newborns were euthanized within the first 24 hours after birth and their hearts were removed and processed for histological study. Three fields per animal were considered for computer-assisted digital analysis and determination of the volume densities (Vv of the nuclei and CM. The images were segmented with the aid of Image Pro Plus® 4.5.029 software (Media Cybernetics. RESULTS: No difference was observed between the treated and nontreated groups in regard to body mass, cardiac mass, and the relation between cardiac and body mass. A significant reduction in the Vv[matrix] and a concomitant increase in the Vv[nuclei] were observed in the treated group as compared with those in the nontreated group. CONCLUSION: The treatment with enalapril of hypertensive rats during pregnancy alters the collagen content and structure of the myocardium of newborns.

  10. Simvastatin Exposure and Rotator Cuff Repair in a Rat Model.

    Science.gov (United States)

    Deren, Matthew E; Ehteshami, John R; Dines, Joshua S; Drakos, Mark C; Behrens, Steve B; Doty, Stephen; Coleman, Struan H

    2017-03-01

    Simvastatin is a common medication prescribed for hypercholesterolemia that accelerates local bone formation. It is unclear whether simvastatin can accelerate healing at the tendon-bone interface after rotator cuff repair. This study was conducted to investigate whether local and systemic administration of simvastatin increased tendon-bone healing of the rotator cuff as detected by maximum load to failure in a controlled animal-based model. Supraspinatus tendon repair was performed on 120 Sprague-Dawley rats. Sixty rats had a polylactic acid membrane overlying the repair site. Of these, 30 contained simvastatin and 30 did not contain medication. Sixty rats underwent repair without a polylactic acid membrane. Of these, 30 received oral simvastatin (25 mg/kg/d) and 30 received a regular diet. At 4 weeks, 5 rats from each group were killed for histologic analysis. At 8 weeks, 5 rats from each group were killed for histologic analysis and the remaining 20 rats were killed for biomechanical analysis. One rat that received oral simvastatin died of muscle necrosis. Average maximum load to failure was 35.2±6.2 N for those receiving oral simvastatin, 36.8±9.0 N for oral control subjects, 39.5±12.8 N for those receiving local simvastatin, and 39.1±9.3 N for control subjects with a polylactic acid membrane. No statistically significant differences were found between any of the 4 groups (P>.05). Qualitative histologic findings showed that all groups showed increased collagen formation and organization at 8 weeks compared with 4 weeks, with no differences between the 4 groups at each time point. The use of systemic and local simvastatin offered no benefit over control groups. [Orthopedics. 2017; 40(2):e288-e292.]. Copyright 2016, SLACK Incorporated.

  11. Circulating CO3-610, a degradation product of collagen III, closely reflects liver collagen and portal pressure in rats with fibrosis

    Science.gov (United States)

    2011-01-01

    Background Hepatic fibrosis is characterized by intense tissue remodeling, mainly driven by matrix metalloproteinases. We previously identified CO3-610, a type III collagen neoepitope generated by matrix metalloproteinase (MMP)-9, and tested its performance as a fibrosis marker in rats with bile-duct ligation. In this study, we assessed whether CO3-610 could be used as a surrogate biomarker of liver fibrosis and portal hypertension in carbon tetrachloride-induced experimental fibrosis. Results For this study, 68 Wistar rats were used. Serum CO3-610 was measured by ELISA. Liver fibrosis was quantified by Sirius red staining. Serum hyaluronic acid (HA) was measured with a binding-protein assay. Gene expression of collagens I and III, Mmp2 and Mmp9, and tissue inhibitors of matrix metalloproteinase 1 (Timp1) and 2(Timp2) was quantified by PCR. Hemodynamic measurements were taken in a subgroup of animals. A close direct relationship was found between serum CO3-610 and hepatic collagen content (r = 0.78; P fibrosis (43.5 ± 3.3 ng/mL, P Liver Mmp9 expression increased significantly in fibrotic animals but decreased to control levels in cirrhotic ones. Conclusions Circulating CO3-610 behaves as a reliable indicator of hepatic remodeling and portal hypertension in experimental fibrosis. This peptide could ultimately be a useful marker for the management of liver disease in patients. PMID:21813019

  12. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  13. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.

    Science.gov (United States)

    Nakamura, Tomohiro; Takagi, Shunya; Kamon, Takafumi; Yamasaki, Ken-Ichi; Fujisato, Toshia

    2017-02-01

    Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation. C2C12 cells were embedded in a cold type-І collagen gel and placed between two artificial tendons on a silicone sheet. The construct shrank and tightly attached to the artificial tendons with differentiation, finally detaching from the silicone sheet within 1 week of culture onset. We successfully developed a tissue-engineered skeletal muscle with two artificial tendons from C2C12 myoblasts embedded in type-І collagen gel. The isometric twitch contractile force (TCF) significantly increased during differentiation. Time to Peak Tension (TPT) and Half-Relaxation Time (1/2RT) were significantly shortened during differentiation. Myogenic regulatory factors were maximally expressed at 2 weeks, and subsequently decreased at 3 weeks of culture. Histological analysis indicated that myotube formation increased markedly from 2 weeks and well-ordered sarcomere structures were observed on the surface of the 3D engineered muscle at 3 weeks of culture. These results suggested that robust muscle structure occurred by 3 weeks in the tissue-engineered skeletal muscle. Moreover, during the developmental process, the artificial tendons might contribute to well-ordered sarcomere formation. Our results indicated that this simple culture system could be used to evaluate the effects of various pharmacological and mechanical cues on muscle contractility in a variety of research areas. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. “Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on ...

    African Journals Online (AJOL)

    Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on Total Petroleum ... the use of plants, have been adopted for the remediation of the affected soils. ... Residual TPH and heavy metals (chromium, Cr and lead, Pb) were ...

  15. In vitro characterization of a novel tissue engineered based hybridized nano and micro structured collagen implant and its in vivo role on tenoinduction, tenoconduction, tenogenesis and tenointegration.

    Science.gov (United States)

    Oryan, Ahmad; Moshiri, Ali; Meimandi-Parizi, Abdolhamid

    2014-03-01

    Surgical reconstruction of large tendon defects is technically demanding. Tissue engineering is a new option. We produced a novel tissue engineered, collagen based, bioimplant and in vitro characterizations of the implant were investigated. In addition, we investigated role of the collagen implant on the healing of a large tendon defect model in rabbits. A two cm length of the left rabbit's Achilles tendon was transected and discarded. The injured tendons of all the rabbits were repaired by Kessler pattern to create and maintain a 2 cm tendon gap. The collagen implant was inserted in the tendon defect of the treatment group (n = 30). The defect area was left intact in the control group (n = 30). The animals were euthanized at 60 days post injury (DPI) and the macro- micro- and nano- morphologies and the biomechanical characteristics of the tendon samples were studied. Differences of P implant properly incorporated with the healing tissue and was replaced by the new tendinous structure which was superior both ultra-structurally and physically than the loose areolar connective tissue regenerated in the control lesions. The results of this study may be valuable in the clinical practice.

  16. Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

    NARCIS (Netherlands)

    Schwob, Lucas; Lalande, Mathieu; Rangama, Jimmy; Egorov, Dmitrii; Hoekstra, Ronnie; Pandey, Rahul; Eden, Samuel; Schlathölter, Thomas; Vizcaino, Violaine; Poully, Jean-Christophe

    2017-01-01

    Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the

  17. Effects and Mechanism of SO2 Inhalation on Rat Myocardial Collagen Fibers.

    Science.gov (United States)

    Chen, Ping; Qiao, Decai; Liu, Xiaoli

    2018-03-21

    BACKGROUND This study investigates the effects and mechanism of sulfur dioxide (SO2) inhalation and exercise on rat myocardial collagen fiber. MATERIAL AND METHODS The rats were randomly divided into 4 groups: a control group (RG), an exercise group (EG), an SO2 pollution group (SRG), and an SO2 pollution and exercise group (SEG). Body weight, cardiac index, and left ventricular index in each group were compared. The myocardial hydroxyproline (Hyp) concentration was determined by pepsin acid hydrolysis. The interstitial myocardial collagen expression was measured by Sirius Red F3B in saturated carbazotic acid. The local myocardial angiotensin II type 1 receptor (AT1R) and connective tissue growth factor (CTGF) expression was tested by immunohistochemistry SABC method. RESULTS Compared with RG, the weight growth rate of EG, SRG, and SEG decreased significantly (PSO2 inhalation and exercise will not only offset beneficial health effects of movement on the cardiovascular system, but also produce more unfavorable influences. People should pay attention to their environment when exercising, and try to avoid exercising in environments with SO2 pollution.

  18. The response to estrogen deprivation on cartilage collagen degradation markers; CTX-II is unique compared to other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine; Sondergaard, Lene

    2009-01-01

    ABSTRACT: INTRODUCTION: The urinary level of type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomized rats, suggesting that estrogen deprivation induces cartilage breakdown. Here we investigate whether this response to estrogen holds true for other type...... II collagen turnover markers known to be affected in osteoarthritis, and whether it relates to its presence in specific areas of cartilage tissue. METHODS: The type II collagen degradation markers CTX-II and Helix-II were measured in body fluids of pre- and postmenopausal women and of ovariectomized...... rats receiving estrogen or not. Levels of PIIANP, a marker of type II collagen synthesis, were also measured in rats. Rat knee cartilage was analyzed for immunoreactivity of CTX-II and PIIANP and for type II collagen expression. RESULTS: As expected, urinary levels of CTX-II are significantly increased...

  19. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    Science.gov (United States)

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.

  20. In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats.

    Science.gov (United States)

    Fujiwara, Ken; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2010-12-01

    Type I and III collagens widely occur in the rat anterior pituitary gland and are the main components of the extracellular matrix (ECM). Although ECM components possibly play an important role in the function of the anterior pituitary gland, little is known about collagen-producing cells. Type I collagen is a heterotrimer of two α1(I) chains (the product of the col1a1 gene) and one α2(I) chain (the product of the col1a2 gene). Type III collagen is a homotrimer of α1(III) chains (the product of the col3a1 gene). We used in situ hybridization with digoxigenin-labeled cRNA probes to examine the expression of col1a1, col1a2, and col3a1 mRNAs in the pituitary gland of adult rats. mRNA expression for these collagen genes was clearly observed, and cells expressing col1a1, col1a2, and col3a1 mRNA were located around capillaries in the gland. We also investigated the possible double-staining of collagen mRNA and pituitary hormones, S-100 protein (a marker of folliculo-stellate cells), or desmin (a marker of pericytes). Col1a1 and col3a1 mRNA were identified in desmin-immunopositive cells. Thus, only pericytes produce type I and III collagens in the rat anterior pituitary gland.

  1. High-Performance Liquid Chromatography (HPLC) Quantification of Liposome-Delivered Doxorubicin in Arthritic Joints of Collagen-Induced Arthritis Rats.

    Science.gov (United States)

    Niu, Hongqing; Xu, Menghua; Li, Shuangtian; Chen, Junwei; Luo, Jing; Zhao, Xiangcong; Gao, Chong; Li, Xiaofeng

    2017-04-14

    BACKGROUND Neoangiogenesis occurring in inflamed articular synovium in early rheumatoid arthritis (RA) is characterized by enhanced vascular permeability that allows nanoparticle agents, including liposomes, to deliver encapsulated drugs to arthritic joints and subsequently improve therapeutic efficacy and reduce adverse effects. However, the targeting distribution of liposomes in arthritic joints during RA has not been quantitatively demonstrated. We performed this study to evaluate the targeting distribution of PEGylated doxorubicin liposomes in the arthritic joints of collagen-induced arthritis (CIA) rats by high-performance liquid chromatography (HPLC). MATERIAL AND METHODS Two doxorubicin formulations were administered to CIA rats via tail intravenous injection at a single dose (50 mg/m²). CIA rats were sacrificed and the tissues of the inflamed ankle joints were collected. The content of doxorubicin in the arthritic joints was analyzed by a validated and reproducible HPLC method. A two-way ANOVA for 2×5 factorial design was used for statistical analysis. RESULTS The developed HPLC method was sensitive, precise, and reproducible. The method was successfully applied to quantify doxorubicin content in arthritic tissues. At each time point (6, 12, 24, 48, and 72 h), doxorubicin content in the arthritic joints of the doxorubicin liposome group (DOX-LIP group) was higher than in the free doxorubicin group (DOX group) (P<0.05). In the DOX-LIP group, doxorubicin levels in the arthritic joints increased gradually and significantly in the interval of 6-72 h post-administration. CONCLUSIONS PEGylated doxorubicin liposomes were targeted to, accumulated, and retained in the arthritic joints of CIA rats. The present study indicates that liposome encapsulation increases the therapeutic efficacy of antirheumatic drugs, presenting a promising therapeutic strategy for RA.

  2. Protective effects of a blueberry extract in acute inflammation and collagen-induced arthritis in the rat.

    Science.gov (United States)

    Figueira, Maria-Eduardo; Oliveira, Mónica; Direito, Rosa; Rocha, João; Alves, Paula; Serra, Ana-Teresa; Duarte, Catarina; Bronze, Rosário; Fernandes, Adelaide; Brites, Dora; Freitas, Marisa; Fernandes, Eduarda; Sepodes, Bruno

    2016-10-01

    Here we investigated the anti-inflammatory effect of a blueberry extract in the carrageenan-induced paw edema model and collagen-induced arthritis model, both in rats. Along with the chemical characterization of the phenolic content of the fruits and extract, the antioxidant potential of the extract, the cellular antioxidant activity and the effects over neutrophils' oxidative burst, were studied in order to provide a mechanistic insight for the anti-inflammatory effects observed. The extract significantly inhibited paw edema formation in an acute model the rat. Our results also demonstrate that the standardized extract had pharmacological activity when administered orally in the collagen-induced arthritis model in the rat and was able to significantly reduce the development of clinical signs of arthritis and the degree of bone resorption, soft tissue swelling and osteophyte formation, consequently improving articular function in treated animals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Effects of hydroxysafflor yellow A on proliferation and collagen synthesis of rat vascular adventitial fibroblasts induced by angiotensin II.

    Science.gov (United States)

    Yuan, Wendan; Yang, Dongxia; Sun, Xuhong; Liu, Wei; Wang, Liang; Li, Xiaoyan; Man, Xuejing; Fu, Qiang

    2014-01-01

    1) examine the effects of hydroxysafflor yellow A (HSYA) on the proliferation, collagen and cytokine synthesis of vascular adventitial fibroblasts as induced by angiotensin II (Ang II) in normal Sprague-Dawley (SD) rats in vitro, and 2) to assess the effects of HSYA on morphological changes and collagen accumulation of vascular adventitia in spontaneously hypertensive rats (SHR) in vivo. In vitro experiment, vascular adventitial fibroblasts from SD rats were isolated, cultured, and divided into control groups, model groups and HSYA groups. Cell morphology of adventitial fibroblasts was assessed using laser confocal microscopy, while cell proliferation with the MTT assay, and collagen synthesis was determined using hydroxyproline chromatometry. Immunocytochemistry and reverse transcription PCR were used for detecting the expression of TGF-β1, MMP-1, α-SMA and NF-κB in adventitial fibroblasts. In vivo experiment, vascular adventitia proliferation and collagen synthesis were analyzed using hematoxylin-eosin and Sirius staining. Our results showed that: 1) in vitro experiment of SD rats, HSYA inhibited proliferative activity and collagen synthesis of adventitial fibroblasts as induced by Ang II, and the inhibitory effects of HSYA on the increased expression of MMP-1, TGF-β1, α-SMA and NF-κB p65 as induced by Ang II were assessed, and 2) in vivo experiment of SHR, histological analysis displayed fewer pathological changes of vascular adventitia in HSYA treatment groups as compared with no HSYA treatment groups, and MMP-1, TGF-β1, α-SMA and NF-κB p65 expression significantly reduced after HSYA treatment (P adventitia components. This study provides experimental evidence demonstrating that HSYA has the capacity to decrease vascular adventitia proliferation and hyperplasia during vascular remodeling.

  4. Impact of oral contraceptive use and menstrual phases on patellar tendon morphology, biochemical composition and biomechanical properties in female athletes

    DEFF Research Database (Denmark)

    Hansen, Mette Damborg; Couppe, Christian; Hansen, Christina

    2013-01-01

    Introduction: Gender differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising females vs. males, and in users of oral contraceptives (OC) vs non-users, but it is unknown if OC will influence tendon biomechanics of females undergoing...

  5. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model.

    Science.gov (United States)

    Tucker, Jennica J; Cirone, James M; Morris, Tyler R; Nuss, Courtney A; Huegel, Julianne; Waldorff, Erik I; Zhang, Nianli; Ryaby, James T; Soslowsky, Louis J

    2017-04-01

    Rotator cuff tears are common musculoskeletal injuries often requiring surgical intervention with high failure rates. Currently, pulsed electromagnetic fields (PEMFs) are used for treatment of long-bone fracture and lumbar and cervical spine fusion surgery. Clinical studies examining the effects of PEMF on soft tissue healing show promising results. Therefore, we investigated the role of PEMF on rotator cuff healing using a rat rotator cuff repair model. We hypothesized that PEMF exposure following rotator cuff repair would improve tendon mechanical properties, tissue morphology, and alter in vivo joint function. Seventy adult male Sprague-Dawley rats were assigned to three groups: bilateral repair with PEMF (n = 30), bilateral repair followed by cage activity (n = 30), and uninjured control with cage activity (n = 10). Rats in the surgical groups were sacrificed at 4, 8, and 16 weeks. Control group was sacrificed at 8 weeks. Passive joint mechanics and gait analysis were assessed over time. Biomechanical analysis and μCT was performed on left shoulders; histological analysis on right shoulders. Results indicate no differences in passive joint mechanics and ambulation. At 4 weeks the PEMF group had decreased cross-sectional area and increased modulus and maximum stress. At 8 weeks the PEMF group had increased modulus and more rounded cells in the midsubstance. At 16 weeks the PEMF group had improved bone quality. Therefore, results indicate that PEMF improves early tendon healing and does not alter joint function in a rat rotator cuff repair model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:902-909, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Effect of repeated freezing-thawing on the Achilles tendon of rabbits.

    Science.gov (United States)

    Chen, Lianxu; Wu, Yanping; Yu, Jiakuo; Jiao, Zhaode; Ao, Yingfang; Yu, Changlong; Wang, Jianquan; Cui, Guoqing

    2011-06-01

    The increased use of allograft tissue in the reconstruction of anterior cruciate ligament has brought more focus to the effect of storage and treatment on allograft. The purpose of this study was to observe the effect of histology and biomechanics on Achilles tendon in rabbits through repeated freezing-thawing before allograft tendon transplantation. Rabbit Achilles tendons were harvested and processed according to the manufacture's protocol of tissue bank, and freezing-thawing was repeated three times (group 1) and ten times (group 2). Those received only one cycle were used as controls. Then, tendons in each group were selected randomly to make for histological observations and biomechanics test. Histological observation showed that the following changes happened as the number of freezing-thawing increased: the arrangement of tendon bundles and collagen fibrils became disordered until ruptured, cells disrupted and apparent gaps appeared between tendon bundle because the formation of ice crystals. There were significant differences between the experimental and control groups in the values of maximum load, energy of maximum load and maximum stress, whereas no significant differences existed in other values such as stiffness, maximum strain, elastic modulus, and energy density. Therefore, repeated freezing-thawing had histological and biomechanical effect on Achilles tendon in rabbits before allograft tendon transplantation. This indicates that cautions should be taken in the repeated freezing-thawing preparation of allograft tendons in clinical application.

  7. Do cells contribute to tendon and ligament biomechanics?

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS, while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research

  8. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    OpenAIRE

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential a...

  9. Effects of ascorbate and B-aminopropionitrile on tendon fibroblast migration in vitro

    International Nuclear Information System (INIS)

    Nelson, J.M.; Cohen, I.K.; Diegelmann, R.F.

    1986-01-01

    Ascorbate (Asc) stimulates collagen synthesis and hydroxylation whereas beta-aminopropionitrile (BAPN) inhibits collagen cross-link formation. In this study, an in vitro model employing isolated chicken tendon biopsies (2 mm in dia.) in a fibrin clot has been used to examine the effect of Asc and BAPN on tendon fibroblast migration and proliferation. After 5 days in culture with either Asc (0.1 mM), or BAPN (0.5, 1.0, 2.0 mM), cell migration was measured using an automatic planimeter and cell proliferation was quantitated by 125 IUDR incorporation into DNA. In cultures treated with Asc alone, cell migration was enhanced by approximately 33% compared to controls without ascorbate (5.9 mm 2 vs. 4.4 mm 2 ; p < 0.05) with no significant effect on cell proliferation. In contrast, cultures incubated with increasing concentrations of BAPN (0.5 - 2.0 mM) displayed a dose-dependent decrease (up to 9.6-fold at 2 mM) in fibroblast migration into the clot. The inhibitory effect of BAPN on cell migration was not due to a corresponding inhibition of fibroblast proliferation. These observations suggest that Asc enhanced collagen formation and thus allowed greater cell migration into the fibrin matrix. In contrast, in the absence of a mature, cross-linked collagen matrix following exposure to BAPN, cell migration was sub-optimal. These in vitro studies support the hypothesis that modulation of the collagen matrix may be a useful means of regulating tissue repair in vivo

  10. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sambit [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Cho-Hong, James Goh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Siew-Lok, Toh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore)

    2007-09-15

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly ({epsilon}-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments.

  11. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    International Nuclear Information System (INIS)

    Sahoo, Sambit; Cho-Hong, James Goh; Siew-Lok, Toh

    2007-01-01

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly (ε-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments

  12. Layer-dependent role of collagen recruitment during loading of the rat bladder wall.

    Science.gov (United States)

    Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M

    2018-04-01

    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.

  13. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  14. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Han, Fei; Zhang, Peng; Sun, Yaying; Lin, Chao; Zhao, Peng; Chen, Jiwu

    2015-01-01

    Hamstring tendon autograft is a routine graft for anterior cruciate ligament (ACL) reconstruction. However, ways of improving the healing between the tendon and bone is often overlooked in clinical practice. This issue can be addressed by using a biomimetic scaffold. Herein, a biomimetic nanofiber membrane of polycaprolactone/nanohydroxyapatite/collagen (PCL/nHAp/Col) is fabricated that mimics the composition of native bone tissue for promoting tendon-bone healing. This membrane has good cytocompatibility, allowing for osteoblast cell adhesion and growth and bone formation. As a result, MC3T3 cells reveal a higher mineralization level in PCL/nHAp/Col membrane compared with PCL membrane alone. Further in vivo studies in ACL reconstruction in a rabbit model shows that PCL/nHAp/Col-wrapped tendon may afford superior tissue integration to nonwrapped tendon in the interface between the tendon and host bone as well as improved mechanical strength. This study shows that PCL/nHAp/Col nanofiber membrane wrapping of autologous tendon is effective for improving tendon healing with host bone in ACL reconstruction.

  15. The effect of subcutaneously injected nicotine on achilles tendon healing in rabbits.

    Science.gov (United States)

    Duygulu, Fuat; Karaoğlu, Sinan; Zeybek, N Dilara; Kaymaz, F Figen; Güneş, Tamer

    2006-08-01

    The objective of this study was to evaluate the effect of subcutaneously injected nicotine on transversely transected and sutured achilles tendon healing in an experimental rabbit model. Adult New Zealand rabbits (n=22) weighting 3,000-3,500 g were used in this experimental study. Rabbits were randomly divided into two groups. Achilles tendon was transversely incised and repaired in all animals. In the experiment group subcutaneous injection of Nicotine tartrate 3 mg/kg/day was done. In the control group Serum physiologic injection was done at the same dosage. The injections were made three times a day in equal dosages. Nicotine and SF injections were made until the end of the 8-week, and then all animals were euthanized. Both light microscopic and electron microscopic evaluations were made on 14 animals. In N group light microscopic evaluation showed a visible gap in repair site. The total tendon score represented in N group was less than in SF group. The statistical analysis of the groups was significantly different for total tendon scores (P=0.002). Beside this electron microscopic examination showed inactive and degenerated fibroblasts and irregular collagen fibrils around them as well as collagen synthesis interruption in N group. Biomechanical evaluation was made on eight animals. The average tensile strength values in Group N (139.47+/-44.55 N) were significantly lower than those in Group SF (265.9+/-39.01 N) (z=2.309, P=0.029). Nicotine is the major chemical component common to all cigarettes and previously has been shown to affect wound and fracture healing adversely. The results of this study show that nicotine impairs achilles tendon healing after a surgical repair.

  16. Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics

    Directory of Open Access Journals (Sweden)

    Franka Klatte-Schulz

    2018-01-01

    Full Text Available Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7, chronic ruptures (n = 6, acute ruptures (n = 13, and intact tendons (n = 4 were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2, inflammatory cells (cluster of differentaition (CD 3, CD68, CD80, CD206, fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin, and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies.

  17. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    Directory of Open Access Journals (Sweden)

    Chou YC

    2016-08-01

    Full Text Available Ying-Chao Chou,1,2 Wen-Lin Yeh,2 Chien-Lin Chao,1 Yung-Heng Hsu,1,2 Yi-Hsun Yu,1,2 Jan-Kan Chen,3 Shih-Jung Liu1,2 1Department of Mechanical Engineering, Chang Gung University, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 3Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan Abstract: A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA bolt as the bone anchor and a poly(D,L-lactide-co-glycolide (PLGA nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. Keywords: polylactide–polyglycolide nanofibers, PLGA, collagen, 3D printing, polylactide, PLA, bone-anchoring bolts, tendon healing

  18. Three-Dimensional Bio-Printed Scaffold Sleeves With Mesenchymal Stem Cells for Enhancement of Tendon-to-Bone Healing in Anterior Cruciate Ligament Reconstruction Using Soft-Tissue Tendon Graft.

    Science.gov (United States)

    Park, Sin Hyung; Choi, Yeong-Jin; Moon, Sang Won; Lee, Byung Hoon; Shim, Jin-Hyung; Cho, Dong-Woo; Wang, Joon Ho

    2018-01-01

    To investigate the efficacy of the insertion of 3-dimensional (3D) bio-printed scaffold sleeves seeded with mesenchymal stem cells (MSCs) to enhance osteointegration between the tendon and tunnel bone in anterior cruciate ligament (ACL) reconstruction in a rabbit model. Scaffold sleeves were fabricated by 3D bio-printing. Before ACL reconstruction, MSCs were seeded into the scaffold sleeves. ACL reconstruction with hamstring tendon was performed on both legs of 15 adult rabbits (aged 12 weeks). We implanted 15 bone tunnels with scaffold sleeves with MSCs and implanted another 15 bone tunnels with scaffold sleeves without MSCs before passing the graft. The specimens were harvested at 4, 8, and 12 weeks. H&E staining, immunohistochemical staining of type II collagen, and micro-computed tomography of the tunnel cross-sectional area were evaluated. Histologic assessment was conducted with a histologic scoring system. In the histologic assessment, a smooth bone-to-tendon transition through broad fibrocartilage formation was identified in the treatment group, and the interface zone showed abundant type II collagen production on immunohistochemical staining. Bone-tendon healing histologic scores were significantly higher in the treatment group than in the control group at all time points. Micro-computed tomography at 12 weeks showed smaller tibial (control, 9.4 ± 0.9 mm 2 ; treatment, 5.8 ± 2.9 mm 2 ; P = .044) and femoral (control, 9.6 ± 2.9 mm 2 ; treatment, 6.0 ± 1.0 mm 2 ; P = .03) bone-tunnel areas in the treated group than in the control group. The 3D bio-printed scaffold sleeve with MSCs exhibited excellent results in osteointegration enhancement between the tendon and tunnel bone in ACL reconstruction in a rabbit model. If secure biological healing between the tendon graft and tunnel bone can be induced in the early postoperative period, earlier, more successful rehabilitation may be facilitated. Three-dimensional bio-printed scaffold sleeves with

  19. Electrospun biodegradable microfibers induce new collagen formation in a rat abdominal wall defect model

    DEFF Research Database (Denmark)

    Tarpø, Cecilie Lærke Glindtvad; Chen, Menglin; Nygaard, Jens Vinge

    2018-01-01

    and effect on collagen and elastin production of a degradable mesh releasing basic fibroblast growth factor (bFGF). Implantation of biodegradable mesh with or without bFGF in their core has been conducted in 40 rats in an abdominal wall defect model. Samples were explanted after 4, 8, and 24 weeks...

  20. Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions

    Directory of Open Access Journals (Sweden)

    Daniele D’Arrigo

    2017-11-01

    Full Text Available Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs or to induce a terminal tenogenic differentiation (T-MSCs for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects.

  1. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats.

    Science.gov (United States)

    Zhang, Zhaofeng; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-09-01

    A wound is a clinical entity which often poses problems in clinical practice. The present study was aimed to investigate the wound healing potential of administering marine collagen peptides (MCP) from Chum Salmon skin by using two wound models (incision and excision) in rats. Ninety-six animals were equally divided into the two wound models and then within each model animals were randomly divided into two groups: vehicle-treated group and 2 g kg(-1) MCP-treated group. Wound closure and tensile strength were calculated. Collagen deposition was assessed by Masson staining and hydroxyproline measurement. Angiogenesis was assessed by immunohistological methods. MCP-treated rats showed faster wound closure and improved tissue regeneration at the wound site, which was supported by histopathological parameters pertaining to wound healing. MCP treatment improved angiogenesis and helped form thicker and better organised collagen fibre deposition compared to vehicle-treated group. The results show the efficacy of oral MCP treatment on wound healing in animals. Copyright © 2011 Society of Chemical Industry.

  2. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Peach, M Sean; James, Roshan; Toti, Udaya S; Deng, Meng; Laurencin, Cato T; Kumbar, Sangamesh G; Morozowich, Nicole L; Allcock, Harry R

    2012-01-01

    Poly[(ethyl alanato) 1 (p-methyl phenoxy) 1 ] phosphazene (PNEA-mPh) was used to modify the surface of electrospun poly(ε-caprolactone) (PCL) nanofiber matrices having an average fiber diameter of 3000 ± 1700 nm for the purpose of tendon tissue engineering and augmentation. This study reports the effect of polyphosphazene surface functionalization on human mesenchymal stem cell (hMSC) adhesion, cell-construct infiltration, proliferation and tendon differentiation, as well as long term cellular construct mechanical properties. PCL fiber matrices functionalized with PNEA-mPh acquired a rougher surface morphology and led to enhanced cell adhesion as well as superior cell-construct infiltration when compared to smooth PCL fiber matrices. Long-term in vitro hMSC cultures on both fiber matrices were able to produce clinically relevant moduli. Both fibrous constructs expressed scleraxis, an early tendon differentiation marker, and a bimodal peak in expression of the late tendon differentiation marker tenomodulin, a pattern that was not observed in PCL thin film controls. Functionalized matrices achieved a more prominent tenogenic differentiation, possessing greater tenomodulin expression and superior phenotypic maturity according to the ratio of collagen I to collagen III expression. These findings indicate that PNEA-mPh functionalization is an efficient method for improving cell interactions with electrospun PCL matrices for the purpose of tendon repair. (paper)

  3. Short-term immobilization and recovery affect skeletal muscle but not collagen tissue turnover in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    Not much is known about the effects of immobilization and subsequent recovery on tendon connective tissue. In the present study, healthy young men had their nondominant leg immobilized for a 2-wk period, followed by a recovery period of the same length. Immobilization resulted in a mean decrease...... of 6% (5,413 to 5,077 mm(2)) in cross-sectional area (CSA) of the triceps surae muscles and a mean decrease of 9% (261 to 238 N.m) in strength of the immobilized calf muscles. Two weeks of recovery resulted in a 6% increased in CSA (to 5,367 mm(2)), whereas strength remained suppressed (240 N...... muscle size and strength, while tendon size and collagen turnover were unchanged. While recovery resulted in an increase in muscle size, strength was unchanged. No significant difference in tendon size could be detected between the two legs after 2 wk of recovery, although collagen synthesis...

  4. Effect of water on piezoelectricity in bone and collagen.

    Science.gov (United States)

    Netto, T G; Zimmerman, R L

    1975-01-01

    Interferometric measurements of bovine bone and tendon show that the values of the piezoelectric strain constant d14 decrease with hydration from the dry values of 0.2 X 10(-14) and 2.0 X 10(-14) m/V, respectively. The decrease of piezoelectricity in tendon is exponential with a characteristic hydration of 7% by weight from which an upper limit of the average molecular weight of the responsible electric dipole moments is deduced. The piezoelectricity in bone decreases relatively slowly with hydration indicating that the electric dipoles in bone collagen are subject to a different cancelling mechanism. PMID:1148359

  5. Dickkopf1 Up-Regulation Induced by a High Concentration of Dexamethasone Promotes Rat Tendon Stem Cells to Differentiate Into Adipocytes

    Directory of Open Access Journals (Sweden)

    Wan Chen

    2015-11-01

    Full Text Available Background/Aims: Dexamethasone (Dex-induced spontaneous tendon rupture and decreased self-repair capability is very common in clinical practice. The metaplasia of adipose tissue in the ruptured tendon indicates that Dex may induce tendon stem cells (TSCs to differentiate into adipocytes, but the mechanism remains unclear. In the present study, we used in vitro methods to investigate the effects of Dex on rat TSC differentiation and the molecular mechanisms underlying this process. Methods: First, we used qPCR and Western blotting to detect the expression of the adipogenic differentiation markers aP2 and C/EBPα after treating the TSCs with Dex. Oil red staining was used to confirm that high concentration Dex promoted adipogenic differentiation of rat TSCs. Next, we used qPCR and Western blotting to detect the effect of a high concentration of dexamethasone on molecules related to the canonical WNT/β-catenin pathway in TSCs. Results: Treating rat TSCs with Dex promoted the synthesis of the inhibitory molecule dickkopf1 (DKK1 at the mRNA and protein levels. Western blotting results further showed that Dex downregulated the cellular signaling molecule phosphorylated glycogen synthase kinase-3β (P-GSK-3 β (ser9, upregulated P-GSK-3β (tyr216, and downregulated the pivotal signaling molecule β-catenin. Furthermore, DKK1 knockdown attenuated Dex-induced inhibition of the canonical WNT/β-catenin pathway and of the adipogenic differentiation of TSCs. Lithium chloride (LiCl, a GSK-3β inhibitor reduced Dex-induced inhibition of the classical WNT/β-catenin pathway in TSCs and of the differentiation of TSCs to adipocytes. Conclusion: In conclusion, by upregulating DKK1 expression, reducing the level of P-GSK-3β (ser9, and increasing the level of P-GSK-3β (tyr216, Dex causes the degradation of β-catenin, the central molecule of the classical WNT pathway, thereby inducing rat TSCs to differentiate into adipocytes.

  6. Chicken type II collagen induced immune tolerance of mesenteric lymph node lymphocytes by enhancing beta2-adrenergic receptor desensitization in rats with collagen-induced arthritis.

    Science.gov (United States)

    Zhao, Wei; Tong, Tong; Wang, Ling; Li, Pei-Pei; Chang, Yan; Zhang, Ling-Ling; Wei, Wei

    2011-01-01

    Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. In this study, we investigated the effects of CCII on inflammatory and immune responses to the mesenteric lymph node lymphocytes (MLNLs) and the mechanisms by which CCII regulates beta2-adrenergic receptor (beta2-AR) signal transduction in collagen-induced arthritis (CIA) rats. The onset of secondary arthritis in rats appeared around day 14 after injection of CCII emulsion. Remarkable secondary inflammatory response and lymphocytes proliferation were observed in CIA rats. The administration of CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) could significantly reduce synovial hyperplasia, lymphatic follicle hyperplasia, inflammatory cells infiltration of MLNLs in CIA rats. CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) restored the previously decreased level of cAMP of MLNLs of CIA rats. Meanwhile, CCII increased total protein expressions of beta2-AR, GRK2 and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats but had an slight effect on GRK3. CCII further increased plasmatic protein expressions of GRK2, G(α)s and decreased that of beta-arrestin1, 2, beta2-AR, and increased membrane protein expressions of beta2-AR, GRK2, G(α)s and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats. These results demonstrate that the mechanisms of CCII on beta2-AR desensitization and beta2-AR-AC-cAMP transmembrane signal transduction of MLNLs play crucial roles in pathogenesis of this disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Influence of irradiation on collagen content during wound healing in diabetic rats

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2002-01-01

    Full Text Available The aim of the present experimental research was to investigate the effects of electron irradiation on the collagen content and on the organization of the granulation tissue of skin, in diabetic rats. In this study, 48 Wistar rats were assigned to 4 groups: control, irradiated, diabetic and irradiated diabetic. First, diabetes mellitus was induced in the last two groups, by means of a single intravenous injection of streptozotocin. Fifteen days later, all animals underwent a surgery in order to create an excisional wound on their anterior dorsal skin. On the third post-operative day, only an approximately 1-cm-wide area around the wounds was exposed to 1 Gy of 6 MeV electron beam radiation, which was delivered in a single dose. Wound healing was examined by means of polarized light microscopy at 4-, 7-, 13- and 21-day time intervals after wounding. Based upon an essentially qualitative evaluation, it was possible to conclude that local electron irradiation and diabetes' associated dysfunctions caused a decrease in the collagen content of newly-formed tissue, which was more pronounced in irradiated diabetic animals. The macromolecular organization of granulation tissue was delayed in irradiated, diabetic and irradiated diabetic animals, in relation to what was observed in control animals.

  8. Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring.

    Science.gov (United States)

    Foolen, Jasper; Wunderli, Stefania L; Loerakker, Sandra; Snedeker, Jess G

    2018-01-01

    Tendinopathy is a widespread and unresolved clinical challenge, in which associated pain and hampered mobility present a major cause for work-related disability. Tendinopathy associates with a change from a healthy tissue with aligned extracellular matrix (ECM) and highly polarized cells that are connected head-to-tail, towards a diseased tissue with a disorganized ECM and randomly distributed cells, scar-like features that are commonly attributed to poor innate regenerative capacity of the tissue. A fundamental clinical dilemma with this scarring process is whether treatment strategies should focus on healing the affected (disorganized) tissue or strengthen the remaining healthy (anisotropic) tissue. The question was thus asked whether the intrinsic remodeling capacity of tendon-derived cells depends on the organization of the 3D extracellular matrix (isotropic vs anisotropic). Progress in this field is hampered by the lack of suitable in vitro tissue platforms. We aimed at filling this critical gap by creating and exploiting a next generation tissue platform that mimics aspects of the tendon scarring process; cellular response to a gradient in tissue organization from isotropic (scarred/non-aligned) to highly anisotropic (unscarred/aligned) was studied, as was a transient change from isotropic towards highly anisotropic. Strikingly, cells residing in an 'unscarred' anisotropic tissue indicated superior remodeling capacity (increased gene expression levels of collagen, matrix metalloproteinases MMPs, tissue inhibitors of MMPs), when compared to their 'scarred' isotropic counterparts. A numerical model then supported the hypothesis that cellular remodeling capacity may correlate to cellular alignment strength. This in turn may have improved cellular communication, and could thus relate to the more pronounced connexin43 gap junctions observed in anisotropic tissues. In conclusion, increased tissue anisotropy was observed to enhance the cellular potential for

  9. Effects of spontaneously hypertensive rat plasma on blood pressure and tail artery calcium uptake in normotensive rats

    International Nuclear Information System (INIS)

    Lewanczuk, R.Z.; Wang, J.; Zhang, Z.R.; Pang, P.K.

    1989-01-01

    Previous studies have described the presence of humoral hypertensive factors in spontaneously hypertensive rats (SHR). Other studies have described factors that increase calcium uptake in vascular tissue. In this study, we attempted to confirm, and thereby correlate, the presence of both types of factors in SHR plasma. Intravenous infusion or bolus administration of dialyzed SHR plasma consistently induced an increase in blood pressure in normotensive rats. This hypertensive response was somewhat delayed, with peak blood pressures occurring 45 minutes after bolus administration and 90 minutes after infusion of SHR plasma. Spontaneously hypertensive rat plasma also increased 45 Ca uptake in isolated normotensive rat tail arteries in a dose-dependent manner, with a time course similar to that for the hypertensive response to bolus administration. These findings suggest, therefore, that a substance exists in SHR plasma that can increase intracellular calcium in vascular tissues and thereby increase blood pressure

  10. Differential control of collagen synthesis by the sympathetic and renin-angiotensin systems in the rat left ventricle.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2009-12-03

    In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV. Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.

  11. Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Uhlenbrock, Franziska Katharina; Eliasson, Pernilla

    2015-01-01

    to structurally abnormal collagen fibrils with irregular profiles and widely dispersed diameters. Of special interest, the abnormal fibril profiles resembled those seen in some Ehlers-Danlos Syndrome phenotypes. Importantly, the total collagen content developed normally, and there was no difference in COL1A1 gene...

  12. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  13. Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans

    DEFF Research Database (Denmark)

    Svensson, René B; Hassenkam, Tue; Hansen, Philip

    2011-01-01

    suggested that the proteoglycan-associated glycosaminoglycans (GAGs) found on the surface of the collagen fibrils may be an important transmitter of load, but existing results are ambiguous and have not investigated human tendons. We have used a small-scale mechanical testing system to measure...... change the tendon modulus, relative energy dissipation, peak stress, or peak strain. The effect of deformation rate was not modulated by the treatment either, indicating no effect on viscosity. These results suggest that GAGs cannot be considered mediators of tensile force transmission in the human...... patellar tendon, and as such, force transmission must either take place through other matrix components or the fibrils must be mechanically continuous at least to the tested length of 7 mm....

  14. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression.

    Science.gov (United States)

    Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo

    2015-08-01

    To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of single- and double-row rotator cuff repair at the tendon-to-bone interface: preliminary results using an in vivo sheep model.

    Science.gov (United States)

    Baums, M H; Schminke, B; Posmyk, A; Miosge, N; Klinger, H-M; Lakemeier, S

    2015-01-01

    The clinical superiority of the double-row technique is still a subject of controversial debate in rotator cuff repair. We hypothesised that the expression of different collagen types will differ between double-row and single-row rotator cuff repair indicating a faster healing response by the double-row technique. Twenty-four mature female sheep were randomly assembled to two different groups in which a surgically created acute infraspinatus tendon tear was fixed using either a modified single- or double-row repair technique. Shoulder joints from female sheep cadavers of identical age, bone maturity, and weight served as untreated control cluster. Expression of type I, II, and III collagen was observed in the tendon-to-bone junction along with recovering changes in the fibrocartilage zone after immunohistological tissue staining at 1, 2, 3, 6, 12, and 26 weeks postoperatively. Expression of type III collagen remained positive until 6 weeks after surgery in the double-row group, whereas it was detectable for 12 weeks in the single-row group. In both groups, type I collagen expression increased after 12 weeks. Type II collagen expression was increased after 12 weeks in the double-row versus single-row group. Clusters of chondrocytes were only visible between week 6 and 12 in the double-row group. The study demonstrates differences regarding the expression of type I and type III collagen in the tendon-to-bone junction following double-row rotator cuff repair compared to single-row repair. The healing response in this acute repair model is faster in the double-row group during the investigated healing period.

  16. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  17. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis

    DEFF Research Database (Denmark)

    Langberg, Henning; Ellingsgaard, Helga; Madsen, Thomas

    2007-01-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on...... in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P......It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime...... of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased...

  18. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy.

    Science.gov (United States)

    Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi

    2006-01-01

    The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.

  19. Healing of the Achilles tendon in rabbits--evaluation by magnetic resonance imaging and histopathology.

    Science.gov (United States)

    Tavares, Wilson Campos; de Castro, Ubiratam Brum; Paulino, Eduardo; Vasconcellos, Leonardo de Souza; Madureira, Ana Paula; Magalhães, Maria Angélica Baron; Mendes, Daniel Victor Moreira; Kakehasi, Adriana Maria; Resende, Vivian

    2014-12-12

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could provide valuable findings for tendon regeneration. A non-invasive image method that can effectively evaluate the quality of the scar tissue has not yet been employed. Thirteen New Zealand rabbits were divided into two groups: group 1--non-treated control (n = 4); group 2--surgical intervention (n = 9). The central portion of the Achilles tendon was resected, and after 30 days, DCE-MRI was performed. Contrast enhancement methods were applied using the region of interest (ROI) technique. In the medium third of the Achilles tendon, the intra-substantial signal intensity and the presence of hyper-intense intra-tendon focus points and of signal heterogeneity were evaluated. Antero-posterior and transversal diameters of the tendon were measured. The Achilles tendon was removed and dissected free from other tissues. Sections from the central part of the tendon were stained for histological analysis. The difference between the contrast enhancement curves of the control and surgical groups (p tendon sheath, which presented irregular contours and intense contrast enhancement. On histology, the Achilles tendon presented diffuse widening of the tendon sheath and wedge-shaped areas with scarring tissue rich in disordered collagen fibres. These findings were related to alteration in the intra-substantial signal intensity, with hyper-signal focus points in the DCE-MRI. MRI with perfusion could be a useful technique for evaluating tissue and fibrous scarring in tendons.

  20. [Therapeutic effect of a novel recombinant vaccine encoding chicken collagen type II procollagen gene on collagen-induced arthritis in rat].

    Science.gov (United States)

    Song, Xin-qiang; Luo, Yuan; Wang, Dan; Liu, Shu-guang; Liu, Jin-feng; Yuan, Fang; Xue, Hong; Liu, Nan; Liang, Fei; Sun, Yu-ying; Xi, Yong-zhi

    2006-08-08

    To investigate the therapeutic effect of gene vaccine encoding chicken collagen type II (CC II) on collagen-induced arthritis (CIA) comprehensively. Three groups (CIA) were given a single intravenous injection of plasmid pcDNA-CCOL2A1 (20 microg/kg, 200 microg/kg, 400 microg/kg) respectively and one group (CIA) was injected 200 microg/kg pcDNA3.1 as a control. The effect of gene vaccine (pcDNA-CCOL2A1) was evaluated according to the arthritis score, radiological and histological examinations. The severity of arthritis of CIA rats which were administered 200 microg/kg pcDNA-CCOL2A1 was significantly reduced from the fifth day. According to the radiological and histological examinations, the articular cartilage as well as subchondral bone trabeculae are similar to those of the normal groups, so the bone and articular cartilage structure were protected after treatment with 200 microg/kg pcDNA-CCOL2A1 with a little synovial hyperplasia. The therapeutic effect of 200 microg/kg pcDNA-CCOL2A1 group has significant difference in comparison with that of the pcDNA3.1 group (P 0.05). The new gene vaccine pcDNA-CCOL2A1 has significant therapeutic effect on CIA rats, and the treatment may therefore be an effective strategy for RA patient clinically.

  1. TGIF1 Gene Silencing in Tendon-Derived Stem Cells Improves the Tendon-to-Bone Insertion Site Regeneration

    Directory of Open Access Journals (Sweden)

    Liyang Chen

    2015-11-01

    Full Text Available Background/Aims: The slow healing process of tendon-to-bone junctions can be accelerated via implanted tendon-derived stem cells (TDSCs with silenced transforming growth interacting factor 1 (TGIF1 gene. Tendon-to-bone insertion site is the special form of connective tissues derivatives of common connective progenitors, where TGF-β plays bidirectional effects (chondrogenic or fibrogenic through different signaling pathways at different stages. A recent study revealed that TGF-β directly induces the chondrogenic gene Sox9. However, TGIF1 represses the expression of the cartilage master Sox9 gene and changes its expression rate against the fibrogenesis gene Scleraxis (Scx. Methods: TGIF1 siRNA was transduced or TGIF1 was over-expressed in tendon-derived stem cells. Following suprapinatus tendon repair, rats were either treated with transduced TDSCs or nontransduced TDSCs. Histologic examination and Western blot were performed in both groups. Results: In this study, the silencing of TGIF1 significantly upregulated the chondrogenic genes and markers. Similarly, TGIF1 inhibited TDSC differentiation into cartilage via interactions with TGF-β-activated Smad2 and suppressed the phosphorylation of Smad2. The area of fibrocartilage at the tendon-bone interface was significantly increased in the TGIF1 (- group compared with the control and TGIF1-overexpressing groups in the early stages of the animal model. The interface between the tendon and bone showed a increase of new bone and fibrocartilage in the TGIF1 (- group at 4 weeks. Fibrovascular scar tissue was observed in the TGIF1-overexpressing group and the fibrin glue only group. Low levels of fibrocartilage and fibrovascular scar tissue were found in the TDSCs group. Conclusion: Collectively, this study shows that the tendon-derived stem cell modified with TGIF1 gene silencing has promising effects on tendon-to-bone healing which can be further explored as a therapeutic tool in regenerative medicine.

  2. Alterações no tendão de Aquiles após inflamação em tecido adjacente Alterations in the Achilles tendon after inflammation in surrounding tissue

    Directory of Open Access Journals (Sweden)

    Cristiano Pedrozo Vieira

    2012-01-01

    Full Text Available OBJETIVO: Analisar as características de tendões de Aquiles de ratos após indução de processo inflamatório localizado na pata. MÉTODOS: Foram utilizados três grupos experimentais: grupo inflamado com carragenina na pata de rato (G1; grupo salina (G2 e grupo controle (G3. Após 4 horas os animais foram eutanaziados e o tendão de Aquiles foi removido. RESULTADOS:Não foram observadas diferenças significativas nas análises de proteínas não colagênicas, glicosaminoglicanos e hidroxiprolina, mas uma tendência a diminuição foi verificada em G1. Em organização de moléculas de colágeno não foram observadas diferenças entre os grupos. Com respeito à atividade de MMPs, foi observada uma presença maior da isoforma ativa da MMP-2 em G1, sugerindo que a remodelação do tecido está ocorrendo. CONCLUSÃO: Desta forma, nós concluímos que o processo inflamatório desencadeado em pata de rato pode afetar o remodelamento de tendões situados próximo ao local inflamado. Nível de Evidência I, Estudos Prognósticos - Investigação do Efeito de Característica de um Paciente Sobre o Desfecho da Doença.OBJECTIVE: To analyze the characteristics of the Achilles tendon of rats after induction of localized inflammation in the rat paw. METHODS: In our study three groups were used: inflamed group with carrageenan in rat paw (G1; saline group (G2 and control group (G3. After 4 hours the animals were euthanized and the Achilles tendon removed. RESULTS: No significant differences were observed in the analysis of non-collagenous proteins, glycosaminoglycans and hydroxyproline in the groups but a tendency of reduction was verified in G1. About the organization of collagen molecules, no differences were observed between groups. With respect to MMPs activity, a stronger presence of the active isoform of MMP-2 in G1 was observed, suggesting that the remodeling was occurring. CONCLUSION: Thus, we conclude that the inflammatory process in rat paw may

  3. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue.

    Science.gov (United States)

    Buschmann, Johanna; Puippe, Gilbert; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Giovanoli, Pietro; Calcagni, Maurizio

    2014-04-01

    Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.

  4. The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value.

    Science.gov (United States)

    Oryan, Ahmad; Sharifi, Pardis; Moshiri, Ali; Silver, Ian A

    2017-09-01

    Large tendon defects involving extensive tissue loss present complex clinical problems. Surgical reconstruction of such injuries is normally performed by transplanting autogenous and allogenous soft tissues that are expected to remodel to mimic a normal tendon. However, the use of grafts has always been associated with significant limitations. Tissue engineering employing artificial scaffolds may provide acceptable alternatives. Gelatin is a hydrolyzed form of collagen that is bioactive, biodegradable, and biocompatible. The present study has investigated the suitability of gelatin scaffold for promoting healing of a large tendon-defect model in rabbits. An experimental model of a large tendon defect was produced by partial excision of the Achilles tendon of the left hind leg in adult rabbits. To standardize and stabilize the length of the tendon defect a modified Kessler core suture was anchored in the sectioned tendon ends. The defects were either left untreated or filled with three-dimensional gelatin scaffold. Before euthanasia 60 days after injury, the progress of healing was evaluated clinically. Samples of healing tendon were harvested at autopsy and evaluated by gross, histopathologic, scanning, and transmission electron microscopy, and by biomechanical testing. The treated animals showed superior weight-bearing and physical activity compared with those untreated, while frequency of peritendinous adhesions around the healing site was reduced. The gelatin scaffold itself was totally degraded and replaced by neo-tendon that morphologically had significantly greater numbers, diameters, density, and maturation of collagen fibrils, fibers, and fiber bundles than untreated tendon scar tissue. It also had mechanically higher ultimate load, yield load, stiffness, maximum stress and elastic modulus, when compared to the untreated tendons. Gelatin scaffold may be a valuable option in surgical reconstruction of large tendon defects.

  5. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298-670K.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Mielcarek, Sławomir; Włodarczyk, Dariusz

    2017-11-01

    The increased interest in fish collagen is a consequence of the risk of exposure to Creutzfeld-Jacob disease (CJD) and the bovine spongiform encephalopathy (BSE), whose occurrence is associated with prions carried by bovine collagen. Collagen is the main biopolymer in living organisms and the main component of the skin and bones. Until the discovery of the BSE, bovine collagen had been widely used. The BSE epidemic increased the interest in new sources of collagen such as fish skin collagen (FSC) and its properties. Although the thermal properties of collagen originating from mammals have been well described, less attention has been paid to the thermal properties of FSC. Denaturation temperature is a particularly important parameter, depending on the collagen origin and hydration level. In the reported experiment, the free water and bound water release processes along with thermal denaturation process were studied by means of the differential scanning calorimetry (DSC). Measurements were carried out using a DSC 7 instrument (Elmer-Perkin), in the temperature range 298-670K. The study material was FSC derived by acidic hydration method. The bovine Achilles tendon (BAT) collagen type I was used as the control material. The thermograms recorded revealed both, exothermic and endothermic peaks. For both materials, the peaks in the temperature range of 330-360K were assigned to the release of free water and bound water. The denaturation temperatures of FSC and BAT collagen were determined as 420K and 493K, respectively. Thermal decomposition process was observed at about 500K for FSC and at about 510K for BAT collagen. These results show that FSC is less resistant to high temperature than BAT collagen. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Experimental study on co-culture of human fibroblasts on decellularized Achilles tendon].

    Science.gov (United States)

    Wang, Zhibing; Zhang, Xia; Guo, Xinyu; Qin, Chuan

    2013-07-01

    To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. After decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young's elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P Achilles tendons group and cell-scaffold composite group (P > 0.05). There was no significant difference in elongation at break among 3 groups (P > 0.05). The decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.

  7. The effect of irradiation and hydration upon the mechanical properties of tendon

    International Nuclear Information System (INIS)

    Smith, C.W.; Kearney, J.N.

    1996-01-01

    Irradiation sterilization is in wide use among tissue banks, for both hard and soft tissue grafts. Irradiation of tendon can impair its mechanical properties. Following implantation of a tendon graft, re-vascularization and resorption processes reduce its mechanical performance. Tendon with severely impaired properties may not be suitable for use as a load-bearing graft, e.g. as anterior cruciate ligament replacement. An important factor determining the extent of the reduction of the mechanical performance is the condition of the tendon during irradiation, especially the presence of water. There has not yet been a study of the effects of both irradiation dose and hydration on tendon mechanical properties. This study measured the changes in tensile mechanical properties, including strength and stiffness, following γ irradiation doses of 15 kGy (1.5 MRad) and 25 kGy irradiated tendons was lower compared to fresh tendons, whereas the strength of the frozen irradiated tendons was very similar to that of the fresh. The tangent modulus of both of the freeze-dried irradiated groups were lower than the fresh tendons, as was the 15 kGy frozen group. The modulus of the 25 kGy frozen irradiated group was similar to the fresh. The general pattern of the results indicate that the two freeze-dried tendon groups were more affected than the frozen irradiated, and of the frozen irradiated groups the 25 kGy group was least affected. The results fit well with suggested mechanisms for the action of irradiation upon collagen; that intramolecular crosslinking and scission of the tropocollagen α chains occur when water is present, and α chain scission alone occurs when water is absent. Irradiation of tendons for use as grafts may produce minimal deleterious changes if the irradiation is performed while the tendon is frozen with water present. (Author)

  8. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis.

    Science.gov (United States)

    Zhu, L; Wei, W; Zheng, Y-Q; Jia, X-Y

    2005-05-01

    To investigate the therapeutic effects and mechanisms of total glucosides of paeony (TGP), an effective compound of Chinese traditional herbal medicine (CTM), on collagen -induced arthritis (CIA) in rats. CIA was induced in male Sprague-Dawley rats immunized with chicken type II collagen in Freund's complete adjuvant. TGP (25, 50, 100 mg/kg/d) was orally administered to rats from day 14 to 28 after immunization. Arthritis was evaluated by hind paw swelling, polyarthritis index, and histological examination. Activities of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha) were determined and the ultrastructure of synoviocytes was observed. The proliferation and the production of vascular epidermal growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix metalloproteinase 1 (MMP-1) and MMP-3 in fibroblast-like synoviocytes (FLS) were detected. The administration of TGP (25, 50, 100 mg/kg, ig x 14 days) suppressed secondary inflammatory reactions and histological changes in CIA model. The ultrastructure of synoviocytes from CIA rats was changed, and the level of IL-1 and TNF alpha produced by macrophage-like synoviocytes (MLS) from CIA rats was elevated. TGP (50, 100 mg/kg, ig x 14 days) inhibited above changes significantly. The MLS supernatants of CIA rats induced more cell proliferation and more production of VEGF, bFGF, MMP-1 and MMP-3 in FLS of CIA than those supernatants from CIA rats treated with TGP (50, 100 mg/kg, ig x 14 days). These results indicate that TGP exerts a suppressive effect on joint destruction in rat CIA. The therapeutic effect of TGP could be associated with its ability to ameliorate the secretion and metabolism of synoviocytes and to inhibit the abnormal proliferation and VEGF, bFGF, MMP-1 and MMP-3 production by FLS.

  9. Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading.

    Science.gov (United States)

    Huisman, Elise S; Andersson, Gustav; Scott, Alexander; Reno, Carol R; Hart, David A; Thornton, Gail M

    2014-05-01

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon. © 2014 Anatomical Society.

  10. Biomechanical and immunohistochemical analysis of high hydrostatic pressure-treated Achilles tendons

    International Nuclear Information System (INIS)

    Diehl, P.; Steinhauser, E.; Gollwitzer, H.; Heister, C.; Schauwecker, J.; Schmitt, M.; Milz, S.; Mittelmeier, W.

    2006-01-01

    Reconstruction of bone defects caused by malignant tumors is carried out in different ways. At present, tumor-bearing bone segments are devitalized mainly by extracorporeal irradiation or autoclaving, but both methods have substantial disadvantages. In this regard, high hydrostatic pressure (HHP) treatment of the bone is a new, advancing technology that has been used in preclinical testing to inactivate normal cells and tumor cells without altering the biomechanical properties of the bone. The aim of this study was to examine the biomechanical and immunohistochemical properties of tendons after exposure to HHP and to evaluate whether preservation of the bony attachment of tendons and ligaments is possible. For this, 19 paired Achilles tendons were harvested from both hindlimbs of 4-month-old pigs. After preparation, the cross-sectional area of each tendon was determined by magnetic resonance imaging (MRI). For each animal, one of the two tendons was taken at random and exposed to a pressure of 300 MPa (n=9) or 600 MPa (n=10). The contralateral tendon served as an untreated control. The biomechanical properties of the tendons remained unchanged with respect to the tested parameters: Young's modulus (MPa) and tensile strength (MPa). This finding is in line with immunohistochemical labeling results, as no difference in the labeling pattern of collagen I and versican was observed when comparing the HHP group (at 600 MPa) to the untreated control group. We anticipate that during orthopedic surgery HHP can serve as a novel, promising methodical approach to inactivate Achilles tendon and bone cells without altering the biomechanical properties of the tendons. This should allow one to preserve the attachment of tendon and ligaments to the devitalized bone and to facilitate functional reconstruction. (author)

  11. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats.

    Science.gov (United States)

    Boigk, G; Stroedter, L; Herbst, H; Waldschmidt, J; Riecken, E O; Schuppan, D

    1997-09-01

    Silymarin (SIL), a standardized plant extract containing about 60% polyphenole silibinin, is used as a hepatoprotective agent. Its antifibrotic potential in chronic liver diseases has not been explored. Therefore, we applied SIL to adult Wistar rats that were subjected to complete bile duct occlusion (BDO) by injection of sodium amidotrizoate (Ethibloc). This treatment induces progressive portal fibrosis without significant inflammation. Rats with sham-operation that received SIL at 50 mg/kg/d (n = 10) and rats with BDO alone (n = 20) served as controls, whereas groups of 20 animals were fed SIL at a dose of 25 and 50 mg/kg/d during weeks 1 through 6 or doses of 50 mg/kg/d during weeks 4 through 6 of BDO. Animals were sacrificed after 6 weeks for determination of blood chemistries, total and relative liver collagen (as hydroxyproline [HYP]), and the serum aminoterminal propeptide of procollagen type III (PIIINP). BDO in untreated rats caused an almost ninefold increase in total liver collagen (16.1 +/- 3.1 vs. 1.8 +/- 0.4 mg HYP, P liver tissue, it acted as a true antifibrotic agent. The single value of PIIINP at killing paralleled the antifibrotic activity of SIL with 11.6 +/- 3.8 and 9.9 +/- 3.7 vs. 15.3 +/- 5.2 microg/L in both high-dose groups (P fibrosis score in the groups that received SIL, clinical-chemical parameters were not different among all groups with BDO. We therefore conclude that 1) BDO with Ethibloc is a suitable model to test for pure antifibrotic drugs because it induces progressive rat secondary biliary fibrosis without major inflammation; 2) oral SIL can ameliorate hepatic collagen accumulation even in advanced (biliary) fibrosis; and 3) PIIINP appears to be a suitable serum marker to monitor the inhibition of hepatic fibrogenesis in this model of biliary fibrosis.

  12. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  13. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats.

    Science.gov (United States)

    Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D

    2011-02-01

    The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.

  14. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    Tendon is a highly aligned connective tissue which transmits force from muscle to bone. Each year, people in the US sustain more than 32 million tendon injuries. To mitigate poor functional outcomes due to scar formation, current surgical techniques rely heavily on autografts. Biomaterial platforms and tissue engineering methods offer an alternative approach to address these injuries. Scaffolds incorporating aligned structural features can promote expansion of adult tenocytes and mesenchymal stem cells capable of tenogenic differentiation. However, appropriate balance between scaffold bioactivity and mechanical strength of these constructs remains challenging. The high porosity required to facilitate cell infiltration, nutrient and oxygen biotransport within three-dimensional constructs typically results in insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to create customizable arrays of acrylonitrile butadiene styrene (ABS) fibers that can be incorporated into a collagen scaffold under development for tendon repair. Notably, mechanical performance of scaffold-fiber composites (elastic modulus, peak stress, strain at peak stress, and toughness) can be selectively manipulated by varying fiber-reinforcement geometry without affecting the native bioactivity of the collagen scaffold. Further, we report an approach to functionalize ABS fibers with activity-inducing growth factors via sequential oxygen plasma and carbodiimide crosslinking treatments. Together, we report an adaptable approach to control both mechanical strength and presence of biomolecular cues in a manner orthogonal to the architecture of the collagen scaffold itself. Tendon injuries account for more than 32 million injuries each year in the US alone. Current techniques use allografts to mitigate poor functional outcomes, but are not ideal platforms to induce functional regeneration following injury. Tissue engineering approaches using biomaterial

  15. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  16. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V [Present address: JSC ' Saratovneftegeophysics' , Saratov (Russian Federation)

    2004-04-07

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence {delta}n is (6.0 {+-} 0.2) x 10{sup -3} at a wavelength of 1.3 {mu}m. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, {delta}n = (6.0 {+-} 0.6) x 10{sup -3} at 1.3 {mu}m. The nucleus pulposus does not display birefringence, the measured apparent value of {delta}n = (0.39 {+-} 0.01) x 10{sup -3} being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  17. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V

    2004-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Δn is (6.0 ± 0.2) x 10 -3 at a wavelength of 1.3 μm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Δn = (6.0 ± 0.6) x 10 -3 at 1.3 μm. The nucleus pulposus does not display birefringence, the measured apparent value of Δn = (0.39 ± 0.01) x 10 -3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease

  18. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  19. A biomechanical model for fibril recruitment: Evaluation in tendons and arteries.

    Science.gov (United States)

    Bevan, Tim; Merabet, Nadege; Hornsby, Jack; Watton, Paul N; Thompson, Mark S

    2018-06-06

    Simulations of soft tissue mechanobiological behaviour are increasingly important for clinical prediction of aneurysm, tendinopathy and other disorders. Mechanical behaviour at low stretches is governed by fibril straightening, transitioning into load-bearing at recruitment stretch, resulting in a tissue stiffening effect. Previous investigations have suggested theoretical relationships between stress-stretch measurements and recruitment probability density function (PDF) but not derived these rigorously nor evaluated these experimentally. Other work has proposed image-based methods for measurement of recruitment but made use of arbitrary fibril critical straightness parameters. The aim of this work was to provide a sound theoretical basis for estimating recruitment PDF from stress-stretch measurements and to evaluate this relationship using image-based methods, clearly motivating the choice of fibril critical straightness parameter in rat tail tendon and porcine artery. Rigorous derivation showed that the recruitment PDF may be estimated from the second stretch derivative of the first Piola-Kirchoff tissue stress. Image-based fibril recruitment identified the fibril straightness parameter that maximised Pearson correlation coefficients (PCC) with estimated PDFs. Using these critical straightness parameters the new method for estimating recruitment PDF showed a PCC with image-based measures of 0.915 and 0.933 for tendons and arteries respectively. This method may be used for accurate estimation of fibril recruitment PDF in mechanobiological simulation where fibril-level mechanical parameters are important for predicting cell behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  1. Amino acid composition in determination of collagen origin and assessment of physical factors effects.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Włodarczyk, Dariusz

    2017-11-01

    The amino acid composition of collagen is a characteristic feature of this protein. Collagen, irrespective of its origin, contains 19 amino acids, including hydroxyproline which does not occur in other proteins. Its atypical amino acid composition is characterized by high content of proline and glycine, as well as the absence of cysteine. This paper shows the comparison of qualitative composition of amino acids of fish skin (FS) collagen, bovine Achilles tendon (BAT) collagen, and bone collagen. Results demonstrate that FS collagen as well as BAT collagen contains no cysteine and significantly different amount of hydroxyproline. In BAT collagen hydroxyproline content is 30% higher than hydroxyproline content of FS collagen. In bone collagen the amount of hydroxyproline is two times more than in FS collagen. Furthermore, it is shown that sensitivity to radiation of individual amino acids varies and depends on the absorbed dose of ionizing radiation. The changes observed in the amino acid composition become very intense for the doses of 500kGy and 1000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tendon surveillance requirements - average tendon force

    International Nuclear Information System (INIS)

    Fulton, J.F.

    1982-01-01

    Proposed Rev. 3 to USNRC Reg. Guide 1.35 discusses the need for comparing, for individual tendons, the measured and predicted lift-off forces. Such a comparison is intended to detect any abnormal tendon force loss which might occur. Recognizing that there are uncertainties in the prediction of tendon losses, proposed Guide 1.35.1 has allowed specific tolerances on the fundamental losses. Thus, the lift-off force acceptance criteria for individual tendons appearing in Reg. Guide 1.35, Proposed Rev. 3, is stated relative to a lower bound predicted tendon force, which is obtained using the 'plus' tolerances on the fundamental losses. There is an additional acceptance criterion for the lift-off forces which is not specifically addressed in these two Reg. Guides; however, it is included in a proposed Subsection IWX to ASME Code Section XI. This criterion is based on the overriding requirement that the magnitude of prestress in the containment structure be sufficeint to meet the minimum prestress design requirements. This design requirement can be expressed as an average tendon force for each group of vertical hoop, or dome tendons. For the purpose of comparing the actual tendon forces with the required average tendon force, the lift-off forces measured for a sample of tendons within each group can be averaged to construct the average force for the entire group. However, the individual lift-off forces must be 'corrected' (normalized) prior to obtaining the sample average. This paper derives the correction factor to be used for this purpose. (orig./RW)

  3. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    OpenAIRE

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows qu...

  4. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  5. Modifying the strength and strain concentration profile within collagen scaffolds using customizable arrays of poly-lactic acid fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Vucetic, Alan; Harley, Brendan A C

    2017-02-01

    The tendon-to-bone junction is a highly specialized tissue which dissipates stress concentrations between mechanically dissimilar tendon and bone. Upon injury, the local heterogeneities across this insertion are not regenerated, leading to poor functional outcomes such as formation of scar tissue at the insertion and re-failure rates exceeding 90%. Although current tissue engineering methods are moving towards the development of spatially-graded biomaterials to begin to address these injuries, significant opportunities remain to engineer the often complex local mechanical behavior of such biomaterials to enhance their bioactivity. Here, we describe the use of three-dimensional printing techniques to create customizable arrays of poly-lactic acid (PLA) fibers that can be incorporated into a collagen scaffold under development for tendon bone junction repair. Notably, we use additive manufacturing concepts to generate arrays of spatially-graded fibers from biodegradable PLA that are incorporated into collagen scaffolds to create a collagen-PLA composite. We demonstrate the ability to tune the mechanical performance of the fiber-scaffold composite at the bulk scale. We also demonstrate the incorporation of spatially-heterogeneous fiber designs to establish non-uniform local mechanical performance of the composite biomaterial under tensile load, a critical element in the design of multi-compartment biomaterials for tendon-to-bone regeneration applications. Together, this work highlights the capacity to use multi-scale composite biomaterials to control local and bulk mechanical properties, and provides key insights into design elements under consideration for mechanically competent, multi-tissue regeneration platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Chicken type II collagen induced immune balance of main subtype of helper T cells in mesenteric lymph node lymphocytes in rats with collagen-induced arthritis.

    Science.gov (United States)

    Tong, Tong; Zhao, Wei; Wu, Ying-Qi; Chang, Yan; Wang, Qing-Tong; Zhang, Ling-Ling; Wei, Wei

    2010-05-01

    To investigate the effect of the oral administration of chicken type II collagen (CCII) on T cells from mesenteric lymph node (MLN) lymphocytes in rats with collagen-induced arthritis (CIA). CIA was induced in male Sprague-Dawley rats immunized with CCII in Freund's complete adjuvant. CCII (10, 20, and 40 microg kg(-1) day(-1), i.g. x 7 days) was administered orally to rats from day 14 to 21 after immunization. Arthritis was evaluated by hind paw swelling and polyarthritis index, and MLNs and synovium were harvested for histological examination. Activity of interleukin-2 (IL-2) in MLN lymphocyte supernatant was measured by ConA-induced splenocyte proliferation in C57BL/6J mice, and IL-4, IL-17, and transforming growth factor beta (TGF-beta) levels in MLN lymphocytes were measured by enzyme-linked immunosorbent assay (ELISA). The proportion of CD4(+)CD25(+) Treg cells and Th17 cells was determined by double-color labeling for flow cytometry analysis. The administration of CCII (10, 20, 40 microg/kg, i.g. x 7 days) suppressed secondary inflammatory reactions and histological changes in CIA model. The activity of IL-2 and IL-17 produced by MLN lymphocytes from CIA rats was significantly inhibited by the administration of CCII (10, 20, and 40 microg kg(-1) day(-1)). The levels of IL-4 and TGF-beta were increased in CCII (10, 20, and 40 microg kg(-1) day(-1)) groups. The flow cytometry analysis showed that CCII (10, 20, and 40 microg kg(-1) day(-1)) significantly increased the proportion of Treg and decreased the proportion of Th17. These results indicate that oral administration of CCII had therapeutic effects on CIA rats, which was related to decreased production of pro-inflammatory mediators (IL-2, IL-17) and increased production of anti-inflammatory mediators (IL-4, TGF-beta). This suggests that CCII plays an important role in regulating the immune balance of Th1/Th2 and Th17/Treg in rats with CIA.

  7. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P effect of eccentric training was greater than concentric and isometric training (P tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P effect than concentric (P tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  8. Comparison of the effects of semicarbazide and β-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat

    International Nuclear Information System (INIS)

    Mercier, Nathalie; Kakou, Augustine; Challande, Pascal; Lacolley, Patrick; Osborne-Pellegrin, Mary

    2009-01-01

    To investigate a putative role for semicarbazide-sensitive amine oxidase (SSAO) in arterial extracellular matrix (ECM) organization, we compared arteries of growing Brown Norway (BN) rats after chronic administration of semicarbazide (SCZ) and β-aminopropionitrile (BAPN), two inhibitors with different properties and relative specificities for SSAO and lysyl oxidase (LOX). The BN model is particularly well adapted to evaluating effects of toxic compounds on the arterial elastic network. We measured aortic LOX and SSAO activities and quantified several ECM parameters. After a pilot study comparing doses previously studied and testing for additivity, we studied low and high equimolar doses of SCZ and BAPN. Both compounds similarly inhibited LOX, whereas SCZ inhibited SSAO far more effectively than BAPN. Both decreased carotid wall rupture pressure, increased tail tendon collagen solubility, decreased aortic insoluble elastin (% dry weight) and dose-dependently increased defects in the internal elastic lamina of abdominal aorta, iliac and renal arteries. Our results suggest that either these effects are mediated by LOX inhibition, SCZ being slightly more effective than BAPN in our conditions, or SSAO acts similarly to and in synergy with LOX on ECM, the greater SCZ effect reflecting the simultaneous inhibition of both enzymes. However, the high SCZ dose increased aortic collagen and ECM proteins other than insoluble elastin markedly more than did equimolar BAPN, possibly revealing a specific effect of SSAO inhibition. To discriminate between the two above possibilities, and to demonstrate unequivocally a specific effect of SSAO inhibition on ECM formation or organization, we must await availability of more specific inhibitors.

  9. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  10. Systemic stiffening of mouse tail tendon is related to dietary advanced glycation end products but not high-fat diet or cholesterol

    DEFF Research Database (Denmark)

    Eriksen, Christian; Svensson, R B; Scheijen, J

    2014-01-01

    Tendon pathology is related to metabolic disease and mechanical overloading, but the effect of metabolic disease on tendon mechanics is unknown. This study investigated the effect of diet and apolipoprotein E deficiency (ApoE(-/-)) on mechanical properties and advanced glycation end product (AGE...... cross-links in tendons and for tissue compliance. The results demonstrate how systemic metabolic factors may influence tendon health....

  11. Iliopsoas Tendon Reformation after Psoas Tendon Release

    Directory of Open Access Journals (Sweden)

    K. Garala

    2013-01-01

    Full Text Available Internal snapping hip syndrome, or psoas tendonitis, is a recognised cause of nonarthritic hip pain. The majority of patients are treated conservatively; however, occasionally patients require surgical intervention. The two surgical options for iliopsoas tendinopathy are step lengthening of the iliopsoas tendon or releasing the tendon at the lesser trochanter. Although unusual, refractory snapping usually occurs soon after tenotomy. We report a case of a 47-year-old active female with internal snapping and pain following an open psoas tenotomy. Postoperatively she was symptom free for 13 years. An MRI arthrogram revealed reformation of a pseudo iliopsoas tendon reinserting into the lesser trochanter. The pain and snapping resolved after repeat iliopsoas tendon release. Reformation of tendons is an uncommon sequela of tenotomies. However the lack of long-term studies makes it difficult to calculate prevalence rates. Tendon reformation should be included in the differential diagnosis of failed tenotomy procedures after a period of symptom relief.

  12. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony.

    Science.gov (United States)

    Wang, Qing-Tong; Zhang, Ling-Ling; Wu, Hua-Xun; Wei, Wei

    2011-01-27

    To investigate the expression of β-arrestins in fibroblast-like synoviocytes (FLS) from collagen-induced arthritis (CIA) rats and the effect of total glucosides of paeony (TGP). TGP and glucosides of tripterygium wilfordii (GTW) were intragastriclly administrated to collagen-induced arthritis (CIA) rats after immunization. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index and histopathological changes. Antibodies to type II collagen (CII) were determined by enzyme-linked immunosorbent assay (ELISA). Synoviocyte proliferations were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of β-arrestins in synoviocytes from CIA rats was measured by western blot. The administration of TGP (25, 50, 100 mg/kg) depressed hind paw swelling and decreased the arthritis scores of CIA rats. TGP improved the pathologic manifestations of CIA. Serum anti-CII antibodies level increased significantly in CIA rats, while TGP had no effect on it. Fibroblast-like synoviocytes (FLS) proliferation was inhibited by TGP (50, 100 mg/kg). On d14, d28 after immunization, β-arrestins expression greatly up-regulated in synoviocytes from CIA rats and then returned to baseline levels on d42 after immunization. TGP (50, 100 mg/kg) significantly reduced the expression of β-arrestins. An inflammatory process in vivo induces an up-regulation of β-arrestins in synoviocytes from CIA rats while TGP can inhibit this change, which might be one of the important mechanisms for TGP to produce a marked therapeutic effect on RA. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  14. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Directory of Open Access Journals (Sweden)

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  15. Captopril reduces collagen and mast cell accumulation in irradiated rat lung

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'ao, C.H.; Hinz, J.M.

    1990-01-01

    The angiotensin converting enzyme inhibitor captopril ameliorates radiation-induced pulmonary endothelial dysfunction in rats. The present study determined whether captopril also reduces collagen (hydroxyproline) accumulation in the lungs of rats sacrificed 2 months after a range of single doses (0-30 Gy) of 60Co gamma rays to the right hemithorax. Captopril was administered in the feed at a regimen of 0, 25, or 50 mg/kg/day continuously after irradiation. Mast cell counts also were obtained from lungs of all animals exposed to 30 Gy. In rats receiving no captopril, there was a radiation dose-dependent increase in right lung hydroxyproline (HP) content and in HP concentration per g wet weight. Captopril produced a drug dose-dependent suppression in this radiation-induced HP accumulation. At a dose of 50 mg/kg/d, captopril reduced the slope of the radiation dose response curve for lung HP content by a factor of 1.7, and completely prevented the increase in HP concentration. At an isoeffect level of 550 micrograms HP per right superior lobe, this dose of captopril exhibited a DRF of 1.7 +/- 0.2. In rats exposed to 30 Gy, moreover, the number of mast cells per mm2 of alveolar cross-sectional surface area decreased from 105 +/- 8 to 100 +/- 7 and 59 +/- 5 in the groups given 0, 25 or 50 mg/kg/d of captopril, respectively, (vs none in sham-irradiated rats). These data are the first to demonstrate that the ACE inhibitor captopril might provide a novel intervention in the pathogenesis of radiation fibrosis

  16. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering.

    Directory of Open Access Journals (Sweden)

    M Sean Peach

    Full Text Available Rotator cuff (RC tears represent a large proportion of musculoskeletal injuries attended to at the clinic and thereby make RC repair surgeries one of the most widely performed musculoskeletal procedures. Despite the high incidence rate of RC tears, operative treatments have provided minimal functional gains and suffer from high re-tear rates. The hypocellular nature of tendon tissue poses a limited capacity for regeneration. In recent years, great strides have been made in the area of tendonogenesis and differentiation towards tendon cells due to a greater understanding of the tendon stem cell niche, development of advanced materials, improved scaffold fabrication techniques, and delineation of the phenotype development process. Though in vitro models for tendonogenesis have shown promising results, in vivo models have been less successful. The present work investigates structured matrices mimicking the tendon microenvironment as cell delivery vehicles in a rat RC tear model. RC injuries augmented with a matrix delivering rat mesenchymal stem cells (rMSCs showed enhanced regeneration over suture repair alone or repair with augmentation, at 6 and 12-weeks post-surgery. The local delivery of rMSCs led to increased mechanical properties and improved tissue morphology. We hypothesize that the mesenchymal stem cells function to modulate the local immune and bioactivity environment through autocrine/paracrine and/or cell homing mechanisms. This study provides evidence for improved tendon healing with biomimetic matrices and delivered MSCs with the potential for translation to larger, clinical animal models. The enhanced regenerative healing response with stem cell delivering biomimetic matrices may represent a new treatment paradigm for massive RC tendon tears.

  17. Determination of markers for collagen type I turnover in peritendinous human tissue by microdialysis

    DEFF Research Database (Denmark)

    Olesen, J L; Langberg, Henning; Heinemeier, K M

    2006-01-01

    Previous results from our group have shown that loading of human tendon elevates tendinous type I collagen production measured by microdialysis. However, exclusion of the observed elevation as a response to trauma from inserting the microdialysis catheters or a possible influence from the collage...

  18. Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization

    OpenAIRE

    Gutsmann, Thomas; Fantner, Georg E.; Kindt, Johannes H.; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K.

    2004-01-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length

  19. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Science.gov (United States)

    Liu, JunLi; Wang, YiHu; Song, ShuJun; Wang, XiJie; Qin, YaYa; Si, ShaoYan; Guo, YanChuan

    2015-01-01

    Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  20. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    JunLi Liu

    Full Text Available Collagen peptides (CPs and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8 for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg; OVX + calcium citrate (75 mg/kg. After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  1. Effect of Bizhongxiao decoction and its dismantled formulae on IL-1 and TNF levels in collagen-induced arthritis in rat synovial joints

    Directory of Open Access Journals (Sweden)

    Guo Ya-jing

    2012-11-01

    Full Text Available Abstract Background Rheumatoid arthritis (RA, a chronic autoimmune disease, affects sufferers in many different ways. Treatment of this chronic condition is particularly challenging. Traditional Chinese Medicine (TCM provides alternatives. Bizhongxiao decoction (BZX is a TCM complex, which has been used clinically for many years to treat RA. The purpose of this study is to compare the effects of BZX decoction and its dismantled formulae on IL-1 and TNF-1 levels in rats with RA, and to elucidate its mechanism of action. Methods Ninety healthy normal female SD rats were randomly divided into six groups: normal (control, model, BZX decoction, and the three dismantled formulae (I: heat-clearing and detoxication, II: dissipating dampness, and III: blood circulation promotion. Apart from the normal (control group, the rats in each group were injected subcutaneously with bovine type II collagen and complete Freund adjuvant to establish a collagen-induced arthritis model, so that inhibition of foot swelling in the rats by BZX decoction and its dismantled formulae could be observed. Immunohistochemistry was used to assess the levels of the inflammatory cytokines IL-1 and TNF in synovial joints at various time points. Results Twenty-one days after the model was established, the levels of TNF and IL-1 were significantly higher in the model group, BZX decoction group and dismantled formula groups I, II and III than in the normal controls (P  Conclusions BZX decoction and the three dismantled formulae examined down-regulated the inflammatory factors IL-1 and TNF in collagen-induced arthritis rat models, but BZX exerted the strongest effect.

  2. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    Science.gov (United States)

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  4. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  5. Effect of Green Tea Extract Encapsulated Into Chitosan Nanoparticles on Hepatic Fibrosis Collagen Fibers Assessed by Atomic Force Microscopy in Rat Hepatic Fibrosis Model.

    Science.gov (United States)

    Safer, Abdel-Majeed A; Hanafy, Nomany A; Bharali, Dhruba J; Cui, Huadong; Mousa, Shaker A

    2015-09-01

    The present study examined the effect of Green Tea Extract (GTE) encapsulated into Chitosan Nanoparticles (CS-NPs) on hepatic fibrosis in rat model as determined by atomic force microscopy (AFM). The bioactive compounds in GTE encapsulated into CS-NPs were determined using LC-MS/MS method. Additionally, the uptake of GTE-CS NPs in HepG2 cells showed enhanced uptake. In experimental fibrosis model, AFM was used as a high resolution microscopic tool to investigate collagen fibers as an indicator of hepatic fibrosis induced by treatment with CCl4. Paraffin sections of fibrotic liver tissues caused by CC4 treatment of rats and the effect of GTE-CS NPs treatment with or without CCl4 on hepatic fibrosis were examined. Liver tissues from the different groups of animals were de-waxed and processed as for normal H/E staining and Masson's trichrome staining to locate the proper area of ECM collagen in the CCl4 group versus collagen in liver tissues treated with the GTE-CS NPs with or without CCl4. Selected areas of paraffin sections were trimmed off and fixed flat on top of mica and inserted in the AFM stage. H/E staining, Masson's trichrome stained slides, and AFM images revealed that collagen fibers of 250 to 300 nm widths were abundant in the fibrotic liver samples while those of GTE-CS NPs were clear as in the control group. Data confirmed the hypothesis that GTE-CS NPs are effective in removing all the extracellular collagen caused by CCl4 in the hepatic fibrosis rat liver.

  6. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  7. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  8. The effects of platelet lysate patches on the activity of tendon-derived cells.

    Science.gov (United States)

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards

  9. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    Directory of Open Access Journals (Sweden)

    Daniel W Youngstrom

    Full Text Available Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS, trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.

  10. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration.

    Science.gov (United States)

    Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier

    2017-10-01

    Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.

  11. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-07-28

    Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.

  12. Does footprint preparation influence tendon-to-bone healing after rotator cuff repair in an animal model?

    Science.gov (United States)

    Ficklscherer, Andreas; Loitsch, Thomas; Serr, Michaela; Gülecyüz, Mehmet F; Niethammer, Thomas R; Müller, Hans-Helge; Milz, Stefan; Pietschmann, Matthias F; Müller, Peter E

    2014-02-01

    The aim of this study was to investigate the influence of footprint spongialization and radiofrequency ablation on rotator cuff repair outcomes compared with an untreated group in a rat model. We randomly assigned 189 Sprague-Dawley rats to either a spongialization, radiofrequency ablation, or untreated group. After separation of the supraspinatus tendon from the greater tubercle, the footprint was prepared by removing the cortical bone with a burr (spongialization), was prepared by ablating soft tissue with a radiofrequency ablation device, or was left unaltered (untreated). Biomechanical testing (after 7 weeks, n = 165) and histologic analysis after 1 and 7 weeks (n = 24) followed reinsertion. The mean load to failure was 17.51 ± 4.46 N/mm(2) in the spongialization group, 15.56 ± 4.85 N/mm(2) in the radiofrequency ablation group, and 19.21 ± 5.19 N/mm(2) in the untreated group. A significant difference was found between the spongialization and radiofrequency ablation groups (P = .0409), as well as between the untreated and radiofrequency ablation groups (P = .0014). There was no significant difference between the spongialization and untreated groups (P = .2456). The mean area of fibrocartilage transition, characterized by the presence of type II collagen, was larger after 1 and 7 weeks in the spongialization group (0.57 ± 0.1 mm(2) and 0.58 ± 0.1 mm(2), respectively) and untreated group (0.51 ± 0.1 mm(2) and 0.51 ± 0.2 mm(2), respectively) than in the radiofrequency ablation group (0.11 ± 0.1 mm(2) and 0.4 ± 0.1 mm(2), respectively) with P rotator cuff repair may influence tendon-to-bone healing. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  14. Firm anchoring between a calcium phosphate-hybridized tendon and bone for anterior cruciate ligament reconstruction in a goat model

    Energy Technology Data Exchange (ETDEWEB)

    Mutsuzaki, Hirotaka [Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Sakane, Masataka; Ochiai, Naoyuki [Department of Orthopaedic Surgery, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Hattori, Shinya; Kobayashi, Hisatoshi, E-mail: sakane-m@md.tsukuba.ac.j [Biomaterial Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2009-08-15

    Using an alternative soaking process improved the tendon-bone attachment for a calcium phosphate (CaP)-hybridized tendon graft. We characterized the deposited CaP on and in tendons and analyzed the histology and mechanical properties of the tendon-bone interface in anterior cruciate ligament (ACL) reconstruction in goats. The tendon grafts to be implanted were soaked ten times alternately in a Ca-containing solution and a PO{sub 4}-containing solution for 30 s each. Needlelike CaP nanocrystals including low-crystalline apatite were deposited on and between collagen fibrils from the surface to a depth of 200{mu}m inside the tendon. The structure resembles the extracellular matrix of bone. In animal experiments, the CaP-hybridized tendon directly bonded with newly formed bone at 6 weeks (n = 3), while fibrous bonding was observed in the control (n = 3). The ultimate failure load was not statistically different between the CaP (n = 7) and control (n = 7). However, in the failure mode, all the tendon-bone interfaces were intact in the CaP group, while three of seven specimens were pulled out from bone tunnels in the control. The result suggested that the strength of the tendon-bone interface in the CaP group is superior to that in the control group. Clinically, firm tendon-bone anchoring may lead to good results without the knee instability associated with the loosening of the bone-tendon junction in ACL reconstruction.

  15. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males

    DEFF Research Database (Denmark)

    Boesen, Anders Ploug; Dideriksen, Kasper; Couppé, Christian

    2013-01-01

    weeks followed by six weeks of strength training. Cross sectional area (CSA), maximal muscle strength (MVC) and biomechanical properties of m.quadriceps and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL-1A1/3A1), insulin-like growth factors (IGF-1Ea...... in both groups. Likewise, both groups increased in IGF-1Ea/Ec and COL-1A1/3A1 expression in muscle during re-training after immobilisation compared to baseline, and the rise was more pronounced when subjects recieved GH. The tendon CSA did not change during immobilisation, but increased in both groups...... during six weeks of rehabilitation (~14%). A decline in tendon stiffness after immobilisation was observed only in Plc, and an increase during six weeks rehabilitation was observed only in GH. IGF-1Ea and COL-1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was after...

  16. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Szomolanyi, Pavol [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Domayer, Stephan; Hofstaetter, Jochen G. [Department of Orthopedic Surgery, Vienna General Hospital, Medical University of Vienna, A-1090 Vienna (Austria); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria)

    2013-05-15

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T{sub 2} mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T{sub 2} relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T{sub 2} values (r = 0.51, p = 0.036), and between the FISP signal and T{sub 2} values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T{sub 2} mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times.

  17. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    International Nuclear Information System (INIS)

    Juras, Vladimir; Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan; Szomolanyi, Pavol; Domayer, Stephan; Hofstaetter, Jochen G.; Trattnig, Siegfried

    2013-01-01

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T 2 mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T 2 relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T 2 values (r = 0.51, p = 0.036), and between the FISP signal and T 2 values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T 2 mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times

  18. No midterm advantages in the middle term using small intestinal submucosa and human amniotic membrane in Achilles tendon transverse tenotomy.

    Science.gov (United States)

    Liu, Yushu; Peng, Yinbo; Fang, Yong; Yao, Min; Redmond, Robert W; Ni, Tao

    2016-11-24

    The study was aimed to compare the effects of small intestinal submucosa (SIS) and human amniotic membrane (HAM) on Achilles tendon healing. A total of 48 New Zealand white rabbits were divided into two groups. A full-thickness transverse tenotomy was made at the right leg of the rabbits. Then, the laceration site was wrapped with HAM (P/A group) or SIS (P/S group). The ultimate stress (US) and Young's modulus (E) of the tendons were detected for biomechanical analysis. Histological evaluation was performed using hematoxylin and eosin, immunohistochemical, and immunofluorescent stain. Expression of collagen I was detected by western blot analysis, and levels of inflammatory cytokines IL-1β, IL-6, and TNF-α were measured. Finally, adhesion formation was evaluated. There were no significant differences in filamentous adhesion, cross-sectional areas of the laceration sites, levels of inflammatory response, and collagen type I expression between the P/A and P/S groups (p > 0.05). Compared with the P/A group, the US and E values were significantly higher in the P/S group at day 7 (p Achilles tendon injury in the early stage of healing.

  19. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  20. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kato

    2016-06-01

    Full Text Available Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  1. Computed tomography-guided bupivacaine and corticosteroid injection for the treatment of symptomatic calcification in the great toe tendon

    Directory of Open Access Journals (Sweden)

    Karatoprak O

    2014-04-01

    Full Text Available Omer Karatoprak,1 Sinan Karaca,2 Mehmet Nuri Erdem,3 Ozgur Karaman,2 Azmi Hamzaoglu41Department of Orthopedic Surgery, Kadikoy Florence Nightingale Hospital, Istanbul, Turkey; 2Department of Orthopedic Surgery, Fatih Sultan Mehmet Training and Research Hospital Atasehir, Istanbul, Turkey; 3Department of Orthopedics and Traumatology, Kolan International Hospital Sisli, Istanbul, Turkey; 4Department of Orthopedic Surgery, Istanbul Florence Nightingale Hospital, Istanbul TurkeyBackground: Calcification in the great toe tendon is a rare disorder that is characterized by the deposition of calcium on degenerative collagen fibrils.Case presentations: In this report, we present two cases of calcific tendonitis: one in the adductor hallucis and the other in the flexor hallucis longus tendon. We preferred computed tomography-guided steroid injection in our cases because of pain unresponsive to conservative treatment. Patients were free of symptoms at the follow-up visit, 4 weeks after injection.Conclusion: Calcification of the hallux tendons is a rare disorder. Treatment of tendonitis consists of nonsteroidal anti-inflammatory drugs. Local anesthetic and steroid injection may be considered in cases unresponsive to conservative treatment. Because of the anatomic location of tendons, injection could be difficult. Computed tomography guidance may improve the success rate of injections.Keywords: bupivacaine, calcification, great toe tendons, corticosteroid injection

  2. Effect of Topical Probiotic on MMP-13 and Collagen III Expression in the Dermis Layer of Male Rats Irradiated with Ultraviolet-B

    Directory of Open Access Journals (Sweden)

    Vita M. Tawaran

    2016-06-01

    Full Text Available Nowadays, there is a big interest in the use of topical probiotic preparations for skin health. One of the probiotics therurapeutic benefits is used as anti-aging. During aging, there is stimulation of activator protein-1 (AP-1 which is a transcription factor that inhibits the production of collagen and AP-1 supports the breakdown of collagen by enzymes called matrix metalloproteinases (MMPs. As administration of oral Lactobacillus plantarum could inhibit skin aging by lowering the activity of MMP, so the collagen degradation can be derived so probably topical use of Lactobacillus plantarum may give more prominent effects. We used 24 male rats Sprague-Dawley strain as research objects. This study was divided into two groups, the treatment and control groups. The shaved dorsal skin of rats were irradiated with UVB three times a week for 4 weeks with total irradiation dose of 840 mJ/cm2. Skin cream, containing 247.27x107 CFU non-replicating Lactobacillus plantarum FNCC 0020, was smeared on the treatment group, two times daily, whereas the control group did not receive any treatment. Skin biopsies were done at the end of the study for examination of MMP-13 and collagen III expressions. Intensity, distribution, and histoscore of MMP-13 between the treatment and the control group showed no significant difference (p>0.05. The treatment group showed a significant different in the intensity of collagen III with the density distribution of 20–50% and the highest density was 80% (p<0.01. Administration of topical cream L. plantarum FNCC 0020 increased the expression of collagen III density distribution, but not the MMP-13 expression.

  3. Chicken collagen type II reduces articular cartilage destruction in a model of osteoarthritis in rats.

    Science.gov (United States)

    Xu, D; Shen, W

    2007-06-01

    To evaluate the therapeutic effects of domestic chicken collagen type II (CCII) on rat osteoarthritis (OA) and analyze concomitant changes in the level of Matrix metalloproteinase (MMP)-13, MMP-9, Cathepsin K and their mRNA as well as the tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA in articular cartilage of osteoarthritic rats. Osteoarthritis models were surgically induced. Morphology of articular cartilage was done by haematoxylin and eosin staining and Mankin score was calculated, immunohistochemistry of MMP-13, MMP-9 and Cathepsin K was done by ABC method while the mRNA level for MMP-13, MMP-9, cathepsin K as well as TIMP-1 was evaluated by RT-PCR method. Oral administration of CCII reduced the morphological changes of osteoarthritic cartilage (shown by Mankin score), decreased levels of MMP-13, MMP-9, cathepsin K as well as their mRNA in articular cartilage from osteoarthritic rats while it exhibited no effect on TIMP-1 mRNA. Oral CCII reduced articular cartilage degradation of osteoarthritic rats and may probably be a potent drug candidate for OA treatment.

  4. Estudo morfométrico da terapia LED de baixa potência em tendinite de ratos Morphometric study of low power LED therapy tendonitis in rats

    Directory of Open Access Journals (Sweden)

    José Mário Nunes da Silva

    2011-12-01

    Full Text Available A terapia LED de baixa potência possui efeitos analgésico e antiinflamatório. O objetivo desse estudo foi analisar a ação da terapia com LED de baixa potência na reparação tendínea por meio de histologia e histomorfometria. Foram usados 25 ratos Wistar, de 220 a 250 g, divididos em três grupos experimentais avaliados no 7º e 14º dia: A, tendinite induzida sem tratamento; B, tendinite induzida tratada com LED de baixa potência, densidade de energia 4 J/cm² por 120 segundos; e C, sem indução de tendinite. A histomorfometria mostrou-se altamente significativa (p0,05. As análises histológica e histomorfométrica demonstraram qualitativo e quantitativo aumento no número de fibroblastos aos sete dias de tratamento, e das fibras colágenas, aos 14 dias, para grupo tratado com LED de baixa potência em relação ao grupo sadio (C. O mesmo não foi percebido quando relacionado ao grupo tendinite (A14.The low power LED therapy has analgesic and anti-inflammatory effects. The objective of this study was to analyze the action of therapy with low power LED on the tendon repair, using histology and histomorphometry. Were used 25 Wistar rats, with 220 to 250 g, divided into three experimental groups (7 and 14 days: A7 and A14 induced tendonitis without treatment; B7 and B14, induced tendinitis treated with LED low power density energy 4 J /cm² for 120 seconds; and C, without induction of tendinitis. Histomorphometry was highly significant (p 0.05. Histology and histomorphometry analysis demonstrated qualitative and quantitative increase in the number of fibroblasts to seven days of treatment, and collagen fibers at 14 days for the group treated with LED low power compared to the healthy group (C. But it is unclear even when related to the tendinitis group (A14.

  5. Effect of radiofrequency microtenotomy on degeneration of tendons: an experimental study on rabbits.

    Science.gov (United States)

    Gunes, Taner; Bilgic, Erkal; Erdem, Mehmet; Bostan, Bora; Koseoglu, Resit Dogan; Sahin, Seyyid Ahmet; Sen, Cengiz

    2014-03-01

    Radiofrequency microtenotomy is used to enhance healing by increasing vascularity in the degenerated tendon. In the present study, the effect of radiofrequency microtenotomy (Rf-mt) treatment on tendon degeneration was investigated. A total of 32 New Zealand rabbits were enrolled in the current study. Experimental degeneration was performed by injecting prostaglandin E1 (PGE1) into the bilateral Achilles tendons of rabbits. After excluding 4 rabbits with an infection on the injection site, 4 other rabbits were sacrificed to define the histopathologic changes in the tendons. The remaining 24 rabbits were divided into 2 groups: the control group and the Rf-mt group. In the control group, the Rf-mt device was only applied to the Achilles tendon without running the device. In the Rf-mt group, the Rf-mt device was applied bilaterally at the fourth energy level for 500ms to an area within 2cm proximal to the insertion site at 0.5cm intervals in order to form a grid. Six rabbits from each group were sacrificed at 6 and 12 weeks. The Achilles tendons were evaluated histopathologically by a modified Movin scale and by immunohistopathologic staining for vascular endothelial growth factor and type 4 collagen. After the PGE1 injection, findings similar to chronic degenerative tendinopathy were observed. The Rf-mt group showed significant improvement in vascularity in the histopathological and immunohistochemical examination (P0.05). Rf-mt treatment increases vascularity in degenerated tendons but does not create difference to facilitate the healing process comparing control group. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  7. Immunosuppression by fractionated total lymphoid irradiation in collagen arthritis

    International Nuclear Information System (INIS)

    McCune, W.J.; Buckley, J.A.; Belli, J.A.; Trentham, D.E.

    1982-01-01

    Treatments with fractionated total lymphoid irradiation (TLI) and cyclophosphamide were evaluated for rats injected with type II collagen. Preadministration of TLI and repeated injections of cyclophosphamide suppressed the severity of arthritis and lowered antibody titers to collagen significantly. TLI initiated at the onset of collagen arthritis decreased humoral and cellular responses to collagen but did not affect the severity of arthritis. These data demonstrate that both TLi and cyclophosphamide are immunosuppressive in an experimentally inducible autoimmune disease

  8. Effect of Oxytetracycline on In vitro Mineralization and Demineralization Reactions in the Absence and Presence of Collagen

    Directory of Open Access Journals (Sweden)

    Monica Kakkar

    2017-11-01

    Full Text Available Introduction: Oxytetracycline and its derivatives are routinely used to treat various ailments have also been shown to inhibit embryonic bone formation, mineralization in pregnant female rats and parathyroid hormone induced demineralization of bones. Oxytetracycline has also been routinely used as bone fluorochrome to study bone metabolism. However, despite the above observations, its mechanism of action is not clearly understood. Some studies tend to suggest that it acts by inhibiting collagen biosynthesis while others indicate that it acts without influencing collagen metabolism. Aim: To study the mechanism by which oxytetracycline influences the mineralization and demineralization reactions. Materials and Methods: Homogeneous and heterogeneous systems of in vitro mineralization under physiological conditions of temperature, pH and ionic strength were used to investigate the effect of oxytetracycline not only on initial mineral phase formation but also on its subsequent growth or demineralization. In the Homogenous system, supersaturated conditions with respect to calcium and phosphate ions were employed to study their precipitation as mineral phase resembling hydroxyapatite in nature. However, in the heterogeneous system, collagen isolated from sheep tendons was used to induce identical mineral phases under saturated conditions with respect to calcium and phosphate ions prevailing in the body fluids. Results: The study demonstrated that in the homogeneous reaction system (mineralization in the absence of collagen oxytetracycline inhibited both the initial mineral phase formation and its subsequent growth without influencing its demineralization. However, in the heterogeneous system, oxytetracycline was found to inhibit not only the initial mineralization but also its subsequent growth or demineralization. Conclusion: Oxytetracycline acted like crystal poisons to inhibit the mineralization and demineralization reactions by tightly associating

  9. The effects of mechanical loading on tendons--an in vivo and in vitro model study.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available Mechanical loading constantly acts on tendons, and a better understanding of its effects on the tendons is essential to gain more insights into tendon patho-physiology. This study aims to investigate tendon mechanobiological responses through the use of mouse treadmill running as an in vivo model and mechanical stretching of tendon cells as an in vitro model. In the in vivo study, mice underwent moderate treadmill running (MTR and intensive treadmill running (ITR regimens. Treadmill running elevated the expression of mechanical growth factors (MGF and enhanced the proliferative potential of tendon stem cells (TSCs in both patellar and Achilles tendons. In both tendons, MTR upregulated tenocyte-related genes: collagen type I (Coll. I ∼10 fold and tenomodulin (∼3-4 fold, but did not affect non-tenocyte-related genes: LPL (adipocyte, Sox9 (chondrocyte, Runx2 and Osterix (both osteocyte. However, ITR upregulated both tenocyte (Coll. I ∼7-11 fold; tenomodulin ∼4-5 fold and non-tenocyte-related genes (∼3-8 fold. In the in vitro study, TSCs and tenocytes were stretched to 4% and 8% using a custom made mechanical loading system. Low mechanical stretching (4% of TSCs from both patellar and Achilles tendons increased the expression of only the tenocyte-related genes (Coll. I ∼5-6 fold; tenomodulin ∼6-13 fold, but high mechanical stretching (8% increased the expression of both tenocyte (Coll. I ∼28-50 fold; tenomodulin ∼14-48 fold and non-tenocyte-related genes (2-5-fold. However, in tenocytes, non-tenocyte related gene expression was not altered by the application of either low or high mechanical stretching. These findings indicate that appropriate mechanical loading could be beneficial to tendons because of their potential to induce anabolic changes in tendon cells. However, while excessive mechanical loading caused anabolic changes in tendons, it also induced differentiation of TSCs into non-tenocytes, which may lead to the development

  10. Terminal sterilization of equine-derived decellularized tendons for clinical use

    International Nuclear Information System (INIS)

    Pellegata, Alessandro F.; Bottagisio, Marta; Boschetti, Federica; Ferroni, Marco; Bortolin, Monica; Drago, Lorenzo; Lovati, Arianna B.

    2017-01-01

    In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans. With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4 °C or − 80 °C, respectively. Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use. - Highlights: • A decellularized tendon matrix has been generated. • The sterility of the decellularized matrix is mandatory for transplantation. • β-irradiation and cold storage preserve the matrix structure and biomechanics.

  11. Terminal sterilization of equine-derived decellularized tendons for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Pellegata, Alessandro F. [Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Bottagisio, Marta [Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Boschetti, Federica; Ferroni, Marco [Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Bortolin, Monica [Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Drago, Lorenzo [Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Department of Biomedical Science for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan (Italy); Lovati, Arianna B., E-mail: arianna.lovati@grupposandonato.it [Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy)

    2017-06-01

    In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans. With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4 °C or − 80 °C, respectively. Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use. - Highlights: • A decellularized tendon matrix has been generated. • The sterility of the decellularized matrix is mandatory for transplantation. • β-irradiation and cold storage preserve the matrix structure and biomechanics.

  12. In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Bagnaninchi, P O; Yang, Y; Maffulli, G; El Haj, A; Maffulli, N; Bonesi, M; Meglinski, I; Phelan, C

    2010-01-01

    The objective of this study was to develop a method based on polarization-sensitive optical coherent tomography (PSOCT) for the imaging and quantification of degenerative changes associated with Achilles tendon rupture. Ex vivo PSOCT examinations were performed in 24 patients. The study involved samples from 14 ruptured Achilles tendons, 4 tendinopathic Achilles tendons and 6 patellar tendons (collected during total knee replacement) as non-ruptured controls. The samples were imaged in both intensity and phase retardation modes within 24 h after surgery, and birefringence was quantified. The samples were fixed and processed for histology immediately after imaging. Slides were assessed twice in a blind manner to provide a semi-quantitative histological score of degeneration. In-depth micro structural imaging was demonstrated. Collagen disorganization and high cellularity were observable by PSOCT as the main markers associated with pathological features. Quantitative assessment of birefringence and penetration depth found significant differences between non-ruptured and ruptured tendons. Microstructure abnormalities were observed in the microstructure of two out of four tendinopathic samples. PSOCT has the potential to explore in situ and in-depth pathological change associated with Achilles tendon rupture, and could help to delineate abnormalities in tendinopathic samples in vivo.

  13. The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Tabassi, Nadine C B; Sondergaard, Lene V

    2009-01-01

    The urinary level of the type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomised rats, suggesting that oestrogen deprivation induces cartilage breakdown. Here we investigate whether this response to oestrogen is also true for other type II collagen tu...

  14. Hemodynamic study for the healing process of ruptured achilles tendon by dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Toshiyuki [Hyogo Rehabilitation Center (Japan); Hamanishi, Hiroji; Nishikawa, Tetsuo; Mizuno, Kosaku

    2000-12-01

    Dynamic MR imaging with a combination of fast MR imaging technique and intravenous bolus administration of Gd-DTPA is a useful method to evaluate the vascularity of the soft tissue. By using this technique, we evaluated the healing processes of ruptured Achilles tendon. Eighteen patients who underwent percutaneous suture of the ruptured Achilles tendon were examined monthly by dynamic MRI in their course of healing. We evaluated time intensity curve obtained from each data of dynamic MRI. Time intensity curve showed slow fill in-slow wash out pattern 4 weeks after operation. Eight weeks after operation, the time course of the fill in-wash out changed to be shorter. Rapid fill in-rapid wash out pattern was observed about 12 weeks after surgery. After that period, time intensity curve tended to change into non-fitting pattern. (normal pattern) Eight functional parameters were obtained from time-intensity curve. We analyzed which parameters are useful for evaluation of tendon healing. In addition, we studied the healing processes of rabbit Achilles tendon following surgical incision. Twelve rabbits underwent tenotomy of Achilles tendon. The tendons excised at 1, 2, 4, 6, 8, 10, 12 weeks after operation were examined using microangiography and a light microscope. Four weeks after tenotomy, many capillary vessels filled with Gd-DTPA were observed in the ruptured area. About 10 weeks after operation, the capillary vessels decreased and collageneous fibers were arranged along the long axis of the tendon. This term would be thought to correspond to the condition about 12-14 weeks after surgery in clinical cases. From this study, dynamic MRI is thought to be useful method to know the hemodynamic conditions of the healing tendons. Especially, four parameters-Mean Transit Time, Corrected Transit Time, Time to Peak, Inflection Width, -seemed to have absolute value and be useful for the quantitative evaluation of the healing processes in human Achilles tendon. (author)

  15. Hemodynamic study for the healing process of ruptured achilles tendon by dynamic MRI

    International Nuclear Information System (INIS)

    Mizuno, Toshiyuki; Hamanishi, Hiroji; Nishikawa, Tetsuo; Mizuno, Kosaku

    2000-01-01

    Dynamic MR imaging with a combination of fast MR imaging technique and intravenous bolus administration of Gd-DTPA is a useful method to evaluate the vascularity of the soft tissue. By using this technique, we evaluated the healing processes of ruptured Achilles tendon. Eighteen patients who underwent percutaneous suture of the ruptured Achilles tendon were examined monthly by dynamic MRI in their course of healing. We evaluated time intensity curve obtained from each data of dynamic MRI. Time intensity curve showed slow fill in-slow wash out pattern 4 weeks after operation. Eight weeks after operation, the time course of the fill in-wash out changed to be shorter. Rapid fill in-rapid wash out pattern was observed about 12 weeks after surgery. After that period, time intensity curve tended to change into non-fitting pattern. (normal pattern) Eight functional parameters were obtained from time-intensity curve. We analyzed which parameters are useful for evaluation of tendon healing. In addition, we studied the healing processes of rabbit Achilles tendon following surgical incision. Twelve rabbits underwent tenotomy of Achilles tendon. The tendons excised at 1, 2, 4, 6, 8, 10, 12 weeks after operation were examined using microangiography and a light microscope. Four weeks after tenotomy, many capillary vessels filled with Gd-DTPA were observed in the ruptured area. About 10 weeks after operation, the capillary vessels decreased and collageneous fibers were arranged along the long axis of the tendon. This term would be thought to correspond to the condition about 12-14 weeks after surgery in clinical cases. From this study, dynamic MRI is thought to be useful method to know the hemodynamic conditions of the healing tendons. Especially, four parameters-Mean Transit Time, Corrected Transit Time, Time to Peak, Inflection Width, -seemed to have absolute value and be useful for the quantitative evaluation of the healing processes in human Achilles tendon. (author)

  16. Miscellaneous conditions of tendons, tendon sheaths, and ligaments.

    Science.gov (United States)

    Dyson, S J; Dik, K J

    1995-08-01

    The use of diagnostic ultrasonography has greatly enhances our ability to diagnose injuries of tendons and tendon sheaths that were previously either unrecognized or poorly understood. For may of these injuries, there is currently only a small amount of follow-up data. This article considers injuries of the deep digital flexor tendon and its accessory ligament, the carpal tunnel syndrome soft tissue swellings on the dorsal aspect of the carpus, intertubercular (bicipital) bursitis and bicipital tendinitis, injuries of the gastrocnemius tendon, common calcaneal tendinitis, rupture of peroneus (fibularis tertius) and ligaments injuries of the back.

  17. Effects of 99Tc-MDP on synoviocytes and articular chondrocytes apoptosis associated factors on CIA rats

    International Nuclear Information System (INIS)

    Hu Shaoxian; Kong Fang; Ke Dan; Shu Min; Len Xiaomei; Tu Wei; Shen Guifen; He Peigen

    2009-01-01

    Objective: Collagen induced arthritis (CIA) rats is an animal model of human rheumatoid arthritis (RA). It is widely used in research of the pathogenesis and the therapeutic targets of RA. This paper was to investigate the therapeutic action of 99 Tc-methylene diphosphonic acid (MDP) on CIA rats and its effects on the expression of apoptosis associated factor bcl-2 and bax in synoviocytes and articular chondrocytes. Methods: CIA rat models were carried out by subcutaneous injection with bovine collagen II and incomplete Freud's adjuvant. Rats were divided into four groups: control group, CIA model group (the CIA rats were infused with physiological saline via tail vein daily), 99 Tc-MDP group (the C1A rats were injected with 99 Tc-Mi)P 0.04 μg 99 Tc/kg via tail vein daily) and methotrexate (MTX) group (the CIA rats were injected with MTX 1 mg/kg via tail vein weekly). The signs of arthritis were evaluated by arthritis index (AI) scores. Immunohistochemistry was performed to detect the expression of bcl-2 and bax in synoviocytes and articular chondrocytes. SPSS 13.0 was used for data analysis. Results: (1) The signs of arthritis, AI scores and pathological changes of arthrosynovitis in CIA rats were significantly improved by 99 Tc-MDP or MTX. (2) The expression of bcl-2 and box in the synoviocytes of CIA model group [(39.30 ± 0.53) %, (27.37 ± 2.45)%] was significantly increased compared with control group [(7.56 ± 1. 18)% , (6.14 ± 1.71) % ; q = 46.27, 24.57, all P 99 Tc-M DP group and MTX group, the level of bcl-2 was remarkably decreased [(30.24 ± 2.09) %, (27.25 ± 3.33) %] compared with CIA model group (q = 13.20, 17.56, all P 99 Tc-MDP group [(26. 58 ± 2. 52) %] and MTX group [(27.06 ± 1.92) %] was remarksbly increased [(24.26 ± 2.75) %, (23.53 ± 0.74) % ; q = 6.53, 7.01, all P 99 Tc-MDP could improve the signs of arthritis, meanwhile regulate the expression of bcl-2 and bax in synoviocytes and articular ehondrocytes, suggesting that one of the

  18. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Schjerling, P

    2007-01-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regul......In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types...... on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius......, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P

  19. IMPINGEMENT-SYNDROME OF PERONEUS BREVIS TENDON AFTER CALCANEAL FRACTURES (MORPHOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    N. S. Konovalchuk

    2017-01-01

    Full Text Available Background. One of the main causes of pain in patients with consequences of calcaneal fractures is the lateral impingement syndrome. This term means lateral displacement of outer calcaneal wall at the moment of fracture, narrowing of anatomical space under the lateral malleolus and compression of soft tissues in this region, including tendons of short and long peroneal muscles. This leads to chronic traumatization of tendons, alteration of their normal tracking and development of tendinitis and tenosynovitis. At this moment there are no articles in foreign or Russian literature describing how prolonged traumatization influences the internal structure of the tendons. The purpose of this study was to evaluate the morphological changes in structure of peroneus brevis tendon after different duration of compression between outer wall of calcaneus and the tip of the lateral malleolus in patients with calcaneal malunion.Materials and methods. Fifteen patients with calcaneal malunion and lateral impingement syndrome were treated operatively between 2016 and 2017. To confirm the lateral impingement syndrome, the authors performed clinical examination and AP x-rays of ankle joint. Two peroneus brevis tendon specimens were obtained intraoperatively in each of 15 patients: one specimen from compressed and one from non-compressed area. Obtained specimens were histologically examined according to standard protocol.Results. Microscopically all specimens showed separation of collagen bundles with loose connective tissue degeneration, increase of vascularization and inflammation. The degree of these changes differed according to the compression duration. This allowed us to analyze the dynamics of these changes.Conclusion. The morphological changes in structure of peroneus brevis tendon during the compression between outer wall of calcaneus and the tip of the lateral malleolus correspond with dynamics of common pathologic reactions. Early stages showed signs of

  20. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    Science.gov (United States)

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-04-01

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries.

    Science.gov (United States)

    Zhou, Yiqin; Zhang, Jianying; Wu, Haishan; Hogan, MaCalus V; Wang, James H-C

    2015-09-15

    Platelet-rich plasma (PRP) is widely used to treat tendon injuries in clinics. These PRP preparations often contain white blood cells or leukocytes, and the precise cellular effects of leukocyte-rich PRP (L-PRP) on tendons are not well defined. Therefore, in this study, we determined the effects of L-PRP on tendon stem/progenitor cells (TSCs), which play a key role in tendon homeostasis and repair. TSCs isolated from the patellar tendons of rabbits were treated with L-PRP or P-PRP (pure PRP without leukocytes) in vitro, followed by measuring cell proliferation, stem cell marker expression, inflammatory gene expression, and anabolic and catabolic protein expression by using immunostaining, quantitative real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay, respectively. Cell proliferation was induced by both L-PRP and P-PRP in a dose-dependent manner with maximum proliferation at a 10 % PRP dose. Both PRP treatments also induced differentiation of TSCs into active tenocytes. Nevertheless, the two types of PRP largely differed in several effects exerted on TSCs. L-PRP induced predominantly catabolic and inflammatory changes in differentiated tenocytes; its treatment increased the expression of catabolic marker genes, matrix metalloproteinase-1 (MMP-1), MMP-13, interleukin-1beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α), and their respective protein expression and prostaglandin E2 (PGE 2) production. In contrast, P-PRP mainly induced anabolic changes; that is, P-PRP increased the gene expression of anabolic genes, alpha-smooth muscle actin (α-SMA), collagen types I and III. These findings indicate that, while both L-PRP and P-PRP appear to be "safe" in inducing TSC differentiation into active tenocytes, L-PRP may be detrimental to the healing of injured tendons because it induces catabolic and inflammatory effects on tendon cells and may prolong the effects in healing tendons. On the other hand, when P-PRP is used to

  2. Proteomic differences between native and tissue‐engineered tendon and ligament

    Science.gov (United States)

    Tew, Simon R.; Peffers, Mandy; Canty‐Laird, Elizabeth G.; Comerford, Eithne

    2016-01-01

    Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age‐related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin‐based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular‐associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. PMID:27080496

  3. Oral Administration of Shark Type II Collagen Suppresses Complete Freund’s Adjuvant-Induced Rheumatoid Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Wenhui Wu

    2012-03-01

    Full Text Available Objective: Shark type II collagen (SCII is extracted as a glycoprotein from the cartilage of blue shark (Prionace glauca. We aim to confirm the effects of oral tolerance of SCII on inflammatory and immune responses to the ankle joint of rheumatoid-arthritis rats induced by Complete Freund’s Adjuvant (CFA. Materials and Methods: The onset of rheumatoid arthritis (RA was observed 14 ± x days after injection of CFA. Rats in the control group were treated with acetic acid by oral administration (0.05 mmol kg−1d−1, days 14–28, while rats in experimental groups were treated by oral administration with SCII (1 or 3 mg kg−1d−1, days 14–28, Tripterygium wilfordii polyglycosidium (TWP (10 mg kg−1d−1, days 14–28, and bovine type II collagen from US (US-CII (1 mg kg−1d−1, days 14–28, respectively. The severity of arthritis was evaluated by the articular swelling. The immunological indexes observed included delayed type hypersensitivity (DTH reaction, the level of interleukins 10 (IL-10 in rat blood serum and morphological characterization. Mixed lymphocyte culture (MLC was performed to investigate the relationship between T cell apoptosis and specific immune tolerance induced by SCII. Results: Treatment with SCII for 2 weeks significantly attenuated the acute inflammation. The rats orally administrated with SCII at the level of 3 mg kg−1d−1 (SCII 3 and US-CII had decreased DTH reaction compared with rats in control group. Rats treated with SCII 3 had the highest level of IL-10 with 102 pg/mL. SCII with concentration of 10 μg/L could help to significantly enhance level of Fas/Apo-1 in T cell in vitro. The result of histological staining indicated that the recovery of the articular membranes of ankle joint in SCII 3 group was greatly enhanced. Conclusions: Our results suggest that appropriate dose of SCII can not only ameliorate symptoms but also modify the disease process of Complete-Freunds-Adjuvant-induced arthritis. Oral

  4. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis.

    Science.gov (United States)

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P R O

    2008-02-26

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or "collagenolysis." The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's "interaction domain," which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  5. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    Science.gov (United States)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    in the treatment group (p < 0.05). The experimental results demonstrate helium-neon laser radiation had significant effects on anti-inflammation, detumescence, progressive hematoma absorbing, inhibiting the tendon extrinsic healing, reducing tendon adhesions, improving the tendon intrinsic healing, i.e., stimulating epitenon and endotenon cells proliferation and migrating into the gap, stimulating collagen synthesis in the tendon gap, and enhancing the late remodeling of fibrous peritendonous adhesion.

  6. * Comparison of Autologous, Allogeneic, and Cell-Free Scaffold Approaches for Engineered Tendon Repair in a Rabbit Model-A Pilot Study.

    Science.gov (United States)

    Wang, Wenbo; Deng, Dan; Wang, Bin; Zhou, Guangdong; Zhang, WenJie; Cao, Yilin; Zhang, Peihua; Liu, Wei

    2017-08-01

    Tendons are subjected to high strength dynamic mechanical forces in vivo. Mechanical strength is an essential requirement for tendon scaffold materials. A composite scaffold was used in this study to provide mechanical strength, which was composed of an inter part of nonwoven polyglycolic acid (PGA) fibers and an outer part of the net knitted with PGA and polylactic acid (PLA) fibers in a ratio of 4:2. This study compared three different approaches for in vivo tendon engineering, that is, cell-free scaffold and allogeneic and autologous cell seeded scaffolds, using a rabbit Achilles tendon repair model. Dermal fibroblasts were, respectively, isolated from the dermis of regular rabbits or green fluorescence protein transgenic rabbits as the autologous and the allogeneic cell sources, respectively. The cell scaffolds and cell-free scaffolds were implanted to bridge a partial segmental defect of rabbit Achilles tendon. The engineered tendons were harvested at 7 and 13 months postsurgery for various examinations. The results showed that all three groups could achieve in vivo tendon regeneration similarly with slightly better tissue formation in autologous group than in other two groups, including better scaffold degradation and relatively thicker collagen fibrils. There were no statistically significant differences in mechanical parameters among three groups. This work demonstrated that allogeneic fibroblasts and scaffold alone are likely to be used for tendon tissue engineering.

  7. Overload and neovascularization of shoulder tendons in volleyball players

    Science.gov (United States)

    2012-01-01

    Background In overhead sports like volleyball, the onset of a rotator cuff tendinopathy due to functional overload is a common observation. An angiofibroblastic etiopathogenesis has been hypothesized, whereby a greater anaerobic metabolism occurs in critical zones of the tendon with a lower degree of vascularization; this would induce collagen and extracellular matrix degradation, that could then trigger a compensatory neovascularization response. We performed a clinical observational study of 80 elite volleyball players, monitoring the perfusion values of the supraspinatus tendons by oximetry. Results No statistically significant differences were found between the oximetry data and age, sex or years of sports activity, nor when comparing the right and left arm or the dominant and non-dominant arm. A statistically significant difference was found for the dominant arm values in relation to the competitive role, higher values being obtained in outside hitters (62.7%) than middle hitters (53.7%) (p = 0.01), opposite hitters (55.5%) (p = 0.02) and libero players (54.4%) (p = 0.008), whereas there were no differences in setters (56.2%) (p > 0.05). Conclusions The different tendon vascularization values found in players with different roles in the team may be attributed to a response to the specific biomechanical demands posed by the different overhead throwing roles. PMID:22853746

  8. Moderate Exercise Mitigates the Detrimental Effects of Aging on Tendon Stem Cells.

    Science.gov (United States)

    Zhang, Jianying; Wang, James H-C

    2015-01-01

    Aging is known to cause tendon degeneration whereas moderate exercise imparts beneficial effects on tendons. Since stem cells play a vital role in maintaining tissue integrity, in this study we aimed to define the effects of aging and moderate exercise on tendon stem/progenitor cells (TSCs) using in vitro and in vivo models. TSCs derived from aging mice (9 and 24 months) proliferated significantly slower than TSCs obtained from young mice (2.5 and 5 months). In addition, expression of the stem cell markers Oct-4, nucleostemin (NS), Sca-1 and SSEA-1 in TSCs decreased in an age-dependent manner. Interestingly, moderate mechanical stretching (4%) of aging TSCs in vitro significantly increased the expression of the stem cell marker, NS, but 8% stretching decreased NS expression. Similarly, 4% mechanical stretching increased the expression of Nanog, another stem cell marker, and the tenocyte-related genes, collagen I and tenomodulin. However, 8% stretching increased expression of the non-tenocyte-related genes, LPL, Sox-9 and Runx-2, while 4% stretching had minimal effects on the expression of these genes. In the in vivo study, moderate treadmill running (MTR) of aging mice (9 months) resulted in the increased proliferation rate of aging TSCs in culture, decreased lipid deposition, proteoglycan accumulation and calcification, and increased the expression of NS in the patellar tendons. These findings indicate that while aging impairs the proliferative ability of TSCs and reduces their stemness, moderate exercise can mitigate the deleterious effects of aging on TSCs and therefore may be responsible for decreased aging-induced tendon degeneration.

  9. Estimating impact forces of tail club strikes by ankylosaurid dinosaurs.

    Directory of Open Access Journals (Sweden)

    Victoria Megan Arbour

    Full Text Available BACKGROUND: It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob. METHODOLOGY/PRINCIPAL FINDINGS: Computed tomographic (CT scans of several ankylosaurid tail clubs referred to Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had limited vertical flexibility, but the tail could have swung through approximately 100 degrees laterally. Muscle scars on the pelvis record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of the tail club and made it easier to wield as a weapon. CONCLUSIONS/SIGNIFICANCE: Large knobs could generate sufficient force to break bone during impacts, but average and small knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for interspecific defense, intraspecific combat, or both.

  10. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    Science.gov (United States)

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  11. Ultrasound elasticity imaging of human posterior tibial tendon

    Science.gov (United States)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  12. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    Science.gov (United States)

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  13. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model

    Directory of Open Access Journals (Sweden)

    Veidal Sanne Skovgård

    2012-12-01

    Full Text Available Abstract Background Accumulation of extracellular matrix (ECM and increased matrix metalloproteinase (MMP activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M, known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control or treated with IBMX (phosphodiesterase inhibitor. Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p 4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.

  14. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  15. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Chiera, Silvia; Bonani, Walter; Poh, Patrina S P; Migliaresi, Claudio; Motta, Antonella; Balmayor, Elizabeth R; van Griensven, Martijn

    2018-05-01

    The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and

  16. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration.

    Science.gov (United States)

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-12-15

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7-21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy.

  17. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    Science.gov (United States)

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  18. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  19. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    Science.gov (United States)

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-05

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats

    DEFF Research Database (Denmark)

    Hyldegaard, Ole; Kerem, Dikla; Melamed, Y

    2011-01-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing....... We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture...... breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent...

  1. One-stage reconstruction of soft tissue defects with the sandwich technique: Collagen-elastin dermal template and skin grafts

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2011-01-01

    Full Text Available Background : A full-thickness soft tissue defect closure often needs complex procedures. The use of dermal templates can be helpful in improving the outcome. Objective : The objective was to evaluate a sandwich technique combining the dermal collagen-elastin matrix with skin grafts in a one-stage procedure. Materials and Methods : Twenty-three patients with 27 wounds were enrolled in this prospective single-centre observational study. The mean age was 74.8 ± 17.2 years. Included were full-thickness defects with exposed bone, cartilage and/ or tendons. The dermal collagen-elastin matrix was applied onto the wound bed accomplished by skin transplants, i.e. ′sandwich′ transplantation. In six wounds, the transplants were treated with intermittent negative pressure therapy. Results : The size of defects was ≤875 cm 2 . The use of the dermal template resulted in a complete and stable granulation in 100% of wounds. Seventeen defects showed a complete closure and 19 achieved a complete granulation with an incomplete closure. There was a marked pain relief. No adverse events were noted due to the dermal template usage. Conclusions : Sandwich transplantation with the collagen-elastin matrix is a useful tool when dealing with full-thickness soft tissue defects with exposed bone, cartilage or tendons.

  2. Proteomic differences between native and tissue-engineered tendon and ligament.

    Science.gov (United States)

    Kharaz, Yalda A; Tew, Simon R; Peffers, Mandy; Canty-Laird, Elizabeth G; Comerford, Eithne

    2016-05-01

    Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age-related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin-based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular-associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experimental hypothyroidism increases content of collagen and glycosaminoglycans in the heart.

    Science.gov (United States)

    Drobnik, J; Ciosek, J; Slotwinska, D; Stempniak, B; Zukowska, D; Marczynski, A; Tosik, D; Bartel, H; Dabrowski, R; Szczepanowska, A

    2009-09-01

    The connective tissue matrix of the heart remains under regulatory influence of the thyroid hormones. Some conflicting data describe the connective tissue changes in subjects with thyroid gland disorders. The aim of the study was to assess the changes of the connective tissue accumulation in the heart of rats in the state of hypothyroidism and to answer the question whether TSH is involved in mechanism of the observed phenomena. Hypothyroidism in rats was induced by methylotiouracil treatment or by thyreoidectomy. The thyroid hormones [freeT3 (fT3), freeT4 (fT4)] and pituitary TSH were measured in plasma with radioimmunological method. The glycosaminoglycans (GAG) and total collagen were measured in heart muscle of both left and right ventricles. Cells from the rat's heart were isolated and cultured. The cells were identified as myofibroblasts by electron microscopy method. The effects of TSH in concentrations ranging from 0.002 to 20 mIU/ml, on connective tissue accumulation in heart myofibroblasts cultures were tested. The primary hypothyroidism was developed both in groups with thyroidectomy and with methylthiouracil. The levels of fT3 and fT4 both in rats with thyreoidectomy and animals treated with methylthiouracil were decreased and TSH level in these two experimental groups was elevated. In the heart of the rats with experimental hypothyroidism increased content of both GAG and collagen was found. Myofibroblast number in culture was increased by TSH. Regardless of the method of its induction, hypothyroidism increased collagen and GAG contents in the heart. TSH is not involved in regulation of collagen and glycosaminoglycans accumulation in the heart of rats affected with primary hypothyroidism.

  4. Effect of Marine Collagen Peptides on Physiological and Neurobehavioral Development of Male Rats with Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    Linlin Xu

    2015-06-01

    Full Text Available Asphyxia during delivery produces long-term deficits in brain development. We investigated the neuroprotective effects of marine collagen peptides (MCPs, isolated from Chum Salmon skin by enzymatic hydrolysis, on male rats with perinatal asphyxia (PA. PA was performed by immersing rat fetuses with uterine horns removed from ready-to-deliver rats into a water bath for 15 min. Caesarean-delivered pups were used as controls. PA rats were intragastrically administered with 0.33 g/kg, 1.0 g/kg and 3.0 g/kg body weight MCPs from postnatal day 0 (PND 0 till the age of 90-days. Behavioral tests were carried out at PND21, PND 28 and PND 90. The results indicated that MCPs facilitated early body weight gain of the PA pups, however had little effects on early physiological development. Behavioral tests revealed that MCPs facilitated long-term learning and memory of the pups with PA through reducing oxidative damage and acetylcholinesterase (AChE activity in the brain, and increasing hippocampus phosphorylated cAMP-response element binding protein (p-CREB and brain derived neurotrophic factor (BDNF expression.

  5. [INFLUENCE OF INHIBITION OF ACTIN POLYMERIZATION ON ADIPOGENIC DIFFERENTIATION OF RAT Achilles-DERIVED TENDON STEM CELLS IN VITRO].

    Science.gov (United States)

    Chen, Bo; Tang, Kanglai; Zhang, Jiqiang; Guo, Yupeng; Liu, Xiangzhou; Shi, Youxin

    2015-02-01

    To investigate the effect of cytoskeleton modification on the adipogenic differentiation of rat Achilles-derived tendon stem cells (TSCs) in vitro. TSCs were isolated from the tendon tissue of male Sprague Dawley rats (aged 3 weeks) by enzymatic digestion method and cultured for 3 passages. After the 3rd passage cells were cultured with DMEM medium containing 15% fetal bovine serum and cytochalasin D (CYD) at the concentrations of 0, 50, 100, 500, and 1 000 ng/mL, the cell survival condition and morphology changes were observed by inverted phase contrast microscope, the cytoskeleton was observed through fibrous actin (F-actin) staining, and the ratio of F-actin/ soluble globular actin (G-actin) was detected and calculated through Western blot. According to the above results, the effective concentration of CYD was selected and used for next experiments. After TSCs were cultured for 3 and 7 days respectively with adipogenic induction media (induction group), adipogenic induction media containing CYD (CYD+induction group), ordinary medium (ordinary group), and ordinary medium containing CYD (CYD+ordinary group), the real-time quantitative PCR (qRT-PCR) and Western blot were carried out to measure the mRNA and protein expressions of adipogenic differentiation-related markers, including peroxisome proliferator-activated receptor y (PPARγ), lipoprotein lipase (LPL), and fatty acid binding protein (aP2). The final CYD concentration of 100 ng/mL can inhibit effectively G-actin polymerization into F-actin, but could not affect TSCs survival, which was used for next experiments. qRT-PCR and Western blot suggested that the mRNA expressions of PPARγ, LPL, and aP2 and the protein expressions of PPARγ and aP2 were increased significantly in the CYD+induction group at 3 and 7 days when compared with the induction group (P < 0.05). In the CYD+ordinary group, there still was a significant increase in the mRNA expressions of PPARγ, LPL, and aP2 when compared with the ordinary

  6. Prevention of diet-induced obesity in rats by oral application of collagen fragments

    Directory of Open Access Journals (Sweden)

    Raksha Nataliia G.

    2018-01-01

    Full Text Available The aim of the present study was to determine whether orally applied collagen fragments (CFs could affect the development of obesity in obese rats. To this end, experimental rats that were exposed to a high-calorie diet (HCD for four weeks were randomly divided into two groups: HCD and HCD+CFs, with both groups continuing to receive the HCD. However, rats from the HCD+CFs group were also provided with CFs in a 0.05-M citrate buffer (pH 5.0 (1 g·kg-1 of body weight by intragastric administration, every other day for the next six weeks. Selected parameters associated with obesity development and insulin resistance, as well as serum markers of oxidative stress and the cytokine profile were assessed at the end of the 10th week. Supplementation with CFs resulted in a decrease in body weight and body mass index when compared to animals exposed to a HCD. The observed changes were assumed to be caused by a lower food intake and increased water intake by obese rats treated with CFs. Enhanced activity of superoxide dismutase (SOD, catalase (CAT and decreased malondialdehyde (MDA concentration were detected in the HCD+CF group of animals when compared to untreated HCD-fed rats. Administration of CFs also lowered the serum concentrations of the proinflammatory cytokines IL-1β and IL-12, whereas the concentration of the anti-inflammatory cytokine IL-10 was significantly increased and the concentration of cytokine IL-4 was near the control value. Decreased concentrations of fasting blood glucose, glycated hemoglobin (GHbA1c and serum insulin and increased tolerance to glucose in the oral glucose tolerance test (OGTT were observed in the HCD+CF group of animals when compared to rats in the HCD group. We concluded that CFs mediated a therapeutic effect on obesity development in rats exposed to a HCD by affecting pathways involved in obesity pathogenesis.

  7. Metabolic and cytoprotective effects of in vivo peri-patellar hyaluronic acid injections in cultured tenocytes.

    Science.gov (United States)

    Salamanna, F; Frizziero, A; Pagani, S; Giavaresi, G; Curzi, D; Falcieri, E; Marini, M; Abruzzo, P M; Martini, L; Fini, M

    2015-02-01

    The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-electronic-microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA with respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.

  8. The Effect of Autologous Platelet Rich Plasma in the Treatment of Achilles Tendon Ruptures: An Experimental Study on Rabbits.

    Science.gov (United States)

    Şen, Baran; Güler, Serkan; Çeçen, Berivan; Kumtepe, Erdem; Bağrıyanık, Alper; Özkal, Sermin; Ali Özcan, M; Özsan, Hayri; Şanlı, Namık; Tatari, M Hasan

    2016-01-01

    Achilles tendon ruptures are characterized by a long recovery period, high re-rupture rate and late return to work. To overcome these difficulties and augment tendon repair, many agents have been used. To determine the effect of autologous platelet rich plasma (PRP) in the treatment of Achilles tendon ruptures in rabbits. Animal experimentation. The study included 14 New Zealand albino rabbits that were divided randomly into 2 groups, A and B, each containing seven rabbits. On day zero, all 28 Achilles tendons were tenotomized and repaired. In group A, the tendons were injected with PRP post-surgery, whereas those in group B were left untreated. On day 28, the right tendons in both groups were examined histopathologically via both light and electron microscopy, and the left tendons were subjected to biomechanical testing. The histological and biomechanical findings in both light and electron microscopy in group A were better than those in group B, but the difference was not significant. According to Tang's scale, the mean value in Group A was 3.57, while it was 3.0 in Group B. The mean value of Group A for the length of collagen bands was 48.09 nm while the mean value of Group B was 46.58 nm (p=0.406). In biomechanical tests, although stiffness values were higher in group A, the difference between groups was not significant. In addition, maximum load values did not differ between groups A and B. PRP had no effect on the healing process 28 days post-Achilles tendon rupture.

  9. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    Science.gov (United States)

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The role of aqueous extract of pineapple fruit parts on the healing of acute crush tendon injury.

    Science.gov (United States)

    Aiyegbusi, A I; Duru, F I O; Awelimobor, D; Noronha, C C; Okanlawon, A O

    2010-01-01

    The Pineapple plant contains the enzyme bromelain which has been acclaimed to reduce pain and swellings following acute muscle injuries as well as carotenoids and polyphenols which are powerful antioxidants. It is yet to be determined if these constituents are distributed throughout the plant and what effect they have on the healing of acute tendon injuries. This study therefore investigated the effects of the aqueous extract of different parts of the pineapple plant on tenoblast proliferation and the tendon Malondialdehyde (MDA) level in the early stage of healing in a crush injury to the achilles tendon of Sprague-Dawley rats. Forty male rats were divided randomly into five groups; all had induced crush injury to the left Achilles tendon. Group 1; injury and nil treatment, Group 2; leaves extract, Group 3; fruit flesh extract, Group 4; bark extract, Group 5; core extract. The extract was given at a dosage of 30 mg/kg body weight daily over the first 14 days post-injury. On the 15th day post injury, the animals were sacrificed and the tendons excised and processed for histological study and MDA assay. The flesh and bark extract induced a proliferation of tenoblasts which however was not significantly different from that of the untreated tendon while the leaves and core extracts reduced the population of the tenocytes. The flesh extract significantly (p leaves and core extract significantly (p pineapple plant are concentrated in the flesh while the bark and flesh extracts have the potential to promote healing by stimulating tenoblast proliferation.

  11. Refinement of the Collagen Induced Arthritis Model in Rats by Infrared Thermography

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Deleuran, Bent Winding; Svendsen, Pia

    2011-01-01

    correlation between temperature and clinical scores. Conclusion: The thermographic response appeared prior to the clinical signs, suggesting that thermography may be used as a predictive sign for the development of disease. This technique could be a non-invasive, objective, rapid, and reproducible method...... with other clinical parameters such as clinical score and edema and may serve as a method for quantification of the degree of inflammation. Study design: Experimental animal study. Place and Duration of Study: Institute of Biomedicine, University of Aarhus, Denmark between February and March 2010....... Methodology: Arthritis was induced with collagen immunization in sixteen Lewis rats. Four of the animals were treated with dexamethasone to function as negative controls. Clinical scores were based on the magnitude of paw edema. The mean temperature of the hind feet (region covering the metatarsus and tarsus...

  12. Low tendon stiffness and abnormal ultrastructure distinguish classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Couppé, Christian; Jensen, Jacob Kildevang

    2014-01-01

    There is a clinical overlap between classic Ehlers-Danlos syndrome (cEDS) and benign joint hypermobility syndrome (BJHS), with hypermobility as the main symptom. The purpose of this study was to investigate the role of type V collagen mutations and tendon pathology in these 2 syndromes. In patients...... and abnormal ultrastructure distinguish classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients....

  13. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  14. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    Science.gov (United States)

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  15. Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism

    Science.gov (United States)

    Reichert, Karla; Pereira do Carmo, Helison Rafael; Galluce Torina, Anali; Diógenes de Carvalho, Daniela; Carvalho Sposito, Andrei; de Souza Vilarinho, Karlos Alexandre; da Mota Silveira-Filho, Lindemberg; Martins de Oliveira, Pedro Paulo

    2016-01-01

    Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events. PMID:27880844

  16. Biodistribution and PET Imaging of a Novel [(68)Ga]-Anti-CD163-Antibody Conjugate in Rats with Collagen-Induced Arthritis and in Controls

    DEFF Research Database (Denmark)

    Eichendorff, Sascha; Svendsen, Pia; Bender, Dirk

    2015-01-01

    -68 and evaluated stability and binding specificity of the conjugate ([(68)Ga]ED2) in vitro. Furthermore, tracer biodistribution was assessed in vivo in healthy rats and rats with acute collagen-induced arthritis (CIA) by MicroPET and tissue analysis. RESULTS: Radiosynthesis of [(68)Ga]ED2 antibody...... was also changed in the sense that a significantly higher liver uptake and lower spleen uptake of [(68)Ga]ED2 was measured in CIA rats that accordingly showed a corresponding change in level of CD163 expression. CONCLUSIONS: [(68)Ga]ED2 specifically binds CD163 in vitro and in vivo. Biodistribution studies...... in CIA rats suggest that this novel tool may have applications in studies of inflammatory diseases....

  17. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin.

    Science.gov (United States)

    Yuan, Ting; Zhang, Jianying; Zhao, Guangyi; Zhou, Yiqin; Zhang, Chang-Qing; Wang, James H-C

    2016-01-01

    Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.

  18. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.

    Science.gov (United States)

    Sahoo, Sambit; Toh, Siew Lok; Goh, James C H

    2010-04-01

    An ideal scaffold that provides a combination of suitable mechanical properties along with biological signals is required for successful ligament/tendon regeneration in mesenchymal stem cell-based tissue engineering strategies. Among the various fibre-based scaffolds that have been used, hybrid fibrous scaffolds comprising both microfibres and nanofibres have been recently shown to be particularly promising. This study developed a biohybrid fibrous scaffold system by coating bioactive bFGF-releasing ultrafine PLGA fibres over mechanically robust slowly-degrading degummed knitted microfibrous silk scaffolds. On the ECM-like biomimetic architecture of ultrafine fibres, sustained release of bFGF mimicked the ECM in function, initially stimulating mesenchymal progenitor cell (MPC) proliferation, and subsequently, their tenogeneic differentiation. The biohybrid scaffold system not only facilitated MPC attachment and promoted cell proliferation, with cells growing both on ultrafine PLGA fibres and silk microfibres, but also stimulated tenogeneic differentiation of seeded MPCs. Upregulated gene expression of ligament/tendon-specific ECM proteins and increased collagen production likely contributed to enhancing mechanical properties of the constructs, generating a ligament/tendon analogue that has the potential to be used to repair injured ligaments/tendons. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Tendon Transfer Surgery

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy ... DESCRIPTION The tendon is the strong cord at either end of a muscle that is attached to bone. Tendons , combined with ...

  20. [Effect of UC-MSCs on inflammation and thrombosis of the rats with collagen type II induced arthritis].

    Science.gov (United States)

    Lin, Chuan-ming; Gu, Jian; Zhang, Yu; Shen, Lian-jun; Ma, Li; Ni, Jun; Wang, Zhong-qiang; Wu, Wei

    2012-03-01

    To investigate the immunoregulation effects of umbilical cord mesenchymal stem cells (UC-MSCs) on the rats with collagen II induced arthritis (CIA). The rats were first immunized by intradermal injection of chicken collagen type II emulsified with complete Freund's adjuvant (CFA) to monitor their swelling of foot, hair color and action state. After injected UC-MSC by caudal vein, the rats were scored with the arthritis index (AI) once a week. Then, the concentration of interleukin (IL-6), tumor necrosis factor-α (TNF-α) in serum and D-dimer (D-D), antithrombin-III (AT-III), thrombomodulin (TM) in plasma were detected by ELISA. Obvious swellings of the feet were found in the experiment group compared with normal one. ELISA analysis showed that the concentrations of IL-6, TNF-α, D-D and TM in plasma of the experiment group as of (200.48 ± 15.04) ng/L, (450.25 ± 45.39) ng/L, (274.26 ± 67.93) ng/L and (9.18 ± 0.84) µg/L, respectively were higher than of(167.62 ± 0.97) ng/L, (371.44 ± 21.26) ng/L, (193.95 ± 8.22) ng/L and (6.30 ± 0.32) µg/L respectively in normal group (P < 0.05), but the concentration of AT-III \\[(89.57 ± 6.40) ng/L\\] was lower than normal group \\[(112.82 ± 1.74) ng/L\\] (P < 0.05). The levels of cytokines through the UC-MSCs treatment were significantly different from the model group (P < 0.05). After 9 weeks, these cytokines in the UC-MSCs group were mostly the same as the normal group. The thrombophilia status of the CIA rats was caused by immune injury. The UC-MSCs reduced the production of inflammatory cytokines and regulated and repaired the balance of coagulation and anticoagulation system of the body to cure the immune-related thrombophilia.

  1. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  2. Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study.

    Science.gov (United States)

    Arul, V; Masilamoni, J G; Jesudason, E P; Jaji, P J; Inayathullah, M; Dicky John, D G; Vignesh, S; Jayakumar, R

    2012-05-01

    Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS (p < 0.05) was observed in the fibroblast of GOIC group during the inflammation period compared to the CF and control groups. This elevated level up regulated the antioxidant status in the granulation tissue and improved cellular proliferation in the GOIC group. Interestingly, our biochemical parameters nitric oxide, hydroxyproline, uronic acid, protein, and DNA content in the healing wound showed that there is an increase in proliferation of cells in GOIC when compared to the control and CF groups. In addition, evidence from wound contraction and histology reveals faster healing in the GOIC group. Our observations document that GOIC matrices could be effectively used for diabetic wound healing therapy.

  3. Ipsilateral free semitendinosus tendon graft transfer for reconstruction of chronic tears of the Achilles tendon

    Directory of Open Access Journals (Sweden)

    Gougoulias Nikolaos

    2008-07-01

    Full Text Available Abstract Background Many techniques have been developed for the reconstruction of the Achilles tendon in chronic tears. In presence of a large gap (greater than 6 centimetres, tendon augmentation is required. Methods We present our method of minimally invasive semitendinosus reconstruction for the Achilles tendon using one para-midline and one midline incision. Results The first incision is a 5 cm longitudinal incision, made 2 cm proximal and just medial to the palpable end of the residual tendon. The second incision is 3 cm long and is also longitudinal but is 2 cm distal and in the midline to the distal end of the tendon rupture. The distal and proximal Achilles tendon stumps are mobilised. After trying to reduce the gap of the ruptured Achilles tendon, if the gap produced is greater than 6 cm despite maximal plantar flexion of the ankle and traction on the Achilles tendon stumps, the ipsilateral semitendinosus tendon is harvested. The semitendinosus tendon is passed through small incisions in the substance of the proximal stump of the Achilles tendon, and it is sutured to the Achilles tendon. It is then passed beneath the intact skin bridge into the distal incision, and passed from medial to lateral through a transverse tenotomy in the distal stump. With the ankle in maximal plantar flexion, the semitendinosus tendon is sutured to the Achilles tendon at each entry and exit point Conclusion This minimally invasive technique allows reconstruction of the Achilles tendon using the tendon of semitendinosus preserving skin integrity over the site most prone to wound breakdown, and can be especially used to reconstruct the Achilles tendon in the presence of large gap (greater than 6 centimetres.

  4. Inhibition of Advanced Glycation End-Product Formation by Origanum majorana L. In Vitro and in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rosa Martha Perez Gutierrez

    2012-01-01

    Full Text Available The development of AGE inhibitors is considered to have therapeutic potential in patients with diabetes diseases. The aim of the present study was investigate the effect of methanolic extract of the leaves of Origanum majorana (OM used as spice in many countries on AGEs formation. In vitro studies indicated a significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal, an intermediate reactive carbonyl of AGE formation. The results demonstrate that OM have significant effects on in vitro AGE formation, and the glycation inhibitory activity was more effectively than those obtained using as standard antiglycation agent aminoguanidine. OM is a potent agent for protecting LDL against oxidation and glycation. Treatment of streptozotocin-diabetic mice with OM and glibenclamide for 28 days had beneficial effects on renal metabolic abnormalities including glucose level and AGEs formation. Diabetic mice showed increase in tail tendon collagen, glycated collagen linked fluorescence and reduction in pepsin digestion. Treatment with OM improved these parameters when compared to diabetic control and glibenclamide.

  5. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization.

    Science.gov (United States)

    Gutsmann, Thomas; Fantner, Georg E; Kindt, Johannes H; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K

    2004-05-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope.

  6. Original Article. Toxic effect of sodium fluoride on hydroxyproline level and expression of collagen-1 gene in rat bone and its amelioration by Tamrindus indica L. fruit pulp extract

    Directory of Open Access Journals (Sweden)

    Gupta Amit Raj

    2016-03-01

    Full Text Available Excessive fluoride intoxication plays an important role in the development of dental, skeletal and non-skeletal fluorosis. The aim of this study was to ascertain the toxic effect of excessive fluoride ingestion on the level of hydroxyproline and expression of type 1 collagen gene in rat bone and its amelioration by supplementation with Tamarindus indica fruit pulp extract. Forty albino rats were randomly assigned to four groups. The first group served as control and received only tap water. The second group received sodium fluoride (200 ppm through drinking water. The third group received T. indica fruit pulp extract (200 mg/kg body weight alone and the fourth group received the T. indica fruit pulp extract (200 mg/kg body weight along with fluorinated drinking water (200 ppm daily by gavage for a period of 90 days. The level of hydroxyproline and expression of type 1 collagen gene using quantitative real time PCR in the tibia bone decreased significantly with continuous exposure to sodium fluoride. Co-administration of T. indica fruit pulp extract during exposure to fluoride through drinking water restored the level of calcium, phosphorus and alkaline phosphatase in serum and the concentration of hydroxyproline in urine. It increased the level of hydroxyproline and expression of type 1 collagen gene in the tibia as compared to untreated fluoride-exposed rats. It is concluded that T. indica fruit pulp extract has an ameliorative potential to protect the bone from fluoride induced collagen damage.

  7. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    Science.gov (United States)

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  8. Achilles Tendonitis

    Science.gov (United States)

    ... almost impossible. Achilles tendonitis is a very common running injury. But it can also affect basketball players, dancers, ... Proximal Biceps Tendonitis Safety Tips: Basketball Safety Tips: Running Repetitive Stress Injuries Sports and Exercise Safety Dealing With Sports Injuries ...

  9. Cellular response of healing tissue to DegraPol tube implantation in rabbit Achilles tendon rupture repair: an in vivo histomorphometric study.

    Science.gov (United States)

    Buschmann, Johanna; Meier-Bürgisser, Gabriella; Bonavoglia, Eliana; Neuenschwander, Peter; Milleret, Vincent; Giovanoli, Pietro; Calcagni, Maurizio

    2013-05-01

    In tendon rupture repair, improvements such as higher primary repair strength, anti-adhesion and accelerated healing are needed. We developed a potential carrier system of an electrospun DegraPol tube, which was tightly implanted around a transected and conventionally sutured rabbit Achilles tendon. Histomorphometric analysis of the tendon tissue 12 weeks postoperation showed that the tenocyte density, tenocyte morphology and number of inflammation zones were statistically equivalent, whether or not DegraPol tube was implanted; only the collagen fibres were slightly less parallelly orientated in the tube-treated case. Comparison of rabbits that were operated on both hind legs with ones that were operated on only one hind leg showed that there were significantly more inflammation zones in the two-leg cases compared to the one-leg cases, while the implantation of a DegraPol tube had no such adverse effects. These findings are a prerequisite for using DegraPol tube as a carrier system for growth factors, cytokines or stem cells in order to accelerate the healing process of tendon tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Tensile properties in collagen-rich tissues of Quarter Horses with hereditary equine regional dermal asthenia (HERDA).

    Science.gov (United States)

    Bowser, J E; Elder, S H; Pasquali, M; Grady, J G; Rashmir-Raven, A M; Wills, R; Swiderski, C E

    2014-03-01

    Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive disorder of Quarter Horses characterised by skin fragility. Horses with HERDA have a missense mutation in peptidyl-prolyl cis-trans isomerase B (PPIB), which encodes cyclophilin B and alters folding and post translational modifications of fibrillar collagen. The study aimed to test the hypothesis that tendons, ligaments and great vessels, which, like skin, are rich in fibrillar collagen, will also have abnormal biomechanical properties in horses with HERDA. Ex vivo biomechanical study comparing horses with and without a diagnosis of HERDA. Forelimb suspensory ligament, superficial and deep digital flexor tendons; withers, forelimb and abdominal skin; the main pulmonary artery and the aortic arch were harvested from 6 horses with HERDA and 6 control horses without the HERDA allele. Tissues were distracted to failure. Tensile strength (TS), elastic modulus (EM) and energy to failure (ETF) were compared. Horses with HERDA had significantly lower TS and EM in tendinoligamentous tissues and great vessels, respectively. The TS, EM and ETF were significantly lower in skin from horses with HERDA. Differences in TS and ETF were more extreme at the withers than at the forelimb or abdomen. Tendinoligamentous tissue, great vessels and skin are significantly weaker in horses with HERDA than in horses lacking the PPIB mutation, substantiating that diverse tissues with high fibrillar collagen content are abnormal in HERDA and that the HERDA phenotype is not limited to the integument. © 2013 EVJ Ltd.

  11. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  12. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  13. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  14. Kazakh therapy on differential protein expression of Achilles tendon healing in a 7-day postoperative rabbit model.

    Science.gov (United States)

    Nuerai, Shawutali; Ainuer, Jialili; Jiasharete, Jielile; Darebai, Redati; Kayrat, Aldyarhan; Tang, Bin; Jiangannur, Zheyiken; Bai, Jingping; Makabel, Bolat

    2011-12-01

    To compare the effect of cast immobilization with that of early Kiymil arkili emdew (Kazakh exercise therapy) on the post-operative healing of Achilles tendon rupture in rabbits, and to observe the influence of early Kiymil arkili emdew on the differentially expressed proteins in the healing tendon. Forty-five New Zealand white rabbits were randomly divided into three groups (Arm A: control group; Arm B: postoperative immobilization group; and Arm C: postoperative early Kiymil arkili emdew group). After tenotomy, the rabbits of the two experimental groups received microsurgery to repair the ruptured tendons, and then received either cast immobilization or early Kiymil arkili emdew treatment. Achilles tendon tissue samples were collected 7 days after the surgery, and two-dimensional gel electrophoresis and MALDI-TOF-MS technique were used to analyze differentially expressed proteins in the tendon tissue of the three Arms. A total of 462.67 +/- 11.59, 532.33 +/- 27.79, and 515.33 +/- 6.56 protein spots were detected by the two-dimensional polyacrylamide gels in the Achilles tendon samples of the rabbits in Arms A, B, and C, respectively. Nineteen differentially expressed protein spots were randomly selected from Arm C. Among them, 7 were unique, and 15 had five times higher abundance than those in Arm B. These included annexin A2, gelsolin isoforms and alpha-1 Type III collagen. It was confirmed by western blot that gelsolin isoform b, annexin A2, etc. had specific and incremental expression in Arm C. The self-protective instincts of humans were overlooked in the classical postoperative treatment for Achilles tendon rupture with cast immobilization. Kiymil arkili emdew induced the specific and incremental expression of proteins in the repaired Achilles tendon in the early healing stage in a rabbit model, compared with those treated with postoperative cast immobilization. These differentially expressed proteins may contribute to the healing of the Achilles tendon via

  15. Fibroma of the tendon sheath of the long head of the biceps tendon

    International Nuclear Information System (INIS)

    Maeseneer, Michel de; Shahabpour, Maryam; Isacker, Tom van; Lenchik, Leon; Caillie, Marie-Astrid van

    2014-01-01

    Fibroma of the tendon sheath is a benign tumor that is less common than giant cell tumor of the tendon sheath. Both tumors may present as a painless, slowly enlarging mass. Radiological findings may be similar for both tumors. Histologically, fibroma of the tendon sheath lacks the hemosiderin-laden macrophages that are typical for giant cell tumor of the tendon sheath. We report on a 49-year-old woman with fibroma of the tendon sheath of the long head of the biceps tendon. In our case, on MR images, we observed band-like hypointense areas centrally in the tumor, mild patchy contrast enhancement, and most importantly, no decrease of signal intensity on gradient echo images. These characteristics reflected histological findings. (orig.)

  16. Achilles tendon and sports

    International Nuclear Information System (INIS)

    Ulreich, N.; Kainberger, F.; Huber, W.; Nehrer, S.

    2002-01-01

    Because of the rising popularity of recreational sports activities achillodynia is an often associated symptom with running, soccer and athletics. Therefore radiologist are frequently asked to image this tendon. The origin of the damage of the Achilles tendon is explained by numerous hypothesis, mainly a decreased perfusion and a mechanical irritation that lead to degeneration of the tendon. High-resolution technics such as sonography and magnetic resonance imaging show alterations in the structure of the tendon which can be graduated and classified. Manifestations like tendinosis, achillobursitis, rupture and Haglunds disease can summarized as the tendon overuse syndrom. A rupture of a tendon is mostly the result of a degeneration of the collagenfibres. The task of the radiologist is to acquire the intrinsic factors for a potential rupture. (orig.) [de

  17. Diclocor is superior to diclofenac sodium and quercetin in normalizing biochemical parameters in rats with collagen-induced osteoarthritis.

    Science.gov (United States)

    Zupanets, I A; Shebeko, S K; Popov, O S; Shalamay, A S

    2016-02-01

    The aim of the present study was to investigate anti-inflammatory activity of Diclocor in the setting of collagen-induced osteoarthritis in rats in comparison with its active monocomponents-diclofenac sodium and quercetin. The study was conducted on the model of collagen-induced osteoarthritis and included measurement of sialic acids, glycoproteins, C-reactive protein, prostaglandin E2, 6-keto-prostaglandin F1α, thromboxane B2, and leukotriene B4. Lastly, morphologic study with morphometry was also performed. Diclocor is superior to quercetin and diclofenac sodium by the degree of pharmacological effect on some of the studied parameters. The differences between the values were statistically significant. Diclocor is a promising corrector of inflammatory and destructive joint diseases. Owing to the presence of both diclofenac sodium and quercetin in its composition, Diclocor exhibits a complex mechanism of anti-inflammatory action affecting cyclooxygenase and lipoxygenase ways of arachidonic acid biotransformation.

  18. Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Naoki Nanashima

    2018-04-01

    Full Text Available Blackcurrants (Ribes nigrum L. contain high levels of anthocyanin polyphenols, which have beneficial effects on health, owing to their antioxidant and anticarcinogenic properties. Phytoestrogens are plant-derived substances with estrogenic activity, which could have beneficial effects on the skin. Estradiol secretion decreases during menopause, reducing extracellular matrix (ECM component production by skin fibroblasts. Using a normal human female skin fibroblast cell line (TIG113 and ovariectomized rats, the present study investigated whether an anthocyanin-rich blackcurrant extract (BCE and four blackcurrant anthocyanins have novel phytoestrogenic activities that could benefit the skin in menopausal women. In TIG113 cells, a microarray and the Ingenuity® Pathway Analysis showed that 1.0 μg/mL of BCE upregulated the expression of many estrogen signaling-related genes. A quantitative RT-PCR analysis confirmed that BCE (1.0 or 10.0 μg/mL and four types of anthocyanins (10 μM altered the mRNA expression of ECM proteins and enzymes involved in ECM turnover. Immunofluorescence staining indicated that the anthocyanins stimulated the expression of ECM proteins, such as collagen (types I and III and elastin. Dietary administration of 3% BCE to ovariectomized rats for 3 months increased skin levels of collagen, elastin, and hyaluronic acid. This is the first study to show that blackcurrant phytoestrogens have beneficial effects on skin experimental models.

  19. Adrenomedullin and adrenotensin regulate collagen synthesis and proliferation in pulmonary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, W. [School of Control Science and Engineering, Biomedical Engineering Institute, Shandong University, Jinan, Shandong (China); Kong, Q.Y.; Zhao, C.F. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong (China); Zhao, F. [Department of Medicine, Weill Medical College of Cornell University, New York, NY (United States); Li, F.H.; Xia, W. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong (China); Wang, R. [Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong (China); Hu, Y.M. [School of Control Science and Engineering, Biomedical Engineering Institute, Shandong University, Jinan, Shandong (China); Hua, M. [Shandong Institute of Scientific and Technical Information, Jinan, Shandong (China)

    2013-12-10

    To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.

  20. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues.

    Science.gov (United States)

    Sato, Nori; Taniguchi, Takako; Goda, Yuichiro; Kosaka, Hirofumi; Higashino, Kosaku; Sakai, Toshinori; Katoh, Shinsuke; Yasui, Natsuo; Sairyo, Koichi; Taniguchi, Hisaaki

    2016-12-02

    Connective tissues such as tendon, ligament and cartilage are mostly composed of extracellular matrix (ECM). These tissues are insoluble, mainly due to the highly cross-linked ECM proteins such as collagens. Difficulties obtaining suitable samples for mass spectrometric analysis render the application of modern proteomic technologies difficult. Complete solubilization of them would not only elucidate protein composition of normal tissues but also reveal pathophysiology of pathological tissues. Here we report complete solubilization of human Achilles tendon and yellow ligament, which is achieved by chemical digestion combined with successive protease treatment including elastase. The digestion mixture was subjected to liquid chromatography-mass spectrometry. The low specificity of elastase was overcome by accurate mass analysis achieved using FT-ICR-MS. In addition to the detailed proteome of both tissues, we also quantitatively determine the major protein composition of samples, by measuring peak area of some characteristic peptides detected in tissue samples and in purified proteins. As a result, differences between human Achilles tendon and yellow ligament were elucidated at molecular level.

  1. 2D motion analysis of rabbits after Achilles tendon rupture repair and histological analysis of extracted tendons: can the number of animals be reduced by operating both hind legs simultaneously?

    Science.gov (United States)

    Buschmann, Johanna; Müller, Angela; Nicholls, Flora; Achermann, Rita; Bürgisser, Gabriella Meier; Baumgartner, Walter; Calcagni, Maurizio; Giovanoli, Pietro

    2013-10-01

    Considering the 3Rs principle in animal experiments, there is a demand to perform research experiments with the fewest number of animals possible while warranting the welfare of the animals. Orthopaedic experimental studies involving operations on the hind legs of rabbits are either performed on one hind leg with the second hind leg serving as control or on both hind legs simultaneously (control: rabbits with no operations at all). The Achilles tendon of rabbits was transected and sutured, and the two-dimensional motion pattern of animals having only one leg operated was compared to rabbits having both hind legs operated (control: non-treated animals). Step length, maximum ankle angle, minimum ankle angle and the resulting range of motion of both hind legs were determined weekly over a time span from 3 weeks to 12 weeks post-operation. The results were fitted by a linear mixed effects model including time dependency. Moreover, all tendon specimen were analysed histologically. Tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, inflammation level and collagen fibre alignment were determined. Statistically significant differences in the motion pattern were found when one-leg treated and two-leg treated animals were compared. However, the absolute differences were on average less than 20%. Histologically, 1-leg treated animals had tendon tissue with higher cell density, but lower inflammation and less ondulated collagen fibres compared to 2-leg treated animals; the nuclei width was the same for both groups. With regard to welfare, all animals were fine during the experiments. While comparative studies should be performed with one-leg treated animals due to interaction effects, for proof-of-principle studies, operating two legs per animal may be justified as the welfare of the animals is warranted. This is a great benefit in the sense of the 3Rs because up to 50% of animals can be spared. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  3. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon.

    Science.gov (United States)

    Ouyang, Hong Wei; Goh, James C H; Thambyah, Ashvin; Teoh, Swee Hin; Lee, Eng Hin

    2003-06-01

    The objectives of this study were to evaluate the morphology and biomechanical function of Achilles tendons regenerated using knitted poly-lactide-co-glycolide (PLGA) loaded with bone marrow stromal cells (bMSCs). The animal model used was that of an adult female New Zealand White rabbit with a 10-mm gap defect of the Achilles tendon. In group I, 19 hind legs with the created defects were treated with allogeneic bMSCs seeded on knitted PLGA scaffold. In group II, the Achilles tendon defects in 19 hind legs were repaired using the knitted PLGA scaffold alone, and in group III, 6 hind legs were used as normal control. The tendon-implant constructs of groups I and II were evaluated postoperatively at 2, 4, 8, and 12 weeks using macroscopic, histological, and immunohistochemical techniques. In addition, specimens from group I (n = 7), group II (n = 7), and group III (n = 6) were harvested for biomechanical test 12 weeks after surgery. Postoperatively, at 2 and 4 weeks, the histology of group I specimens exhibited a higher rate of tissue formation and remodeling as compared with group II, whereas at 8 and 12 weeks postoperation, the histology of both group I and group II was similar to that of native tendon tissue. The wound sites of group I healed well and there was no apparent lymphocyte infiltration. Immunohistochemical analysis showed that the regenerated tendons were composed of collagen types I and type III fibers. The tensile stiffness and modulus of group I were 87 and 62.6% of normal tendon, respectively, whereas those of group II were about 56.4 and 52.9% of normal tendon, respectively. These results suggest that the knitted PLGA biodegradable scaffold loaded with allogeneic bone marrow stromal cells has the potential to regenerate and repair gap defect of Achilles tendon and to effectively restore structure and function.

  4. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.

    Science.gov (United States)

    Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S

    2017-05-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.

  5. A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Liu

    Full Text Available Tendons are typically composed of two histologically different regions: the midsubstance and insertion site. We previously showed that Gli1, a downstream effector of the hedgehog (Hh signaling pathway, is expressed only in the insertion site of the mouse patellar tendon during its differentiation. To test for a functional role of Hh signaling, we targeted the Smoothened (Smo gene in vivo using a Cre/Lox system. Constitutive activation of the Hh pathway in the mid-substance caused molecular markers of the insertion site, e.g. type II collagen, to be ectopically expressed or up-regulated in the midsubstance. This was confirmed using a novel organ culture method in vitro. Conversely, when Smo was excised in the scleraxis-positive cell population, the development of the fibrocartilaginous insertion site was affected. Whole transcriptome analysis revealed that the expression of genes involved in chondrogenesis and mineralization was down-regulated in the insertion site, and expression of insertion site markers was decreased. Biomechanical testing of murine adult patellar tendon, which developed in the absence of Hh signaling, showed impairment of tendon structural properties (lower linear stiffness and greater displacement and material properties (greater strain, although the linear modulus of the mutant group was not significantly lower than controls. These studies provide new insights into the role of Hh signaling during tendon development.

  6. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    International Nuclear Information System (INIS)

    Silva, Danielle Cristina Tomaz da; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do; Oliveira, Sílvio Assis Junior de; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C 15 and Ob 15 ) and 30 (C 30 and Ob 30 ) consecutive weeks. Obesity was determined by adiposity index. The Ob 15 group was similar to the C 15 group regarding the expression of myocardial collagen type I; however, expression in the Ob 30 group was less than C 30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob 30 when compared with Ob 15 . Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression

  7. Calcaneal tendon: imaging findings

    International Nuclear Information System (INIS)

    Montandon, Cristiano; Fonseca, Cristiano Rezio; Montandon Junior, Marcelo Eustaquio; Lobo, Leonardo Valadares; Ribeiro, Flavia Aparecida de Souza; Teixeira, Kim-Ir-Sen Santos

    2003-01-01

    We reviewed the radiological and clinical features of 23 patients with calcaneal tendon diseases, who were submitted to ultrasound or magnetic resonance imaging. The objective of this study was to characterize the lesions for a precise diagnosis of calcaneal tendon injuries. A wide range of calcaneal tendon diseases include degenerative lesions, inflammation of the peritendinous tissue such as peritendinitis and bursitis, and rupture. Imaging methods are essential in the diagnosis, treatment and follow-up of calcaneal tendon diseases. (author)

  8. Novel image analysis methods for quantification of in situ 3-D tendon cell and matrix strain.

    Science.gov (United States)

    Fung, Ashley K; Paredes, J J; Andarawis-Puri, Nelly

    2018-01-23

    Macroscopic tendon loads modulate the cellular microenvironment leading to biological outcomes such as degeneration or repair. Previous studies have shown that damage accumulation and the phases of tendon healing are marked by significant changes in the extracellular matrix, but it remains unknown how mechanical forces of the extracellular matrix are translated to mechanotransduction pathways that ultimately drive the biological response. Our overarching hypothesis is that the unique relationship between extracellular matrix strain and cell deformation will dictate biological outcomes, prompting the need for quantitative methods to characterize the local strain environment. While 2-D methods have successfully calculated matrix strain and cell deformation, 3-D methods are necessary to capture the increased complexity that can arise due to high levels of anisotropy and out-of-plane motion, particularly in the disorganized, highly cellular, injured state. In this study, we validated the use of digital volume correlation methods to quantify 3-D matrix strain using images of naïve tendon cells, the collagen fiber matrix, and injured tendon cells. Additionally, naïve tendon cell images were used to develop novel methods for 3-D cell deformation and 3-D cell-matrix strain, which is defined as a quantitative measure of the relationship between matrix strain and cell deformation. The results support that these methods can be used to detect strains with high accuracy and can be further extended to an in vivo setting for observing temporal changes in cell and matrix mechanics during degeneration and healing. Copyright © 2017. Published by Elsevier Ltd.

  9. Containment structure tendon investigation

    International Nuclear Information System (INIS)

    Fulton, J.F.; Murray, K.H.

    1983-01-01

    The paper describes an investigation into the possible causes of lower-than-predicted tendon forces which were measured during past tendon surveillances for a concrete containment. The containment is post tensioned by vertical tendons which are anchored into a rock foundation. The tendons were originally stressed in 1969, and lift-off tests were performed on six occasions subsequent to this date over a period of 11 years. The tendon forces measured in these tests were generally lower than predicted, and by 1979 the prestress level in the containment was only marginally above the design requirement. The tendons were retensioned in 1980, and by this time an investigation into the possible causes was underway. Potential causes investigated include the rock anchors and surrounding rock, elastomeric pad creep, wire stresses, thermal effects, stressing equipment and lift-off procedures, and wire stress relaxation. The investigation activities included stress relaxation testing of wires pulled from actual tendons. The stress relaxation test program included wire specimens at several different temperature and initial stress levels and the effect of a varying temperature history on the stress relaxation property of the wires. For purpose of future force predictions of the retensioned tendons, the test program included tests to determine the effect on stress relaxation due to restressing the wires after they had relaxed for 1000 hours and 10,000 hours. (orig./GL)

  10. Highly Unusual Tendon Abnormality: Spontaneous Rupture of the Distal Iliopsoas Tendon

    Directory of Open Access Journals (Sweden)

    Gokcen Coban

    2014-06-01

    Full Text Available Iliopsoas tendon injuries are not common and usually occur due to avulsion of the iliopsoas tendon with detachment of the lesser trochanter, secondary to an athletic injury or trauma. In the absence of a trauma, avulsion of the lesser trochanter in an adult is regarded as a sign of metastatic disease until proven otherwise. Complete iliopsoas tendon tears have thus far only been described in elderly women, and without trauma or an underlying systemic disease, a hormonal basis may be a reason for the gender differences. In this article, we present an 87-year-old woman with spontaneous rupture of the left distal iliopsoas tendon unassociated with fracture of the lesser trochanter and in the absence of a recent trauma history. This elderly patient presented with acute groin pain and normal plain radiographs. Magnetic resonance imaging must be kept in mind as a modality of choice for identifying iliopsoas tendon abnormalities.

  11. Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts

    NARCIS (Netherlands)

    van Wachem, PB; Brouwer, LA; van Luyn, MJA

    Collagens are widely used as biomaterials for e.g. soft tissue reconstruction. The present study was aimed at reconstruction of abdominal wall muscle using processed dermal sheep collagen (DSC) and myoblast seeding. Myoblasts were harvested from foetal quadriceps muscle of an inbred rat strain,

  12. [Achilles tendon rupture].

    Science.gov (United States)

    Thermann, H; Hüfner, T; Tscherne, H

    2000-03-01

    The treatment of acute of Achilles tendon rupture experienced a dynamic development in the last ten years. Decisive for this development was the application of MRI and above all the ultrasonography in the diagnostics of the pathological changes and injuries of tendons. The question of rupture morphology as well as different courses of healing could be now evaluated objectively. These advances led consequently to new modalities in treatment concepts and rehabilitation protocols. The decisive input for improvements of the outcome results and particularly the shortening of the rehabilitation period came with introduction of the early functional treatment in contrast to immobilizing plaster treatment. In a prospective randomized study (1987-1989) at the Trauma Dept. of the Hannover Medical School could show no statistical differences comparing functional non-operative with functional operative therapy with a special therapy boot (Variostabil/Adidas). The crucial criteria for therapy selection results from the sonographically measured position of the tendon stumps in plantar flexion (20 degrees). With complete adaptation of the tendons' ends surgical treatment does not achieve better results than non-operative functional treatment in term of tendon healing and functional outcome. Regarding the current therapeutic standards each method has is advantages and disadvantages. Both, the operative and non-operative functional treatment enable a stable tendon healing with a low risk of re-rupture (1-2%). Meanwhile there is consensus for early functional after-treatment of the operated Achilles' tendons. There seems to be a trend towards non-operative functional treatment in cases of adequate sonographical findings, or to minimal invasive surgical techniques.

  13. Extraction of collagen and gelatine from meat industry by-products for food and non food uses.

    Science.gov (United States)

    Mokrejs, Pavel; Langmaier, Ferdinand; Mladek, Milan; Janacova, Dagmar; Kolomaznik, Karel; Vasek, Vladimir

    2009-02-01

    Short tendons of slaughtered cattle, which consist of relatively pure collagen, were cleaned of lipoid substances and non-collagen proteins using a commercial enzymatic preparation. Diluted acetic acid was used to separate the acid-soluble collagen (M(N) approximately 300 kDa) for a yield of around 5%. The residue was extracted with water and the extraction conditions were derived to produce gelatine with a gel rigidity of 350-410 degrees Bloom and a yield of 55-60%. Prolonged extraction time, as well as increased extraction temperature, led to a deterioration in the gelatine quality and, therefore, the residue after aqueous extraction was processed by enzymatic hydrolysis into a collagen hydrolysate of M(N) = 500-1000 Da. Such hydrolysates can be utilized in industry as humectants in cosmetic skin-care preparations or as a secondary industrial raw material for producing surfactants of acylamino-carboxy acid type, which are known for their favourable dermatological effects. Apart from a maximum of 7% lipoid substances the proposed procedure produced no further waste so it may be regarded as a 'clean technology'.

  14. Structural tendon changes in patients with acromegaly: assessment of Achilles tendon with sonoelastography.

    Science.gov (United States)

    Onal, Eda Demil; Ipek, Ali; Evranos, Berna; Idilman, Ilkay Sedakat; Cakir, Bekir; Ersoy, Reyhan

    2016-03-01

    To describe the sonoelastographic appearance of the Achilles tendon in acromegalic patients and to determine whether the blood concentrations of growth hormone (GH) and insulin-like growth factor (IGF-1) are associated with the various sonographic elasticity types of Achilles tendons. Eighty-four Achilles tendons of 42 acromegaly patients and 84 Achilles tendons of 42 healthy volunteers were assessed with sonoelastography. The tendons were classified into two main types according to the elasticity features: type 1 blue/green (hard tissue) and type 2 yellow/red within green (intermediate-soft tissue). Two subtypes of these types were also defined. According to the definition, the elasticity of the tissue was in a spectrum ranging from hard to soft as the type progressed from 1a to 2b. The mean thickness of Achilles tendons in patients with acromegaly was significantly higher compared with healthy Achilles tendons (5.1+/-0.7 mm vs. 4.4+/-0.5, pacromegaly patients had type 2 sonoelastographic appearance of the Achilles tendon (124/252 third; 49.2% vs. 81/252 third; 32.1%, p=0.0001). Activity status of acromegaly and GH/IGF-I levels were similar in patients with different types of elasticity (p>0.05). Sonoelastography revealed structural changes in the tendinous tissue of patients with acromegaly, but it was not sensitive enough to reflect changes in the serum levels of GH/IGF-1.

  15. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G., E-mail: r.haverkamp@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442 (New Zealand); Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  16. Impact of TGF-β inhibition during acute exercise on Achilles tendon extracellular matrix

    DEFF Research Database (Denmark)

    Potter, Ross M; Huynh, Richard T; Volper, Brent D

    2017-01-01

    The purpose of this study was to evaluate the role of TGF-β1in regulating tendon extracellular matrix after acute exercise. Wistar rats exercised (n = 15) on a treadmill for four consecutive days (60 min/day) or maintained normal cage activity. After each exercise bout, the peritendinous space of...

  17. MRI of tibialis anterior tendon rupture

    International Nuclear Information System (INIS)

    Gallo, Robert A.; DeMeo, Patrick J.; Kolman, Brett H.; Daffner, Richard H.; Sciulli, Robert L.; Roberts, Catherine C.

    2004-01-01

    Ruptures of the tibialis anterior tendon are rare. We present the clinical histories and MRI findings of three recent male patients with tibialis anterior tendon rupture aged 58-67 years, all of whom presented with pain over the dorsum of the ankle. Two of the three patients presented with complete rupture showing discontinuity of the tendon, thickening of the retracted portion of the tendon, and excess fluid in the tendon sheath. One patient demonstrated a partial tear showing an attenuated tendon with increased surrounding fluid. Although rupture of the tibialis anterior tendon is a rarely reported entity, MRI is a useful modality in the definitive detection and characterization of tibialis anterior tendon ruptures. (orig.)

  18. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  19. An overview of vertebrate mineralization with emphasis on collagen-mineral interaction

    Science.gov (United States)

    Landis, W. J.

    1999-01-01

    The nucleation, growth, and development of mineral crystals through their interaction principally with collagen in normal bone and calcifying tendon have been elaborated by applying a number of different techniques for analysis of the inorganic and organic constituents of these tissues. The methods have included conventional and high voltage electron microscopy, electron diffraction, microscopic tomography and 3D image reconstruction, and atomic force microscopy. This summary presents results of these studies that have now characterized the size, shape, and aspects of the chemical nature of the crystals as well as their orientation, alignment, location, and distribution with respect to collagen. These data have provided the means for understanding more completely the formation and strength of the collagen-mineral composite present in most vertebrate calcifying tissues and, from that information, a basis for the adaptation of such tissues under mechanical constraints. In the context of the latter point, other data are given showing effects on collagen in bone cell cultures subjected to the unloading parameters of spaceflight. Implications of these results may be particularly relevant to explaining loss of bone by humans and other vertebrate animals during missions in space, during situations of extended fracture healing, long-term bedrest, physical immobilization, and related conditions. In a broader sense, the data speak to the response of bone and mineralized vertebrate tissues to changes in gravitational loading and applied mechanical forces in general.

  20. Histological Changes in the Proximal and Distal Tendon Stumps Following Transection of Achilles Tendon in the Rabbits.

    Science.gov (United States)

    Al-Qattan, Mohammad M; Mawlana, Ola Helmi; Mohammed Ahmed, Raeesa Abdel-Twab; Hawary, Khalid

    2016-05-01

    To determine tendon stump changes following unrepaired Achilles tendon lacerations in an animal model. An experimental study. King Saud University, Riyadh, Saudi Arabia, from October 2013 to January 2014. Arabbit model was developed and studied tendon retraction and histological changes in the proximal and distal stumps following transection of the Achilles tendon. Over a period of 12 weeks, retraction of the distal tendon stump was minimal (2 - 3 mm). In contrast, retraction of the proximal tendon stump peaked to reach 6 mm at 4 weeks post-injury and plateaued to reach 7 - 8 mm at the 12-week interval. Following complete transection of the Achilles tendon, tendon retraction correlated with the density of myofibroblast expression within the tendon stump. Further research is needed to investigate the pathophysiology of these findings.