WorldWideScience

Sample records for rat striatal membranes

  1. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine.

    Directory of Open Access Journals (Sweden)

    Henrike Planert

    Full Text Available D1 and D2 receptor expressing striatal medium spiny neurons (MSNs are ascribed to striatonigral ("direct" and striatopallidal ("indirect" pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA, however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.

  2. Synthesis and binding to striatal membranes of non carrier added I-123 labeled 4'-iodococaine

    International Nuclear Information System (INIS)

    Metwally, S.A.M.; Gatley, S.J.; Wolf, A.P.; Yu, D.-W.

    1992-01-01

    An 123 I labeled cocaine analog, 4'-[ 123 I]iodococaine, has been prepared by oxidative destannylation of the tributyltin analog and shown to interact with cocaine binding sites in rat brain striatal membranes. It may thus be a suitable SPECT radiotracer for studies of the dopamine reuptake site in neurodegenerative diseases. (Author)

  3. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    Science.gov (United States)

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  4. Synthesis and binding to striatal membranes of non carrier added I-123 labeled 4'-iodococaine

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S.A.M.; Gatley, S.J.; Wolf, A.P.; Yu, D.-W. (Brookhaven National Lab., Upton, NY (United States))

    1992-03-01

    An {sup 123}I labeled cocaine analog, 4'-({sup 123}I)iodococaine, has been prepared by oxidative destannylation of the tributyltin analog and shown to interact with cocaine binding sites in rat brain striatal membranes. It may thus be a suitable SPECT radiotracer for studies of the dopamine reuptake site in neurodegenerative diseases. (Author).

  5. Striatal grafts in a rat model of Huntington's disease

    DEFF Research Database (Denmark)

    Guzman, R; Meyer, M; Lövblad, K O

    1999-01-01

    Survival and integration into the host brain of grafted tissue are crucial factors in neurotransplantation approaches. The present study explored the feasibility of using a clinical MR scanner to study striatal graft development in a rat model of Huntington's disease. Rat fetal lateral ganglionic...... time-points graft location could not be further verified. Measures for graft size and ventricle size obtained from MR images highly correlated with measures obtained from histologically processed sections (R = 0.8, P fetal rat lateral ganglionic...

  6. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  7. Motor tics evoked by striatal disinhibition in the rat

    Science.gov (United States)

    Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar

    2013-01-01

    Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893

  8. [3H]Dopamine accumulation and release from striatal slices in young, mature and senescent rats

    International Nuclear Information System (INIS)

    Thompson, J.M.

    1981-01-01

    Examinations of [ 3 H]dopamine ([ 3 H]DA) release following KCl or amphetamine administration in striatal slices from young (7 month), mature (12 month) and senescent (24 month) Wistar rats showed no age-related changes. Further, the amount of [ 3 H]DA accumulated in the striatal slices showed no changes with age. Thus, previously reported age-related deficits in motor behavior (i.e. rotational) are not produced by changes in striatal DA accumulation or release. (Auth.)

  9. Free radical production induced by methamphetamine in rat striatal synaptosomes

    International Nuclear Information System (INIS)

    Pubill, David; Chipana, Carlos; Camins, Antonio; Pallas, Merce; Camarasa, Jordi; Escubedo, Elena

    2005-01-01

    The pro-oxidative effect of methamphetamine (METH) in dopamine terminals was studied in rat striatal synaptosomes. Flow cytometry analysis showed increased production of reactive oxygen species (ROS) in METH-treated synaptosomes, without reduction in the density of dopamine transporters. In synaptosomes from dopamine (DA)-depleted animals, METH did not induce ROS production. Reserpine, in vitro, completely inhibited METH-induced ROS production. These results point to endogenous DA as the main source of ROS induced by METH. Antioxidants and inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC) prevented the METH-induced oxidative effect. EGTA and the specific antagonist methyllycaconitine (MLA, 50 μM) prevented METH-induced ROS production, thus implicating calcium and α7 nicotinic receptors in such effect. Higher concentrations of MLA (>100 μM) showed nonspecific antioxidant effect. Preincubation of synaptosomes with METH (1 μM) for 30 min reduced [ 3 H]DA uptake by 60%. The METH effect was attenuated by MLA and EGTA and potentiated by nicotine, indicating that activation of α 7 nicotinic receptors and Ca 2+ entry are necessary and take place before DAT inhibition. From these findings, it can be postulated that, in our model, METH induces DA release from synaptic vesicles to the cytosol. Simultaneously, METH activates α 7 nicotinic receptors, probably inducing depolarization and an increase in intrasynaptosomal Ca 2+ . This would lead to DAT inhibition and NOS and PKC activation, initiating oxidation of cytosolic DA

  10. Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synaptosomes

    International Nuclear Information System (INIS)

    Minnema, D.J.; Greenland, R.D.; Michaelson, I.A.

    1986-01-01

    The effect of inorganic lead in vitro in several aspects of [ 3 H]dopamine release from superfused rat striatal synaptosomes was examined. Under conditions of spontaneous release, lead (1-30 microM) induced dopamine release in a concentration-dependent manner. The onset of the lead-induced release was delayed by approximately 15-30 sec. The magnitude of dopamine release induced by lead was increased when calcium was removed from the superfusing buffer. Lead-induced release was unaffected in the presence of putative calcium, sodium, and/or potassium channel blockers (nickel, tetrodotoxin, tetraethylammonium, respectively). Depolarization-evoked dopamine release, produced by a 1-sec exposure to 61 mM potassium, was diminished at calcium concentrations below 0.254 mM. The onset of depolarization-evoked release was essentially immediate following exposure of the synaptosomes to high potassium. The combination of lead (3 or 10 microM) with high potassium reduced the magnitude of depolarization-evoked dopamine release. This depression of depolarization-evoked release by lead was greater in the presence of 0.25 mM than 2.54 mM calcium in the superfusing buffer. These findings demonstrate multiple actions of lead on synaptosomal dopamine release. Lead can induce dopamine release by yet unidentified neuronal mechanisms independent of external calcium. Lead can also reduce depolarization-evoked dopamine release by apparent competition with calcium influx at the neuronal membrane calcium channel

  11. Intrastriatal administration of botulinum neurotoxin A normalizes striatal D2 R binding and reduces striatal D1 R binding in male hemiparkinsonian rats.

    Science.gov (United States)

    Wedekind, Franziska; Oskamp, Angela; Lang, Markus; Hawlitschka, Alexander; Zilles, Karl; Wree, Andreas; Bauer, Andreas

    2018-01-01

    Cerebral administration of botulinum neurotoxin A (BoNT-A) has been shown to improve disease-specific motor behavior in a rat model of Parkinson disease (PD). Since the dopaminergic system of the basal ganglia fundamentally contributes to motor function, we investigated the impact of BoNT-A on striatal dopamine receptor expression using in vitro and in vivo imaging techniques (positron emission tomography and quantitative autoradiography, respectively). Seventeen male Wistar rats were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) and assigned to two treatment groups 7 weeks later: 10 rats were treated ipsilaterally with an intrastriatal injection of 1 ng BoNT-A, while the others received vehicle (n = 7). All animals were tested for asymmetric motor behavior (apomorphine-induced rotations and forelimb usage) and for striatal expression of dopamine receptors and transporters (D 1 R, D 2 R, and DAT). The striatal D 2 R availability was also quantified longitudinally (1.5, 3, and 5 months after intervention) in 5 animals per treatment group. The 6-OHDA lesion alone induced a unilateral PD-like phenotype and a 13% increase of striatal D 2 R. BoNT-A treatment reduced the asymmetry in both apomorphine-induced rotational behavior and D 2 R expression, with the latter returning to normal values 5 months after intervention. D 1 R expression was significantly reduced, while DAT concentrations showed no alteration. Independent of the treatment, higher interhemispheric symmetry in raclopride binding to D 2 R was generally associated with reduced forelimb akinesia. Our findings indicate that striatal BoNT-A treatment diminishes motor impairment and induces changes in D 1 and D 2 binding site density in the 6-OHDA rat model of PD. © 2017 Wiley Periodicals, Inc.

  12. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible

    International Nuclear Information System (INIS)

    Booij, Jan; Bruin, Kora de; Win, Maartje M.L. de; Lavini, Cristina Mphil; Heeten, Gerard J. den; Habraken, Jan

    2003-01-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand 123 I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [ 123 I]FP-CIT binding ratios of the test/retest studies were 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [ 123 I]FP-CIT binding ratios in rats is highly reproducible

  13. Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats.

    Directory of Open Access Journals (Sweden)

    Qiqi Feng

    Full Text Available Huntington's disease (HD is a neurological degenerative disease and quinolinic acid (QA has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv+ and neuropeptide Y (NPY+ interneurons were both significantly reduced while those of calretinin (Cr+ and choline acetyltransferase (ChAT+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD.

  14. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  15. Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices

    Science.gov (United States)

    Venance, Laurent; Glowinski, Jacques; Giaume, Christian

    2004-01-01

    Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5–25, 60%; P25–30, 29%; n = 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 ± 0.3%, n = 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABAA receptor antagonist) observed in 19% of SON pairs (n = 62) was reliable (mean failure rate of 6 ± 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 ± 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing. PMID:15235091

  16. Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Johnson, B J; Bruno, J P

    1995-02-01

    A repeated sessions, in vivo microdialysis design was used to determine the D1- and D2-like receptor modulation of striatal ACh efflux in intact adult rats and those depleted of DA on postnatal Day 3. Systemic administration of the D1-like agonist SKF 38393 (1.0 or 10.0 mg/kg, or the D2-like antagonist clebopride (1.0 or 10.0 mg/kg) increased ACh efflux in both controls and DA-depleted animals. Systemic administration of the D1-like antagonist SCH 23390 (0.05 or 0.2 mg/kg) or D2-like agonist quinpirole (0.5 or 1.0 mg/kg) decreased ACh efflux in both groups of animals. DA-depleted animals exhibited a larger response than did controls to the lower doses of these drugs. Intrastriatal administration of clebopride (10 microM) increased ACh efflux in DA-depleted animals. Finally, basal and clebopride-stimulated ACh efflux were unaffected by the repeated microdialysis sessions. These data demonstrate that the reciprocal modulation of striatal ACh efflux, seen in controls and in rats depleted of DA as adults, is also present in adults depleted of DA as neonates. Because the roles of D1- and D2-receptors in the expression of motor behavior differ between rats depleted of DA as adults vs as neonates, these data suggest that alterations in the dopaminergic modulation of striatal ACh release do not underlie the sparing from motoric deficits seen in animals depleted of DA as neonates.

  17. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  18. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  19. Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo

    DEFF Research Database (Denmark)

    Kolko, M; Bruhn, T; Christensen, Thomas

    1999-01-01

    The secretory phospholipases A2 (sPLA2) OS2 (10, 20 and 50 pmol) or OS1, (50 pmol) purified from taipan snake Oxyuranus scutellatus scutellatus venom, and the excitatory amino acid glutamate (Glu) (2.5 and 5.0 micromol) were injected into the right striatum of male Wistar rats. Injection of 10...... no tissue damage or neurological abnormality. After injection of 5.0 micromol Glu, the animals initially circled towards the side of injection, and gradually developed generalized clonic convulsions. These animals showed a well demarcated striatal infarct. When non-toxic concentrations of 20 pmol OS2 and 2.......5 micromol Glu were co-injected, a synergistic neurotoxicity was observed. Extensive histological damage occurred in the entire right hemisphere, and in several rats comprising part of the contralateral hemisphere. These animals were apathetic in the immediate hours following injection, with circling towards...

  20. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease.

    Science.gov (United States)

    Ciucci, Michelle R; Schaser, Allison J; Russell, John A

    2013-09-01

    Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Brain Pharmacokinetics and the Pharmacological Effects on Striatal Neurotransmitter Levels of Pueraria lobata Isoflavonoids in Rat

    Directory of Open Access Journals (Sweden)

    Bingxin Xiao

    2017-09-01

    Full Text Available Isoflavonoids are putatively active components of Pueraria lobata and has been demonstrated prominent neuro-protection effect against cerebrovascular disorders, hypertension or Parkinson's disease (PD. However, the molecular basis for the beneficial effect of Pueraria lobata on nervous systems has not been well revealed. The present study aims to assess striatum exposure to main active isoflavonoids and changes of striatal extracellular neurotransmitters levels in rat brain after intravenous administration of Pueraria lobata isoflavonoids extracts (PLF, to further elucidate its' substantial bases for neuro activities. Fifteen rats were divided into 3 groups (five rats in each group to receive a dose of PLF at 80 or 160 mg/kg or normal saline (vehicle, respectively. An LC-MS/MS method was employed to determine the concentrations of five main isoflavonoids and multiple neurotransmitters in microdialysate from striatal extracellular fluid (ECF of the rats. The exposed quantities of puerarin (PU, 3′-methoxypuerarin (MPU, daidzein-8-C-apiosyl-(1-6-glucoside (DAC, and 3′-hydroxypuerarin (HPU in striatum were dose-dependent. The content of daidzein (DAZ was too low to be detected in all dialysate samples through the experiment. Optimal dose PLF (80 mg/kg promoted DA metabolism and inhibited 5-HT metabolism. No obvious change in the level of GLu was determined. The concentration of GABA presented a temporary decline firstly and then a gradual uptrend followed by a further downtrend. Higher dose (160 mg/kg PLF could enhance the metabolism of both DA and 5-HT, and lower the extracellular level of GLu, without changing GABA concentrations, which might result in alleviation on excitatory toxicity under conditions, such as ischemia. The results infer that different dose of PLF should be chosen to achieve appropriate neurochemical modulation effects under conditions, such as hypertension or ischemia/stroke. These findings may significantly contribute to a

  2. Magnetic resonance imaging (MRI to study striatal iron accumulation in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Ana Virel

    Full Text Available Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI. The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.

  3. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.

  4. Release of [3H]-monoamines from superfused rat striatal slices by methylenedioxymethamphetamine (MDMA)

    International Nuclear Information System (INIS)

    Levin, J.A.; Schmidt, C.J.; Lovenberg, W.

    1986-01-01

    MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10 -7 - 10 -5 M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of [ 3 H]5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of [ 3 H]DA by a factor of approximately 10x. MDMA-induced release of both [ 5 H]5HT and [ 3 H]DA was Ca 2+ -independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)[ 3 H]MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA

  5. Effects of postnatal anoxia on striatal dopamine metabolism and prepulse inhibition in rats

    DEFF Research Database (Denmark)

    Sandager-Nielsen, Karin; Andersen, Maibritt B; Sager, Thomas N

    2004-01-01

    (DOPAC) and homovanillic acid (HVA) concentrations. Furthermore, in the anoxic group only, striatal HVA concentrations were negatively correlated to prefrontal cortical N-acetylaspartate (NAA) levels. Similar findings of distorted prefrontal-subcortical interactions have recently been reported...

  6. Effect of in vitro gamma exposure on rat mesencephalic and striatal cellular types and processes length

    International Nuclear Information System (INIS)

    Coffigny, H.; Court, L.

    1994-01-01

    The isolated mesencephalic and striatal cells were irradiated in a dose-range of 0.25 to 3 Gy followed by 3 day of culture. The proportion of monopolar, bipolar, tripolar and multipolar cell population was not obviously modified by irradiation. The processes length was similar to controls, except after 3 Gy exposure, for monopolar and bipolar mesencephalic cells and the tripolar striatal cells where it was increased. In these populations, only cells with long processes seemed to survive. (author)

  7. The effect of amperozide on uptake and release of [3H]-dopamine in vitro from perfused rat striatal and limbic brain areas

    International Nuclear Information System (INIS)

    Eriksson, E.; Christensson, E.

    1990-01-01

    Amperozide, a putatively antipsychotic drug, was studied for its effects on uptake and release of [ 3 H]-dopamine in rat brain in vitro. Amperozide inhibited uptake of [ 3 H]-dopamine in striatal chopped tissue in vitro with an IC 50 of 18 μM. It also increased basal release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue in vitro at concentrations above 5 μM. Release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue stimulated with 5 μM amphetamine, was inhibited by 1 μM amperozide to 46%. No significant difference was found for the effect of amperozide on in vitro release of [ 3 H]-dopamine from corpus striatum compared to tissue from limbic grain regions; neither on basal release nor on amphetamine-stimulated release of dopamine. (author)

  8. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  9. Prenatal ethanol enhances rotational behavior to apomorphine in the 24-month-old rat offspring with small striatal lesion.

    Science.gov (United States)

    Gomide, Vânia C; Chadi, Gerson

    2004-01-01

    Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.

  10. Behavioural inflexibility in a comorbid rat model of striatal ischemic injury and mutant hAPP overexpression.

    Science.gov (United States)

    Levit, Alexander; Regis, Aaron M; Garabon, Jessica R; Oh, Seung-Hun; Desai, Sagar J; Rajakumar, Nagalingam; Hachinski, Vladimir; Agca, Yuksel; Agca, Cansu; Whitehead, Shawn N; Allman, Brian L

    2017-08-30

    Alzheimer disease (AD) and stroke coexist and interact; yet how they interact is not sufficiently understood. Both AD and basal ganglia stroke can impair behavioural flexibility, which can be reliably modeled in rats using an established operant based set-shifting test. Transgenic Fischer 344-APP21 rats (TgF344) overexpress pathogenic human amyloid precursor protein (hAPP) but do not spontaneously develop overt pathology, hence TgF344 rats can be used to model the effect of vascular injury in the prodromal stages of Alzheimer disease. We demonstrate that the injection of endothelin-1 (ET1) into the dorsal striatum of TgF344 rats (Tg-ET1) produced an exacerbation of behavioural inflexibility with a behavioural phenotype that was distinct from saline-injected wildtype & TgF344 rats as well as ET1-injected wildtype rats (Wt-ET1). In addition to profiling the types of errors made, interpolative modeling using logistic exposure-response regression provided an informative analysis of the timing and efficiency of behavioural flexibility. During set-shifting, Tg-ET1 committed fewer perseverative errors than Wt-ET1. However, Tg-ET1 committed significantly more regressive errors and had a less efficient strategy change than all other groups. Thus, behavioural flexibility was more vulnerable to striatal ischemic injury in TgF344 rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  12. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  13. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States); Lansdell, Theresa A., E-mail: lansdel1@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Lookingland, Keith J., E-mail: lookingl@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Baker, Lisa E., E-mail: lisa.baker@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States)

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  14. Differences in the time course of haloperidol-induced up-regulation of rat striatal and mesolimbic dopamine receptors

    International Nuclear Information System (INIS)

    Prosser, E.S.; Csernansky, J.G.; Hollister, L.E.

    1988-01-01

    Regional differences in the onset and persistence of increased dopamine D2 receptor density in rat brain were studied following daily injections of haloperidol for 3, 7, 14, or 28 days. Striatal [ 3 H]-spiroperidol Bmax values were significantly increased following 3 - 28 days of haloperidol treatment, as compared to saline controls. Olfactory tubercle Bmax values were significantly increased only after 14 or 28 days of haloperidol treatment. Nucleus accumbens Bmax values were significantly increased only in the 14-day drug treatment group, suggesting that dopamine D2 receptor up-regulation in nucleus accumbens may reverse during ongoing neuroleptic treatment. These findings suggest that important differences in adaptive responses to chronic dopamine blockade may exist between dopaminergic synapses located in various rat brain regions

  15. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Clagett-Dame, M.; McKelvy, J.F. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  16. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    International Nuclear Information System (INIS)

    Clagett-Dame, M.; McKelvy, J.F.

    1989-01-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide

  17. Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats

    Science.gov (United States)

    Izquierdo, Alicia; Pozos, Hilda; De La Torre, Adrianna; DeShields, Simone; Cevallos, James; Rodriguez, Jonathan; Stolyarova, Alexandra

    2016-01-01

    Corticostriatal circuitry supports flexible reward learning and emotional behavior from the critical neurodevelopmental stage of adolescence through adulthood. It is still poorly understood how prescription drug exposure in adolescence may impact these outcomes in the long-term. We studied adolescent methylphenidate (MPH) and fluoxetine (FLX) exposure in rats and their impact on learning and emotion in adulthood. In Experiment 1, male and female rats were administered MPH, FLX, or saline (SAL), and compared with methamphetamine (mAMPH) treatment beginning in postnatal day (PND) 37. The rats were then tested on discrimination and reversal learning in adulthood. In Experiment 2, animals were administered MPH or SAL also beginning in PND 37 and later tested in adulthood for anxiety levels. In Experiment 3, we analyzed striatal dopamine D1 and D2 receptor expression in adulthood following either extensive learning (after Experiment 1) or more brief emotional measures (after Experiment 2). We found sex differences in discrimination learning and attenuated reversal learning after MPH and only sex differences in adulthood anxiety. In learners, there was enhanced striatal D1, but not D2, after either adolescent MPH or mAMPH. Lastly, also in learners, there was a sex x treatment group interaction for D2, but not D1, driven by the MPH-pretreated females, who expressed significantly higher D2 levels compared to SAL. These results show enduring effects of adolescent MPH on reversal learning in rats. Developmental psychostimulant exposure may interact with learning to enhance D1 expression in adulthood, and affect D2 expression in a sex-dependent manner. PMID:27091300

  18. Repeated administration of D-amphetamine induces loss of [{sup 123}I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands)]. E-mail: j.booij@amc.uva.nl; Bruin, Kora de [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands); Gunning, W. Boudewijn [Department of Neurology, Epilepsy Centre Kempenhaeghe, 5590 AB Heeze (Netherlands)

    2006-04-15

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in amphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of D-AMPH or methamphetamine (METH) may induce loss of binding to striatal DATs in rats by using an experimental biodistribution study design and a SPECT tracer for the DAT ([{sup 123}I]FP-CIT). Methods: Groups of male rats (n=10 per group) were treated with D-AMPH (10 mg/kg body weight), METH (10 mg/kg body weight), or saline, twice a day for 5 consecutive days. Five days later, [{sup 123}I]FP-CIT was injected intravenously, and 2 h later, the rats were sacrificed and radioactivity was assayed. Results: In D-AMPH but not METH-treated rats, striatal [{sup 123}I]FP-CIT uptake was significantly lower (approximately 17%) than in the control group. Conclusion: These data show that [{sup 123}I]FP-CIT can be used to detect AMPH-induced changes in DAT binding and may validate the use of DAT radiotracers to study AMPH-induced changes in striatal DAT binding in vivo.

  19. Repeated administration of D-amphetamine induces loss of [123I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    International Nuclear Information System (INIS)

    Booij, Jan; Bruin, Kora de; Gunning, W. Boudewijn

    2006-01-01

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in amphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of D-AMPH or methamphetamine (METH) may induce loss of binding to striatal DATs in rats by using an experimental biodistribution study design and a SPECT tracer for the DAT ([ 123 I]FP-CIT). Methods: Groups of male rats (n=10 per group) were treated with D-AMPH (10 mg/kg body weight), METH (10 mg/kg body weight), or saline, twice a day for 5 consecutive days. Five days later, [ 123 I]FP-CIT was injected intravenously, and 2 h later, the rats were sacrificed and radioactivity was assayed. Results: In D-AMPH but not METH-treated rats, striatal [ 123 I]FP-CIT uptake was significantly lower (approximately 17%) than in the control group. Conclusion: These data show that [ 123 I]FP-CIT can be used to detect AMPH-induced changes in DAT binding and may validate the use of DAT radiotracers to study AMPH-induced changes in striatal DAT binding in vivo

  20. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  1. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  2. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity

    Science.gov (United States)

    Robinson, Mike JF; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-01-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  3. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats.

    Directory of Open Access Journals (Sweden)

    Dirleise Colle

    Full Text Available Huntington's disease (HD is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP, an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p. once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx, an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage secondary to mitochondrial dysfunction. These data appeared to be of great

  4. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    Science.gov (United States)

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon

  5. Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats.

    Science.gov (United States)

    Urakawa, S; Hida, H; Masuda, T; Misumi, S; Kim, T-S; Nishino, H

    2007-02-09

    Rats raised in an enriched environment (enriched rats) have been reported to show less motor dysfunction following brain lesions, but the neuronal correlates of this improvement have not been well clarified. The present study aimed to elucidate the effect of chemical brain lesions and environmental enrichment on motor function and lesion-induced neurogenesis. Three week-old, recently weaned rats were divided into two groups: one group was raised in an enriched environment and the other group was raised in a standard cage for 5 weeks. Striatal damage was induced at an age of 8 weeks by injection of the neuro-toxins 6-hydroxydopamine (6-OHDA) or quinolinic acid (QA) into the striatum, or by injection of 6-OHDA into the substantia nigra (SN), which depleted nigrostriatal dopaminergic innervation. Enriched rats showed better performance on beam walking compared with those raised in standard conditions, but both groups showed similar forelimb use asymmetry in a cylinder test. The number of bromodeoxyuridine-labeled proliferating cells in the subventricular zone was increased by a severe striatal lesion induced by QA injection 1 week after the lesion, but decreased by injection of 6-OHDA into the SN. Following induction of lesions by striatal injection of 6-OHDA or QA, the number of cells positive for doublecortin (DCX) was strongly increased in the striatum; however, there was no change in the number of DCX-positive cells following 6-OHDA injection into the SN. Environmental enrichment enhanced the increase of DCX-positive cells with migrating morphology in the dorsal striatum. In enriched rats, DCX-positive cells traversed the striatal parenchyma far from the corpus callosum and lateral ventricle. DCX-positive cells co-expressed an immature neuronal marker, polysialylated neural cell adhesion molecule, but were negative for a glial marker. These data suggest that environmental enrichment improves motor performance on beam walking and enhances neuronal migration toward

  6. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats

    Science.gov (United States)

    Lotan, Dafna; Benhar, Itai; Alvarez, Kathy; Mascaro-Blanco, Adita; Brimberg, Lior; Frenkel, Dan; Cunningham, Madeleine W.; Joel, Daphna

    2014-01-01

    Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders. PMID:24561489

  7. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Directory of Open Access Journals (Sweden)

    Erik Karl Håkan Clemensson

    Full Text Available The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  8. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Science.gov (United States)

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  9. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain; II. Correlation between positron emission tomography and reaching behaviour

    International Nuclear Information System (INIS)

    Dunnett, S.B.; Brooks, D.J.; Ashworth, S.; Opacka-Juffrey, J.; Myers, R.; Hume, S.P.; Torres, E.M.; Fricker, R.A.

    1997-01-01

    Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the 'staircase task' of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter postiron emission tomography scanner, using ligands to the dopamine D 1 and D 2 receptors, [ 11 C]SCH 23390 and [ 11 C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the 'staircase test'. No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D 1 and D 2 receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts.These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts prepared from older embryos. This recovery is due to both the

  10. [Effects of acupuncture stimulation of different acupoint groups on sleeping duration and serum and striatal dopamine contents in rats with gastric mucosal injury].

    Science.gov (United States)

    Yang, Ping; Peng, Lei; Li, Jie-Ting; Ma, Hui-Fang

    2014-02-01

    To observe the effect of acupuncture intervention on gastric ulcer (GU) and sleeping quality from the viewpoint of brain-gut axis which plays an important role in the regulation of many vital functions in health and disease. Forty male Wistar rats were randomized into normal control, GU model, acupuncture of "Zhongwan" (CV 12)-"Zusanli" (ST 36, gastric treatment acupoints), acupuncture of "Shenmai" (BL 62)-"Zhaohai" (KI 6, sleep-promotion acupoints), and acupuncture of CV 12-ST 36-BL 62-KI 6 (combined treatment) groups, with 8 rats in each group. GU model was established by intragastric perfusion of dehydrated alcohol (1 mL/rat), and sleep model established by intraperitoneal injection of pentobarbital sodium (40 mg/kg) after the last treatment. The abovementioned acupoints were punctured with filiform needles and stimulated by manipulating the needle for about 30 s, once every 5 mm during 20 mm of needle retention. The treatment was conducted once daily for five days. Gastric mucosal lesion index was assessed by Guth's method, and the mucosal pathological changes were observed under microscope after H. E. staining. The contents of dopamine (DA) in the serum and striatal tissues were detected by ELISA kit. Compared with the normal control group, the rats' sleeping duration, and serum DA content were markedly decreased and the gastric mucosal lesion index, and the striatal DA content remarkably increased in the model group (P sleeping duration, and serum DA content were significantly increased, and the gastric mucosal lesion index, and the striatal DA content remarkably down-regulated in the CV 12-ST 36 (gastric treatment acupoints), BL 62-KI 6 (sleep-promotion acupoints) and CV 12-ST 36-BL 62-KI 6 (combined treatment) groups (P sleep promotion acupoints group in reducing mucosal lesion index and in increasing serum DA level (P sleeping duration in gastric lesion rats, which may be related to its effects in increasing blood DA and lowering striatal DA level

  11. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    Science.gov (United States)

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  12. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  13. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  14. Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in L-DOPA-treated rats.

    Science.gov (United States)

    Azkona, Garikoitz; Sagarduy, Ainhoa; Aristieta, Asier; Vazquez, Nerea; Zubillaga, Verónica; Ruíz-Ortega, José Angel; Pérez-Navarro, Esther; Ugedo, Luisa; Sánchez-Pernaute, Rosario

    2014-04-01

    Dopamine replacement with l-DOPA is the most effective therapy in Parkinson's disease. However, with chronic treatment, half of the patients develop an abnormal motor response including dyskinesias. The specific molecular mechanisms underlying dyskinesias are not fully understood. In this study, we used a well-characterized animal model to first establish the molecular differences between rats that did and did not develop dyskinesias. We then investigated the molecular substrates implicated in the anti-dyskinetic effect of buspirone, a 5HT1A partial agonist. Striatal protein expression profile of dyskinetic animals revealed increased levels of the dopamine receptor (DR)D3, ΔFosB and phospho (p)CREB, as well as an over-activation of the DRD1 signalling pathway, reflected by elevated ratios of phosphorylated DARPP32 and ERK2. Buspirone reduced the abnormal involuntary motor response in dyskinetic rats in a dose-dependent fashion. Buspirone (4 mg/kg) dramatically reduced the presence and severity of dyskinesias (by 83%) and normalized DARPP32 and ERK2 phosphorylation ratios, while the increases in DRD3, ΔFosB and pCREB observed in dyskinetic rats were not modified. Pharmacological experiments combining buspirone with 5HT1A and DRD3 antagonists confirmed that normalization of both pDARPP32 and pERK2 is required, but not sufficient, for blocking dyskinesias. The correlation between pDARPP32 ratio and dyskinesias was significant but not strong, pointing to the involvement of convergent factors and signalling pathways. Our results suggest that in dyskinetic rats DRD3 striatal over-expression could be instrumental in the activation of DRD1-downstream signalling and demonstrate that the anti-dyskinetic effect of buspirone in this model is correlated with DRD1 pathway normalization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    Science.gov (United States)

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically

  16. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism

    Directory of Open Access Journals (Sweden)

    Meera E. Modi

    2018-06-01

    Full Text Available Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD. The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD in the striatum but opposing morphological and cellular alterations in the hippocampus (HP. Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the

  17. Alteration of striatal dopamine levels under various partial pressure of oxygen in pre-convulsive and convulsive phases in freely-moving rats.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude

    2014-02-01

    The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.

  18. Dopamine denervation does not alter in vivo 3H-spiperone binding in rat striatum: implications for external imaging of dopamine receptors in Parkinson's disease

    International Nuclear Information System (INIS)

    Bennett, J.P. Jr.; Wooten, G.F.

    1986-01-01

    Striatal particulate preparations, both from rats with lesion-induced striatal dopamine (DA) loss and from some striatal dopamine (DA) loss and from some patients with Parkinson's disease, exhibit increased 3 H-neuroleptic binding, which is interpreted to be the mechanism of denervation-induced behavioral supersensitivity to dopaminergic compounds. After intravenous 3 H-spiperone ( 3 H-SP) administration to rats with unilateral nigral lesions, we found no differences in accumulation of total or particulate-bound 3 H-SP in dopamine-denervated compared with intact striata. 3 H-SP in vivo binds to less than 10% of striatal sites labeled by 3 H-SP incubated with striatal particulate preparations in vitro. Quantitative autoradiography of 3 H-SP binding to striatal sections in vitro also failed to reveal any effects of dopamine denervation. 3 H-SP bound to striatal sites in vivo dissociates more slowly than that bound to striatal particulate preparations labeled in vitro. Striatal binding properties of 3 H-SP administered in vivo are quite different from the same kinetic binding parameters estimated in vitro using crude membrane preparations of striatum. In addition, striatal binding of in vivo-administered 3H-SP is not affected by prior lesion of the substantia nigra, which results in profound ipsilateral striatal dopamine depletion. Thus, behavioral supersensitivity to dopaminergic compounds may not be associated with altered striatal binding properties for dopamine receptor ligands in vivo

  19. Morphological and metabolic changes in the nigro-striatal pathway of synthetic proteasome inhibitor (PSI-treated rats: a MRI and MRS study.

    Directory of Open Access Journals (Sweden)

    Stefano Delli Pizzi

    Full Text Available Systemic administration of a Synthetic Proteasome Inhibitor (PSI in rats has been described as able to provide a model of Parkinson's disease (PD, characterized by behavioral and biochemical modifications, including loss of dopaminergic neurons in the substantia nigra (SN, as assessed by post-mortem studies. With the present study we aimed to assess in-vivo by Magnetic Resonance (MR possible morphological and metabolic changes in the nigro-striatal pathway of PSI-treated rats. 10 animals were subcutaneously injected with PSI 6.0 mg/kg dissolved in DMSO 100%. Injections were made thrice weekly over the course of two weeks. 5 more animals injected with DMSO 100% with the same protocol served as controls. The animals underwent MR sessions before and at four weeks after the end of treatment with either PSI or vehicle. MR Imaging was performed to measure SN volume and Proton MR Spectroscopy ((1H-MRS was performed to measure metabolites changes at the striatum. Animals were also assessed for motor function at baseline and at 4 and 6 weeks after treatment. Dopamine and dopamine metabolite levels were measured in the striata at 6 weeks after treatment. PSI-treated animals showed volumetric reduction of the SN (p<0.02 at 4 weeks after treatment as compared to baseline. Immunofluorescence analysis confirmed MRI changes in SN showing a reduction of tyrosine hydroxylase expression as compared to neuron-specific enolase expression. A reduction of N-acetyl-aspartate/total creatine ratio (p = 0.05 and an increase of glutamate-glutamine-γ amminobutirrate/total creatine were found at spectroscopy (p = 0.03. At 6 weeks after treatment, PSI-treated rats also showed motor dysfunction compared to baseline (p = 0.02, accompanied by dopamine level reduction in the striatum (p = 0.02. Treatment with PSI produced morphological and metabolic modifications of the nigro-striatal pathway, accompanied by motor dysfunction. MR demonstrated to be a powerful mean to assess in

  20. Neuroprotective effects of curcumin and highly bioavailable curcumin on oxidative stress induced by sodium nitroprusside in rat striatal cell culture.

    Science.gov (United States)

    Nazari, Qand Agha; Kume, Toshiaki; Izuo, Naotaka; Takada-Takatori, Yuki; Imaizumi, Atsushi; Hashimoto, Tadashi; Izumi, Yasuhiko; Akaike, Akinori

    2013-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.

  1. Effects of the group I metabotropic glutamate receptor agonist, DHPG, and injection stress on striatal cell signaling in food-restricted and ad libitum fed rats

    Directory of Open Access Journals (Sweden)

    Carr Kenneth D

    2004-12-01

    Full Text Available Abstract Background Chronic food restriction augments the rewarding effect of centrally administered psychostimulant drugs and this effect may involve a previously documented upregulation of D-1 dopamine receptor-mediated MAP kinase signaling in nucleus accumbens (NAc and caudate-putamen (CPu. Psychostimulants are known to induce striatal glutamate release, and group I metabotropic glutamate receptors (mGluR have been implicated in the cellular and behavioral responses to amphetamine. The purpose of the present study was to evaluate whether chronic food restriction increases striatal MAP kinase signaling in response to the group I mGluR agonist, DHPG. Results Western immunoblotting was used to demonstrate that intracerebroventricular (i.c.v. injection of DHPG (500 nmol produces greater activation of ERK1/2 and CREB in CPu and NAc of food-restricted as compared to ad libitum fed rats. Fos-immunostaining induced by DHPG was also stronger in CPu and NAc core of food-restricted relative to ad libitum fed rats. However, i.c.v. injection of saline-vehicle produced greater activation of ERK1/2 and CREB in CPu and NAc of food-restricted relative to ad libitum fed rats, and this difference was not seen when subjects received no i.c.v. injection prior to sacrifice. In addition, although DHPG activated Akt, there was no difference in Akt activation between feeding groups. To probe whether the augmented ERK1/2 and CREB activation in vehicle-injected food-restricted rats are mediated by one or more GluR types, effects of an NMDA antagonist (MK-801, 100 nmol, AMPA antagonist (DNQX, 10 nmol, and group I mGluR antagonist (AIDA, 100 nmol were compared to saline-vehicle. Antagonist injections did not diminish activation of ERK1/2 or CREB. Conclusions These results indicate that a group I mGluR agonist induces phosphorylation of Akt, ERK1/2 and CREB in both CPu and NAc. However, group I mGluR-mediated signaling may not be upregulated in food-restricted rats

  2. Repeated cocaine administration results in supersensitivity of striatal D-2 dopamine autoreceptors to pergolide

    International Nuclear Information System (INIS)

    Dwoskin, L.P.; Peris, J.; Yasuda, R.P.; Philpott, K.; Zahniser, N.R.

    1988-01-01

    Groups of rats administered cocaine-HCl (10 mg/kg, i.p.) or saline either acutely or once daily for 8 or 14 days were killed 24 hrs after the last dose. In striatal slices prelabelled with [ 3 H]DA, modulation of [ 3 H]-overflow by pergolide was used to measure D-2 autoreceptor activity. Compared to the contemporaneous control group pergolide produced a greater inhibition only in striatal slices from rats treated repeatedly with cocaine. In radioligand binding studies using striatal membranes from control rats, pergolide had a 500-fold greater affinity for the D-2, as opposed to the D-1, dopamine (DA) receptor subtype. These results indicate that repeated treatment with cocaine produces supersensitive striatal D-2 release-modulating autoreceptors consistent with a compensatory change to diminish the effect of elevated synaptic concentrations of DA produced by cocaine. In contrast, supersensitivity of D-2 receptors was not detected in [ 3 H]spiperone binding assays. 31 references, 2 figures, 1 table

  3. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  4. Enhanced Striatal β1-Adrenergic Receptor Expression Following Hormone Loss in Adulthood Is Programmed by Both Early Sexual Differentiation and Puberty: A Study of Humans and Rats

    Science.gov (United States)

    Perry, Adam N.; Westenbroek, Christel; Hedges, Valerie L.; Becker, Jill B.; Mermelstein, Paul G.

    2013-01-01

    After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence. PMID:23533220

  5. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Zhang W

    2016-05-01

    Full Text Available Wen Zhang,1,* Li Wei,2,* Wenjing Yu,1 Xia Cui,1 Xiaofang Liu,2 Qian Wang,1 Sumei Wang2 1Department of Pediatrics, The Third Affiliated Hospital, 2Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Jian-Pi-Zhi-Dong Decoction (JPZDD is a dedicated treatment of Tourette syndrome (TS. The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu and γ-aminobutyric acid (GABA and their receptors in a TS rat model.Materials and methods: Rats were divided into four groups (n=12 each. TS was induced in three of the groups by injecting them with 3,3'-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR were observed using Western blot and real-time polymerase chain reaction.Results: Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the m

  6. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  7. Evaluation of the effects and mechanisms of action of glufosinate, an organophosphate insecticide, on striatal dopamine release by using in vivo microdialysis in freely moving rats.

    Science.gov (United States)

    Ferreira Nunes, Brenda V; Durán, Rafael; Alfonso, Miguel; de Oliveira, Iris Machado; Ferreira Faro, Lilian R

    2010-10-01

    The purpose of the present work was to assess the effects of glufosinate ammonium (GLA), an aminoacid structurally related to glutamate, on in vivo dopamine (DA) release from rat striatum, using brain microdialysis coupled to HPLC-EC. Intrastriatal administration of GLA produced significant concentration-dependent increases in DA levels. At least two mechanisms can be proposed to explain these increases: GLA could be inducing DA release from synaptic vesicles or producing an inhibition of DA transporter (DAT). Thus, we investigated the effects of GLA under Ca(++)-free condition, and after pretreatment with reserpine and TTX. It was observed that the pretreatment with Ca(++)-free Ringer, reserpine or TTX significantly reduced the DA release induced by GLA. Coinfusion of GLA and nomifensine shows that the GLA-induced DA release did not involve the DAT. These results show that GLA-induced striatal DA release is probably mediated by an exocytotic-, Ca(++)-, action potential-dependent mechanism, being independent of DAT.

  8. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity...

  9. Modification of the striatal dopaminergic neuron system by carbon monoxide exposure in free-moving rats, as determined by in vivo brain microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Shuichi; Kurosaki, Kunihiko; Kuriiwa, Fumi; Endo, Takahiko [Department of Forensic Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Mukai, Toshiji [Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-0015 (Japan)

    2002-10-01

    Acute carbon monoxide (CO) intoxication in humans results in motor deficits, which resemble those in Parkinson's disease, suggesting possible disturbance of the central dopaminergic (DAergic) neuronal system by CO exposure. In the present study, therefore, we explored the effects of CO exposure on the DAergic neuronal system in the striatum of freely moving rats by means of in vivo brain microdialysis. Exposure of rats to CO (up to 0.3%) for 40 min caused an increase in extracellular dopamine (DA) levels and a decrease in extracellular levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum depending on the CO concentration. Reoxygenation following termination of the CO exposure resulted in a decline of DA to the control level and an overshoot in the recovery of DOPAC and HVA to levels higher than the control. A monoamine oxidase type A (MAO-A) inhibitor, clorgyline, significantly potentiated the CO-induced increase in DA and completely abolished the subsequent overshoot in the recovery of DOPAC and HVA. Tetrodotoxin, a Na{sup +} channel blocker, completely abolished both the CO-induced increase in DA and the overshoot of DOPAC and HVA. A DA uptake inhibitor, nomifensine, strongly potentiated the CO-induced increase in DA without affecting the subsequent overshoot of DOPAC and HVA. Clorgyline further potentiated the effect of nomifensine on the CO-induced increase in DA, although a slight overshoot of DOPAC and HVA appeared. These findings suggest that (1) CO exposure may stimulate Na{sup +}-dependent DA release in addition to suppressing DA metabolism, resulting in a marked increase in extracellular DA in rat striatum, and (2) CO withdrawal and subsequent reoxygenation may enhance the oxidative metabolism, preferentially mediated by MAO-A, of the increased extracellular DA. In the light of the neurotoxicity of DA per se and reactive substances, such as quinones and activated oxygen species

  10. Sex-Dependent Changes in Striatal Dopamine Transport in Preadolescent Rats Exposed Prenatally and/or Postnatally to Methamphetamine

    Czech Academy of Sciences Publication Activity Database

    Šírová, J.; Krištofíková, Z.; Vrajová, M.; Fujakova-Lipski, M.; Řípová, D.; Klaschka, Jan; Šlamberová, R.

    2016-01-01

    Roč. 41, č. 8 (2016), s. 1911-1923 ISSN 0364-3190 Grant - others:GA MŠk(CZ) ED2.1.00/03.0078; GA ČR(CZ) GA14-03708S; Univerzita Karlova(CZ) Prvouk P34; GA UK(CZ) 88315; SVV(CZ) 260277/2016 Institutional support: RVO:67985807 Keywords : methamphetamine * dopamine transporte * sex differences * membrane fluidity Subject RIV: FH - Neurology Impact factor: 2.581, year: 2016

  11. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    shows that the membrane fraction of homogenized rat kidney contains an enzyme that releases immuno and receptor reactive EGF from the kidney membranes when incubated at 37 degrees C. Gel filtration shows that the EGF reactivity released from the membranes is similar to the EGF reactivity in rat urine......High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present study...

  12. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    Science.gov (United States)

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Membrane potential of mitochondria from the liver of irradiated rats

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Kaminin, A.N.; Elfimova, I.A.; Akoev, I.G.

    1977-01-01

    Measurements of the membrane potential of rat liver mitochondria 1 hour after irradiation with 800 R dose showed a decrease of its value. The potential decreased against the background of the activation of the generating mechanisms (the electron transport chain and ATP-ases). During energization of the membranes by the electron transport chain similar effect has been observed with different oxidation substrates (NAD linked substrates and succinate). It suggests that similar causative factors are at the basis of the changes observed. It is quite possible that the increase in the rate of both mitochondria respiration and ATP hydrolysis after the irradiation of animals was a consequence of the radiation-induced decrease in the potential value. (author)

  14. Striatal output markers do not alter in response to circling behaviour in 6-OHDA lesioned rats produced by acute or chronic administration of the monoamine uptake inhibitor BTS 74 398.

    Science.gov (United States)

    Lane, E L; Cheetham, S; Jenner, P

    2008-01-01

    The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.

  15. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  16. Fibronectin binding to gangliosides and rat liver plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, G R; Evers, D C; Radinsky, R; Morre, D J

    1986-02-01

    Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (G/sub T1b/ approx. = G/sub D1b/ approx. = G/sub D1a/ > G/sub M1/ >> G/sub M2/ approx. = G/sub D3/ approx. = G/sub M3/) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays. Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides G/sub M1/, G/sub D1a/ or G/sub T1b/ bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent K/sub d/ for binding to mixed rat liver gangliosides of 7.8 x 10/sup -9/ M was determined. This value compared favorably with the apparent K/sub d/ for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 x 10/sup -9/ M for fibronectin modified on the tyrosine residue, or 6.4 x 10/sup -9/ M for fibronectin modified on lysine residues. As shown previously by Grinnell and Minter, fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less (/sup 125/I)fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.

  17. 6-hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Porceddu, M.L.; Giorgi, O.; De Montis, G.; Mele, S.; Cocco, L.; Ongini, E.; Biggio, G.

    1987-01-01

    Dopamine-sensitive adenylate cyclase and 3 H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3 H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3 H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3 H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: a) within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and and/or dendrites of dopaminergic neurons; b) striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers. 24 references, 1 figure, 1 table

  18. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Huddleston Slater, J. J. R.; Gielkens, P. F. M.; de Jong, J. R.; Grijpma, D. W.; Bos, R. R. M.

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a

  19. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A.C.; Huddelston Slater, J.J.R.; Gielkens, P.F.M.; de Jong, J.R.; Grijpma, Dirk W.; Bos, R.R.M.

    2012-01-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a

  20. Effect of Zishenpingchan Granule on Neurobehavioral Manifestations and the Activity and Gene Expression of Striatal Dopamine D1 and D2 Receptors of Rats with Levodopa-Induced Dyskinesias

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2014-01-01

    Full Text Available This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID. We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.

  1. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  2. Behavioral sensitivity of temporally modulated striatal neurons

    Directory of Open Access Journals (Sweden)

    George ePortugal

    2011-07-01

    Full Text Available Recent investigations into the neural mechanisms that underlie temporal perception have revealed that the striatum is an important contributor to interval timing processes, and electrophysiological recording studies have shown that the firing rates of striatal neurons are modulated by the time in a trial at which an operant response is made. However, it remains unclear whether striatal firing rate modulations are related to the passage of time alone (i.e., whether temporal information is represented in an abstract manner independent of other attributes of biological importance, or whether this temporal information is embedded within striatal activity related to co-occurring contextual information, such as motor behaviors. This study evaluated these two hypotheses by recording from striatal neurons while rats performed a temporal production task. Rats were trained to respond at different nosepoke apertures for food reward under two simultaneously active reinforcement schedules: a variable-interval (VI-15 sec schedule and a fixed-interval (FI-15 sec schedule of reinforcement. Responding during a trial occurred in a sequential manner composing 3 phases; VI responding, FI responding, VI responding. The vast majority of task-sensitive striatal neurons (95% varied their firing rates associated with equivalent behaviors (e.g., periods in which their snout was held within the nosepoke across these behavioral phases, and 96% of cells varied their firing rates for the same behavior within a phase, thereby demonstrating their sensitivity to time. However, in a direct test of the abstract timing hypothesis, 91% of temporally modulated hold cells were further modulated by the overt motor behaviors associated with transitioning between nosepokes. As such, these data are inconsistent with the striatum representing time in an abstract’ manner, but support the hypothesis that temporal information is embedded within contextual and motor functions of the

  3. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  4. Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra.

    Science.gov (United States)

    Snyder-Keller, A; Costantini, L C; Graber, D J

    2001-01-01

    Organotypic cultures of fetal or early postnatal striatum were used to assess striatal patch formation and maintenance in the presence or absence of dopaminergic and glutamatergic influences. Vibratome-cut slices of the striatum prepared from embryonic day 19 to postnatal day 4 rat pups were maintained in static culture on clear membrane inserts in Dulbecco's modified Eagle's medium/F12 (1:1) with 20% horse serum. Some were co-cultured with embryonic day 12-16 ventral mesencephalon and/or embryonic day 19 to postnatal day 4 cortex, which produced a dense dopaminergic innervation and a modest cortical innervation. Donors of striatal and cortical tissue were previously injected with bromo-deoxyuridine (BrdU) on embryonic days 13 and 14 in order to label striatal neurons destined to populate the patch compartment of the striatum. Patches of BrdU-immunoreactive cells were maintained in organotypic cultures of late prenatal (embryonic days 20-22) or early postnatal striatum in the absence of nigral dopaminergic or cortical glutamatergic influences. In slices taken from embryonic day 19 fetuses prior to the time of in vivo patch formation, patches were observed to form after 10 days in vitro, in 39% of nigral-striatal co-cultures compared to 6% of striatal slices cultured alone or in the presence of cortex only. Patches of dopaminergic fibers, revealed by tyrosine hydroxylase immunoreactivity, were observed in the majority of nigral-striatal co-cultures. Immunostaining for the AMPA-type glutamate receptor GluR1 revealed a dense patch distribution in nearly all cultures, which developed in embryonic day 19 cultures after at least six days in vitro. These findings indicate that striatal patch/matrix organization is maintained in organotypic culture, and can be induced to form in vitro in striatal slices removed from fetuses prior to the time of in vivo patch formation. Furthermore, dopaminergic innervation from co-cultured pieces of ventral mesencephalon enhances patch

  5. Parsing Heterogeneous Striatal Activity

    Directory of Open Access Journals (Sweden)

    Kae Nakamura

    2017-05-01

    Full Text Available The striatum is an input channel of the basal ganglia and is well known to be involved in reward-based decision making and learning. At the macroscopic level, the striatum has been postulated to contain parallel functional modules, each of which includes neurons that perform similar computations to support selection of appropriate actions for different task contexts. At the single-neuron level, however, recent studies in monkeys and rodents have revealed heterogeneity in neuronal activity even within restricted modules of the striatum. Looking for generality in the complex striatal activity patterns, here we briefly survey several types of striatal activity, focusing on their usefulness for mediating behaviors. In particular, we focus on two types of behavioral tasks: reward-based tasks that use salient sensory cues and manipulate outcomes associated with the cues; and perceptual decision tasks that manipulate the quality of noisy sensory cues and associate all correct decisions with the same outcome. Guided by previous insights on the modular organization and general selection-related functions of the basal ganglia, we relate striatal activity patterns on these tasks to two types of computations: implementation of selection and evaluation. We suggest that a parsing with the selection/evaluation categories encourages a focus on the functional commonalities revealed by studies with different animal models and behavioral tasks, instead of a focus on aspects of striatal activity that may be specific to a particular task setting. We then highlight several questions in the selection-evaluation framework for future explorations.

  6. Beneficial effects of vitamin C and vitamin E on reserpine-induced oral dyskinesia in rats: critical role of striatal catalase activity.

    Science.gov (United States)

    Faria, Rulian Ricardo; Abílio, Vanessa Costhek; Grassl, Christian; Chinen, Cibele Cristina; Negrão, Luciana Takahashi Ribeiro; de Castro, Juliana Pedroso Moraes Vilela; Fukushiro, Daniela Fukue; Rodrigues, Marcelo Scarpari Dutra; Gomes, Patricia Helena Zanier; Registro, Sibele; de Carvalho, Rita de Cassia; D'Almeida, Vania; Silva, Regina Helena; Ribeiro, Rosana de Alencar; Frussa-Filho, Roberto

    2005-06-01

    Oral dyskinesias are implicated in a series of neuropathologies and have been associated to an increase in oxidative stress. Several antioxidants, including vitamin E, decrease reserpine-induced oral dyskinesia (OD) in rodents and we have described a protective role of striatal catalase against the development of OD. The aim of this study was to verify the effects of vitamin C alone or in combination with vitamin E on reserpine-induced OD as well as to determine a possible role of catalase in the antidyskinetic property of these vitamins. Different doses of vitamin C attenuated reserpine-induced increase in OD. A similar treatment with an effective dose of vitamin C concomitant to an effective dose of vitamin E potentiated the antidyskinetic effect of both vitamins when administered alone. The administration of these vitamins alone produced an increase in striatal catalase activity that likewise was potentiated by their combined administration. In addition, the antidyskinetic property of vitamin E and vitamin C was abolished by a concomitant treatment with the catalase inhibitor aminotriazole. These results indicate a beneficial effect of these vitamins and reinforce the critical role of striatal catalase against the development of oral dyskinesias.

  7. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  8. [Modification of red cell membranes with perftoran in papaine emphysema in rats].

    Science.gov (United States)

    Zoirova, N I; Arifkhanov, S I; Rakhmatullaev, Kh U; Tadzhikhodzhaev, Iu Kh

    2006-01-01

    Papaine emphysema model on 75 mongrel mature white male rats (10 intact rats were control) was used to study the size, form, surface architechtonics, deformability and state of membrane-receptor erythrocyte complex before and after perftoran intraperitoneal administration. Perftoran emulsion produced a membrane-modulating effect with recovery of hormonal reception sensitivity, PHA-, cAMP-receptor systems as well as restoration of erythrocytic normocytosis and diskocytosis.

  9. Effect of dietary zinc deficiency on the endogenous phosphorylation and dephosphorylation of rat erythrocyte membrane

    International Nuclear Information System (INIS)

    Paterson, P.G.; Allen, O.B.; Bettger, W.J.

    1987-01-01

    The effect of dietary zinc deficiency on patterns of phosphorylation and dephosphorylation of rat erythrocyte membrane proteins and erythrocyte filterability was examined. Weanling male Wistar rats were fed an egg white-based diet containing less than 1.1 mg zinc/kg diet ad libitum for 3 wk. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg zinc/kg diet. Net phosphorylation and dephosphorylation of erythrocyte membrane proteins were carried out by an in vitro assay utilizing [gamma- 32 P]ATP. The membrane proteins were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the 32 P content of gel slices was counted by Cerenkov counting. Erythrocyte filterability was measured as the filtration time of suspensions of erythrocytes, both untreated and preincubated with diamide, under constant pressure. Erythrocyte ghosts from zinc-deficient rats demonstrated greater dephosphorylation of protein bands R1 plus R2 and R7 than pair-fed rats and greater net phosphorylation of band R2.2 than pair-fed or ad libitum-fed control rats (P less than 0.05). Erythrocytes from ad libitum-fed control rats showed significantly longer filtration times than those from zinc-deficient or pair-fed control rats. In conclusion, dietary zinc deficiency alters in vitro patterns of erythrocyte membrane protein phosphorylation and dephosphorylation, whereas the depression in food intake associated with the zinc deficiency increases erythrocyte filterability. 71 references

  10. Vivosorb (R) as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography

    NARCIS (Netherlands)

    Hoogeveen, E. J.; Gielkens, P. F. M.; Schortinghuis, J.; Ruben, J. L.; Huysmans, M-C D. N. J. M.; Stegenga, B.

    Vivosorb(R) is a new degradable membrane composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL). The aim of this study was to appraise its performance in guided bone regeneration procedures. In 192 rats a 5.0 mm defect was drilled in the mandibular angle. The defects were covered with a membrane

  11. Vivosorb as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography.

    NARCIS (Netherlands)

    Hoogeveen, E.J.; Gielkens, P.F.; Schortinghuis, J.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.; Stegenga, B.

    2009-01-01

    Vivosorb is a new degradable membrane composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL). The aim of this study was to appraise its performance in guided bone regeneration procedures. In 192 rats a 5.0 mm defect was drilled in the mandibular angle. The defects were covered with a membrane

  12. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  13. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes.

    OpenAIRE

    Kelly, K L; Kiechle, F L; Jarett, L

    1984-01-01

    Partially purified plasma membranes prepared from rat adipocytes contain N-methyltransferase(s) that utilize(s) S-adenosyl-L-methionine to synthesize phosphatidylcholine from phosphatidylethanolamine. The incorporation of [3H]methyl from S-adenosyl-L-[methyl-3H]methionine into plasma membrane phospholipids was linear with incubation time and plasma membrane protein concentration and was inhibited in a dose-dependent manner by both S-adenosyl-L-homocysteine and 3-deazadenosine. The addition of...

  14. Dynamic Changes in Striatal mGluR1 But Not mGluR5 during Pathological Progression of Parkinson's Disease in Human Alpha-Synuclein A53T Transgenic Rats: A Multi-PET Imaging Study.

    Science.gov (United States)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Furutsuka, Kenji; Nengaki, Nobuki; Shimoda, Yoko; Shiomi, Satoshi; Takei, Makoto; Hashimoto, Hiroki; Yui, Joji; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Zhang, Ming-Rong

    2016-01-13

    Parkinson's disease (PD) is a prevalent degenerative disorder affecting the CNS that is primarily characterized by resting tremor and movement deficits. Group I metabotropic glutamate receptor subtypes 1 and 5 (mGluR1 and mGluR5, respectively) are important targets for investigation in several CNS disorders. In the present study, we investigated the in vivo roles of mGluR1 and mGluR5 in chronic PD pathology by performing longitudinal positron emission tomography (PET) imaging in A53T transgenic (A53T-Tg) rats expressing an abnormal human α-synuclein (ASN) gene. A53T-Tg rats showed a dramatic decline in general motor activities with age, along with abnormal ASN aggregation and striatal neuron degeneration. In longitudinal PET imaging, striatal nondisplaceable binding potential (BPND) values for [(11)C]ITDM (N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[(11)C]methylbenzamide), a selective PET ligand for mGluR1, temporarily increased before PD symptom onset and dramatically decreased afterward with age. However, striatal BPND values for (E)-[(11)C]ABP688 [3-(6-methylpyridin-2-ylethynyl)-cyclohex-2-enone-(E)-O-[(11)C]methyloxime], a specific PET ligand for mGluR5, remained constant during experimental terms. The dynamic changes in striatal mGluR1 BPND values also showed a high correlation in pathological decreases in general motor activities. Furthermore, declines in mGluR1 BPND values were correlated with decreases in BPND values for [(18)F]FE-PE2I [(E)-N-(3-iodoprop-2E-enyl)-2β-carbo-[(18)F]fluoroethoxy-3β-(4-methylphenyl) nortropane], a specific PET ligand for the dopamine transporter, a biomarker for dopaminergic neurons. In conclusion, our results have demonstrated for the first time that dynamic changes occur in mGluR1, but not mGluR5, that accompany pathological progression in a PD animal model. Synaptic signaling by glutamate, the principal excitatory neurotransmitter in the brain, is modulated by group I metabotropic glutamate

  15. K+ transport and membrane potentials in isolated rat parotid acini

    International Nuclear Information System (INIS)

    Nauntofte, B.; Dissing, S.

    1988-01-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels

  16. Solubilization of rat kidney plasma membrane proteins associated with 3H-aldosterone

    International Nuclear Information System (INIS)

    Ozegovic, B.; Dobrovic-Jenik, D.; Milkovic, S.

    1988-01-01

    The treatment of rat kidney plasma membranes with sodium dodecyl sulphate (SDS) did not essentially affect the ability of the membranes for 3 H-aldosterone binding as compared with the intact plasma membranes (Ozegovic et al., 1977). A gel filtration of 3 H-aldosterone - kidney plasma membranes complex on Sepharose 6B yielded 2 protein and 2 3 H-aldosterone peaks. The proteins which were eluted in the first peak were associated with the first 3 H-aldosterone peak while the second 3 H-aldosterone peak was eluted with Ve corresponding to Ve of free 3 H-aldosterone. Spironolactone, a competitive antagonist of aldosterone, prevented the binding of 3 H-aldosterone to the membrane proteins. The results demonstrated a high affinity of the kidney plasma membranes solubilized with SDS and a specificity of aldosterone binding to the plasma membrane proteins of higher molecular mass. (author)

  17. Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface.

    Directory of Open Access Journals (Sweden)

    Lucia A Ruocco

    Full Text Available The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211 on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD. Naples High Excitability rats (NHE and their Random Bred controls (NRB were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA, selective spatial attention (SSA and emotionality. The quantity of L-Glutamate (L-Glu, L-Aspartate (L-Asp and L-Leucine (L-Leu, dopamine transporter (DAT, NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC, dorsal (DS and ventral striatum (VS, for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose reduced horizontal activity and (at higher dose increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose, whereas (at 0.125 mg/kg dose it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC, and increased with the 0.250 mg/kg dose (in the VS, significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.

  18. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") administration in awake rats

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Cumming, Paul

    2007-01-01

     The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose...... was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant...... depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1...

  19. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  20. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Diaz Heijtz Rochellys

    2006-05-01

    Full Text Available Abstract Background Molecular genetic studies suggest the dopamine D1 receptor (D1R may be implicated in attention-deficit/hyperactivity disorder (ADHD. As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. Methods We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg, on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. Results SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum of SHR when compared to WKY rats

  1. Rat macrophages: membrane glycoproteins in differentiation and function

    NARCIS (Netherlands)

    van den Berg, T. K.; Döpp, E. A.; Dijkstra, C. D.

    2001-01-01

    Macrophages (mphi) play a crucial role in the immune system. The rat offers unique advantages for studying the biology of mphi. Firstly, monoclonal antibodies (mAb) against many rat mphi surface glycoproteins have become available. These have not only demonstrated a considerable heterogeneity among

  2. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    Science.gov (United States)

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  3. Studies on the postnatal development of the rat liver plasma membrane following maternal ethanol ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Rovinski, B

    1984-01-01

    Studies on the developing rat liver and on the structure and function of the postnatal rat liver plasma membrane were carried out following maternal consumption of alcohol during pregnancy and lactation. A developmental study of alcohol dehydrogenase (ADH) indicated that both the activity and certain kinetic properties of the enzyme from the progeny of alcohol-fed and pair-fed mothers were similar. Fatty liver, however, developed in the alcoholic progeny only after ADH appeared on a day 19 of gestation. Further studies on structural and functional changes were then undertaken on the postnatal development of the rat liver plasma membrane. Radioligand binding studies performed using the hapatic alpha{sub 1}-adrenergic receptor as a plasma membrane probe demonstrated a significant decrease in receptor density in the alcoholic progeny, but no changes in binding affinity. Finally, the fatty acid composition of constituent phospholipids and the cholesterol content of rat liver plasma membranes were determined. All these observations suggest that membrane alterations in the newborn may be partially responsible for the deleterious action(s) of maternal alcoholism at the molecular level.

  4. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  5. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  6. G-protein activity in Percoll-purified plasma membranes, bulk plasma membranes, and low-density plasma membranes isolated from rat cerebral cortex

    Czech Academy of Sciences Publication Activity Database

    Bouřová, Lenka; Stöhr, Jiří; Lisý, Václav; Rudajev, Vladimír; Novotný, Jiří; Svoboda, Petr

    2009-01-01

    Roč. 15, č. 4 (2009), BR111-BR122 ISSN 1234-1010 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) LC06063; GA ČR(CZ) GA309/06/0121; GA AV ČR(CZ) IAA500110606 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cerebral cortex * plasma membrane * G-protein activity Subject RIV: CE - Biochemistry Impact factor: 1.543, year: 2009

  7. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain

    International Nuclear Information System (INIS)

    Durrie, R.; Saito, M.; Rosenberg, A.

    1988-01-01

    Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl[ 14 C]neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides. Synaptosomal SAT exhibited a lower activity, but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAcα2 → 8NeuAcα2 → 3Galβ1 → 4Glcβ1 → 1Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased, which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system

  8. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    International Nuclear Information System (INIS)

    Brissette, L.; Nol, S.P.

    1986-01-01

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125 I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125 I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125 I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors

  9. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  10. Sex Differences in Medium Spiny Neuron Excitability and Glutamatergic Synaptic Input: Heterogeneity Across Striatal Regions and Evidence for Estradiol-Dependent Sexual Differentiation

    Directory of Open Access Journals (Sweden)

    Jinyan Cao

    2018-04-01

    Full Text Available Steroid sex hormones and biological sex influence how the brain regulates motivated behavior, reward, and sensorimotor function in both normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the caudate–putamen, nucleus accumbens core (AcbC, and shell. These brain regions are of particular interest to neuroendocrinologists given that they express membrane-associated but not nuclear estrogen receptors, and also the well-established role of the sex steroid hormone 17β-estradiol (estradiol in modulating striatal dopamine systems. Indeed, output neurons of the striatum, the medium spiny neurons (MSNs, exhibit estradiol sensitivity and sex differences in electrophysiological properties. Here, we review sex differences in rat MSN glutamatergic synaptic input and intrinsic excitability across striatal regions, including evidence for estradiol-mediated sexual differentiation in the nucleus AcbC. In prepubertal animals, female MSNs in the caudate–putamen exhibit a greater intrinsic excitability relative to male MSNs, but no sex differences are detected in excitatory synaptic input. Alternatively, female MSNs in the nucleus AcbC exhibit increased excitatory synaptic input relative to male MSNs, but no sex differences in intrinsic excitability were detected. Increased excitatory synaptic input onto female MSNs in the nucleus AcbC is abolished after masculinizing estradiol or testosterone exposure during the neonatal critical period. No sex differences are detected in MSNs in prepubertal nucleus accumbens shell. Thus, despite possessing the same neuron type, striatal regions exhibit heterogeneity in sex differences in MSN electrophysiological properties, which likely contribute to the sex differences observed in striatal function.

  11. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  12. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  13. Olopatadine Inhibits Exocytosis in Rat Peritoneal Mast Cells by Counteracting Membrane Surface Deformation

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2015-01-01

    Full Text Available Backgroud/Aims: Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Low concentrations of olopatadine (1 or 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. Conclusion: This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells.

  14. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  15. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats

    DEFF Research Database (Denmark)

    Hankir, Mohammed K; Seyfried, Florian; Hintschich, Constantin A

    2017-01-01

    Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small int...

  16. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  17. Striatal adenosine A2A receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [18F]-MRS5425

    International Nuclear Information System (INIS)

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit; Shinkre, Bidhan; Ma Ying; Niu Gang; Trenkle, William C.; Jacobson, Kenneth A.; Chen Xiaoyuan; Kiesewetter, Dale O.

    2011-01-01

    Introduction: A 2A receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an 18 F-labeled A 2A analog radiotracer ([ 18 F]-MRS5425) for A 2A receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A 2A receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [ 18 F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D 2 agonist quinpirole (1.0 mg/kg) or D 2 antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A 2A receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  18. Striatal adenosine A{sub 2A} receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [{sup 18}F]-MRS5425

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Shinkre, Bidhan [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Ma Ying [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Niu Gang [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Trenkle, William C. [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Chen Xiaoyuan [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Kiesewetter, Dale O., E-mail: dk7k@nih.gov [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-08-15

    Introduction: A{sub 2A} receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an {sup 18}F-labeled A{sub 2A} analog radiotracer ([{sup 18}F]-MRS5425) for A{sub 2A} receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A{sub 2A} receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [{sup 18}F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D{sub 2} agonist quinpirole (1.0 mg/kg) or D{sub 2} antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A{sub 2A} receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  19. Even a Chronic Mild Hyperglycemia Affects Membrane Fluidity and Lipoperoxidation in Placental Mitochondria in Wistar Rats

    Science.gov (United States)

    Figueroa-García, María del Consuelo; Espinosa-García, María Teresa; Martinez-Montes, Federico; Palomar-Morales, Martín; Mejía-Zepeda, Ricardo

    2015-01-01

    It is known the deleterious effects of diabetes on embryos, but the effects of diabetes on placenta and its mitochondria are still not well known. In this work we generated a mild hyperglycemia model in female wistar rats by intraperitoneal injection of streptozotocin in 48 hours-old rats. The sexual maturity onset of the female rats was delayed around 6–7 weeks and at 16 weeks-old they were mated, and sacrificed at day 19th of pregnancy. In placental total tissue and isolated mitochondria, the fatty acids composition was analyzed by gas chromatography, and lipoperoxidation was measured by thiobarbituric acid reactive substances. Membrane fluidity in mitochondria was measured with the excimer forming probe dipyrenylpropane and mitochondrial function was measured with a Clark-type electrode. The results show that even a chronic mild hyperglycemia increases lipoperoxidation and decreases mitochondrial function in placenta. Simultaneously, placental fatty acids metabolism in total tissue is modified but in a different way than in placental mitochondria. Whereas the chronic mild hyperglycemia induced a decrease in unsaturated to saturated fatty acids ratio (U/S) in placental total tissue, the ratio increased in placental mitochondria. The measurements of membrane fluidity showed that fluidity of placenta mitochondrial membranes increased with hyperglycemia, showing consistency with the fatty acids composition through the U/S index. The thermotropic characteristics of mitochondrial membranes were changed, showing lower transition temperature and activation energies. All of these data together demonstrate that even a chronic mild hyperglycemia during pregnancy of early reproductive Wistar rats, generates an increment of lipoperoxidation, an increase of placental mitochondrial membrane fluidity apparently derived from changes in fatty acids composition and consequently, mitochondrial malfunction. PMID:26630275

  20. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  1. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    Science.gov (United States)

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-12-15

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6 weeks caused a 2.56-fold increase in the number of smooth muscle caveolae per μm membrane. No changes in the expression of caveolin-1 or cavin-1, normalized to β-actin were seen, but membrane area per unit muscle volume dropped to 0.346. Hypertrophy was associated with altered contraction in response to carbachol. The effect on contraction of cholesterol desorption, which disrupts lipid rafts and caveolae, was however not changed. Contraction in response to bradykinin resisted mβcd in control destrusor, but was inhibited by it after 6 weeks of obstruction. It is concluded that rat detrusor hypertrophy leads to an increased number of caveolae per unit membrane area. This change is due to a reduction of membrane area per volume muscle and it does not play a role for cholinergic activation, but promotes contraction in response to bradykinin after long-term obstruction. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Basement membrane heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma

    DEFF Research Database (Denmark)

    Fenger, M; Wewer, U; Albrechtsen, R

    1984-01-01

    Heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma has been purified and partially characterized. The proteoglycan has an apparent Mr of 750 000, 35% of which represents the core protein. The core protein seems to be homogeneous, whereas the heparan sulfate chains are heterogeneous...... with an Mr of about 50 000-70 000, with 30% of the glucosamine being N-sulfated. Antibodies raised against the core protein of the heparan sulfate proteoglycan reacted with basement membranes of various rat and human tissue....

  3. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    International Nuclear Information System (INIS)

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  4. The pan-Kv7 (KCNQ) Channel Opener Retigabine Inhibits Striatal Excitability by Direct Action on Striatal Neurons In Vivo

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Weikop, Pia; Mikkelsen, Maria D

    2017-01-01

    Central Kv7 (KCNQ) channels are voltage-dependent potassium channels composed of different combinations of four Kv7 subunits, being differently expressed in the brain. Notably, striatal dopaminergic neurotransmission is strongly suppressed by systemic administration of the pan-Kv7 channel opener ...... by acute systemic haloperidol administration in the rat. The relative mRNA levels of Kv7 subunits in the rat striatum were found to be Kv7.2 = Kv7.3 = Kv7.5 > >Kv7.4. These data suggest that intrastriatal Kv7 channels play a direct role in regulating striatal excitability in vivo....

  5. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    OpenAIRE

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-01-01

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6weeks cause...

  6. Biotransformation of endorphins by a synaptosomal plasma membrane preparation of rat brain and by human serum

    NARCIS (Netherlands)

    Burbach, J.P.H.; Loeber, J.G.; Verhoef, J.; Kloet, E.R. de; Wied, D. de

    1979-01-01

    β-Endorphin (β-LPH 61–91), γ-endorphin (61–77), des-tyrosine-γ-endorphin (62–77), α-endorphin (61–76), and β-LPH 61–69 either labeled with [125I] at the N-terminal 61-tyrosine residue or unlabeled were incubated with a crude synaptosomal plasma membrane fraction of rat brain or in human serum. At

  7. Proton permeability of membranes of Streptococcus faecalis and submitochondrial particles of rats after irradiation

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Pinchukova, V.A.

    1977-01-01

    It has been shown that at a changed, by HCl impulse, pH of Streptococcus faecalis suspension and submitochondrial liver particles (SLP) of rats, H + concentration decreases more rapidly in the irradiated bacteria and SLP than in the controls. The curves of energy dependence of accumulation of the penetrating ions were also displaced toward the alkaline zone depending on pH. These effects are suggested to be connected with an increased proton permeability of irradiated membranes

  8. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  9. Acetylcholinesterase potentiates [3H]fluorowillardiine and [3H]AMPA binding to rat cortical membranes

    International Nuclear Information System (INIS)

    Olivera, S.; Rodriguez-Ithurralde, D.; Henley, J.M.

    1999-01-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[ 3 H]5-fluorowillardiine ([ 3 H]FW) and [ 3 H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to ∼60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [ 3 H]kainate binding. [ 3 H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC 50 values of 4x10 -5 and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [ 3 H]FW binding is Ca 2+ - and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [ 3 H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B max of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Localization of ras antigenicity in rat hepatocyte plasma membrane and rough endoplasmic reticulum fractions

    International Nuclear Information System (INIS)

    Dominguez, J.M.; Lanoix, J.; Paiement, J.

    1991-01-01

    We have examined the antigenicity of plasma membrane (PM) and rough microsomal (RM) fractions from rat liver using anti-ras monoclonal antibodies 142-24EO5 and Y13-259 and immunochemistry as well as electron microscope immunocytochemistry. Proteins immunoprecipitated with monoclonal antibody 142-24E05 were separated using single-dimensional gradient-gel electrophoresis. The separated proteins were then blotted onto nitrocellulose sheets and incubated with [alpha-32P]GTP. Radioautograms of blots indicated the presence of specific 21.5- and 22-kDa labeled proteins in the PM fraction. A 23.5-kDa [alpha- 32 P] GTP-binding protein was detected in immunoprecipitates of both PM and RM fractions. Monoclonal antibody Y13-259 reacted only with the 21.5-kDa [alpha- 32 P] GTP-binding protein in the plasma membrane fraction. When anti-ras monoclonal antibody 142-24E05 and the immunogold technique were applied to membrane fractions using a preembedding immunocytochemical method, specific labeling was observed in association with both vesicular structures and membrane sheets in the PM fraction but only with electron-dense vesicular structures in the RM fraction. Thus ras antigenicity is associated with hepatocyte plasma membranes and ras-like antigenicity is probably associated with vesicular (secretory/endocytic) elements in both plasma membrane and rough microsomal preparations

  11. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  12. Amphipaths Differentially Modulate Membrane Surface Deformation in Rat Peritoneal Mast Cells During Exocytosis

    Directory of Open Access Journals (Sweden)

    Itsuro Kazama

    2013-04-01

    Full Text Available Background/Aims: Salicylate and chlorpromazine exert differential effects on the chemokine release from mast cells. Since these drugs are amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membranes, they would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate and chlorpromazine on the membrane capacitance (Cm during exocytosis in rat peritoneal mast cells. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on plasma membrane deformation of the cells. Results: Salicylate dramatically accelerated the GTP-γ-S-induced increase in the Cm immediately after its application, whereas chlorpromazine significantly suppressed the increase. Treatment with salicylate increased the trapping of the dye on the cell surface, while treatment with chlorpromazine completely washed it out, indicating that both drugs induced membrane surface deformation in mast cells. Conclusion: This study demonstrated for the first time that membrane amphipaths, such as salicylate and chlorpromazine, may oppositely modulate the process of exocytosis in mast cells, as detected by the changes in the Cm. The plasma membrane deformation induced by the drugs was thought to be responsible for their differential effects.

  13. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    Science.gov (United States)

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  14. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components

    DEFF Research Database (Denmark)

    Couchman, J R

    1986-01-01

    , to be replaced by synthesis of other components including type I and III collagens. It seems likely therefore that the dermal papilla cells in vivo synthesize a basement membrane type of extracellular matrix, although a contribution from epithelial, and in some cases capillary endothelial, cells cannot be ruled......Dermal papillae are small mesenchymally derived zones at the bases of hair follicles which have an important role in hair morphogenesis in the embryo and control of the hair growth cycle in postnatal mammals. The cells of the papilla are enmeshed in a dense extracellular matrix which undergoes...... extensive changes in concert with the hair cycle. Here it is shown that this matrix in anagen pelage follicles of postnatal rats contains an abundance of basement membrane components rather than dermal components such as interstitial collagens. In particular, type IV collagen, laminin, and basement membrane...

  15. Radiation damages to cell membranes of dogs and rats quantitatively estimated by changes in sedimentation behaviour of erythrocytes

    International Nuclear Information System (INIS)

    Mikhajlov, V.F.; Potemkin, L.A.

    1985-01-01

    It was shown that injury to plasma membranes leads to a change in the sedimentation behaviour of erythrocytes: the maximum effect is produced when a protein component of the membrane is affected. The same dose dependent character of the change in erythrocyte sedimentation in urografine are observed during the first 24 h after γ-irradiation of rats and dogs

  16. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R

    1994-01-01

    exception being the normal glomerular capillary basement membrane (GBM), where it is absent. In the present study of mature kidneys we examined the distribution of BM-CSPG in streptozocin-induced diabetes mellitus in rats. We found BM-CSPG atypically associated with the GBM of diabetic animals as early as 1...... month after induction of diabetes mellitus. Immunoelectron microscopy (IEM) of affected capillary loops showed BM-CSPG present in the subendothelial matrix in areas of GBM thickening and absent in areas where the GBM appears to be of normal thickness. Moreover, the association of BM-CSPG with regions...... of the pericapillary GBM affects the morphology of the capillary endothelial cells within these areas, directly displacing the cell body from the GBM proper and causing loss of fenestrae. These new data on BM-CSPG distribution reflect abnormal glomerular extracellular matrix protein biosynthesis/turnover in diabetes...

  17. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    Jung, Ui-Won; Song, Kun-Young; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  18. Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria

    International Nuclear Information System (INIS)

    Wingrove, D.E.; Amatruda, J.M.; Gunter, T.E.

    1984-01-01

    It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca 2+ /mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45 Ca 2+ to follow uptake in the presence of 0.5 to 1.5 μM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake

  19. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    International Nuclear Information System (INIS)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-01-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins

  20. Pentoxifylline Ameliorates Glomerular Basement Membrane Ultrastructural Changes Caused by Gentamicin Administration in Rats

    Directory of Open Access Journals (Sweden)

    Nenad Stojiljković

    2009-08-01

    Full Text Available Gentamicin is commonly used for the treatment of severe gram negative bacterial infections but inevi-tably cause renal failure during prolonged use. The aim of our study was to emphasize protective effects of pentoxifylline on glomerular basement membrane (GBM alterations induced by gentamicin in rats. Experiments were done on 40 male Wistar rats divided in three experimental groups. GM-group was treated daily with gentamicin in dose of 100 mg/kg during 8 days. PTX-group was treated daily with pentoxifylline in dose of 45 mg/kg and the same dose of gentamicin as in GM-group during 8 days. The control group received 1 ml/day saline intraperitoneally. Morphometric parameter measured during the analysis was glomerular basement membrane thickness. In GM-group of animals glomeruli were en-larged and GMB was diffusely and unequally thickened with neutrophil cells infiltration. In proximal tu-bules epithelial cells, vacuolization of cytoplasm with coagulation-type necrosis were observed. In PTX-group of animals glomeruli were somewhat enlarged and GBM was thickened only in some segments. Coagulation-type necrosis was not found. Blood urea and serum creatinine concentration in GM-group were significantly elevated in comparison with PTX-group while potassium level was decreased. Our results suggest that PTX has protective effects on GBM and proximal tubules in GM-treated rats.

  1. Prefrontal cortical and striatal transcriptional responses to the reinforcing effect of repeated methylphenidate treatment in the spontaneously hypertensive rat, animal model of attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    dela Peña, Ike; Kim, Hee Jin; Sohn, Aeree; Kim, Bung-Nyun; Han, Doug Hyun; Ryu, Jong Hoon; Shin, Chan Young; Noh, Minsoo; Cheong, Jae Hoon

    2014-05-06

    Methylphenidate is the most commonly used stimulant drug for the treatment of attention-deficit/hyperactivity disorder (ADHD). Research has found that methylphenidate is a "reinforcer" and that individuals with ADHD also abuse this medication. Nevertheless, the molecular consequences of long-term recreational methylphenidate use or abuse in individuals with ADHD are not yet fully known. Spontaneously hypertensive rats (SHR), the most validated and widely used ADHD animal model, were pretreated with methylphenidate (5 mg/kg, i.p.) during their adolescence (post-natal day [PND] 42-48) and tested for subsequent methylphenidate-induced conditioned place preference (CPP) and self-administration. Thereafter, the differentially expressed genes in the prefrontal cortex (PFC) and striatum of representative methylphenidate-treated SHRs, which showed CPP to and self-administration of methylphenidate, were analyzed. Genome-wide transcriptome profiling analyses revealed 30 differentially expressed genes in the PFC, which include transcripts involved in apoptosis (e.g. S100a9, Angptl4, Nfkbia), transcription (Cebpb, Per3), and neuronal plasticity (Homer1, Jam2, Asap1). In contrast, 306 genes were differentially expressed in the striatum and among them, 252 were downregulated. The main functional categories overrepresented among the downregulated genes include those involved in cell adhesion (e.g. Pcdh10, Ctbbd1, Itgb6), positive regulation of apoptosis (Perp, Taf1, Api5), (Notch3, Nsbp1, Sik1), mitochondrion organization (Prps18c, Letm1, Uqcrc2), and ubiquitin-mediated proteolysis (Nedd4, Usp27x, Ube2d2). Together, these changes indicate methylphenidate-induced neurotoxicity, altered synaptic and neuronal plasticity, energy metabolism and ubiquitin-dependent protein degradation in the brains of methylphenidate-treated SHRs, which showed methylphenidate CPP and self-administration. In addition, these findings may also reflect cognitive impairment associated with chronic

  2. [Relationship between the changes in ischemia/reperfusion cerebro-microvessel basement membrane injury and gelatinase system in senile rat].

    Science.gov (United States)

    Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo

    2008-11-01

    To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (Pcerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.

  3. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    International Nuclear Information System (INIS)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val'dman, A.V.

    1986-01-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity

  4. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val' dman, A.V.

    1986-02-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity.

  5. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  6. Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers.

    Science.gov (United States)

    Brasted, P J; Döbrössy, M D; Robbins, T W; Dunnett, S B

    1998-08-01

    The dorsal striatum plays a crucial role in mediating voluntary movement. Excitotoxic striatal lesions in rats have previously been shown to impair the initiation but not the execution of movement in a choice reaction time task in an automated lateralised nose-poke apparatus (the "nine-hole box"). Conversely, when a conceptually similar reaction time task has been applied in a conventional operant chamber (or "Skinner box"), striatal lesions have been seen to impair the execution rather than the initiation of the lateralised movement. The present study was undertaken to compare directly these two results by training the same group of rats to perform a choice reaction time task in the two chambers and then comparing the effects of a unilateral excitotoxic striatal lesion in both chambers in parallel. Particular attention was paid to adopting similar parameters and contingencies in the control of the task in the two test chambers. After striatal lesions, the rats showed predominantly contralateral impairments in both tasks. However, they showed a deficit in reaction time in the nine-hole box but an apparent deficit in response execution in the Skinner box. This finding confirms the previous studies and indicates that differences in outcome are not simply attributable to procedural differences in the lesions, training conditions or tasks parameters. Rather, the pattern of reaction time deficit after striatal lesions depends critically on the apparatus used and the precise response requirements for each task.

  7. Anemia of the Belgrade rat: evidence for defective membrane transport of iron

    International Nuclear Information System (INIS)

    Bowen, B.J.; Morgan, E.H.

    1987-01-01

    The mechanisms underlying the impaired utilization of transferrin-bound iron by erythroid cells in the anemia of the Belgrade laboratory rat were investigated using reticulocytes from homozygous anemic animals and transferrin labeled with 59 Fe and 125 I. The results were compared with those obtained using reticulocytes from phenylhydrazine-treated rats and iron-deficient rats. Each step in the iron uptake mechanism was investigated, ie, transferrin-receptor interaction, transferrin endocytosis, iron release from transferrin, and transferrin exocytosis. Although there were quantitative differences, no fundamental difference was found in any of the abovementioned aspects of cellular function when the reticulocytes from Belgrade rats were compared with those from iron-deficient animals. The basic defect in the Belgrade reticulocytes must therefore reside in subsequent steps in iron uptake, after it is released from transferrin within endocytotic vesicles, ie, in the mechanism by which it is transferred across the lining membrane of the vesicles into the cell cytosol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of reticulocyte ghosts extracts demonstrated a prominent protein band of mol wt 69,000 that was absent or present only in low concentration extracts from the other two types of reticulocytes. This may be a result of the genetic defect

  8. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    DEFF Research Database (Denmark)

    Beavan, L A; Davies, M; Couchman, J R

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently......-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane...

  9. Use of hyperdry amniotic membrane in operations for cleft palate: a study in rats.

    Science.gov (United States)

    Tsuno, Hiroaki; Noguchi, Makoto; Okabe, Motonori; Tomihara, Kei; Yoshida, Toshiko; Nikaido, Toshio

    2015-04-01

    The growth of maxillary bone and the development of dentition are often impaired in patients who have had pushback operations for repair of a cleft palate. There has been considerable discussion about the most suitable technique or material used in such repairs to resolve the problem. Hyperdry amniotic membrane, a new preservable material derived from human amnion, has recently been introduced in several procedures. We have evaluated its use during pushback surgery in animal studies to try to correct the inhibition of growth and development of the maxilla. Mucosal defects were created in 3-week-old rats, and then covered with hyperdry amniotic membrane or not. Healing was assessed by histological and morphological examination at 1 week and 7 weeks postoperatively. In the group treated with hyperdry amniotic membrane, submucosal tissue was reconstructed successfully during the early postoperative period. Lateral palatal growth was not inhibited as much, and medial inclination of the teeth was less, after a period of growth using this material. The results suggest that hyperdry amniotic membrane is a suitable new dressing material for use in the treatment of cleft palate. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Intracellular and transcellular transport of secretory and membrane proteins in the rat hepatocyte

    International Nuclear Information System (INIS)

    Sztul, E.S.

    1984-01-01

    The intra- and transcellular transport of hepatic secretory and membrane proteins was studied in rats in vivo using [ 3 H]fucose and [ 35 S]cyteine as metabolic precursors. Incorporated radioactivity in plasma, bile, and liver subcellular fractions was measured and the labeled proteins of the Golgi complex, bile and plasma were separated by SDS-PAGE and identified by fluorography. 3 H-radioactivity in Golgi fractions peaked at 10 min post injection (p.i.) and then declined concomitantly with the appearance of labeled glycoproteins in plasma. Maximal secretion of secretory fucoproteins from the Golgi complex occurred between 10 and 20 min p.i. In contrast, the clearance of labeled proteins from Golgi membrane subfractions occurred past 30 min p.i., indicating that membrane proteins leave the Golgi complex at least 10 min later than the bulk of content proteins. A major 80K form of Secretory Component (SC) was identified in the bile by precipitation with an anti IgA antibody. A comparative study of kinetics of transport of 35 S-labeled SC and 35 S-labeled albumin showed that albumin peaked in bile at ∼45 min p.i., whereas the SC peak occurred at 80 min p.i., suggesting that the transit time differs for plasma and membrane proteins which are delivered to the bile canaliculus (BC)

  11. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  12. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Shimada, H.; Moewes, B.; Burckhardt, G.

    1987-01-01

    Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na + gradient failed to stimulate [ 3 H]PAH uptake compared with K + or Li + and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na + , the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [ 3 H]PAH uptake, indicating a common transport system. In the presence of Na + , 10 μM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [ 3 H]PAH uptake and caused PAH accumulation above equilibrium distribution (over-shoot). Li + diminished this stimulation, but was without effect on [ 3 H]PAH/PAH- and [ 3 H]PAH/glutarate exchange. The data indicate the coexistence of a Na + -sensitive transport system for dicarboxylates and a Li + -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. The authors propose that dicarboxylates are cotransported with Na + into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na + via the Na + /dicarboxylate cotransporter

  13. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Mesut Sipahi

    2015-01-01

    Full Text Available Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations.

  14. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  15. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Kashgarian, M.; Binder, H.J.

    1989-01-01

    Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats

  16. Activity of adenylate cyclase in plasma membranes of pulmonary tissue remote times following nonlethal gamma-irradiation of rats

    International Nuclear Information System (INIS)

    Slozhenkina, L.V.; Ruda, V.P.; Ushakova, T.E.; Kuzin, A.M.

    1990-01-01

    Basal and stimulated activity of adenylate cyclase (cyclizing ATP-pyrophosphate lyase, E.C. 4.6.1.1., AC) in plasma membranes of pumonary tissye was being studied during a year after fractionated irradiation of rats (2 Gyx3). Basal and hormone-stimulated activity of AC was shown to vary significantly from normal 6 and 12 months after irradiation. The exposed membranes responded differently to AC activation by isoproterenol and F -

  17. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    Science.gov (United States)

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  18. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats.

    Science.gov (United States)

    Snow, Dallin R; Jimenez-Flores, Rafael; Ward, Robert E; Cambell, Jesse; Young, Michael J; Nemere, Ilka; Hintze, Korry J

    2010-02-24

    Milk fat globule membrane (MFGM) is a biopolymer composed primarily of membrane proteins and lipids that surround the fat globules in milk. Although it is considered to have potential as a bioactive ingredient, few feeding studies have been conducted to measure its potential benefits. The aim of this investigation was to determine if dietary MFGM confers protection against colon carcinogenesis compared to diets containing corn oil (CO) or anhydrous milk fat (AMF). Male, weanling Fischer-344 rats were randomly assigned to one of three dietary treatments that differed only in the fat source: (1) AIN-76A diet, corn oil; (2) AIN-76A diet, AMF; and (3) AIN-76A diet, 50% MFGM, 50% AMF. Each diet contained 50 g/kg diet of fat. With the exception of the fat source, diets were formulated to be identical in macro and micro nutrient content. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4, and fed experimental diets for a total of 13 weeks. Over the course of the study dietary treatment did not affect food consumption, weight gain or body composition. After 13 weeks animals were sacrificed, colons were removed and aberrant crypt foci (ACF) were counted by microscopy. Rats fed the MFGM diet (n = 16) had significantly fewer ACF (20.9 +/- 5.7) compared to rats fed corn oil (n = 17) or AMF (n = 16) diets (31.3 +/- 9.5 and 29.8 +/- 11.4 respectively; P < 0.05). Gene expression analysis of colonic mucosa did not reveal differential expression of candidate colon cancer genes, and the sphingolipid profile of the colonic mucosa was not affected by diet. While there were notable and significant differences in plasma and red blood cell lipids, there was no relationship to the cancer protection. These results support previous findings that dietary sphingolipids are protective against colon carcinogenesis yet extend this finding to MFGM, a milk fat fraction available as a food ingredient.

  19. Genetic regulation by amino acids of specific membrane protein biosynthesis in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Chiles, T.C.; Handlogten, M.E.; Kilberg, M.S.

    1986-01-01

    Rat Hepatocytes in primary culture were incubated in amino acid-free (AAF) medium or amino acid-supplemented (AAS) medium for 2-6 hr. The effect of amino acid starvation on the synthesis of specific membrane proteins was monitored by including 3 H-leucine during the incubation. A crude plasma membrane fraction was prepared and then analyzed by 2-D gel electrophoresis followed by fluorography. Amino acid deprivation caused an induction of the synthesis of 5 of the 30 proteins studied. The ratio (AAF/-AAS) of cpm incorporated into the remaining 25 proteins was 0.8 +/- 0.2, whereas the ratio for the 5 proteins that showed amino acid-dependent synthesis ranged from 1.5 to 2.5. The presence of 4 μM actinomycin in the AAF medium completely blocked the starvation-induced synthesis of the 5 proteins tested, but did not alter significantly the ratio of cpm incorporated into the other 25 proteins. Binding studies involving ConA suggested a plasma membrane location for the 5 proteins. The molecular weight values of the starvation-induced proteins are 70, 66, 66, 67, and 45kD. Surface-labelling of intact cells and preparation of antibodies against the 5 proteins will be used to establish the subcellular location and to describe the amino acid-dependent synthesis of each in more detail

  20. Adrenergic receptor-mediated modulation of striatal firing patterns.

    Science.gov (United States)

    Ohta, Hiroyuki; Kohno, Yu; Arake, Masashi; Tamura, Risa; Yukawa, Suguru; Sato, Yoshiaki; Morimoto, Yuji; Nishida, Yasuhiro; Yawo, Hiromu

    2016-11-01

    Although noradrenaline and adrenaline are some of the most important neurotransmitters in the central nervous system, the effects of noradrenergic/adrenergic modulation on the striatum have not been determined. In order to explore the effects of adrenergic receptor (AR) agonists on the striatal firing patterns, we used optogenetic methods which can induce continuous firings. We employed transgenic rats expressing channelrhodopsin-2 (ChR2) in neurons. The medium spiny neuron showed a slow rising depolarization during the 1-s long optogenetic striatal photostimulation and a residual potential with 8.6-s half-life decay after the photostimulation. As a result of the residual potential, five repetitive 1-sec long photostimulations with 20-s onset intervals cumulatively increased the number of spikes. This 'firing increment', possibly relating to the timing control function of the striatum, was used to evaluate the AR modulation. The β-AR agonist isoproterenol decreased the firing increment between the 1st and 5th stimulation cycles, while the α 1 -AR agonist phenylephrine enhanced the firing increment. Isoproterenol and adrenaline increased the early phase (0-0.5s of the photostimulation) firing response. This adrenergic modulation was inhibited by the β-antagonist propranolol. Conversely, phenylephrine and noradrenaline reduced the early phase response. β-ARs and α 1 -ARs work in opposition controlling the striatal firing initiation and the firing increment. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  1. In vivo neurochemical characterization of clothianidin induced striatal dopamine release.

    Science.gov (United States)

    Faro, L R F; Oliveira, I M; Durán, R; Alfonso, M

    2012-12-16

    Clothianidin (CLO) is a neonicotinoid insecticide with selective action on nicotinic acetylcholine receptors. The aim of this study was to determine the neurochemical basis for CLO-induced striatal dopamine release using the microdialysis technique in freely moving and conscious rats. Intrastriatal administration of CLO (3.5mM), produced an increase in both spontaneous (2462 ± 627% with respect to basal values) and KCl-evoked (4672 ± 706% with respect to basal values) dopamine release. This effect was attenuated in Ca(2+)-free medium, and was prevented in reserpine pre-treated animals or in presence of tetrodotoxin (TTX). To investigate the involvement of dopamine transporter (DAT), the effect of CLO was observed in presence of nomifensine. The coadministration of CLO and nomifensine produced an additive effect on striatal dopamine release. The results suggest that the effect of CLO on striatal dopamine release is predominantly mediated by an exocytotic mechanism, Ca(2+), vesicular and TTX-dependent and not by a mechanism mediated by dopamine transporter. Published by Elsevier Ireland Ltd.

  2. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Kielian, Tammy

    2012-07-01

    Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.

  3. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  4. Effect of pinacidil on norepinephrine- and potassium-induced contractions and membrane potential in rat and human resistance vessels and in rat aorta

    International Nuclear Information System (INIS)

    Videbaek, L.M.; Aalkjaer, C.; Mulvany, M.J.

    1988-01-01

    The effect of pinacidil on contractile responses to norepinephrine, potassium, and membrane potential was examined in rat and human resistance vessels. In some experiments rat aorta was also used. Pinacidil (0.1-30 microM) caused a concentration-dependent relaxation of norepinephrine-induced contractions in all vessels studied. In the same concentration range, pinacidil had only little effect on potassium (125 mM) activated rat mesenteric and femoral resistance vessels. In denervated rat mesenteric resistance vessels, a depolarization with potassium (125 mM) before superimposing a norepinephrine tone markedly diminished the effect of pinacidil. In resting rat mesenteric resistance vessels, pinacidil (1-10 microM) caused a hyperpolarization of 10-15 mV. In rat aorta, pinacidil (10 microM) caused a significant (p less than 0.001) increase in 86 Rb+ efflux rate constant whereas 1 microM had no effect. The results of these experiments indicate that the vasodilating effect may be caused by a hyperpolarization of the vascular smooth muscle cell membrane

  5. Antioxidant activity of erythrocyte membranes of rats exposed to X-radiation and injected with α-tocopheral acetate

    International Nuclear Information System (INIS)

    Tsvetkova, T.V.; Tsokur, Eh.V.

    1988-01-01

    Injection of α-tocopherol acetate to albino mongrel rats potentiates antioxidant activity (AOA) that involves water-soluble factors of the antioxidant system in erythrocyte membranes. The activation of AOA by a α-tocopherol takes place immediately after irradiation and drug injection and persists during the first 24 h following irradiation

  6. Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO-3/CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9 mV, as also observed...

  7. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  8. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  9. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Friis, U G; Praetorius, Birger Hans; Knudsen, T

    1997-01-01

    1. The aim of this study was to investigate the effect of the Na+/K+-ATPase on the membrane potential of peritoneal mast cells isolated from male Sprague-Dawley SPF-rats. 2. Experiments were performed at 22-26 degrees C in the tight-seal whole-cell configuration of the patch-clamp technique by use...

  10. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Veeramani, Chinnadurai; Alsaif, Mohammed A; Chandramohan, Govindasamy

    2015-01-01

    Kaempferol is a flavonoid found in many edible plants (e.g. tea, cabbage, beans, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine. Numerous preclinical studies have shown that kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and antidiabetic activities. The present study investigates the effect of kaempferol on membrane-bound ATPases in erythrocytes and in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into adult male albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 d to normal and STZ-induced diabetic rats. The effects of kaempferol on membrane-bound ATPases (total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase) activity in erythrocytes and in liver, kidney, and heart were determined. In our study, diabetic rats had significantly (p kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) for a period of 45 d resulted in significant (p kaempferol has the potential to restore deranged activity of membrane-bound ATPases in STZ-induced diabetic rats. Further detailed investigation is necessary to discover kaempferol's action mechanism.

  11. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  12. Association and dissociation of Escherichia coli heat-stable enterotoxin from rat brush border membrane receptors

    International Nuclear Information System (INIS)

    Cohen, M.B.; Thompson, M.R.; Overmann, G.J.; Giannella, R.A.

    1987-01-01

    Escherichia coli heat-stable enterotoxin (ST) binds to receptors on rat intestinal cells and brush border membranes (BBM). We devised experiments to examine the reversibility of ST binding. We found that both 125 I-labeled ST and native ST were spontaneously dissociable from the BBM receptor. Radiolabeled ST bound to BBM was also dissociated by the addition of avid goat anti-ST antiserum. Furthermore, using a computer program for analysis of ligand binding, we calculated an apparent Ka of 10(8) liters/mol from competitive inhibition and saturation-binding data. This is significantly lower than the value previously reported by others. Our findings, of a lower Ka and a reversible ST-binding process, suggest that a therapeutic strategy of removing bound ST from its receptor or competing with the enterocyte receptor for unbound ST might be successful in terminating ST-induced secretion

  13. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    International Nuclear Information System (INIS)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane

  14. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  15. The protective effect of DNA on the rat cell membrane damage induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Ma Shouxiang; Zhong Jinyan

    1988-01-01

    The protective effect of DNA on the cell membrane damage induced by ultra-violet radiation was studied. Rat erythrocytes were used as experimental materials. Blood samples were taken from the rat, and centrifuged to separate the plasma. The cells were washed twice with isotonic saline, resuspended in normal saline solution and then irradiated by ultra-violet radiation. The DNA was added before or after irradiation. THe cell suspensions were kept at 5 deg C for 20 hours after irradiation, and then centrifuged. The supernatants were used for hemoglobin determination. The main results obtained may summarized as follows: the cell suspension of erythrocytes were irradiated for 5, 10 and 20 min. The amount of hemolysis induced by irradiation dosage revealed a direct proportional relationship. If DNA (20-40μg/ml) was applied before irradiation, the amount of hemolysis induced apparently decreased. The differences between the control and DNA treated were statistically significant, P<0.01, but insignificant for DNA added after irradiation

  16. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane

    International Nuclear Information System (INIS)

    Bartles, J.R.; Braiterman, L.T.; Hubbard, A.L.

    1985-01-01

    Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. The authors identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). They also developed 125 I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125 I-wheat germ agglutinin. Depending upon the protein, they estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains

  17. Characterization of [125I]endothelin-1 binding sites in rat cardiac membrane fragments

    International Nuclear Information System (INIS)

    Gu, X.H.; Casley, D.J.; Nayler, W.G.

    1989-01-01

    Standard binding and displacement techniques were used to identify high-affinity binding sites for [ 125 I]-labeled endothelin-1 (ET-1) in membranes harvested from the hearts of adult female Sprague-Dawley rats. A single population of binding sites was identified, with a KD of 0.20 +/- 0.03 nM at 37 degrees C, and a Bmax of 93.5 +/- 6.4 fmol/mg protein. Bound [ 125 I]ET-1 was displaced by ET-1 (10(-13)-10(-8) M), with a Ki of 0.08 nM. Neither (-)Bay K 8644 (10(-11)-10(-5) M), prenylamine (10(-11)-10(-5) M), (+)-cis-diltiazem (10(-10)-10(-5) M), (-)D888 (10(-10)-10(-5) M), nicardipine (10(-10)-10(-5) M), lidoflazine (10(-11)-10(-5) M), flunarizine (10(-11)-10(-5) M), omega-conotoxin (10(-13)-10(-7) M), nor prazosin (10(-10)-10(-5) M) displaced the bound ligand. Binding occurred in the absence of Ca2+ and was absent in heat-denatured membranes. These results are interpreted to mean that [ 125 I]ET-1 binds to a single class of high-affinity binding sites that differ from those occupied by known regulators of voltage activated L- and N-type Ca2+ channels

  18. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  19. Immobilization of Na,K-ATPase isolated from rat brain synaptic plasma membranes

    Directory of Open Access Journals (Sweden)

    ANICA HROVAT

    2002-12-01

    Full Text Available Rat brain Na,K-ATPase partially purified by SDS from synaptic plasma membranes (SPM was immobilized by adsorption on nitrocellulose (NC, polyvinylidene fluoride (PVDF and glass fiber (GF membranes. Partial SDS solubilization increased the enzyme activity by 40 %. With regard to the preservation of the enzyme activity, nitrocellulose was shown to be the optimal support for the immobilization. The enzyme showed the highest percentage activity (14 % after 30 min of SPM adsorption, at 20°C under the vaccum, with 25 mg of proteins per NC disc filter. In addition, adsorption on NC stabilizes the Na,K-ATPase, since the activity was substantial 72 h after adsorption at 20°C. After adsorption, the sensitivity of the enzyme to HgCl2and CdCll2 inhibition was higher. The results show that immobilized Na,K-ATPase SPM can be used as a practical model for the detection of metal ions in different samples.

  20. Membrane-associated IL 1-like activity on rat dendritic cells

    International Nuclear Information System (INIS)

    Nagelkerken, L.M.; van Breda Vriesman, P.J.C.

    1986-01-01

    The secretion of interleukin 1 (IL 1) by rat dendritic cells (DC) was studied in relation to their ability to induce the production interleukin 2 (IL 2 ) and to induce IL 2 responsiveness. IL 1 (or IL 1-like activity) was measured by its capacity to enhance IL 2 production by EL4 cells. In contrast to peritoneal exudate cells (PEC) or splenic adherent cells, DC from thoracic duct lymph (TD-DC) or from spleen did not secrete detectable amounts of IL 1 on stimulation with LPS/Silica. However, TD-DC and splenic DC were able to enhance IL 2 production by EL4 cells directly, and were only two times less effective than PEC. By preventing cell-to-cell contact between stimulator cells and EL4 cells, it was demonstrated that most of the IL 2-inducing activity of TD-DC and PEC was associated with the cell membrane. Treatment with 1% paraformaldehyde (PFA) to abolish metabolic activity resulted in a 50% decrease (or inactivation) of IL 2-inducing activity of TD-DC in the EL4 assay. Moreover, UVB-irradiation (300 mJ/cm 2 ) of TD-DC, which has been described to inhibit the release of IL 1 by macrophages, caused a 70% decrease in IL 2-inducing activity. These results suggest that membrane-associated structures, that are identical to or mimic Il 1, are involved in the activation of T cells by DC

  1. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels.

    Science.gov (United States)

    Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G; Ronaldson, Patrick T

    2018-05-07

    The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.

  2. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles

    International Nuclear Information System (INIS)

    Goldman, M.; Yaari, A.; Moran, A.; Doshnitzki, Z.; Cohen-Luria, R.

    2006-01-01

    Since the Gulf war exposure to depleted uranium, a known nephrotoxic agent, there is a renewed interest in the toxic effects of uranium in general and its mechanism of nephrotoxicity which is still largely unknown in particular. In order to investigate the mechanism responsible for uranium nephrotoxicity and the therapeutic effect of urine alkalization, we utilized rat renal brush border membrane vesicles (BBMV). Uranyl acetate (UA) caused a decrease in glucose transport in BBMV. The apparent K i of uranyl was 139±30 μg uranyl/mg protein of BBMV. Uranyl at 140 μg/mg protein of BBMV reduced the maximal capacity of the system to transport glucose [V max 2.2±0.2 and 0.96±0.16 nmol/mg protein for control and uranyl treated BBMV (P m (1.54±0.33 and 1.54±0.51 mM for control, and uranyl treated BBMV, respectively). This reduction in V max is at least partially due to a decrease in the number of sodium-coupled glucose transporters as apparent from the reduction in phlorizin binding to the uranyl treated membranes, V max was reduced from 247±13 pmol/mg protein in control BBMV to 119±3 pmol/mg protein in treated vesicles (P<0.001). The pH of the medium has a profound effect on the toxicity of UA on sodium-coupled glucose transport in BBMV: higher toxicity at neutral pH (around pH 7.0), and practically no toxicity at alkaline pH (7.6). This is the first report showing a direct inhibitory dose and pH dependent effect of uranyl on the glucose transport system in isolated apical membrane from kidney cortex. (orig.)

  3. [Age-related change in the alpha-tocopherolquinone/alpha-tocopherol ratio in the rat erythrocyte membrane].

    Science.gov (United States)

    Yanagawa, K; Takeda, H; Matsumiya, T; Takasaki, M

    1999-05-01

    alpha-Tocopherol (alpha-Toc), a lipophilic phenolic antioxidant that is localized mainly in the biomembrane, protects cells against oxidation-associated cytotoxicity by prevention of membrane lipid peroxidation, maintenance of the redox balance intracellular thiols and stabilization of the membrane structure. We investigated the age-related changes in redox dynamics of alpha-Toc in plasma and erythrocyte membrane of an elderly (66 weeks old) and young group (10 weeks old). Total, alpha-, beta + gamma-, delta-Toc and alpha-tocopherolquinone (alpha-TocQ) in plasma and erythrocyte membrane were determined by high-performance liquid chromatography (HPLC) with a series of multiple coulometric working electrodes (CWE). Rat venous blood sample was divided into plasma and erythrocyte layers by centrifugation, and then erythrocyte membrane sample was prepared according to the method of Dodge et al. under a stream of nitrogen. In plasma, total and alpha-Toc concentrations were increased, and beta + gamma-, delta-Toc and alpha-TocQ concentrations were decreased age-dependently. In the erythrocyte membrane, total, alpha-TocQ concentrations and three fractions of tocopherols decreased age-dependently. Also, a decrease in the alpha-TocQ/alpha-Toc ratio in erythrocyte membrane was observed in the elderly group. These findings suggest that the alpha-Toc uptake in erythrocyte membrane and utilization rate of alpha-Toc in erythrocyte membrane decline age-dependently. This decline may promote membrane lipid peroxidation. alpha-Toc redox dynamics in erythrocyte membrane were useful to investigate the pathophysiology of aging mechanisms related to oxidative stress.

  4. Lipoprotein receptors in copper-deficient rats: in vitro binding of high-density lipoprotein subfractions to liver membranes

    International Nuclear Information System (INIS)

    Hassel, C.A.

    1986-01-01

    Three studies were conducted to determine whether the elevated plasma and HDL cholesterol levels observed in copper-deficient rats could be explained by the interaction of 125 I-HDL subfractions with liver membrane preparations in vitro. Rats from all studies were randomly divided into two dietary treatments, copper-deficient and adequate (0.7 mg and 8.0 mg Cukg diet, respectively). Total binding data and computer derived estimates (K/sub d/ and B/sub max/) were used to compare differences between treatments. Binding data from all experiments conformed to a one-site model. In all cases, binding was saturable and EDTA and pronase insensitive. Treatment differences were observed in Study I ( 125 I-apo E-free HDL binding to crude liver membranes). Significantly lower total binding and B/sub max/ were observed when lipoproteins and membranes from copper-deficient animals were used in the assay. Competition experiments from Studies II and III demonstrate that the different HDL subfractions competed effectively with one another for binding sites, indicating that apo E is not a determinant in binding of rat 125 I-HDL subfractions to purified liver plasma membranes

  5. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  6. An inquiry into the semiquantitative parameters of striatal dopamine receptor imaging

    International Nuclear Information System (INIS)

    Cao Guoxiang; Tan Tianzhi; Kuang Anren; Liang Zhenglu

    1998-01-01

    Purpose: To inquire into the optimal striatal reference region for nonspecific IBZM uptake in brain dopamine receptor imaging. Methods: Using in vivo data from rats, the authors compared the results of 125 I-iodobenzamide ( 125 I-IBZM) striatal specific binding that were respectively obtained taking cerebellum and frontal cortex as striatal reference region of nonspecific uptake of ligand. Results: Radioiodination labelled IBZM bound stereoselectively and reversibly to striatal D2 receptors. Frontal cortex and cerebellum showed rapid uptake and rapid washout of ligand. When cerebellar uptake was used as a reference of nonspecific uptake in striatum, IBZM saturation could not be demonstrated. But when the frontal cortex was used as reference region, saturation could be demonstrated with B max = 44 pmol/g striatum tissue. The percentage of haloperidol replacement and the percentage of uptake difference between striatum and other brain regions which were derived from competitive inhibition experiments with a large does of spiperone or haloperidol, suggested that the cerebellar uptake underestimated nonspecific uptake in the striatum while frontal cortex was an appropriate reference region for nonspecific uptake of ligand in striatum. Conclusions: For the calculation of specific IBZM binding and other semiquantitative parameters of striatal dopamine D2 receptor imaging, frontal cortex would be the nonspecific reference region of choice

  7. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    Science.gov (United States)

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  8. Effect of in vitro gamma exposure on rat mesencephalic and striatal cellular types and processes length; Effet in vitro de l`exposition gamma sur les types cellulaires et la longueur des prolongements des cellules du mesencephale et du striatum de rat

    Energy Technology Data Exchange (ETDEWEB)

    Coffigny, H.; Court, L.

    1994-12-31

    The isolated mesencephalic and striatal cells were irradiated in a dose-range of 0.25 to 3 Gy followed by 3 day of culture. The proportion of monopolar, bipolar, tripolar and multipolar cell population was not obviously modified by irradiation. The processes length was similar to controls, except after 3 Gy exposure, for monopolar and bipolar mesencephalic cells and the tripolar striatal cells where it was increased. In these populations, only cells with long processes seemed to survive. (author). 2 refs.

  9. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  10. Gestational Undernourishment Modifies the Composition of Skeletal Muscle Transverse Tubule Membranes and the Mechanical Properties of Muscles in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Tonathiu Ramírez-Oseguera

    2013-10-01

    Full Text Available Backgroud/Aims: Skeletal muscle (SM constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4 located in the Transverse tubule membrane system (TT. The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Methods: Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL muscle. Results: We demonstrate that compared to control, GUN in the new-born produces; i decreases body weight; ii diminution in SM mass; iii decreases the formation of TT membranes; iv expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. Conclusion; These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood.

  11. Gestational undernourishment modifies the composition of skeletal muscle transverse tubule membranes and the mechanical properties of muscles in newborn rats.

    Science.gov (United States)

    Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia

    2013-01-01

    [corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel

  12. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat

    DEFF Research Database (Denmark)

    Couchman, J R; King, J L; McCarthy, K J

    1990-01-01

    The distribution of two distinct populations of basement membrane proteoglycans has been monitored through hair growth development in the rat embryo and subsequent hair growth cycle. An antiserum against a small heparan sulfate proteoglycan uniformly stained the dermal-epidermal junction...... of embryonic rats throughout the period of hair follicle formation. On the other hand, monoclonal antibodies recognizing a basement membrane-specific chondroitin sulfate proteoglycan only weakly stained 16-d embryo dermal-epidermal junction, but strong staining was associated with hair follicle buds...... as they developed. Through the hair growth cycle, it was found that the heparan sulfate proteoglycan persisted around the follicles, while the chondroitin sulfate proteoglycan decreased in amount through catagen until it was undetectable at the base and dermal papilla of the telogen follicle. As anagen commenced...

  13. Ethanol Influences on Bax Associations with Mitochondrial Membrane Proteins in Neonatal Rat Cerebellum

    Science.gov (United States)

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2012-01-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure, and focused on interactions between pro-apoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC), and adenine nucleotide translocator (ANT), of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that following ethanol exposure, Bax pro-apoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least two hours post-exposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment, and found such interactions were altered by ethanol treatment, but only at two-hours post-exposure, and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax, but not by a Bax channel blocker. Therefore, we conclude that at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex, and not channel formation independent of PTP constituents. PMID:22767450

  14. Acetylcholinesterase potentiates [{sup 3}H]fluorowillardiine and [{sup 3}H]AMPA binding to rat cortical membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olivera, S.; Rodriguez-Ithurralde, D. [Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom); Henley, J.M. [Molecular Neuroscience Unit, Division Neuromyology, Instituto de Investigaciones Biologicas Clemente Estable, 11600 Montevideo (Uruguay)

    1999-04-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[{sup 3}H]5-fluorowillardiine ([{sup 3}H]FW) and [{sup 3}H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to {approx}60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [{sup 3}H]kainate binding. [{sup 3}H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC{sub 50} values of 4x10{sup -5} and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [{sup 3}H]FW binding is Ca{sup 2+}- and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [{sup 3}H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B{sub max} of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake.We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia.Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to "the fast food

  16. Amniotic membranes as prosthetic material: experimental utilization data of a rat model.

    Science.gov (United States)

    Zachariou, Z

    1997-10-01

    Prosthetic materials are applied for closing big tissue defects, the repair of traumatized organs, or hernias. Because nonabsorbable synthetic materials are rigid, possess a defined and unchangeable size, and foreign body reaction (FBR) may occur, biological materials may be an alternative. In experimental studies in rats the authors implanted the fetal parts of the human amniotic membranes and examined the utilization and FBR induced in a standardized model. In addition amnion (AM) was combined with vicryl-net (VN) for higher implant stability. Fifteen, 30 and 90 days after implantation, macroscopic appearance was examined, and light microscopy and immunohistology testing of the specimens were performed. Adhesions to parenchymal organs and omentum were present irrespective of the side facing the abdominal cavity. AM induced a rapid FBR, which diminished with time. Chorion (CH) and parts of the AM were resorbed within the examined period after infiltration with recipient cells and neovascularisation. The combined implant, AM, and VN showed best results because disadvantages of one material could be compensated for by the advantages of the other. The studies show that AM, in its anatomic definition, combined with VN proves to be a safe and reliable prosthetic material for the use in tissue defects.

  17. [3H]opipramol labels a novel binding site and sigma receptors in rat brain membranes

    International Nuclear Information System (INIS)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H.

    1991-01-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. [ 3 H]Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). [ 3 H]Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-[ 3 H]3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects

  18. 3H-dopamine accumulation by rat brain synaptic vesicles in a membrane-impermeable medium.

    Science.gov (United States)

    Gershten, M J; Disbrow, J K; Ruth, J A

    1983-07-25

    3H-Dopamine (DA) accumulation by storage vesicles from whole rat brain was significantly stablized in a buffer system based upon the membrane-impermeant D-potassium tartrate. 3H-DA uptake saturated by twenty minutes (Km 2.1 X 10(-5)M) and remained stable for periods of 40-60 minutes. Accumulated DA was rapidly exchangeable with exogenous DA. Total levels of accumulation (pmol/mg protein) were 41.7 +/- 2.9 (37 degrees), 11.9 +/- 2.5 (4 degrees), 31.3 +/- 1.8 (absence of ATP), 26.3 +/- 2.7 (reserpine, 10(-6)M), 26.1 +/- 0.67 (no ATP + reserpine 10(-6), and 14.6 +/- 2.4 (carbonylcyanide-p-triflouromethoxyphenylhydrazone, FCCP, 10(-6)M). Depletion of endogenous DA levels by pretreatment of the animals with alpha-methyl-p-tyrosine greatly diminished the reserpine-insensitive DA accumulation. After depletion of endogenous DA, ATP-independent uptake was significantly retarded, but eventually reached near-control levels. This uptake was abolished in the presence of FCCP (10(-6)M). The results suggest that endogenous levels of DA and ATP contribute to the reserpine- and ATP-insensitive DA accumulation observed in vesicles from untreated animals. HPLC analysis demonstrated no conversion of DA to norepinephrine (NE) in the course of the experiments.

  19. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    International Nuclear Information System (INIS)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S.; Wada, H.; Horio, Y.

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP PM ) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP PM have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP PM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [ 3 H]oleate but not that of [ 35 S]sulfobromophthalein or [ 14 C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABP PM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP PM and mGOT are closely related

  20. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  1. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  2. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    OpenAIRE

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-f...

  3. Angiotensin II-induced hypertension increases plasma membrane Na pump activity by enhancing Na entry in rat thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2013-11-01

    Thick ascending limbs (TAL) reabsorb 30% of the filtered NaCl load. Na enters the cells via apical Na-K-2Cl cotransporters and Na/H exchangers and exits via basolateral Na pumps. Chronic angiotensin II (ANG II) infusion increases net TAL Na transport and Na apical entry; however, little is known about its effects on the basolateral Na pump. We hypothesized that in rat TALs Na pump activity is enhanced by ANG II-infusion, a model of ANG II-induced hypertension. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 7 days, and TAL suspensions were obtained. We studied plasma membrane Na pump activity by measuring changes in 1) intracellular Na (Nai) induced by ouabain; and 2) ouabain-sensitive oxygen consumption (QO2). We found that the ouabain-sensitive rise in Nai in TALs from ANG II-infused rats was 12.8 ± 0.4 arbitrary fluorescent units (AFU)·mg(-1)·min(-1) compared with only 9.9 ± 1.1 AFU·mg(-1)·min(-1) in controls (P Na pump expression, the number of Na pumps in the plasma membrane, or the affinity for Na. When furosemide (1.1 mg·kg(-1)·day(-1)) was coinfused with ANG II, no increase in plasma membrane Na pump activity was observed. We concluded that in ANG II-induced hypertension Na pump activity is increased in the plasma membrane of TALs and that this increase is caused by the chronically enhanced Na entry occurring in this model.

  4. Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability

    OpenAIRE

    Miller, Michael L.; Ren, Yanhua; Szutorisz, Henrietta; Warren, Noël A.; Tessereau, Chloé; Egervári, Gábor; Mlodnicka, Agnieszka; Kapoor, Manav; Chaarani, Bader; Morris, Claudia V.; Schumann, Gunter; Garavan, Hugh; Goate, Alison M.; Bannon, Michael J.; Halperin, Jeffrey M.

    2017-01-01

    Impulsivity, a multifaceted behavioral hallmark of attention-deficit/hyperactivity disorder (ADHD), strongly influences addiction vulnerability and other psychiatric disorders that incur enormous medical and societal burdens yet the neurobiological underpinnings linking impulsivity to disease remain poorly understood. Here we report the critical role of ventral striatal cAMP-response element modulator (CREM) in mediating impulsivity relevant to drug abuse vulnerability. Using an ADHD rat mode...

  5. Hepatocyte membrane injury and bleb formation following low dose comfrey toxicity in rats.

    Science.gov (United States)

    Yeong, M L; Wakefield, S J; Ford, H C

    1993-04-01

    Comfrey, a popular herbal remedy, contains hepatotoxic pyrrolizidine alkaloids and has been implicated in recent human toxicity. Although alkaloids from other plant sources have been extensively researched, studies on the hepatotoxic effects of comfrey alkaloids are scant. The effects of high dose comfrey toxicity have been studied and the present investigation was undertaken to identify changes associated with relatively low dose toxicity. Eight young adult rats were dosed weekly for six weeks with 50 mg/kg of comfrey derived alkaloids. The animals were dissected one week after the last dose and the livers examined by light and electron microscopy. Changes at the light microscopic level showed vascular congestion, mild zone 3 necrosis and loss of definition of hepatocyte cellular membranes. Extensive ultrastructural abnormalities were identified in the form of endothelial sloughing and the loss of hepatocyte microvilli. A striking finding was florid bleb formation on the sinusoidal borders of hepatocytes. Many blebs were shed into the space of Disse and extruded to fill, and sometimes occlude, sinusoidal lumina. Platelets were frequently found in areas of bleb formation. There was evidence of late damage in collagenization of Disse's space. Hepatocyte bleb formation is known to occur under a variety of pathological conditions but there is little to no information in the literature on the effects, if any, of bleb formation on fibrogenesis and the microcirculation and its role in the pathogenesis of liver disease. The pyrrolizidine alkaloids of comfrey may serve as an experimental tool to study the process of bleb formation and the intimate relationship between hepatocyte and sinusoidal injury in the liver.

  6. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    Science.gov (United States)

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2

  7. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Ladinsky, H.

    1986-01-01

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  8. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sutapa Mukherjee

    2014-01-01

    Full Text Available Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.

  9. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  10. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bowman, C.; Peters, D.K.; Lockwood, C.M.

    1983-01-01

    A solid-phase radioimmunoassay (RIA) is described for the detection of IgG autoantibodies to glomerular basement membrane (GBM) induced in the Brown Norway rat by mercuric chloride. The assay involves the adsorption of a collagenase digest of GBM to plastic microtitre plates and detection of bound antibody with affinity purified radiolabelled rabbit anti-rat IgG. Comparison with existing immunofluorescence methods for detection of anti-GBM antibody showed that the solid-phase RIA is highly sensitive, allowing detection of antibody in solutions with as low as 0.5 ng protein/ml. The assay is suitable for detection of anti-GBM antibody both in serum and in eluates from nephritic kidneys. The assay proved to be specific in competitive studies of inhibition brought about by GBM, keyhole limpet antigen and ovalbumin. This solid-phase RIA is reproducible, robust and easy to perform. (Auth.)

  11. Arc mRNA induction in striatal efferent neurons associated with response learning.

    Science.gov (United States)

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  12. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  14. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-05-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.

  15. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  16. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Md Idris, Muhd Hanis; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients. PMID:24212844

  17. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Directory of Open Access Journals (Sweden)

    Jamaludin Mohamed

    2013-10-01

    Full Text Available OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell (RBC membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each: control group (N, roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  18. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-10-01

    The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  19. Chronic dihydroergotoxine treatment affects the number of dopamine recognition sites in rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Battaini, F.; Govoni, S.; Rius, R.A.; Spano, P.F.; Trabucchi, M.

    1984-06-01

    Ergot derivatives have been proposed to have ameliorative effects in various pathological conditions where dopaminergic transmission is believed to be impaired, namely Parkinson's disease, amenorrhea-galactorrhea syndrome, and in the treatment of behavioural disturbances of the elderly. To get more insight into a possible involvement of a direct action of ergot derivatives on dopamine receptors we studied the effect of acute and chronic dihydroergotoxine (DHT) treatment on 3H-Spiroperidol and 3H-N-Propylnorapomorphine (3H-NPA) binding to rat striatal membrane preparations. The results are in favor of an interaction of ergot derivatives with dopamine recognition sites both after acute and chronic treatment.

  20. Chronic dihydroergotoxine treatment affects the number of dopamine recognition sites in rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Battaini, F; Govoni, S; Rius, R A; Spano, P F; Trabucchi, M

    1984-06-01

    Ergot derivatives have been proposed to have ameliorative effects in various pathological conditions where dopaminergic transmission is believed to be impaired, namely Parkinson's disease, amenorrhea-galactorrhea syndrome, and in the treatment of behavioural disturbances of the elderly. To get more insight into a possible involvement of a direct action of ergot derivatives on dopamine receptors we studied the effect of acute and chronic dihydroergotoxine (DHT) treatment on 3H-Spiroperidol and 3H-N-Propylnorapomorphine (3H-NPA) binding to rat striatal membrane preparations. The results are in favor of an interaction of ergot derivatives with dopamine recognition sites both after acute and chronic treatment.

  1. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  2. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    International Nuclear Information System (INIS)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17β-estradiol (E 2 ) at both low (0.1 μg/kg) and high (20 μg/kg) doses confirmed its ability to increase the number of striatal 3 H-Spiperone ( 3 H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E 2 , to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity

  3. Increased coherence among striatal regions in the theta range during attentive wakefulness

    Directory of Open Access Journals (Sweden)

    G. Lepski

    2012-08-01

    Full Text Available The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P 0.7 between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001. Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.

  4. Activity of retinene palmitasynthetase and retinene palmitatehydrolase in the small intestine mucosa and membranes of its cells in white rats affected by A-avitaminosis and irradiation

    International Nuclear Information System (INIS)

    Leutskij, K.M.; Sovtysik, D.D.

    1977-01-01

    A combined action of A-avitaminosis and ionizing radiation on the activity of retinenepalmitatesynthetase and retinenepalmitatehydrolase in the small intestine mucosa and cell membranes of white rats has been investigated. The activity of retinenepalmitatehydrolase has been shown to decrease in the irradiated animals deficient in vitamin A as compared to the control nonirradiated animals. The activity of retinenepalmitatesynthetase affected by a combination of A-avitaminosis and irradiation increases as compared to the control nonirradiated rats both in the small intestine mucosa and its cell membranes

  5. [Influence of delta-sleep inducing peptide on the state of lysosomal membranes and intensity of lysosomal proteolysis in different rat tissues during physiological aging of the organism].

    Science.gov (United States)

    Kutilin, D S; Bondarenko, T I; Mikhaleva, I I

    2014-01-01

    It is shown that subcutaneous injection of exogenous delta-sleep inducing peptide (DSIP) to rats aged 2-24 months in a dose of 100 μg/kg animal body weight by courses of 5 consecutive days per month has a stabilizing effect on the state of lysosomal membranes in rat tissues (brain, heart muscle and liver) at different ontogenetic stages, and this effect is accompanied by increasing intensity of lysosomal proteolysis in these tissues.

  6. Preparation of rat gastric heavy and light microsomal membranes enriched in (H+-K+)-ATPase using 2H2O and Percoll gradients

    International Nuclear Information System (INIS)

    Im, W.B.; Davis, J.P.; Blakeman, D.P.

    1985-01-01

    Gastric heavy microsomal membranes highly enriched in (H + -K + )-ATPase were obtained from cimetidine- or carbachol-treated rats through 2 H 2 O and Percoll gradient centrifugations. Both the resting (cimetidine-treated) and the stimulated (carbachol-treated) heavy membranes which presumably represent the apical membrane of gastric parietal cells were enriched with the polypeptides of 81,000 and 45,000 besides that of 93,000 representing (H + -K + )-ATPase. No apparent differences could be detected between the resting and the stimulated heavy membranes in their polypeptide profiles or their specific activity of (H + -K + )-ATPase. Nevertheless, the level of 86 RbCl uptake was greater in the stimulated than the resting heavy microsomal membrane vesicles. The light gastric microsomes which abound in intracellular tubulovesicles containing reserve (H + -K + )-ATPase as isolated from cimetidine-treated rats were similarly purified with respect to (H + -K + )-ATPase. The purified light gastric membranes were largely devoid of the polypeptides of 81,000 and 45,000 found in the heavy gastric membranes. These observations further support the current hypothesis that secretagogues bring about changes in the environment of (H + -K + )-ATPase and induce KCl permeability in the apical membrane of the parietal cells, although at present the authors have been unable to identify the polypeptide(s) responsible for the KCl pathway

  7. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  8. Resistance exercise recovers the structure of cartilage and synovial membrane of the ankle joint of rats after sciatic compression

    Directory of Open Access Journals (Sweden)

    Lizyana Vieira

    2017-08-01

    Full Text Available Abstract Aim to determine the effects of sciatic compression and treatment with resistance exercise on the morphology of the ankle joint of Wistar rats. Methods 32 male rats, aged 10 ± 1 week, weighing 376±22 grams were divided into the following four groups (n=8/group: CG (control, LG (lesion, EG (exercise and LEG (lesion and exercise. Three days after sciatic compression, the animals in the EG and LEG were submitted to resistance exercise by climbing stairs (five days/week for three weeks and a load of 100 grams was added. The exercise was carried out in two sets of ten consecutive ascents of the steps. The ankle joint tissues were analyzed for their morphometry and morphology using light microscopy. Results Regarding the number of chondrocytes, the LG and EG had more cells in the anterior articular cartilage in the tibia (62 and 43% and in the talus (57 and 45% when compared to the CG. In the LEG there was a 25% and 26% reduction of chondrocytes in the anterior cartilage in the tibia and talus when compared to the LG. Changes were observed in the tibia and talus in the LG, with the presence of flocculation, invagination of the subchondral bone, discontinuity of tidemark and pannus covering the subchondral bone in the talus, as well as changes in the synovial membrane. These alterations were minimized in the articular cartilage and synovial membrane in the LEG. Conclusions exercise restores the tissue morphology of ankle joint in Wistar rats after sciatic compression.

  9. Synaptic Membrane Synthesis in Rats Depends on Dietary Sufficiency of Vitamin C, Vitamin E, and Selenium: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Cansev, Mehmet; Turkyilmaz, Mesut; Sijben, John W C; Sevinc, Cansu; Broersen, Laus M; van Wijk, Nick

    2017-01-01

    Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.

  10. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    Science.gov (United States)

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  11. Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane

    Science.gov (United States)

    Chehelcheraghi, Farzaneh; Abbaszadeh, Abolfazl; Tavafi, Magid

    2018-03-06

    Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.

  12. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  13. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage.

    Science.gov (United States)

    O'dell, Steven J; Marshall, John F

    2014-09-01

    Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts. © 2014 Wiley Periodicals, Inc.

  14. Identification of the D-1 dopamine receptor subunit in rat striatum after photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, T; Tanaka, C [Kobe Univ. (Japan). School of Medicine

    1982-12-28

    When rat striatal membranes, photolabeled with (/sup 3/H)dopamine under assay conditions similar to those used for dopamine-sensitive adenylate cyclase, were subjected to sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, several radioactively labeled bands appeared. Labeling of these bands was reduced in the presence of non-radioactive dopamine during photolysis, but was unaffected by the presence of sulpiride. Haloperidol preferentially reduced the labeling of the main band which had a molecular weight of about 57,000 rather than the other weakly labeled bands. Labeling of this 57,000 dalton protein was not apparent when rat cerebellar membranes were used and was markedly eliminated by kainic acid-induced lesions that destroyed the intrastriatal nerve cell bodies. These results indicate that this 57,000 dalton protein is the binding subunit of the D-1 dopamine receptor.

  15. Characterization of solubilized human and rat brain US -endorphin-receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Helmeste, D.M.; Li, C.H.

    1986-01-01

    Opioid receptors have been solubilized from human striatal and rat whole-brain membranes by use of 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS). Tritiated human US -endorphin (TH-US /sub h/-EP) binding revealed high-affinity competition by morphine, naloxone, and various US -EP analogues. Lack of high-affinity competition by (+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide methanesulfonate (U50-488, Upjohn) indicated that k sites were not labeled by TH-US -/sub h/-EP under these conditions. Affinities were similar in both soluble and membrane preparations except for (Met)enkephalin, which appears to be rapidly degraded by the solubilized extract. Size differences between human and rat solubilized TH-US /sub h/-EP-receptor complexes were revealed by exclusion chromatography.

  16. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... to chondroitin sulfate chains confirmed these changes in cystic tubule basement membranes. During the recovery stage, interstitial chondroitin sulfate (representing a CSPG other than BM-CSPG) was greatly increased around these tubules, along with the glycoprotein fibronectin. Staining with antibody to a basement...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  17. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat

    Czech Academy of Sciences Publication Activity Database

    Vokurková, Martina; Rauchová, Hana; Dobešová, Zdenka; Loukotová, Jana; Nováková, O.; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 65, č. 1 (2016), s. 91-99 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NV15-25396A; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : reticulocytes * immature erythrocytes * mean cellular hemoglobin content * membrane phospholipids * membrane cholesterol Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  18. A bioabsorbable membrane (Seprafilm®) may prevent postoperative mediastinal adhesions following mediastinoscopy: an experimental study in rats.

    Science.gov (United States)

    Büyükkale, Songül; Çıtak, Necati; İşgörücü, Özgür; Sayar, Adnan

    2015-01-01

    The aim of this experimental study was to investigate the anti-adhesion property of a bioabsorbable membrane following mediastinoscopy in a rat model. The study was conducted in 20 male Sprague-Dawley rats. Mediastinoscopy was performed all of them. Rats were divided into two groups; control group (n=10); mediastinoscopy alone, study group (n=10); mediastinoscopy and sodiumhyaluronate-carboxymethlycellulose film (Seprafilm®; Genzyme Corporation, Cambridge, Mass. USA). It was used to the mediastinal surface at the end of the surgical procedure in study group. Re-mediastinoscopy was performed after 7 days. Adhesion and vascularity grade description scores were analyzed. The parameters evaluated were presence of polymorhphonucleer leucocyte, macrophage, lymphocyte, fibroblasts, edema, neovascularisation, collagenisation, and foreing body reaction. All the rats survived uneventfully until being sacrificed without any postoperative complications. The mean adhesion score was found to be significantly higher in control group (n=2.5±0.5) compared with study group (n=1.0±0.1) (P=0.007). Vascularity grade description score was significantly higher in control group (n=2.3±0.6) than in study group (n=1.4±0.6) (P=0.009). There were no statistical differences between the groups with regard to edema, lymphocyte and macrophage infiltration, fibroblast proliferation and foreign body reactions (P>0.05). The used of Seprafilm® during the primary procedure can reduce to the mediastinal adhesions. However, further studies are required to assess the precise impact of the anti-adhesive agents on adhesion.

  19. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria

    International Nuclear Information System (INIS)

    Lee, Kang Kwang; Shimoji, Manami; Hossain, Quazi Sohel; Sunakawa, Hajime; Aniya, Yoko

    2008-01-01

    Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and about its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore

  20. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  1. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl₄-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarhadi Kholari

    2016-11-01

    Full Text Available Cirrhosis is the consequence of chronic liver disease. Deleterious effects of oxidative stress on hepatocytes may be reflected in the erythrocyte membrane. Naltrexone (NTX has been shown to attenuate hepatocellular injury in fibrotic animal models. The aim of this study was to investigate the progressive effect of CCl4 on the liver and whether the improvement of liver cirrhosis can be monitored through alterations in the erythrocyte membrane. In this study, 84 male Wistar rats were divided into 4 groups and received reagents (i.p. as follows: 1- CCl₄, 2- NTX + CCl₄, 3- Mineral Oil (M, and 4- NTX + M. After 2, 6 and 8 weeks, the blood and liver tissue samples were collected. Plasma enzyme activities, the content of erythrocyte GSH and some membrane compositions, including protein carbonyl, protein sulfhydryl, and malondialdehyde were assessed. After 6 and 8 weeks, plasma enzyme activities and the content of protein carbonyl were higher in CCl4 group significantly, as compared to other groups (P<0.001. NTX significantly diminished protein carbonyl and plasma enzyme activities (P<0.001. GSH did not change until the 6th week. However, CCl4+NTX increased it significantly as compared to CCl₄ group (P<0.05. Protein sulfhydryl showed changes in NTX+CCl₄ group which indicated a significant increase in protein sulfhydryl content in a 6th week compared to CCl4 group (P<0.05. MDA did not show any significant alteration. CCl₄-induced cirrhosis is accompanied by increased content of oxidative stress markers, especially protein carbonyl of RBC membrane and plasma enzyme activities. This study shows that the progression of liver cirrhosis and the ameliorative effect of NTX can be followed through alterations of these markers.

  2. Acetaminophen influence on change of endogenous intoxication indices status of plasmatic membranes in rats with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-08-01

    Full Text Available Introduction: Accumulation of excessive amounts of exo- and endotoxins in the body leads to the inevitable occurrence endogenous intoxication. This status is accompanied by a different type of inflammatory processes in the tissues. Middle mass molecules are products of catabolism of endo- and exogenous proteins. Separate fractions of middle molecular peptides have neurotoxic activity, change the membranes permeability, disturb the sodium-potassium balance, transport amino acids, creatinine excretion, protein biosynthesis, tissue respiration, cause microcirculation disorders, and have cytotoxic activity. Transaminases are enzymes that catalyze biochemical reactions progress. Aminotransferases influence on reaction of the formation and decomposition of amino acids and carbohydrates. The aim of the study: The aim of our work was to study endogenous intoxication and status of plasmatic membranes in animals with type 2 diabetes mellitus and acetaminophen toxic lesions. Research materials and methods: We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given. Non-genetic form of experimental type 2 diabetes mellitus was modeled by a single intraperitoneal administration of streptozotocin solution in doses 65 mg/kg, which was diluted by citrate buffer (pH 4.5 with the previous intraperitoneal nicotinamide administration in doses of 230 mg/kg. Rats, which were given the same amount of solvent (citrate buffer pH 4.5, were used as the control group. Results and discussion: Content of middle mass molecules and erythrocyte intoxication index were determined for research of endogenous intoxication status of rats with type 2 diabetes at single administration of acetaminophen. The experimental

  3. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  4. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics.

    Science.gov (United States)

    Mitchell, Todd W; Buffenstein, Rochelle; Hulbert, A J

    2007-11-01

    Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

  5. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    International Nuclear Information System (INIS)

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M.

    1989-01-01

    In the present study, the binding of a highly A2-selective agonist radioligand, [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) is described. [3H]CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that [3H]CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. [3H]CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM [3H]CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of [3H]CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine

  6. Rat behaviour reactions and brain synaptic membrane lipids under the chronical gamma-irradiation

    International Nuclear Information System (INIS)

    Semenova, T.P.; Medvinskaya, N.I.; Potekhina, N.I.; Kolomijtseva, I.K.

    1997-01-01

    The effects of low level chronical ionising irradiation (12.9 cGy/day on the sensory attention to the stimuli of different modalities (somatosensor, visual, odor) of Wistar rats were studied. Analysis of animals behaviour was made after they had received the different doses of irradiation: 4, 6, 8, 10, 15 and 20 Gy. It was founded, that the attention and exploratory activity of rats is significantly decreased up to 20-30% after 4-6 Gy. The irradiation doses 8 Gy did not change animal behaviour as compared to control animals, but doses 10, 15 and 20 Gy decreased the exploratory activity as well as sensory attention of rats to 3-5-times as compared to previous dose. Such a wave-like way of behaviour reflects the functioning of an adaptive mechanism. Biochemical data indicated that after 5 months of the irradiation (dose 20 Gy) the level of phospholipids, lysophosphatidylcholine, phosphatdylethanolamine, phosphatidylcholine, cholesterol were decreased

  7. Inhibition of [3H]-dihydroalprenolol binding to rat cardiac membranes by various β-blocking agents

    International Nuclear Information System (INIS)

    Chenieux-Guicheney, P.; Dausse, J.P.; Meyer, P.; Schmitt, H.

    1978-01-01

    Binding of [ 3 H]-dihydroalprenolol ([ 3 H]-DHA) to rat cardiac membranes was rapid and reversible (k 1 = 0.633 to 0.701 x 10 6 M -1 s -1 and ksub(-1) = 0.0017 to 0.0043 s -1 ). [ 3 H]-DHA bound to a single class of binding sites with an equilibrium dissociation constant (Ksub(d25 0 C) of 5.7 +- 1.1 x 10 -9 M. This binding was specific and the order of potency of adrenoceptor agonists in competing for the binding sites was (-)-isoproterenol > (+-)-isoproterenol >(+)-isoproterenol > (-)-adrenaline > (-)-noradrenaline. This was in agreement with the β 1 nature of the cardiac β-receptors. Cardioselective β-blockers (i.e. metoprolol, acebutolol and practolol) were shown to have lower binding site affinities, when compared to other blockers. This may be related to steric hindrance by the side-chain at the aromatic end of these molecules. (author)

  8. Enzymatic conversion of bilirubin monoglucuronide to diglucuronide by rat liver plasma membranes

    NARCIS (Netherlands)

    Jansen, P. L.; Chowdhury, J. R.; Fischberg, E. B.; Arias, I. M.

    1977-01-01

    Formation of bilirubin monoglucuronide from unconjugated bilirubin requires a microsomal enzyme, UDP-glucuronate glucuronyltransferase (EC 2.4.1.17). Conversion of bilirubin monoglucuronide to bilirubin diglucuronide, the major bilirubin conjugate in bile, was studied in subcellular fractions of rat

  9. Functional activity of Gi alpha protein in detergent resistant membrane domains from rat brain cortex

    Czech Academy of Sciences Publication Activity Database

    Stöhr, Jiří; Rudajev, Vladimír; Bouřová, Lenka; Lisý, Václav; Novotný, Jiří; Svoboda, Petr

    2007-01-01

    Roč. 101, Suppl.1 (2007), s. 52-52 ISSN 0022-3042. [European Society for Neurochemistry Meeting /17./. 19.05.2007-22.05.2007, Salamanca] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * GABAB receptor * Gi protein * membrane domains Subject RIV: ED - Physiology

  10. Dietary fatty acids alter blood pressure, behavior and brain membrane composition of hypertensive rats

    NARCIS (Netherlands)

    de Wilde, MC; Hogyes, E; Kiliaan, AJ; Farkas, T; Luiten, PGM; Farkas, E; Wilde, Martijn C. de; Hőgyes, Endre; Kiliaan, Amanda J.

    2003-01-01

    The beneficial effect of dietary n-3 polyunsaturated fatty acids (PUFAs) on developing hypertension has been repeatedly demonstrated. However. related changes in brain membrane composition and its cognitive correlates have remained unclear. Our study aimed at a comprehensive analysis of behavior and

  11. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats. An application of the capillary membrane-limited model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1987-07-01

    In order to simulate the distribution and elimination of radioiodinated human beta-endorphin (/sup 125/I-beta-EP) after iv bolus injection in rats, we proposed a physiologically based pharmacokinetic model incorporating diffusional transport of /sup 125/I-beta-EP across the capillary membrane. This model assumes that the distribution of /sup 125/I-beta-EP is restricted only within the blood and the tissue interstitial fluid, and that a diffusional barrier across the capillary membrane exists in each tissue except the liver. The tissue-to-blood partition coefficients were estimated from the ratios of the concentration in tissues to that in arterial plasma at the terminal (pseudoequilibrium) phase. The total body plasma clearance (9.0 ml/min/kg) was appropriately assigned to the liver and kidney. The transcapillary diffusion clearances of /sup 125/I-beta-EP were also estimated and shown to correlate linearly with that of inulin in several tissues. Numerically solving the mass-balance differential equations as to plasma and each tissue simultaneously, simulated concentration curves of /sup 125/I-beta-EP corresponded well with the observed data. It was suggested by the simulation that the initial rapid disappearance of /sup 125/I-beta-EP from plasma after iv injection could be attributed in part to the transcapillary diffusion of the peptide.

  12. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves.

    Science.gov (United States)

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O

    2016-01-01

    Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg(2+) ATPase activity and a nonsignificant increase in Na(+)/K(+) ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose through the glycolytic pathway. We noted weight loss and

  13. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment.

    Science.gov (United States)

    Nora, Gerald J; Harun, Rashed; Fine, David F; Hutchison, Daniel; Grobart, Adam C; Stezoski, Jason P; Munoz, Miranda J; Kochanek, Patrick M; Leak, Rehana K; Drabek, Tomas; Wagner, Amy K

    2017-07-01

    Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (V max ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str V max in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions. © 2017 International Society for Neurochemistry.

  14. Prolonged striatal disinhibition as a chronic animal model of tic disorders.

    Science.gov (United States)

    Vinner, Esther; Israelashvili, Michal; Bar-Gad, Izhar

    2017-12-01

    Experimental findings and theoretical models have associated Tourette syndrome with abnormal striatal inhibition. The expression of tics, the hallmark symptom of this disorder, has been transiently induced in non-human primates and rodents by the injection of GABA A antagonists into the striatum, leading to temporary disinhibition. The novel chronic model of tic expression utilizes mini-osmotic pumps implanted subcutaneously in the rat's back for prolonged infusion of bicuculline into the dorsolateral striatum. Tics were expressed on the contralateral side to the infusion over a period of multiple days. Tic expression was stable, and maintained similar properties throughout the infusion period. Electrophysiological recordings revealed the existence of tic-related local field potential spikes and individual neuron activity changes that remained stable throughout the infusion period. The striatal disinhibition model provides a unique combination of face validity (tic expression) and construct validity (abnormal striatal inhibition) but is limited to sub-hour periods. The new chronic model extends the period of tic expression to multiple days and thus enables the study of tic dynamics and the effects of behavior and pharmacological agents on tic expression. The chronic model provides similar behavioral and neuronal correlates of tics as the acute striatal disinhibition model but over prolonged periods of time, thus providing a unique, basal ganglia initiated model of tic expression. Chronic expression of symptoms is the key to studying the time varying properties of Tourette syndrome and the effects of multiple internal and external factors on this disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    Science.gov (United States)

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection. © 2014 Wiley Periodicals, Inc.

  16. Photoaffinity labeling of opiate (enkephalin) receptor of rat brain plasma membranes with 125I(D-Ala2, p-N3-Phe4-Met5)-enkephalin

    International Nuclear Information System (INIS)

    Yeung, C.W.T.

    1986-01-01

    A photoreactive (D-Ala 2 , p-N 3 -Phe 4 -Met 5 )enkephalin derivative was prepared, iodinated with carrier free 125 I and then purified by high performance liquid chromatography. The purified radioactive photoprobe was monoiodinated at the amino terminal tyrosine residue. This radioactive photoprobe was used to photoaffinity label plasma membranes prepared from rat brain, spinal cord and cerebellum. The photolabeled plasma membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 46,000-daltons band was specifically photolabeled in the plasma membranes of brain and spinal cord but not in the plasma membranes from cerebellum. The photolabeling of this band was inhibited by peptides related to enkephalin by not but substance P or gastrin tetrapeptide. These data demonstrate that the labeled 46,000-daltons band is a protein of the opiate (enkephalin)receptor

  17. Effect of long-term propranolol administration on specific binding of 3H-WB-4101 with rat mesenteric vascular membranes

    International Nuclear Information System (INIS)

    Ismailov, S.I.; Rozhanets, V.V.; Val'dman, A.V.

    1985-01-01

    The aim of this investigation was, first, to study the affinity of certain beta-adrenoblockers for specific binding sites of 3 H-WB-4101 (identifiable as alpha-adrenoreceptors) of brain membranes and, second, to study the characteristics of these same receptors in membranes of mesenteric vessels of rats during long-term administration of propranolol. Isotherms of specific binding, because of the limited quantity of vascular membranes, were determined by the use of three concentrations of 3 H-WB-4101: 0.1, 0.5, and 1.0 nM. It is shown that some beta-adrenoblockers have weak affinity for alpha-adrenoreceptors of brain synaptic membranes exhibited only when these compounds are present in relatively high concentrations. It is also shown that administration of propranolol for 15 days led to a significant decrease in affinity of the alpha-adrenorecptors for their specific antagonist WB-4101

  18. Effect of Kaiyu Qingwei Granule (开郁清胃颗粒) on Insulin Receptor in Liver and Skeletal Muscular Cell Membrane in Diabetes Mellitus Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-fang (柳红芳); TONG Xiao-lin(仝小林); WANG Qing-guo(王庆国); ZUO Ping-ping(左萍萍); GUO An-chen(郭安臣); LIU Hong-xing(刘红星)

    2003-01-01

    Objective: To investigate the effect of Kaiyu Qingwei granule (KYQWG,开郁清胃颗粒) on the insulin binding capacity of liver and skeletal muscular cell membrane and serum insulin-like growth factor-1 (IGF-1) in streptozotocin-induced diabetic rats. Methods:Rats in four experimental groups were investigated: the control group, the model group, the KYQWG group and the Metformin group. The insulin binding rate (IBR) of liver and skeletal muscular cell membrane was detected by receptor-ligand radiometric method and changes of serum levels of glucose, insulin and IGF-1 were observed before and after 4 weeks of medication. Results: The KYQWG group had a lower blood glucose level and IBR of liver and muscular cell membrane, as compared with those in the model group (P<0.01 or P<0.05), and a higher level of IGF-1 than that in the model group(P<0.01), but had no obvious changes in the serum level of insulin. Conclusion: KYQWG may increase the serum level of IGF-1 in diabetic rats, thus to decrease the insulin resistance at ante-receptor sites and improve the sugar metabolic disturbance in rats with diabetes mellitus.

  19. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of colchicine on rat small intestinal absorptive cells. II. Distribution of label after incorporation of [3H]fucose into plasma membrane glycoproteins

    International Nuclear Information System (INIS)

    Ellinger, A.; Pavelka, M.; Gangl, A.

    1983-01-01

    By means of radioautography the influence was tested of various periods (5, 15, 30, 40 min, 2 hr) of pretreatment with colchicine, administered intraperitoneally to rats at a dosage of 0.5 mg/100 g of body weight, on the intracellular pathway of [ 3 H]fucose in absorptive cells of the small intestine. Administration of colchicine for 30 min and longer time intervals causes delay in the insertion of [ 3 H]fucose into the oligosaccharide chains of glycoconjugates in the Golgi apparatus, and results in redistribution of the label apparent over the different portions of the plasma membrane. In controls, at 2 and 4 hr after administration of [ 3 H]fucose the apical plasma membrane is strongly labeled. Colchicine causes equalization of the reaction of apical and basolateral regions of the plasma membrane: the number of silver grains attributable to the apical plasma membrane is reduced; following treatment with colchicine, apical portions of the plasma membrane comprise 31.6 +/- 1.8% of the silver grains, 38.6 +/- 3.8% are attributable to basolateral membrane regions. The colchicine-induced equalization of the density of label of apical and basolateral regions of the plasma membrane, in addition to the occurrence of basolateral microvillus borders, suggests microtubules to be important in the maintenance of the polar organization of small intestinal absorptive cells

  1. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    Directory of Open Access Journals (Sweden)

    Nimgampalle Mallikarjuna

    2016-12-01

    Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20% in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration.

  2. Characterization of [(3)H]harmane binding to rat whole brain membranes.

    Science.gov (United States)

    Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L

    2003-12-01

    This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.

  3. Structure of the vitreoretinal border region in spontaneously hypertensive rats (SHR rats)

    DEFF Research Database (Denmark)

    Heegaard, Steffen

    1993-01-01

    Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure......Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure...

  4. Comparison of high affinity binding of 3H-proadifen and 3H-(-)-cocaine t rat liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1995-01-01

    The characteristics of the binding of 3 H-proadifen to rat liver membranes were studied and compared to those of 3 H-cocaine. It was found that 3 H-proadifen was bound reversibly with high affinity (K D =1.8±0.5 nM) and large capacity (B max =2010±340 pmol/g wet tissue) to liver membranes. The corresponding values for the 3 H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of 3 H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 μM CdCl 2 in the incubation buffer it was possible to differentiate between two 3 H-cocaine binding sites with K d values of 1.6 and 7.7 nM and B max values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of 3 H-proadifen and 3 H-cocaine inhibited the binding of 3 H-proadifen (IC 50 =10 nM) and proadifen that of 3 H-cocaine (IC 50 =1 nM). There was a high correlation coefficient (r r =0.972; P 50 =100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl 2 , ZnCl 2 and CuCl 2 inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd 2+ on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15μM. The similarity of the characteristics of the binding of these ligands with that of 3 H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.)

  5. Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal myotubes

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1988-01-01

    The purpose of this study was to characterize the effects of thyroid hormone on the Na-K pump and resting membrane potential (EM) of rat skeletal myotubes in culture. Myotubes were obtained from fetal (19-21 day) or neonatal rats (1-2 day) by serial trypsinization and maintained in culture for up to 10 days. Cells were treated with T4 or T3 on day 6 or 7, and measurements were made of EM, [ 3 H]ouabain binding, and ouabain-sensitive 86 Rb uptake at various times thereafter. Hormone treatment increased the values of all three variables within 24 h, plateau levels being attained by 48-72 h. Cycloheximide and actinomycin D totally blocked the effects of thyroid hormone when added together to the cells, thus suggesting that protein synthesis is necessary for the effects of these hormones. Scatchard analysis showed that the new receptors have lower ouabain affinity than those in control. Blockade of spontaneously occurring action potentials with tetrodotoxin, which blocks voltage-dependent Na channels, or Na/H antiporter with amiloride, abolished the hormone effects seen after 24 h and significantly reduced those obtained after 48 h of hormone treatment. The results demonstrate that thyroid hormone-induced increased amount and activity of the electrogenic Na-K pump in cultured myotubes occurs, at least in part, in response to an initial effect to increase Na influx. Moreover, the findings are consistent with the concept that the Na-K pump plays an important role in regulation of EM in this preparation

  6. Proteomic analysis of post-nuclear supernatant fraction and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Eckhardt, Adam; Kagan, Dmytro; Roubalová, Lenka; Svoboda, Petr

    2014-01-01

    Roč. 12, Feb 14 (2014), s. 11 ISSN 1477-5956 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : morphine * long-term exposure * rat brain cortex * isolated plasma membranes * post-nuclear supernatant * 2D electrophoresis Subject RIV: CE - Biochemistry Impact factor: 1.725, year: 2014

  7. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats

    Directory of Open Access Journals (Sweden)

    L.M. Zanatta

    2001-10-01

    Full Text Available The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10% in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27% in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group. When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80% occurring at 0.5 mM. We suggest that a imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.

  10. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  11. Haloperidol Selectively Remodels Striatal Indirect Pathway Circuits

    Science.gov (United States)

    Sebel, Luke E; Graves, Steven M; Chan, C Savio; Surmeier, D James

    2017-01-01

    Typical antipsychotic drugs are widely thought to alleviate the positive symptoms of schizophrenia by antagonizing dopamine D2 receptors expressed by striatal spiny projection neurons (SPNs). What is less clear is why antipsychotics have a therapeutic latency of weeks. Using a combination of physiological and anatomical approaches in ex vivo brain slices from transgenic mice, it was found that 2 weeks of haloperidol treatment induced both intrinsic and synaptic adaptations specifically within indirect pathway SPNs (iSPNs). Perphenazine treatment had similar effects. Some of these adaptations were homeostatic, including a drop in intrinsic excitability and pruning of excitatory corticostriatal glutamatergic synapses. However, haloperidol treatment also led to strengthening of a subset of excitatory corticostriatal synapses. This slow remodeling of corticostriatal iSPN circuitry is likely to play a role in mediating the delayed therapeutic action of neuroleptics. PMID:27577602

  12. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations.

    Science.gov (United States)

    Sharott, Andrew; Vinciati, Federica; Nakamura, Kouichi C; Magill, Peter J

    2017-10-11

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine

  13. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.

  14. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    Science.gov (United States)

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Striatal dysfunction in attention deficit and hyperkinetic disorder

    International Nuclear Information System (INIS)

    Lou, H.C.; Henriksen, L.; Bruhn, P.; Borner, H.; Nielsen, J.B.

    1989-01-01

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHD with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD

  16. Assessment of striatal & postural deformities in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sanjay Pandey

    2016-01-01

    Interpretation & conclusions: Our results showed that striatal and postural deformities were common and present in about half of the patients with PD. These deformities we more common in patients with advanced stage of PD.

  17. Striatal dysfunction in attention deficit and hyperkinetic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lou, H.C.; Henriksen, L.; Bruhn, P.; Borner, H.; Nielsen, J.B.

    1989-01-01

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHD with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.

  18. Prefrontal cortex and striatal activation by feedback in Parkinson's disease

    NARCIS (Netherlands)

    Keitz, Martijn; Koerts, Janneke; Kortekaas, Rudie; Renken, Remco; de Jong, Bauke M.; Leenders, Klaus L.

    2008-01-01

    Positive feedbacks reinforce goal-directed behavior and evoke pleasure. in Parkinson's disease (PD) the striatal dysfunction impairs motor performance, but also may lead to decreased positive feedback (reward) processing. This study investigates two types of positive feedback processing (monetary

  19. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616

  20. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Directory of Open Access Journals (Sweden)

    Jolanta Sroka

    Full Text Available The endogenous electric field (EF may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC and lamellipodia forming (LC WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm. The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes than LC cells (30 minutes. We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  1. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  2. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    Science.gov (United States)

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  3. Global actions of nicotine on the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Victor E Plata

    2013-11-01

    Full Text Available The question to solve in the present work is: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA, the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

  4. Global actions of nicotine on the striatal microcircuit.

    Science.gov (United States)

    Plata, Víctor; Duhne, Mariana; Pérez-Ortega, Jesús; Hernández-Martinez, Ricardo; Rueda-Orozco, Pavel; Galarraga, Elvira; Drucker-Colín, René; Bargas, José

    2013-01-01

    what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

  5. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats

    Science.gov (United States)

    Joy, Anita

    2014-01-01

    Purpose Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. Methods Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy+/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, β integrin, vinculin, and cell nuclei. Results At 2–3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however β integrin distribution was altered as compared to controls. By 4–6 weeks of age, F-actin was visible as bright foci arranged in a “rosette” pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. β integrin was initially distributed as punctuate spots at 2–3 weeks postnatal; however, by 4–6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and β integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7–8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1α, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-γ. Levels of IL-1α, IL-4, TNF, and IFN-γ demonstrated a similar pattern, with concentrations increasing from 2 to 6

  6. 5'-nucleotidase and protein kinase activity of plasmatic membrane and 5'-nucleotidase activity of liver homogenate in the third and fourth rat generations born in the Chernobyl accident zone

    International Nuclear Information System (INIS)

    Bezdrobnij, Yu.V.; Serkyiz, Ya.Yi.; Bozhok, O.V.; Yindik, V.M.

    1994-01-01

    The decrease of plasmatic membrane protein kinase activity of 3 - month rat liver was revealed in animals that have been born and kept in the Chernobyl accident zone during three and four generations. Erythrocyte ghost protein kinase activity from those animals was decreased too. 5'-nucleotidase activity in membranes and in homogenates was increased in the third and decreased in the fourth generation. In 6 month rats of the fourth generation in comparison with 3 month rats of this generation plasmatic membrane protein kinase and 5'-nucleotidase activities did not change but 5'nucleotidase activity of homogenate was increased (to control level). The plasmatic membrane protein kinase activity has been supposed to serve as a bio indicator of ionising irradiation at low dose rate

  7. Effects of thyroid status on presynaptic. cap alpha. 2-adrenoceptor and. beta. -adrenoceptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Atterwill, C.K.; Bunn, S.J.; Atkinson, D.J. (Development Neurobiology Unit, London (UK). Inst. of Neurology); Smith, S.L.; Heal, D.J. (Radcliffe Infirmary, Oxford (UK))

    1984-01-01

    The effect of thyroid status on noradrenergic synaptic function in the mature brain was examined by measuring presynaptic ..cap alpha..2- and postsynaptic ..beta..-adrenoceptors. Repeated triiodothyronine (T/sub 3/) administration to rats (100..mu..g/kg x 14 days hyperthyroid) caused an 18% increase in striatal ..beta..-adrenoceptors as shown by (/sup 3/H)-dihydroalprenolol binding with no change in membranes from cerebral cortex or hypothalamus. In contrast, hypothyroidism (propylthiouracil, PTU x 14 days) produced significant 12% and 30% reductions in striatal and hypothalamic ..beta..-adrenoceptors respectively with no change in the cerebral cortex. Presynaptic ..cap alpha..2-adrenoceptor function was measured in the two dysthyroid states using the clonidine-induced hypoactivity model. Experimental hyperthyroidism increased the degree of clonidine-induced hypoactivity, and suggests increased presynaptic ..cap alpha..2-adrenoceptor function compared with control rats, whereas hypothyroidism suppressed presynaptic ..cap alpha..2-adrenoceptor function. These results show firstly that changes of thyroid status in the mature rat may produce homeostatic alterations at central noradrenergic synapses as reflected by changes in pre- and postsynaptic adrenoceptor function. Secondly, there appear to be T/sub 3/-induced changes in ..beta..-adrenoceptors in the striatum where changes in dopaminergic neuronal activity have previously been demonstrated.

  8. Effects of thyroid status on presynaptic α2-adrenoceptor and β-adrenoceptor binding in the rat brain

    International Nuclear Information System (INIS)

    Atterwill, C.K.; Bunn, S.J.; Atkinson, D.J.

    1984-01-01

    The effect of thyroid status on noradrenergic synaptic function in the mature brain was examined by measuring presynaptic α2- and postsynaptic β-adrenoceptors. Repeated triiodothyronine (T 3 ) administration to rats (100μg/kg X 14 days hyperthyroid) caused an 18% increase in striatal β-adrenoceptors as shown by [ 3 H]-dihydroalprenolol binding with no change in membranes from cerebral cortex or hypothalamus. In contrast, hypothyroidism (propylthiouracil, PTU X 14 days) produced significant 12% and 30% reductions in striatal and hypothalamic β-adrenoceptors respectively with no change in the cerebral cortex. Presynaptic α2-adrenoceptor function was measured in the two dysthyroid states using the clonidine-induced hypoactivity model. Experimtal hyperthyroidism increased the degree of clonidine-induced hypoactivity, and suggests increased presynaptic α2-adrenoceptor function compared with control rats, whereas hypothyroidism suppressed presynaptic α2-adrenoceptor function. These results show firstly that changes of thyroid status in the mature rat may produce homeostatic alterations at central noradrenergic synapses as reflected by changes in pre- and postsynaptic adrenoceptor function. Secondly, there appear to be T 3 -induced changes in β-adrenoceptors in the striatum where changes in dopaminergic neuronal activity have previously been demonstrated. (Author)

  9. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    International Nuclear Information System (INIS)

    Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L.

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[ 35 S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates

  10. Further characterization of cadmium uptake by rat liver sinusoidal plasma membrane vesicles as a carrier mediated process

    International Nuclear Information System (INIS)

    Eastman, H.B.; Frazier, J.M.

    1990-01-01

    Previously we have reported that cadmium (Cd) transport by rat hepatic sinusoidal plasma membrane vesicles (SPMV's) occurs by both carrier mediated process and simple diffusion. This study was undertaken in order to further characterize the carrier mediated component of Cd transport as a carrier mediated process. Efflux of Cd from SPMV's was measured by first loading the vesicles with 1 μM Cd, containing 109 Cd (Amersham, 0.25 mCi/ml, carrier free) as a tracer, and then diluting the vesicles 1 to 5 into efflux buffer containing 0.25 M sucrose, 150 mM NaCl and 50 mM Tris/HCl (pH 7.4). Under standard conditions, no efflux of Cd from the vesicles was observed. However, the presence of 4mM CdCl 2 or 4.0% BSA in the efflux buffer was able to release 109 Cd from the vesicles. When the vesicles were lysed with 0.1% Triton X-100, approximately 75% of the internalized Cd could be released from the vesicles. Efflux of Cd from the vesicles was also determined to be a temperature dependent process. At 0 C the efflux of Cd from the vesicles, in the presence of a 4 mM CdCl 2 or 4.0% BSA chase, was blocked. The specificity of the carrier mediated component of Cd transport for Cd was investigated by determining whether other metals could compete for Cd uptake. Zinc was a competitive inhibitor of the carrier mediated component of Cd uptake while calcium had no effect on Cd uptake. Using this system, we have demonstrated that one component of Cd transport exhibits the basic characteristics of a carrier mediated process: saturation, reversibility, specificity and temperature dependence

  11. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats ( Rattus norvegicus ) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  12. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  13. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  14. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  15. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.

    Science.gov (United States)

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-12-01

    Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding.

  16. [Physiological prion and activity of plasma membrane Na+,K(+)- and Ca(2+)-ATPase in the medulla oblongata cells of rats of different ages].

    Science.gov (United States)

    Kushkevych, M V; Vlizlo, V V; Martyn, Iu V

    2013-01-01

    Based on the results of immunohistochemical analysis of the rat medulla tissue the localization of physiological prion has been established. Specifically, in rats aged one month they are placed in the gray matter near the bodies of neurons and mikrohliocytes and in animals of six and thirty months--in olive kernel core and upward path bodies. Physiological prion is localized along the nerve processes and is absent in the neuron bodies. In the medulla oblongata of animals aged six months its amount is the highest compared to animals of other age. The activity of plasma membrane ATPases in this tissue decreases with age, the content of sodium and calcium ions increases, while that of potassium is almost unchanged.

  17. Physiological prion and activity of plasma membrane Na(+,K(+- and Ca(2+-ATPase in the medulla oblongata of rats of different ages

    Directory of Open Access Journals (Sweden)

    M. V. Kushkevych

    2013-04-01

    Full Text Available Based on the results of immunohistochemical analysis of the rat medulla tissue the localization of physiological prion has been established. Specifically, in rats aged one month they are placed in the gray matter near the bodies of neurons and mikrohliocytes and in animals of six and thirty months – in olive kernel core and upward path bodies. Physiological prion is localized along the nerve processes and is absent in the neuron bodies­. In the medulla oblongata of animals aged six months its amount is the highest compared to animals of other age. The activity of plasma membrane ATPases in this tissue decreases with age, the content of sodium and calcium ions increases, while that of potassium is almost unchanged.

  18. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    Science.gov (United States)

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  19. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy.

    Science.gov (United States)

    Zhou, Weiyan; Wang, Hongya; Yu, Wenzhen; Xie, Wankun; Zhao, Min; Huang, Lvzhen; Li, Xiaoxin

    2017-01-01

    The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic

  20. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  1. Correction of enhanced Na(+)-H+ exchange of rat small intestinal brush-border membranes in streptozotocin-induced diabetes by insulin or 1,25-dihydroxycholecalciferol

    International Nuclear Information System (INIS)

    Dudeja, P.K.; Wali, R.K.; Klitzke, A.; Sitrin, M.D.; Brasitus, T.A.

    1991-01-01

    Diabetes was induced in rats by administration of a single i.p. injection of streptozotocin (50 mg/kg body wt). After 7 d, diabetic rats were further treated with insulin or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] for an additional 5-7 d. Control, diabetic, diabetic + insulin, and diabetic + 1,25(OH)2D3 rats were then killed, their proximal small intestines were removed, and villus-tip epithelial cells were isolated and used to prepare brush-border membrane vesicles. Preparations from each of these groups were then analyzed and compared with respect to their amiloride-sensitive, electroneutral Na(+)-H+ exchange activity, using 22 Na uptake as well as acridine orange techniques. The results of these experiments demonstrated that (a) H+ gradient-dependent 22 Na uptake as well as Na+ gradient-dependent transmembrane H+ fluxes were significantly increased in diabetic vesicles compared to their control counterparts, (b) kinetic studies demonstrated that this enhanced 22 Na uptake in diabetes was a result of increased maximal velocity (Vmax) of this exchanger with no change in apparent affinity (Km) for Na+, (c) serum levels of 1,25(OH)2D3 were significantly lower in diabetic animals compared with their control counterparts; and (d) insulin or 1,25(OH)2D3 treatment restored the Vmax alterations to control values, without any significant changes in Km, concomitant with significantly increasing the serum levels of 1,25(OH)2D3 in diabetic animals. These results indicate that Na(+)-H+ activity is significantly increased in proximal small intestinal luminal membranes of streptozotocin-induced diabetic rats. Moreover, alterations in the serum levels of 1,25(OH)2D3 may, at least in part, explain this enhanced antiporter activity and its correction by insulin

  2. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Li, Xuanwen; Xie, Chunliang; Jin, Qihui; Liu, Mingjun; He, Quanyuan; Cao, Rui; Lin, Yong; Li, Jianglin; Li, Yan; Chen, Ping; Liang, Songping

    2009-07-01

    Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.

  3. Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes: comparison of neural differentiation of rat AdMSCs and BMSCs

    International Nuclear Information System (INIS)

    Çapkın, Merve; Gümüşderelioğlu, Menemşe; Çakmak, Soner; Kurt, Feyzan Özdal; Şen, B Hakan; Türk, B Tuğba; Deliloğlu-Gürhan, S İsmet

    2012-01-01

    In this study, the aligned (A) and randomly oriented (R) polycaprolactone (PCL-A and PCL-R) and PCL/collagen (PCL/Col-A and PCL/Col-R) nanofibers were electrospun onto smooth PCL membranes (PCLMs) prepared by solvent casting. In order to investigate the effects of chemical composition and nanotopography of fibrous surfaces on proliferation and on neural differentiation of mesenchymal stem cells (MSCs), adipose and bone marrow-derived rat MSCs (AdMSCs and BMSCs) were cultivated in suitable media i.e. inducing medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), and cell maintenance medium (CMM). BMSCs adhered and proliferated on all nanofibrous membranes more efficiently than AdMSCs. PCL/Col-A was found as the most convenient surface supporting proliferation in both cell types. Immunofluorescence staining indicated that BMSCs and AdMSCs are prone for differentiation to oligodendrocytes more than they differentiate to other neuronal cell types. PCL-A nanofibrous membranes supported differentiation of MSCs to O4 + (an oligodendrocytes surface antigen) cells in both culture media. The intensity of immunoreactivity of O4 + cells differentiated from BMSCs on PCL-A was highest when compared with the other groups (p + cells. In conclusion, this study can be evaluated to establish the cell therapy strategies in neurodegenerative disorders, which are relevant to oligodendrocyte abstinence using BMSCs or AdMSCs on aligned nanofibrous membranes. (paper)

  4. Loss of Balance between Striatal Feedforward Inhibition and Corticostriatal Excitation Leads to Tremor.

    Science.gov (United States)

    Oran, Yael; Bar-Gad, Izhar

    2018-02-14

    Fast-spiking interneurons (FSIs) exert powerful inhibitory control over the striatum and are hypothesized to balance the massive excitatory cortical and thalamic input to this structure. We recorded neuronal activity in the dorsolateral striatum and globus pallidus (GP) concurrently with the detailed movement kinematics of freely behaving female rats before and after selective inhibition of FSI activity using IEM-1460 microinjections. The inhibition led to the appearance of episodic rest tremor in the body part that depended on the somatotopic location of the injection within the striatum. The tremor was accompanied by coherent oscillations in the local field potential (LFP). Individual neuron activity patterns became oscillatory and coherent in the tremor frequency. Striatal neurons, but not GP neurons, displayed additional temporal, nonoscillatory correlations. The subsequent reduction in the corticostriatal input following muscimol injection to the corresponding somatotopic location in the primary motor cortex led to disruption of the tremor and a reduction of the LFP oscillations and individual neuron's phase-locked activity. The breakdown of the normal balance of excitation and inhibition in the striatum has been shown previously to be related to different motor abnormalities. Our results further indicate that the balance between excitatory corticostriatal input and feedforward FSI inhibition is sufficient to break down the striatal decorrelation process and generate oscillations resulting in rest tremor typical of multiple basal ganglia disorders. SIGNIFICANCE STATEMENT Fast-spiking interneurons (FSIs) play a key role in normal striatal processing by exerting powerful inhibitory control over the network. FSI malfunctions have been associated with abnormal processing of information within the striatum that leads to multiple movement disorders. Here, we study the changes in neuronal activity and movement kinematics following selective inhibition of these

  5. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  6. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  7. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    International Nuclear Information System (INIS)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  8. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  9. Reduced striatal D2 receptor binding in myoclonus-dystonia

    International Nuclear Information System (INIS)

    Beukers, R.J.; Weisscher, N.; Tijssen, M.A.J.; Booij, J.; Zijlstra, F.; Amelsvoort, T.A.M.J. van

    2009-01-01

    To study striatal dopamine D 2 receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using 123 I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D 2 receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out. (orig.)

  10. Oral administration of thymoquinone mitigates the effect of cisplatin on brush border membrane enzymes, energy metabolism and antioxidant system in rat intestine.

    Science.gov (United States)

    Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah

    2017-10-01

    Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. No association between striatal dopamine transporter binding and body mass index

    DEFF Research Database (Denmark)

    van de Giessen, Elsmarieke; Hesse, Swen; Caan, Matthan W A

    2013-01-01

    Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine...... transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated....

  12. Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: A comparison between endogenous vs exogenous substrate pools

    International Nuclear Information System (INIS)

    Navidi, M.; MacQuarrie, R.A.; Sun, G.Y.

    1990-01-01

    The metabolism of phosphatidylinositols (PI) labeled with [14C]arachidonic acid within plasma membranes or synaptosomes was compared to the metabolism of PI prelabeled with [14C]arachidonic acid and added exogenously to the same membranes. Incubation of membranes containing the endogenously-labeled PI pool in the presence of Ca2+ resulted in the release of labeled arachidonic acid, as well as a small amount of labeled diacylglycerol. Labeled arachidonic acid was effectively reutilized and returned to the membrane phospholipids in the presence of adenosine triphosphate (ATP), CoA, and lysoPI. Although Ca2+ promoted the release of labeled diacylglycerol from prelabeled plasma membranes, this amount was only 17% of the maximal release, i.e., release in the presence of deoxycholate and Ca2+. This latter condition is known to fully activate the PI-phospholipase C, and incubation of prelabeled plasma membranes resulted in a six-fold increase in labeled diacylglycerols. On the other hand, when exogenously labeled PI were incubated with plasma membranes in the presence of Ca2+, the labeled diacylglycerols released were 59% of that compared to the fully activated condition. The phospholipase C action was calcium-dependent, regardless of whether exogenous or endogenous substrates were used in the incubation. In contrast to plasma membranes, intact synaptosomes had limited ability to metabolize exogenous PI even in the presence of Ca2+, although the activity of phospholipase C was similar to that in the plasma membranes when assayed in the presence of deoxycholate and Ca2+. These results suggest that discrete pools of PI are present in plasma membranes, and that the pool associated with the acyltransferase is apparently not readily accessible to hydrolysis by phospholipase C

  13. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.

    Science.gov (United States)

    Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun

    2017-06-30

    Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

  14. Dysregulation of striatal projection neurons in Parkinson's disease.

    Science.gov (United States)

    Beck, Goichi; Singh, Arun; Papa, Stella M

    2018-03-01

    The loss of nigrostriatal dopamine (DA) is the primary cause of motor dysfunction in Parkinson's disease (PD), but the underlying striatal mechanisms remain unclear. In spite of abundant literature portraying structural, biochemical and plasticity changes of striatal projection neurons (SPNs), in the past there has been a data vacuum from the natural human disease and its close model in non-human primates. Recently, single-cell recordings in advanced parkinsonian primates have generated new insights into the altered function of SPNs. Currently, there are also human data that provide direct evidence of profoundly dysregulated SPN activity in PD. Here, we review primate recordings that are impacting our understanding of the striatal dysfunction after DA loss, particularly through the analysis of physiologic correlates of parkinsonian motor behaviors. In contrast to recordings in rodents, data obtained in primates and patients demonstrate similar major abnormalities of the spontaneous SPN firing in the alert parkinsonian state. Furthermore, these studies also show altered SPN responses to DA replacement in the advanced parkinsonian state. Clearly, there is yet much to learn about the striatal discharges in PD, but studies using primate models are contributing unique information to advance our understanding of pathophysiologic mechanisms.

  15. Striatal volume predicts level of video game skill acquisition.

    Science.gov (United States)

    Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2010-11-01

    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.

  16. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  17. [The influence of N-, S-containing chinasolone derivatives (NC-224) on the biochemical and physicochemical parameters of membrane endoplasmatic reticulum and nuclear chromatine fractions of rats liver cells in conditions of its injury by tetrachloromethane].

    Science.gov (United States)

    Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M

    2010-01-01

    Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.

  18. Characterization of high-affinity (/sup 3/H)ouabain binding in the rat central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Hauger, R.; Luu, H.M.; Meyer, D.K.; Goodwin, F.K.; Paul, S.M.

    1985-06-01

    The characteristics of (/sup 3/H)ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of high-affinity binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. (/sup 3/H)Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific (/sup 3/H)ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for (/sup 3/H)ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal (/sup 3/H)ouabain binding was examined. Kainic acid lesions of the striatum reduced (/sup 3/H)ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the high-affinity (/sup 3/H)ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of (/sup 3/H)ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.

  19. Isolation, purification, and partial characterization of a membrane-bound Cl-/HCO3--activated ATPase complex from rat brain with sensitivity to GABAAergic ligands.

    Science.gov (United States)

    Menzikov, Sergey A

    2017-02-07

    This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.

  20. Effect of secretin and inhibitors of HCO3-/H+ transport on the membrane voltage of rat pancreatic duct cells

    DEFF Research Database (Denmark)

    Novak, I; Pahl, C

    1993-01-01

    depolarized the basolateral membrane voltage, Vbl, by up to 35 mV (n = 37); a half-maximal response was obtained at 3 x 10(-11) mol/l. In unstimulated ducts a decrease in the luminal Cl- concentration (120 to 37 mmol/l) had a marginal effect on Vbl, but after maximal secretin stimulation it evoked a 14 +/- 2......), respectively. The fractional resistance of the basolateral membrane (FRbl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22 +/- 1 to 11 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)...

  1. (/sup 3/H)MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, E H; Knight, A R; Woodruff, G N

    1988-01-01

    The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist (/sup 3/H)MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of (/sup 3/H)MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. (/sup 3/H)MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated (/sup 3/H)MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by (/sup 3/H)TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-(/sup 3/H)SKF 10,047. (/sup 3/H)MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that (/sup 3/H)MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.

  2. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers.

    Science.gov (United States)

    Killinger, Bryan A; Moszczynska, Anna

    2016-02-01

    Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include

  3. Differential involvement of dopamine D-1 and D-2 receptors in the circling behaviour induced by apomorphine, SK & F 38393, pergolide and LY 171555 in 6-hydroxydopamine-lesioned rats.

    Science.gov (United States)

    Arnt, J; Hyttel, J

    1985-01-01

    The antagonistic effect of dopamine (DA) D-1 and D-2 antagonists against circling behaviour induced by various DA agonists in 6-OHDA-lesioned rats has been investigated. DA D-1/D-2 selectivity of agonists in vitro was measured by the stimulatory effect on DA-sensitive adenylate cyclase in rat striatal homogenates (D-1), the inhibitory effect on electrically-induced release of 3H-DA in rabbit striatal slices (D-2) and the affinity to 3H-piflutixol (D-1) and 3H-spiroperidol (D-2) binding sites in rat striatal membranes. The contralateral circling behaviour induced by the DA D-1 agonist SK & F 38393 was blocked by the DA D-1 antagonist, SCH 23390, and by the mixed DA D-1/D-2 antagonist cis(Z)-flupentixol, but was not influenced by the DA D-2 antagonists spiroperidol and clebopride. In contrast, circling behaviour induced by the preferential DA D-2 agonists pergolide and LY 171555 was blocked by clebopride, spiroperidol, and cis(Z)-flupentixol, but weakly or not influenced by SCH 23390. Apomorphine-induced circling behaviour was blocked by cis(Z)-flupentixol, partially antagonized by SCH 23390 and clebopride but not inhibited by spiroperidol, although the time-course of circling was changed. Combinations of SCH 23390 with spiroperidol or clebopride in low doses completely blocked the effect of apomorphine. These results indicate that DA D-1 and D-2 receptors mediate circling behaviour through separate mechanisms which can be independently manipulated with respective agonists and antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    Science.gov (United States)

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  5. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  6. 4-[[sup 123]I]iodospiperone as a ligand for dopamine DA receptors: in vitro and in vivo experiments in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Krogt, J.A. van der; Valkenburg, C F.M. van; Pauwels, E K.J.; Buruma, O J.S. [Rijksuniversiteit Leiden (Netherlands); Reiffers, S [Hospital De Weezenlanden, Zwolle (Netherlands); Doremalen, P.A.P.M. van; Wijnhoven, G [Cygne, Eindhoven (Netherlands)

    1992-10-01

    Radioiodinated spiperone is of interest for dopamine (DA) receptor studies in the living human brain by single photon emission computed tomography (SPECT). Simulated by data obtained with [[sup 11]C]-N-methyl-spiperone, we synthesized 4-[[sup 123]I]iodospiperone and investigated the in vitro binding characteristics of this ligand to the striatal membrane of the rat and the in vivo distribution over various rat brain regions. The in vitro binding experiments showed that this radioligand displays about 10 times less affinity for the DA receptor than spiperone and specific binding, as shown with [[sup 3]H]spiperone, was not observed. Displacement by butaclamol was not observed. The in vivo studies demonstrated that both 4-[[sup 123]I]iodospiperone and [[sup 3]H]spiperone concentrate in striatal tissue, respectively, 1.9 and 3.5 times as high as in cerebellar tissue. Haloperidol pretreatment largely prevented this accumulation. In view of the obtained target-to-non-target ratios we believe, however, that this accumulation in brain areas rich DA-receptors does not offer prospects for clinical receptor imaging with SPECT. (Author).

  7. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  8. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  9. Rat mesangial cells in vitro synthesize a spectrum of proteoglycan species including those of the basement membrane and interstitium

    DEFF Research Database (Denmark)

    Thomas, G J; Shewring, L; McCarthy, K J

    1995-01-01

    is localized in the mesangium but is not found in the pericapillary glomerular basement membrane (GBM). Further characterization of the proteoglycans synthesized by RMC in vitro revealed: (i) a second large CSPG, identified as versican; (ii) two small dermatan sulphate proteoglycans identified as biglycan...

  10. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R

    1990-01-01

    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec...

  11. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats

    Directory of Open Access Journals (Sweden)

    András Szabó

    2017-12-01

    Full Text Available (1 Background and (2 Methods: A 14-day in vivo, multitoxic (pure mycotoxins rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day, deoxynivalenol (DON; 30 μg/animal/day and fumonisin B1 (FB1; 150 μg/animal/day, as individual mycotoxins, binary (FD, FZ and DZ and ternary combinations (FDZ, via gavage in 1 mL water boluses. (3 Results: Body weight was unaffected, while liver (ZEA↑ vs. DON and kidney weight (ZEA↑ vs. FDZ increased. Hepatocellular membrane lipid fatty acids (FAs referred to ceramide synthesis disturbance (C20:0, C22:0, and decreased unsaturation (C22:5 n3 and unsat. index, mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0 and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0 or DON (C18:2 n6, C20:1 n9. Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase, while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde in the DON treatment. (4 Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.

  12. Purification and partial characterization of analogous 26-kDa rat submandibular and parotid gland integral membrane phosphoproteins that may have a role in exocytosis.

    Science.gov (United States)

    Quissell, D O; Deisher, L M

    1992-04-01

    Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.

  13. Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine

    International Nuclear Information System (INIS)

    Dozin, B.; Cahnmann, H.J.; Nikodem, V.M.

    1985-01-01

    Photoaffinity labeling with underivatized thyroxine (T4) was used to identify and compare the T4 binding proteins in rat liver cytosol, nuclear extract, and purified plasma membrane. When these subcellular fractions were incubated with a tracer concentration of [125I]T4, irradiated with light above 300 nm, and individually analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the radioactivity profiles revealed the presence of T4 binding proteins of molecular masses of 70, 52, 43, 37, 30, and 26 kilodaltons (kDa) in cytosol, of 96, 56, 45, and 35 kDa in nuclear extract, and of 70, 44, and 30 kDa in plasma membrane. Competition experiments performed in the presence of a 1000-fold excess of unlabeled T4 demonstrated that these binding proteins display different hormone binding activities. The similar electrophoretic mobilities of some binding proteins present in the different subcellular fractions, i.e., the 70-, 43-45-, and 30-kDa proteins, suggested that these proteins might be identical. However, double-labeling experiments in which plasma membrane, nuclear extract, and cytosol were photolabeled with either [125I] or [131I]T4 and mixed, two at a time, in all possible combinations showed that from one cellular fraction to another, the radioactivity peaks corresponding to the approximately 70-, 43-45-, and 30-kDa proteins were not superimposed. Their relative positions on the gel differed by one or two slices, which indicated differences in molecular mass of 1.9-3.6 kDa. Moreover, enzymatic digestion with Staphylococcus aureus V8 protease of these three proteins, prepared from each subcellular fraction, yielded dissimilar peptide patterns

  14. The effect of sodium hyaluronate-carboxymethyl cellulose membrane in the prevention of parenchymal air leaks: an experimental and manometric study in rats.

    Science.gov (United States)

    Büyükkale, Songül; Çıtak, Necati; İşgörücü, Özgür; Sayar, Adnan

    2017-12-01

    We aimed to examine effectiveness of sodium hyaluronate-carboxymethly cellulose (NaH/CMC) for sealing pulmonary air leaks during postoperative period. The study was conducted in 16 male Sprague-Dawley rats. A linear insicion (length= 0.2 cm, depth= 0.1 cm) to the lung parenchyma on the inflated by a cutter was made. The animals were randomly divided; the control group (n= 8) and NaH/CMC-treated group (the study group, n= 8). Control group was left for physiologic healing while a NaH/CMC membrane was applied over the the incisional area in the study group. Then the pressure point where the air leakage observed was noted. No polymorphonucleer leucocytes (PMNL) infiltration was detected in control group, whereas PMNL infiltration was 0.38 ± 0.5 cell per 100 high field in study group (p= 0.234). The degree of macrophage, lymphocyte infiltration and the mean fibroblast count were found to be higher in study group compared with control group (p= 0.007, p= 0.02, p= 0.05, respectively). The mean pressure value for air leak to occur in the control group was 43.50 ± 9.55 mmHg whereas it was 73.75 ± 16.68 mmHg in the study group (p< 0.001). The data revealed that bioabsorbable NaH/CMC membrane accelerates healing with preserving the expansile character of lung parenchyma even in high ventilation pressures. However, further studies are required to assess the prevent impact of the pulmonary air-leak for NaH/CMC membrane.

  15. Synthesis and binding of [125I2]philanthotoxin-343, [125I2]philanthotoxin-343-lysine, and [125I2]philanthotoxin-343-arginine to rat brain membranes

    International Nuclear Information System (INIS)

    Goodnow, R.A. Jr.; Bukownik, R.; Nakanishi, K.; Usherwood, P.N.; Eldefrawi, A.T.; Anis, N.A.; Eldefrawi, M.E.

    1991-01-01

    125I2-iodinated philanthotoxin-343 (PhTX-343), [125I2]PhTX-343-arginine, and [125I2]PhTX-343-lysine were synthesized and evaluated as probes for glutamate receptors in rat brain synaptic membranes. It was found that these probes were not specific for the glutamate receptors but may be useful for investigating the polyamine binding site. Filtration assays with Whatman GF/B fiber glass filters were unsuitable because the iodinated PhTX-343 analogues exhibited high nonspecific binding to the filters, thus hindering detection of specific binding to membranes. When binding was measured by a centrifugal assay, [125I2]PhTX-343-lysine bound with low affinity (KD = 11.4 ± 2 microM) to a large number of sites (37.2 ± 9.1 nmol/mg of protein). The binding of [125I2]PhTX-343-lysine was sensitive only to the polyamines spermine and spermidine, which displaced [125I2]PhTX-343-lysine with Ki values of (3.77 ± 1.4) x 10(-5) M and (7.51 ± 0.77) x 10(-5) M, respectively. The binding was insensitive to glutamate receptor agonists and antagonists. Binding results with [125I2]PhTX-343-arginine were similar to those of [125I2]-PhTX-343-lysine. Considering the high number of toxin binding sites (10000-fold more than glutamate) in these membranes and the insensitivity of the binding to almost all drugs that bind to glutamate receptors, it is evident that most of the binding observed is not to glutamate receptors. On the other hand, PhTX analogues with photoaffinity labels may be useful in the isolation/purification of various glutamate and nicotinic acetylcholine receptors; they could also be useful in structural studies of receptors and their binding sites

  16. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [11C]raclopride to measure...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  17. Centrality of striatal cholinergic transmission in basal ganglia function

    Directory of Open Access Journals (Sweden)

    Paola eBonsi

    2011-02-01

    Full Text Available Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction.Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson’s disease and dystonia.Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.

  18. Distinctive striatal dopamine signaling after dieting and gastric bypass.

    Science.gov (United States)

    Hankir, Mohammed K; Ashrafian, Hutan; Hesse, Swen; Horstmann, Annette; Fenske, Wiebke K

    2015-05-01

    Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  20. Enhanced striatal sensitivity to aversive reinforcement in adolescents versus adults.

    Science.gov (United States)

    Galván, Adriana; McGlennen, Kristine M

    2013-02-01

    Neurodevelopmental changes in mesolimbic regions are associated with adolescent risk-taking behavior. Numerous studies have shown exaggerated activation in the striatum in adolescents compared with children and adults during reward processing. However, striatal sensitivity to aversion remains elusive. Given the important role of the striatum in tracking both appetitive and aversive events, addressing this question is critical to understanding adolescent decision-making, as both positive and negative factors contribute to this behavior. In this study, human adult and adolescent participants performed a task in which they received squirts of appetitive or aversive liquid while undergoing fMRI, a novel approach in human adolescents. Compared with adults, adolescents showed greater behavioral and striatal sensitivity to both appetitive and aversive stimuli, an effect that was exaggerated in response to delivery of the aversive stimulus. Collectively, these findings contribute to understanding how neural responses to positive and negative outcomes differ between adolescents and adults and how they may influence adolescent behavior.

  1. Control of striatal signaling by G protein regulators

    Directory of Open Access Journals (Sweden)

    Keqiang eXie

    2011-08-01

    Full Text Available Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation and movement coordination. Activation of G-protein-coupled receptors (GPCRs by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named Regulator of G protein Signaling (RGS. RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.

  2. Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rosa M Villalba

    2011-08-01

    Full Text Available Striatal dopamine denervation is the pathological hallmark of Parkinson’s disease (PD. Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba et al., 2011. The concept of tripartite synapses (TS was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a. Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD

  3. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes.

    Science.gov (United States)

    Hao, Jie; Xiao, Tongfang; Wu, Fei; Yu, Ping; Mao, Lanqun

    2016-11-15

    In vivo monitoring of pH in live brain remains very essential to understanding acid-base chemistry in various physiological processes. This study demonstrates a potentiometric method for in vivo monitoring of pH in the central nervous system with carbon fiber-based proton-selective electrodes (CF-H + ISEs) with high antifouling property. The CF-H + ISEs are prepared by formation of a H + -selective membrane (H + ISM) with polyvinyl chloride polymeric matrixes containing plasticizer bis(2-ethylhexyl)sebacate, H + ionophore tridodecylamine, and ion exchanger potassium tetrakis(4-chlorophenyl)borate onto carbon fiber electrodes (CFEs). Both in vitro and in vivo studies demonstrate that the H + ISM exhibits strong antifouling property against proteins, which enables the CF-H + ISEs to well maintain the sensitivity and reversibility for pH sensing after in vivo measurements. Moreover, the CF-H + ISEs exhibit a good response to pH changes within a narrow physiological pH range from 6.0 to 8.0 in quick response time with high reversibility and selectivity against species endogenously existing in the central nervous system. The applicability of the CF-H + ISEs is illustrated by real-time monitoring of pH changes during acid-base disturbances, in which the brain acidosis is induced by CO 2 inhalation and brain alkalosis is induced by bicarbonate injections. The results demonstrate that brain pH value rapidly decreases in the amygdaloid nucleus by ca. 0.14 ± 0.01 (n = 5) when the rats breath in pure CO 2 gas, while increases in the cortex by about 0.77 ± 0.12 (n = 3) following intraperitoneal injection of 5 mmol/kg NaHCO 3 . This study demonstrates a new potentiometric method for in vivo measurement of pH change in the live brain of rats with high reliability.

  4. Molecular substrates of action control in cortico-striatal circuits.

    Science.gov (United States)

    Shiflett, Michael W; Balleine, Bernard W

    2011-09-15

    The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The role of striatal NMDA receptors in drug addiction.

    Science.gov (United States)

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  6. Fractal analysis of striatal dopamine re-uptake sites

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Bergstroem, K.A.; Tiihonen, J.; Raesaenen, P.; Karhu, J.

    1997-01-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane ([ 123 I]β-CIT). The mean fractal dimension was 1.15±0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19±0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab

  7. Fractal analysis of striatal dopamine re-uptake sites

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T.; Bergstroem, K.A. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Tiihonen, J.; Raesaenen, P. [Department of Forensic Psychiatry, University of Kuopio and Niuvanniemi Hospital, Kuopio (Finland); Karhu, J. [Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio (Finland)

    1997-09-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ([{sup 123}I]{beta}-CIT). The mean fractal dimension was 1.15{+-}0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19{+-}0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab.

  8. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  9. Influence of γ-irradiation on the structure and enzymatic activity of nuclear membrane in pregnant rats and their embryos

    International Nuclear Information System (INIS)

    Mirakhmedov, A.K.; Mirkhamidova, P.; Shamsutdinova, G.T.; Filatova, L.S.; Khamidov, D.Kh.; Zbarskij, I.B.; AN SSSR, Moscow

    1992-01-01

    Morphological and biochemical investigations of pregnant rats and embryo liver cell nuclei after in vivo irradiation in the doses of 1 and 2 Gy revealed their high radiosnsitivity at all stages of gestation and embryonal development. At damaging effect of radiation, we managed to observe sharp accumulation of products of lipid peroxide oxidation and suppresion of the activities of such enzymes in liver nuclei of pregnant rats and embryos. The changes of such a kind are shown to intensify with the increasing of irradiation doses. The most profound inhibition of activities of these enzymes in liver nuclei of embryos irradiated in utero was observed during the period of organogenesis (the 13th day of the development) and in fetal period of embryogenesis (the 17th day of the development), as well as the 13th and 17th day of gestation. The morphological data also demonstate the high level of cell nucleus sensitivity to the action of radiation during gestattion and embryogenesis

  10. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs

    Czech Academy of Sciences Publication Activity Database

    Rovenská, Miroslava; Hlouchová, Klára; Šácha, Pavel; Mlčochová, Petra; Horák, Vratislav; Zámečník, J.; Bařinka, C.; Konvalinka, Jan

    2008-01-01

    Roč. 68, č. 2 (2008), s. 171-182 ISSN 0270-4137 R&D Projects: GA MŠk 1M0508; GA ČR GA524/04/0102 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50450515 Keywords : prostate specific membrane antigen * glutamate carboxypeptidase II * animal orthologs * prostate cancer * animal model Subject RIV: CE - Biochemistry Impact factor: 3.069, year: 2008

  11. Adversity in childhood linked to elevated striatal dopamine function in adulthood

    OpenAIRE

    Egerton, A.; Valmaggia, L. R.; Howes, O. D.; Day, F.; Chaddock, C. A.; Allen, P.; Winton-Brown, T. T.; Bloomfield, M. A. P.; Bhattacharyya, S.; Chilcott, J.; Lappin, J. M.; Murray, R. M.; McGuire, P.

    2016-01-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and he...

  12. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  13. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    International Nuclear Information System (INIS)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of [ 3 H]-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound [ 3 H]oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 μg/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10 4 adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

  14. Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-09-30

    Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.

  15. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Brejchová, Jana; Vošahlíková, Miroslava; Kagan, Dmytro; Dlouhá, Kateřina; Sýkora, Jan; Merta, Ladislav; Drastichová, Z.; Novotný, J.; Ostašov, Pavel; Roubalová, Lenka; Parenti, M.; Hof, Martin; Svoboda, Petr

    2014-01-01

    Roč. 63, Suppl.1 (2014), S165-S176 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : GPCR * morphine * mu-OR, delta-OR and kappa-OR * rat brain cortex * adenylyl cyclase I and II * proteomic analysis Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.293, year: 2014

  16. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  17. Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Lorenzi, Rodrigo; Schnorr, Carlos Eduardo; Morrone, Maurílio; Moreira, José Cláudio Fonseca

    2011-10-10

    Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we performed the present work aiming to investigate the effects of vitamin A supplementation at 100, 200, or 500IU/kgday(-1) for 2 months on female rat brain, analyzing tissue lipid peroxidation levels, antioxidant enzyme activities (both Cu/Zn-superoxide dismutase - SOD - and Mn-SOD); glutathione S-transferase (GST) and monoamine oxidase (MAO) enzyme activity; mitochondrial respiratory chain activity and redox parameters in mitochondrial membranes, as well as quantifying α- and β-synucleins, β-amyloid peptide(1-40), immunoglobulin heavy-chain binding protein/78kDa glucose-regulated protein (BiP/GRP78), receptor for advanced glycation end products (RAGE), D2 receptor, and tumor necrosis factor-α (TNF-α) contents in rat frontal cortex, hippocampus, striatum, and cerebellum. We observed increased lipid peroxidation marker levels, altered Cu/Zn-SOD and Mn-SOD enzyme activities, mitochondrial nitrosative stress, and impaired respiratory chain activity in such brain regions. On the other hand, we did not find any change in MAO and GST enzyme activities, and on α- and β-synucleins, β-amyloid peptide(1-40), GRP78/BiP, RAGE, D2 receptor, and TNF-α contents. Importantly, we did not observed any evidence regarding an antioxidant effect of such vitamin at low doses in this experimental model. The use of vitamin A as an antioxidant therapy among women needs to be reexamined. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Igor eSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  19. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  20. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    Science.gov (United States)

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  1. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  2. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    Science.gov (United States)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod

  3. HIV infection results in ventral-striatal reward system hypo-activation during cue processing

    NARCIS (Netherlands)

    Plessis, Stéfan du; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    OBJECTIVE: Functional MRI has thus far demonstrated that HIV has an impact on frontal-striatal systems involved in executive functioning. The potential impact of HIV on frontal-striatal systems involved in reward processing has yet to be examined by functional MRI. This study therefore aims to

  4. Fronto-striatal atrophy correlates of neuropsychiatric dysfunction in frontotemporal dementia (FTD and Alzheimer's disease (AD

    Directory of Open Access Journals (Sweden)

    Dong Seok Yi

    Full Text Available ABSTRACT Behavioural disturbances in frontotemporal dementia (FTD are thought to reflect mainly atrophy of cortical regions. Recent studies suggest that subcortical brain regions, in particular the striatum, are also significantly affected and this pathology might play a role in the generation of behavioural symptoms. Objective: To investigate prefrontal cortical and striatal atrophy contributions to behavioural symptoms in FTD. Methods: One hundred and eighty-two participants (87 FTD patients, 39 AD patients and 56 controls were included. Behavioural profiles were established using the Cambridge Behavioural Inventory Revised (CBI-R and Frontal System Behaviour Scale (FrSBe. Atrophy in prefrontal (VMPFC, DLPFC and striatal (caudate, putamen regions was established via a 5-point visual rating scale of the MRI scans. Behavioural scores were correlated with atrophy rating scores. Results: Behavioural and atrophy ratings demonstrated that patients were significantly impaired compared to controls, with bvFTD being most severely affected. Behavioural-anatomical correlations revealed that VMPFC atrophy was closely related to abnormal behaviour and motivation disturbances. Stereotypical behaviours were associated with both VMPFC and striatal atrophy. By contrast, disturbance of eating was found to be related to striatal atrophy only. Conclusion: Frontal and striatal atrophy contributed to the behavioural disturbances seen in FTD, with some behaviours related to frontal, striatal or combined fronto-striatal pathology. Consideration of striatal contributions to the generation of behavioural disturbances should be taken into account when assessing patients with potential FTD.

  5. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  6. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

    Science.gov (United States)

    Gerfen, C R

    1989-10-20

    The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.

  7. Study of the neural basis of striatal modulation of the jaw-opening reflex.

    Science.gov (United States)

    Barceló, Ana C; Fillipini, B; Pazo, Jorge Horacio

    2010-02-01

    Previous experimental data from this laboratory demonstrated the participation of the striatum and dopaminergic pathways in central nociceptive processing. The objective of this study was to examine the possible pathways and neural structures associated with the analgesic action of the striatum. The experiments were carried out in rats anesthetized with urethane. The jaw-opening reflex (JOR) was evoked by electrical stimulation of the tooth pulp of lower incisors and recorded in the anterior belly of the digastric muscles. Intrastriatal microinjection of apomorphine, a nonspecific dopamine agonist, reduced or abolished the JOR amplitude. Electrolytic or kainic acid lesions, unilateral to the apomorphine-injected striatum, of the globus pallidus, substantia nigra pars reticulata, subthalamic nucleus and bilateral lesion the rostroventromedial medulla (RVM), blocked the inhibition of the JOR by striatal stimulation. These findings suggest that the main output nuclei of the striatum and the RVM may be critical elements in the neural pathways mediating the inhibition of the reflex response, evoked in jaw muscles by noxious stimulation of dental pulp.

  8. Functional role for suppression of the insular-striatal circuit in modulating interoceptive effects of alcohol.

    Science.gov (United States)

    Jaramillo, Anel A; Agan, Verda E; Makhijani, Viren H; Pedroza, Stephen; McElligott, Zoe A; Besheer, Joyce

    2017-09-27

    The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC ➔ AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4D i designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC ➔ AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control. © 2017 Society for the Study of Addiction.

  9. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  10. Untangling cortico-striatal connectivity and cross-frequency coupling in L-DOPA-induced dyskinesia

    Directory of Open Access Journals (Sweden)

    Jovana eBelic

    2016-03-01

    Full Text Available We simultaneously recorded local field potentials in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analysed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80- Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the healthy state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz.

  11. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  12. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  13. Reward inference by primate prefrontal and striatal neurons.

    Science.gov (United States)

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-22

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.

  14. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    Science.gov (United States)

    Baldwin, H A; Colado, M I; Murray, T K; De Souza, R J; Green, A R

    1993-03-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro. 7. Several NMDA antagonists prevent methamphetamine-induced neurotoxicity; however chlormethiazole is not an NMDA antagonist. Inhibition of striatal dopamine function prevents methamphetamine-induced toxicity of both dopamine and 5

  15. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  16. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan; Bruin, Kora de; Habraken, Jan B.A. [Department of Nuclear Medicine, F2N, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Voorn, Pieter [Department of Anatomy, Vrije Universiteit Medical Center, Amsterdam (Netherlands)

    2002-09-01

    To date, the vast majority of investigations on the dopaminergic system in small animals have been in vitro studies. In comparison with in vitro studies, single-photon emission tomography (SPET) or positron emission tomography (PET) imaging of the dopaminergic system in small animals has the advantage of permitting repeated studies within the same group of animals. Dopamine transporter imaging is a valuable non-invasive tool with which to investigate the integrity of dopaminergic neurons. The purpose of this study was to investigate the feasibility of assessing dopamine transporter density semi-quantitatively in rats using a recently developed high-resolution pinhole SPET system. This system was built exclusively for imaging of small animals. In this unique single-pinhole system, the animal rotates instead of the collimated detector. The system has proven to have a high spatial resolution. We performed SPET imaging with [{sup 123}I]FP-CIT to quantify striatal dopamine transporters in rat brain. In all seven studied control rats, symmetrical striatal binding to dopamine transporters was seen 2 h after injection of the radiotracer, with striatal-to-cerebellar binding ratios of approximately 3.5. In addition, test/retest variability of the striatal-to-cerebellar binding ratios was studied and found to be 14.5%. Finally, in unilaterally 6-hydroxydopamine-lesioned rats, striatal binding was only visible on the non-lesioned side. Quantitative analysis revealed that striatal-to-cerebellar SPET ratios were significantly lower on the lesioned (mean binding ratio 2.2{+-}0.2) than on the non-lesioned (mean ratio 3.1{+-}0.4) side. The preliminary results of this study indicate that semi-quantitative assessment of striatal dopamine transporter density using our recently developed high-resolution single-pinhole SPET system is feasible in living rat brain. (orig.)

  17. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  18. Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats.

    Science.gov (United States)

    Zhang, Zhengyu; Tachikawa, Masanori; Uchida, Yasuo; Terasaki, Tetsuya

    2018-03-05

    Although arachnoid mater epithelial cells form the blood-arachnoid barrier (BAB), acting as a blood-CSF interface, it has been generally considered that the BAB is impermeable to water-soluble substances and plays a largely passive role. Here, we aimed to clarify the function of transporters at the BAB in regulating CSF clearance of water-soluble organic anion drugs based on quantitative targeted absolute proteomics (QTAP) and in vivo analyses. Protein expression levels of 61 molecules, including 19 ATP-binding-cassette (ABC) transporters and 32 solute-carrier (SLC) transporters, were measured in plasma membrane fraction of rat leptomeninges using QTAP. Thirty-three proteins were detected; others were under the quantification limits. Expression levels of multidrug resistance protein 1 (Mdr1a/P-gp/Abcb1a) and breast cancer resistance protein (Bcrp/Abcg2) were 16.6 and 3.27 fmol/μg protein (51.9- and 9.82-fold greater than in choroid plexus, respectively). Among those organic anion transporters detected only at leptomeninges, not choroid plexus, organic anion transporter 1 (oat1/Slc22a6) showed the greatest expression (2.73 fmol/μg protein). On the other hand, the protein expression level of oat3 at leptomeninges was 6.65 fmol/μg protein, and the difference from choroid plexus was within two-fold. To investigate oat1's role, we injected para-aminohippuric acid (PAH) with or without oat1 inhibitors into cisterna magna (to minimize the contribution of choroid plexus function) of rats. A bulk flow marker, FITC-inulin, was not taken up from CSF up to 15 min, whereas uptake clearance of PAH was 26.5 μL/min. PAH uptake was completely blocked by 3 mM cephalothin (inhibits both oat1 and oat3), while 17% of PAH uptake was inhibited by 0.2 mM cephalothin (selectively inhibits oat3). These results indicate that oat1 and oat3 at the BAB provide a distinct clearance pathway of organic anion drugs from CSF independently of choroid plexus.

  19. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3β in the DRG in rats.

    Science.gov (United States)

    Zhang, Linlin; Shu, Ruichen; Wang, Chunyan; Wang, Haiyun; Li, Nan; Wang, Guolin

    2014-07-01

    Although NMDAR trafficking mediated by GSK-3β involvement in transmission of pronociceptive messages in the spinal cord has been confirmed by our previous studies, whether NMDAR trafficking is implicated in peripheral sensitization remains equivocal. It is demonstrated that inflammation is associated with spinal NMDAR-containing nociceptive neurons activation and the maintenance of opioid induced pain hypersensitivity. However, whether and how hydrogen-rich saline, as an effective anti-inflammatory drug, could prevent hyperalgesia through affecting peripheral sensitization caused by NMDAR activation remains to be explored. To test these effects, hydrogen-rich saline (2.5, 5 or 10 ml/kg) was administrated intraperitoneally after remifentanil infusion, NMDAR antagonist MK-801 or GSK-3β inhibitor TDZD-8 was administrated intravenously before remifentanil infusion in rats. We examined time course of hydrogen concentration in blood after hydrogen-rich saline administration. Mechanical and thermal hyperalgesia were evaluated by measuring PWT and PWL for 48 post-infusion hours, respectively. Western blotting and real-time qPCR assay were applied to analyze the NR1 membrane trafficking, GSK-3β expression and activity in DRG. Inflammatory mediators (TNF-α, IL-1β, and IL-6) expressions in DRG were also analyzed. We found that NR1 membrane trafficking in DRG increased, possibly due to GSK-3β activation after remifentanil infusion. We also discovered that hydrogen-rich saline not 2.5 ml/kg but 5 and 10 ml/kg could dose-dependently attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce expressions of inflammatory mediators (TNF-α, IL-1β, and IL-6) and decrease NR1 trafficking mediated by GSK-3β, and minimal effective concentration was observed to be higher than 10 μmol/L, namely peak concentration in arterial blood after administration of HRS 2.5 ml/kg without any influence on hyperalgesia. Our results indicated that

  20. Measurement of striatal dopamine metabolism with 6-[18F]-fluoro-L-dopa and PET

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Otsuka, M.; Ichiya, Y.; Yoshikai, T.; Fukumura, T.; Masuda, K.; Kato, M.; Taniwaki, T.

    1992-01-01

    Striatal dopamine metabolism was studied with 6-[ 18 F]-fluoro-L-dopa ( 18 F-DOPA) and PET. The subjects were normal controls, and patients with Parkinson's disease (PD), parkinsonism, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), Alzheimer's disease (AD), Huntington's disease (HD) and other cerebral disorders. Cerebral glucose metabolism (CMRGlc) was also measured in these patients. Striatal dopamine metabolism was evaluated by the relative striatal uptake of 18 F-DOPA referring cerebellum (S/C ratio). In normal controls, the S/C ratio was 2.82 ± 0.32 (n = 6, mean ± SD) at 120 min after injection of 18 F-DOPA. The S/C ratio was low in patients with PD, parkinsonism, MSA and PSP compared to the normal controls and thus coincident with the symptoms of parkinsonism due to decrease in striatal dopamine concentration. The decrease in the striatal CMRGlc was also observed in patients with parkinsonism and PSP, and it was preserved in patients with PD, thus representing that more neurons were damaged in patients with parkinsonism and PSP than in patients with PD. A patient with AD having symptoms of parkinsonism also showed a decrease in S/C ratio. In a patient with HD, the striatal CMRGlc sharply decreased, but the S/C ratio was normal. The measurements of striatal dopamine and glucose metabolism with PET may be useful for studying the pathophysiological mechanism in patients with cerebral disorders. (author)

  1. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  2. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential.

    Directory of Open Access Journals (Sweden)

    Eleonora Bassino

    Full Text Available Catestatin (Cst is a 21-amino acid peptide deriving from Chromogranin A. Cst exerts an overall protective effect against an excessive sympathetic stimulation of cardiovascular system, being able to antagonize catecholamine secretion and to reduce their positive inotropic effect, by stimulating the release of nitric oxide (NO from endothelial cells. Moreover, Cst reduces ischemia/reperfusion (I/R injury, improving post-ischemic cardiac function and cardiomyocyte survival. To define the cardioprotective signaling pathways activated by Cst (5 nM we used isolated adult rat cardiomyocytes undergoing simulated I/R. We evaluated cell viability rate with propidium iodide labeling and mitochondrial membrane potential (MMP with the fluorescent probe JC-1. The involvement of Akt, GSK3β, eNOS and phospholamban (PLN cascade was studied by immunofluorescence. The role of PI3K-Akt/NO/cGMP pathway was also investigated by using the pharmacological blockers wortmannin (Wm, L-NMMA and ODQ. Our experiments revealed that Cst increased cell viability rate by 65% and reduced cell contracture in I/R cardiomyocytes. Wm, L-NMMA and ODQ limited the protective effect of Cst. The protective outcome of Cst was related to its ability to maintain MMP and to increase AktSer473, GSK3βSer9, PLNThr17 and eNOSSer1179 phosphorylation, while treatment with Wm abolished these effects. Thus, the present results show that Cst is able to exert a direct action on cardiomyocytes and give new insights into the molecular mechanisms involved in its protective effect, highlighting the PI3K/NO/cGMP pathway as the trigger and the MMP preservation as the end point of its action.

  3. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  4. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    Science.gov (United States)

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  5. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  6. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  7. Ventral striatal activity links adversity and reward processing in children.

    Science.gov (United States)

    Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce

    2017-08-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Striatal activation reflects urgency in perceptual decision making.

    Science.gov (United States)

    van Maanen, Leendert; Fontanesi, Laura; Hawkins, Guy E; Forstmann, Birte U

    2016-10-01

    Deciding between multiple courses of action often entails an increasing need to do something as time passes - a sense of urgency. This notion of urgency is not incorporated in standard theories of speeded decision making that assume information is accumulated until a critical fixed threshold is reached. Yet, it is hypothesized in novel theoretical models of decision making. In two experiments, we investigated the behavioral and neural evidence for an "urgency signal" in human perceptual decision making. Experiment 1 found that as the duration of the decision making process increased, participants made a choice based on less evidence for the selected option. Experiment 2 replicated this finding, and additionally found that variability in this effect across participants covaried with activation in the striatum. We conclude that individual differences in susceptibility to urgency are reflected by striatal activation. By dynamically updating a response threshold, the striatum is involved in signaling urgency in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ventral striatal activity links adversity and reward processing in children

    Directory of Open Access Journals (Sweden)

    Niki H. Kamkar

    2017-08-01

    Full Text Available Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain’s sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children.

  10. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    Science.gov (United States)

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  11. Striatal and extra-striatal dopamine transporter in cannabis and tobacco addiction: a high resolution PET study

    International Nuclear Information System (INIS)

    Leroy, C.; Martinot, J.L.; Duchesnay, E.; Artiges, E.; Ribeiro, M.J.; Trichard, Ch.; Karila, L.; Lukasiewicz, M.; Benyamina, A.; Reynaud, M.; Martinot, J.L.; Duchesnay, E.; Artiges, E.; Comtat, C.; Artiges, E.; Trichard, Ch.

    2011-01-01

    The dopamine (DA) system is known to be involved in the reward and dependence mechanisms of addiction. However, modifications in dopaminergic neurotransmission associated with long-term tobacco and cannabis use have been poorly documented in vivo. In order to assess striatal and extra-striatal dopamine transporter (DAT) availability in tobacco and cannabis addiction, three groups of male age-matched subjects were compared: 11 healthy non-smoker subjects, 14 tobacco-dependent smokers (17.6 ± 5.3 cigarettes/day for 12.1 ± 8.5 years) and 13 cannabis and tobacco smokers (CTS) (4.8 ± 5.3 cannabis joints/day for 8.7 ± 3.9 years). DAT availability was examined in positron emission tomography (HRRT) with a high resolution research tomograph after injection of [ 11 C]PE2I, a selective DAT radioligand. Region of interest and voxel-by-voxel approaches using a simplified reference tissue model were performed for the between-group comparison of DAT availability. Measurements in the dorsal striatum from both analyses were concordant and showed a mean 20% lower DAT availability in drug users compared with controls. Whole-brain analysis also revealed lower DAT availability in the ventral striatum, the midbrain, the middle cingulate and the thalamus (ranging from -15 to -30%). The DAT availability was slightly lower in all regions in CTS than in subjects who smoke tobacco only, but the difference does not reach a significant level. These results support the existence of a decrease in DAT availability associated with tobacco and cannabis addictions involving all dopaminergic brain circuits. These findings are consistent with the idea of a global decrease in cerebral DA activity in dependent subjects. (authors)

  12. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.

    Science.gov (United States)

    Zaitone, Sawsan A; Abo-Elmatty, Dina M; Elshazly, Shimaa M

    2012-01-01

    To evaluate the neuroprotective effect of the nootropic drugs, piracetam (PIR) and vinpocetine (VIN), in rotenone-induced Parkinsonism in rats. Sixty male rats were divided into 6 groups of 10 rats each. The groups were administered vehicle, control (rotenone, 1.5 mg/kg/48 h/6 doses, s.c.), PIR (100 and 200 mg/kg/day, p.o.) and VIN (3 and 6 mg/kg/day, p.o.). The motor performance of the rats was evaluated by the open field and pole test. Striatal dopamine level, malondialdehyde (MDA), reduced glutathione (GSH) and tumor necrosis factor-α (TNF-α) were assayed. Histopathological study of the substantia nigra was also done. Results showed that rotenone-treated rats exhibited bradykinesia and motor impairment in the open-field test. In addition, GSH level was decreased whereas MDA and TNF-α increased in striata of rotenone-treated rats as compared to vehicle-treated rats. Marked degeneration of the substantia nigra pars compacta (SNpc) neurons and depletion of striatal dopamine was also observed in the rotenone-treated rats. Treatment with PIR or VIN significantly reversed the locomotor deficits and increased striatal dopamine level. Treatment with VIN significantly (P<0.05) reduced the striatal level of MDA and GSH in comparison to rotenone group whereas TNF-α production was found to be significantly decreased in PIR group (P<0.05). VIN and PIR exhibit neuroprotective activity in rotenone-induced Parkinsonism. Hence, these nootropic agents may be considered as possible candidates in the treatment of Parkinson's disease.

  13. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  14. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  15. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder

    OpenAIRE

    Herbort, Maike C.; Soch, Joram; W?stenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, J?rgen; Walter, Henrik; Roepke, Stefan; Schott, Bj?rn H.

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BP...

  16. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Science.gov (United States)

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  17. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  18. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis

    OpenAIRE

    Egerton, A.; Howes, O. D.; Houle, S.; McKenzie, K.; Valmaggia, L. R.; Bagby, M. R.; Tseng, H-H; Bloomfield, M. A. P.; Kenk, M.; Bhattacharyya, S.; Suridjan, I.; Chaddock, C. A.; Winton-Brown, T. T.; Allen, P.; Rusjan, P.

    2017-01-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case–control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capaci...

  19. Opposite Effects of Stimulant and Antipsychotic Drugs on Striatal Fast-Spiking Interneurons

    OpenAIRE

    Wiltschko, Alexander B; Pettibone, Jeffrey R; Berke, Joshua D

    2010-01-01

    Psychomotor stimulants and typical antipsychotic drugs have powerful but opposite effects on mood and behavior, largely through alterations in striatal dopamine signaling. Exactly how these drug actions lead to behavioral change is not well understood, as previous electrophysiological studies have found highly heterogeneous changes in striatal neuron firing. In this study, we examined whether part of this heterogeneity reflects the mixture of distinct cell types present in the striatum, by di...

  20. Níveis dos neurotransmissores estriatais durante o estado epiléptico Striatal monoamines levels during status epilepticus

    Directory of Open Access Journals (Sweden)

    Rivelilson Mendes de Freitas

    2003-01-01

    Full Text Available O objetivo desse estudo foi verificar os níveis dos neurotransmissores estriatais de ratas adultas durante o estado epiléptico induzido pela pilocarpina. Ratas wistar foram tratadas com uma única dose de pilocarpina (400 mg/kg por via subcutânea (S.C.; P400 e os controles receberam salina. A concentração dos neurotransmissores foi determinada através do HPLC eletroquímico, no corpo estriado de ratas que no período de observação de 1 hora desencadearam estado epiléptico e que sobreviveram à fase aguda do quadro convulsivo. Foi observada redução nos níveis de dopamina, serotonina, ácido diidroxifenilacético e aumento na concentração do ácido 5-hidroxiindolacético. Nenhuma alteração foi observada no 4-hidroxi-3-metoxi-fenilacético. Os resultados sugerem que a ativação do sistema colinérgico pode interagir com os sistemas dopaminérgico e serotonérgico nos mecanismos referentes à fase aguda do processo convulsivo no corpo estriado de ratos desenvolvidos.The purpose of the present work to investigate the striatal neurotransmissors level in adult rats after status epilepticus induced by pilocarpine. Wistar rats were treated with a single dose of pilocarpine (400 mg/kg; s.c.; P400 and the controls received saline. Adult animals were closed observed for behavioural changes during 1h. In this period, the animals that developed status epilepticus and survive this acute phase of seizures had the brains removed and striatal neurotransmissors level determiden by HPLC. The concentration of dopamine, serotonine, dihydroxyphenylacetic acid was reduced and an concentration increase in 5-hydroxyindolacetic acid. Didn't observed alteration in 4-hydroxy-3-methoxy-phenylacetic acid. These results suggest that cholinergic activation can interage with dopaminergic and serotonergic systems in acute phase of the convulsive process in rat mature striatum.

  1. [The effect of alpha-tocopherol and ionol on the physical structure of the membranes of rat liver microsomes under conditions of antioxidant insufficiency].

    Science.gov (United States)

    Gubskiĭ, Iu I; Boldeskul, A E; Primak, R G; Zadorina, O V

    1989-01-01

    Physiochemical conformity of the alpha-tocopherol interaction with hepatic microsomal membranes has been studied by means of fluorescent probes (pyrene and 1-anilinonaphthalene-8-sulphonate). The microsomal membrane microviscosity is shown to sharply decrease under conditions of the antioxidant deficiency with vitamin E expelled into animals normalizes microviscosity, but feebly influences the microsomal surface charge. Microcalorimetry has been used to establish that penetration of tocopherol into microsomal membranes was accompanied by the exothermic effect.

  2. Inhibition of rat synaptic membrane Na⁺/K⁺-ATPase and ecto-nucleoside triphosphate diphosphohydrolases by 12-tungstosilicic and 12-tungstophosphoric acid.

    Science.gov (United States)

    Čolović, Mirjana B; Bajuk-Bogdanović, Danica V; Avramović, Nataša S; Holclajtner-Antunović, Ivanka D; Bošnjaković-Pavlović, Nada S; Vasić, Vesna M; Krstić, Danijela Z

    2011-12-01

    The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  4. Receptor-mediated internalization of [3H]-neurotensin in synaptosomal preparations from rat neostriatum.

    Science.gov (United States)

    Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain

    2002-06-01

    Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.

  5. Striatal [[sup 11]C]-N-methyl-spiperone binding in patients with focal dystonia (torticollis) using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leenders, K [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hartvig, P [Hospital Pharmacy, Univ. Hospital, Uppsala (Sweden); Forsgren, L; Holmgren, G; Almay, B [Dept. of Neurology, Umeaa Univ., Umeaa (Sweden); Eckernaes, S A [Dept. of Neurology, Univ. Hospital, Uppsala (Sweden); Lundqvist, H; Laangstroem, B [Uppsala Univ. PET-Center, Uppsala (Sweden)

    1993-01-01

    Specific binding of [[sup 11]C]-N-methyl-spiperone to striatal dopamine D2 receptors was assessed using positron emission tomography (PET) in 6 patients with adult-onset focal dystonia (predominantly spasmodic torticollis) and in 5 healthy subjects. No significant difference in average specific striatal tracer uptake between patients and healthy subjects was found. However, in the 5 patients showing lateralisation of clinical signs a trend to higher striatal tracer uptake in the contralateral hemisphere was observed. (authors).

  6. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording

    NARCIS (Netherlands)

    Schaap, J.; Bos, N. P.; de Jeu, M. T.; Geurtsen, A. M.; Meijer, J. H.; Pennartz, C. M.

    1999-01-01

    The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological

  7. Reduced Striatal Dopamine Transporters in People with Internet Addiction Disorder

    Directory of Open Access Journals (Sweden)

    Haifeng Hou

    2012-01-01

    Full Text Available In recent years, internet addiction disorder (IAD has become more prevalent worldwide and the recognition of its devastating impact on the users and society has rapidly increased. However, the neurobiological mechanism of IAD has not bee fully expressed. The present study was designed to determine if the striatal dopamine transporter (DAT levels measured by T99mc-TRODAT-1 single photon emission computed tomography (SPECT brain scans were altered in individuals with IAD. SPECT brain scans were acquired on 5 male IAD subjects and 9 healthy age-matched controls. The volume (V and weight (W of bilateral corpus striatum as well as the T99mc-TRODAT-1 uptake ratio of corpus striatum/the whole brain (Ra were calculated using mathematical models. It was displayed that DAT expression level of striatum was significantly decreased and the V, W, and Ra were greatly reduced in the individuals with IAD compared to controls. Taken together, these results suggest that IAD may cause serious damages to the brain and the neuroimaging findings further illustrate IAD is associated with dysfunctions in the dopaminergic brain systems. Our findings also support the claim that IAD may share similar neurobiological abnormalities with other addictive disorders.

  8. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  9. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  10. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    Science.gov (United States)

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  11. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    2010-10-01

    Full Text Available Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeutic approach, we investigated whether inhibition of the striatal-specific cyclic nucleotide phosphodiesterase PDE10A would alleviate neurological deficits and brain pathology in a highly utilized model system, the R6/2 mouse.R6/2 mice were treated with the highly selective PDE10A inhibitor TP-10 from 4 weeks of age until euthanasia. TP-10 treatment significantly reduced and delayed the development of the hind paw clasping response during tail suspension, deficits in rotarod performance, and decrease in locomotor activity in an open field. Treatment prolonged time to loss of righting reflex. These effects of PDE10A inhibition on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal and cortical cell loss, the formation of striatal neuronal intranuclear inclusions, and the degree of microglial activation that occurs in response to the mutant huntingtin-induced brain damage. Striatal and cortical levels of phosphorylated CREB and BDNF were significantly elevated.Our findings provide experimental support for targeting the cAMP and CREB signaling pathways and more broadly transcriptional dysregulation as a therapeutic approach to Huntington's disease. It is noteworthy that PDE10A inhibition in the R6/2 mice reduces striatal pathology, consistent with the localization of the enzyme in medium spiny neurons, and also cortical pathology and the formation of neuronal nuclear inclusions. These latter findings suggest that striatal pathology may be a primary driver of these secondary pathological events. More

  13. Effects of hepatic ischemia-reperfusion injury on the P-glycoprotein activity at the liver canalicular membrane and blood-brain barrier determined by in vivo administration of rhodamine 123 in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2014-04-01

    To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on the activity of P-glycoprotein (P-gp) in the liver and at the blood-brain barrier (BBB) of rats using rhodamine 123 (RH-123) as an in vivo marker. Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and some other transporters in the liver and brain were also determined by Western blot analysis. P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or brain distribution of RH-123 was not affected by the 12-h IR injury. Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution of drugs that are transported by P-gp and possibly other transporters.

  14. Gender Differences in Age-Related Striatal Dopamine Depletion in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jae Jung Lee

    2015-09-01

    Full Text Available Objective Gender differences are a well-known clinical characteristic of Parkinson’s disease (PD. In-vivo imaging studies demonstrated that women have greater striatal dopamine transporter (DAT activity than do men, both in the normal population and in PD patients. We hypothesize that women exhibit more rapid aging-related striatal DAT reduction than do men, as the potential neuroprotective effect of estrogen wanes with age. Methods This study included 307 de novo PD patients (152 men and 155 women who underwent DAT scans for an initial diagnostic work-up. Gender differences in age-related DAT decline were assessed in striatal sub-regions using linear regression analysis. Results Female patients exhibited greater DAT activity compared with male patients in all striatal sub-regions. The linear regression analysis revealed that age-related DAT decline was greater in the anterior and posterior caudate, and the anterior putamen in women compared with men; we did not observe this difference in other sub-regions. Conclusions This study demonstrated the presence of gender differences in age-related DAT decline in striatal sub-regions, particularly in the antero-dorsal striatum, in patients with PD, presumably due to aging-related decrease in estrogen. Because this difference was not observed in the sensorimotor striatum, this finding also suggests that women may not have a greater capacity to tolerate PD pathogenesis than do men.

  15. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Youngbin Kwak

    2010-09-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder that is characterized by dopamine depletion in the striatum. One consistent pathophysiological hallmark of PD is an increase in spontaneous oscillatory activity in the basal ganglia thalamocortical networks. We evaluated these effects using resting state functional connectivity MRI (fcMRI in mild to moderate stage Parkinson’s patients on and off L-DOPA and age-matched controls using six different striatal seed regions. We observed an overall increase in the strength of cortico-striatal functional connectivity in PD patients off L-DOPA compared to controls. This enhanced connectivity was down-regulated by L-DOPA as shown by an overall decrease in connectivity strength, particularly within motor cortical regions. We also performed a frequency content analysis of the BOLD signal time course extracted from the six striatal seed regions. PD off L-DOPA exhibited increased power in the frequency band 0.02 – 0.05 Hz compared to controls and to PD on L-DOPA. The L-DOPA associated decrease in the power of this frequency range modulated the L-DOPA associated decrease in connectivity strength between striatal seeds and the thalamus. In addition, the L-DOPA associated decrease in power in this frequency band also correlated with the L-DOPA associated improvement in cognitive performance. Our results demonstrate that PD and L-DOPA modulate striatal resting state BOLD signal oscillations and corticostriatal network coherence.

  16. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    International Nuclear Information System (INIS)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K + , however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with [ 3 H]-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K + -evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis

  17. MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow.

    Science.gov (United States)

    Weihmuller, F B; O'Dell, S J; Marshall, J F

    1992-06-01

    Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Striatal Activation Predicts Differential Therapeutic Responses to Methylphenidate and Atomoxetine.

    Science.gov (United States)

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Hildebrandt, Thomas B; Stein, Mark A; Ivanov, Iliyan; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2017-07-01

    Methylphenidate has prominent effects in the dopamine-rich striatum that are absent for the selective norepinephrine transporter inhibitor atomoxetine. This study tested whether baseline striatal activation would predict differential response to the two medications in youth with attention-deficit/hyperactivity disorder (ADHD). A total of 36 youth with ADHD performed a Go/No-Go test during functional magnetic resonance imaging at baseline and were treated with methylphenidate and atomoxetine using a randomized cross-over design. Whole-brain task-related activation was regressed on clinical response. Task-related activation in right caudate nucleus was predicted by an interaction of clinical responses to methylphenidate and atomoxetine (F 1,30  = 17.00; p atomoxetine. The rate of robust response was higher for methylphenidate than for atomoxetine in youth with high (94.4% vs. 38.8%; p = .003; number needed to treat = 2, 95% CI = 1.31-3.73) but not low (33.3% vs. 50.0%; p = .375) caudate activation. Furthermore, response to atomoxetine predicted motor cortex activation (F 1,30  = 14.99; p atomoxetine in youth with ADHD, purportedly reflecting the dopaminergic effects of methylphenidate but not atomoxetine in the striatum, whereas motor cortex activation may predict response to atomoxetine. These data do not yet translate directly to the clinical setting, but the approach is potentially important for informing future research and illustrates that it may be possible to predict differential treatment response using a biomarker-driven approach. Stimulant Versus Nonstimulant Medication for Attention Deficit Hyperactivity Disorder in Children; https://clinicaltrials.gov/; NCT00183391. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Elevated Striatal Reactivity Across Monetary and Social Rewards in Bipolar I Disorder

    Science.gov (United States)

    Dutra, Sunny J.; Cunningham, William A.; Kober, Hedy; Gruber, June

    2016-01-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation employed both a monetary and social incentive delay task among adults with remitted BD type I (N=24) and a healthy non-psychiatric control group (HC; N=25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated ventral and dorsal striatal reactivity across monetary and social reward receipt, but not anticipation, in the BD group. Post-hoc analyses further suggested that greater striatal reactivity to reward receipt across monetary and social reward tasks predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC, but not BD, group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of reward reactivity. PMID:26390194

  20. Mitochondrial fragmentation in neuronal degeneration: Toward an understanding of HD striatal susceptibility

    International Nuclear Information System (INIS)

    Cherubini, Marta; Ginés, Silvia

    2017-01-01

    Huntington's disease (HD) is an autosomal-dominant progressive neurodegenerative disorder that primarily affects medium spiny neurons within the striatum. HD is caused by inheritance of an expanded CAG repeat in the HTT gene, resulting in a mutant huntingtin (mHtt) protein containing extra glutamine residues. Despite the advances in understanding the molecular mechanisms involved in HD the preferential vulnerability of the striatum remains an intriguing question. This review discusses current knowledge that links altered mitochondrial dynamics with striatal susceptibility in HD. We also highlight how the modulation of mitochondrial function may constitute an attractive therapeutic approach to reduce mHtt-induced toxicity and therefore prevent the selective striatal neurodegeneration. - Highlights: • Mitochondrial dynamics is unbalanced towards fission in HD. • Excessive mitochondrial fragmentation plays a critical role in the selective vulnerability of the striatum in HD. • Therapeutic approaches aimed to inhibit mitochondrial fission could contribute to prevent striatal neurodegeneration in HD.

  1. Decreased spontaneous eye blink rates in chronic cannabis users: evidence for striatal cannabinoid-dopamine interactions.

    Directory of Open Access Journals (Sweden)

    Mikael A Kowal

    Full Text Available Chronic cannabis use has been shown to block long-term depression of GABA-glutamate synapses in the striatum, which is likely to reduce the extent to which endogenous cannabinoids modulate GABA- and glutamate-related neuronal activity. The current study aimed at investigating the effect of this process on striatal dopamine levels by studying the spontaneous eye blink rate (EBR, a clinical marker of dopamine level in the striatum. 25 adult regular cannabis users and 25 non-user controls matched for age, gender, race, and IQ were compared. Results show a significant reduction in EBR in chronic users as compared to non-users, suggesting an indirect detrimental effect of chronic cannabis use on striatal dopaminergic functioning. Additionally, EBR correlated negatively with years of cannabis exposure, monthly peak cannabis consumption, and lifetime cannabis consumption, pointing to a relationship between the degree of impairment of striatal dopaminergic transmission and cannabis consumption history.

  2. Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia.

    Science.gov (United States)

    Horga, Guillermo; Cassidy, Clifford M; Xu, Xiaoyan; Moore, Holly; Slifstein, Mark; Van Snellenberg, Jared X; Abi-Dargham, Anissa

    2016-08-01

    Despite the well-established role of striatal dopamine in psychosis, current views generally agree that cortical dysfunction is likely necessary for the emergence of psychotic symptoms. The topographic organization of striatal-cortical connections is central to gating and integration of higher-order information, so a disruption of such topography via dysregulated dopamine could lead to cortical dysfunction in schizophrenia. However, this hypothesis remains to be tested using multivariate methods ascertaining the global pattern of striatal connectivity and without the confounding effects of antidopaminergic medication. To examine whether the pattern of brain connectivity across striatal subregions is abnormal in unmedicated patients with schizophrenia and whether this abnormality relates to psychotic symptoms and extrastriatal dopaminergic transmission. In this multimodal, case-control study, we obtained resting-state functional magnetic resonance imaging data from 18 unmedicated patients with schizophrenia and 24 matched healthy controls from the New York State Psychiatric Institute. A subset of these (12 and 17, respectively) underwent positron emission tomography with the dopamine D2 receptor radiotracer carbon 11-labeled FLB457 before and after amphetamine administration. Data were acquired between June 16, 2011, and February 25, 2014. Data analysis was performed from September 1, 2014, to January 11, 2016. Group differences in the striatal connectivity pattern (assessed via multivariable logistic regression) across striatal subregions, the association between the multivariate striatal connectivity pattern and extrastriatal baseline D2 receptor binding potential and its change after amphetamine administration, and the association between the multivariate connectivity pattern and the severity of positive symptoms evaluated with the Positive and Negative Syndrome Scale. Of the patients with schizophrenia (mean [SEM] age, 35.6 [11.8] years), 9 (50%) were male and 9

  3. Age-dependent changes in 24-hour rhythms of catecholamine content and turnover in hypothalamus, corpus striatum and pituitary gland of rats injected with Freund's adjuvant

    Directory of Open Access Journals (Sweden)

    Reyes Toso Carlos A

    2001-11-01

    Full Text Available Abstract Background Little information is available on the circadian sequela of an immune challenge in the brain of aged rats. To assess them, we studied 24-hour rhythms in hypothalamic and striatal norepinephrine (NE content, hypothalamic and striatal dopamine (DA turnover and hypophysial NE and DA content, in young (2 months and aged (18–20 months rats killed at 6 different time intervals, on day 18th after Freund's adjuvant or adjuvant's vehicle administration. Results Aging decreased anterior and medial hypothalamic NE content, medial and posterior hypothalamic DA turnover, and striatal NE concentration and DA turnover. Aging also decreased NE and DA content in pituitary neurointermediate lobe and augmented DA content in the anterior pituitary lobe. Immunization by Freund's adjuvant injection caused: (i reduction of DA turnover in anterior hypothalamus and corpus striatum; (ii acrophase delay of medial hypothalamic DA turnover in old rats, and of striatal NE content in young rats; (iii abolition of 24-h rhythm in NE and DA content of neurointermediate pituitary lobe, and in DA content of anterior lobe, of old rats. Conclusions The decline in catecholamine neurotransmission with aging could contribute to the decrease of gonadotropin and increase of prolactin release reported in similar groups of rats. Some circadian responses to immunization, e.g. suppression of 24-h rhythms of neurointermediate lobe NE and DA and of anterior lobe DA were seen only in aged rats.

  4. Striatal structure and its association with N-Acetylaspartate and glutamate in autism spectrum disorder and obsessive compulsive disorder

    NARCIS (Netherlands)

    Naaijen, Jilly; Zwiers, Marcel P.; Forde, Natalie J.; Williams, Steven C. R.; Durston, Sarah; Brandeis, Daniel; Glennon, Jeffrey C.; Franke, Barbara; Lythgoe, David J.; Buitelaar, Jan K.

    Autism spectrum disorders (ASD) and obsessive compulsive disorder (OCD) are often comorbid and are associated with changes in striatal volumes and N-Acetylaspartate (NAA) and glutamate levels. Here, we investigated the relation between dorsal striatal volume and NAA and glutamate levels. We

  5. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  6. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    Science.gov (United States)

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  7. Dose-dependent striatal changes in dopaminergic terminals and alpha-synuclein reactivity in a porcine model of progressive Parkinson’s disease

    DEFF Research Database (Denmark)

    Nielsen, Mette Slot; Glud, Andreas Nørgaard; Møller, Arne

    2011-01-01

    to discover effective compounds halting PD progression have so far failed in clinical trials, perhaps because current animal models do not imitate the neuropathological progression of PD well enough. We recently established a progressive large animal PD model in Göttingen minipigs based on chronic infusion......Parkinson disease (PD) is a common neurodegenerative disorder, resulting from a progressive dopaminergic neuron loss in the substantia nigra (SN). Alpha-synuclein positive neuronal inclusion bodies and progressive loss of dopaminergic striatal terminals is also well described in PD. Attempts...... the SN were paraffin embedded and immunohistochemically stained for tyrosine hydroxylase (TH) and alpha-synuclein. Stereological examination of the SN showed progressive nigral neuron loss with increased MPTP dosages. Occasional neuronal staining confined to the cytoplasm and cell membrane was observed...

  8. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  9. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  10. Membrane-bound and cytosolic forms of heterotrimeric G proteins in young and adult rat myocardium: influence of neonatal hypo- and hyperthyroidism

    Czech Academy of Sciences Publication Activity Database

    Novotný, Jiří; Bouřová, Lenka; Kolář, František; Svoboda, Petr

    2001-01-01

    Roč. 82, č. 2 (2001), s. 215-224 ISSN 0730-2312 R&D Projects: GA ČR GA305/00/1660; GA MŠk VS97099 Institutional research plan: CEZ:AV0Z5011922 Keywords : development * G proteins * young and adult rat myocardium Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.536, year: 2001

  11. Different Densities of Na-Ca Exchange Current in T-Tubular and Surface Membranes and Their Impact on Cellular Activity in a Model of Rat Ventricular Cardiomyocyte

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Christé, G.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 6343821. ISSN 2314-6133 Institutional support: RVO:61388998 Keywords : rat ventricular cell * mathematical model * Na-Ca current * t-tubules Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 2.476, year: 2016

  12. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia

    2011-01-01

    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  13. Effects of an acute therapeutic or rewarding dose of amphetamine on acquisition of Pavlovian autoshaping and ventral striatal dopamine signaling.

    Science.gov (United States)

    Schuweiler, D R; Athens, J M; Thompson, J M; Vazhayil, S T; Garris, P A

    2018-01-15

    Rewarding doses of amphetamine increase the amplitude, duration, and frequency of dopamine transients in the ventral striatum. Debate continues at the behavioral level about which component of reward, learning or incentive salience, is signaled by these dopamine transients and thus altered in addiction. The learning hypothesis proposes that rewarding drugs result in pathological overlearning of drug-predictive cues, while the incentive sensitization hypothesis suggests that rewarding drugs result in sensitized attribution of incentive salience to drug-predictive cues. Therapeutic doses of amphetamine, such as those used to treat attention-deficit hyperactivity disorder, are hypothesized to enhance the ventral striatal dopamine transients that are critical for reward-related learning and to enhance Pavlovian learning. However, the effects of therapeutic doses of amphetamine on Pavlovian learning are poorly understood, and the effects on dopamine transients are completely unknown. We determined the effects of an acute pre-training therapeutic or rewarding amphetamine injection on the acquisition of Pavlovian autoshaping in the intact rat. We also determined the effects of these doses on electrically evoked transient-like dopamine signals using fast-scan cyclic voltammetry in the anesthetized rat. The rewarding dose enhanced the amplitude and duration of DA signals, caused acute task disengagement, impaired learning for several days, and triggered incentive sensitization. The therapeutic dose produced smaller enhancements in DA signals but did not have similar behavioral effects. These results underscore the necessity of more studies using therapeutic doses, and suggest a hybrid learning/incentive sensitization model may be required to explain the development of addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Vivosorb (R), Bio-Gide (R), and Gore-Tex (R) as barrier membranes in rat mandibular defects : an evaluation by microradiography and micro-CT

    NARCIS (Netherlands)

    Gielkens, Pepijn F. M.; Schortinghuis, Jurjen; de Jong, Johan R.; Raghoebar, Gerry M.; Stegenga, Boudewijn; Bos, Ruud R. M.

    Objectives: The objectives of this study were to determine whether a new degradable synthetic barrier membrane (Vivosorb (R)) composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL) can be useful in implant dentistry and to compare it with collagen and expanded polytetrafluoroethylene (ePTFE)

  15. De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions

    NARCIS (Netherlands)

    Mencacci, N.E.; Kamsteeg, E.J.; Nakashima, K.; R'Bibo, L.; Lynch, D.S.; Balint, B.; Willemsen, M.A.A.P.; Adams, M.E.; Wiethoff, S.; Suzuki, K.; Davies, C.H.; Ng, J.; Meyer, E.; Veneziano, L.; Giunti, P.; Hughes, D.; Raymond, F.L.; Carecchio, M.; Zorzi, G.; Nardocci, N.; Barzaghi, C.; Garavaglia, B.; Salpietro, V.; Hardy, J.; Pittman, A.M.; Houlden, H.; Kurian, M.A.; Kimura, H.; Vissers, L.E.L.M.; Wood, N.W.; Bhatia, K.P.

    2016-01-01

    Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very

  16. Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease

    NARCIS (Netherlands)

    van Oostrom, JCH; Maguire, RP; Verschuuren-Bemelmans, CC; van der Duin, LV; Pruim, J; Roos, RAC; Leenders, KL

    2005-01-01

    Among 27 preclinical carriers of the Huntington disease mutation (PMC), the authors found normal striatal values for MRI volumetry in 88% and for fluorodesoxyglucose PET metabolic index in 67%. Raclopride PET binding potential (RAC-BP) was decreased in 50% and correlated with increases in the

  17. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.

    Science.gov (United States)

    Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel

    2018-04-01

    This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.

  18. Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease.

    Science.gov (United States)

    Singh, Arun; Mewes, Klaus; Gross, Robert E; DeLong, Mahlon R; Obeso, José A; Papa, Stella M

    2016-08-23

    Circuitry models of Parkinson's disease (PD) are based on striatal dopamine loss and aberrant striatal inputs into the basal ganglia network. However, extrastriatal mechanisms have increasingly been the focus of attention, whereas the status of striatal discharges in the parkinsonian human brain remains conjectural. We now report the activity pattern of striatal projection neurons (SPNs) in patients with PD undergoing deep brain stimulation surgery, compared with patients with essential tremor (ET) and isolated dystonia (ID). The SPN activity in ET was very low (2.1 ± 0.1 Hz) and reminiscent of that found in normal animals. In contrast, SPNs in PD fired at much higher frequency (30.2 ± 1.2 Hz) and with abundant spike bursts. The difference between PD and ET was reproduced between 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated and normal nonhuman primates. The SPN activity was also increased in ID, but to a lower level compared with the hyperactivity observed in PD. These results provide direct evidence that the striatum contributes significantly altered signals to the network in patients with PD.

  19. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons

    Science.gov (United States)

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose

    2009-01-01

    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  20. Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Jilly Naaijen

    2017-01-01

    Conclusion: We found no evidence for glutamatergic neuropathology in TD or ADHD within the fronto-striatal circuits. However, the correlation of OC-symptoms with ACC glutamate concentrations suggests that altered glutamatergic transmission is involved in OC-symptoms within TD, but this needs further investigation.

  1. Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Naaijen, Jilly; Forde, Natalie J.; Lythgoe, David J.; Akkermans, Sophie E. A.; Openneer, Thaira J. C.; Dietrich, Andrea; Zwiers, Marcel P.; Hoekstra, Pieter J.; Buitelaar, Jan K.

    2017-01-01

    Objective: Both Tourette's disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) have been related to abnormalities in glutamatergic neurochemistry in the fronto-striatal circuitry. TD and ADHD often co-occur and the neural underpinnings of this co-occurrence have been insufficiently

  2. Adversity in childhood linked to elevated striatal dopamine function in adulthood.

    Science.gov (United States)

    Egerton, Alice; Valmaggia, Lucia R; Howes, Oliver D; Day, Fern; Chaddock, Christopher A; Allen, Paul; Winton-Brown, Toby T; Bloomfield, Michael A P; Bhattacharyya, Sagnik; Chilcott, Jack; Lappin, Julia M; Murray, Robin M; McGuire, Philip

    2016-10-01

    Childhood adversity increases the risk of psychosis in adulthood. Theoretical and animal models suggest that this effect may be mediated by increased striatal dopamine neurotransmission. The primary objective of this study was to examine the relationship between adversity in childhood and striatal dopamine function in early adulthood. Secondary objectives were to compare exposure to childhood adversity and striatal dopamine function in young people at ultra high risk (UHR) of psychosis and healthy volunteers. Sixty-seven young adults, comprising 47 individuals at UHR for psychosis and 20 healthy volunteers were recruited from the same geographic area and were matched for age, gender and substance use. Presynaptic dopamine function in the associative striatum was assessed using 18F-DOPA positron emission tomography. Childhood adversity was assessed using the Childhood Experience of Care and Abuse questionnaire. Within the sample as a whole, both severe physical or sexual abuse (T63=2.92; P=0.005), and unstable family arrangements (T57=2.80; P=0.007) in childhood were associated with elevated dopamine function in the associative striatum in adulthood. Comparison of the UHR and volunteer subgroups revealed similar incidence of childhood adverse experiences, and there was no significant group difference in dopamine function. This study provides evidence that childhood adversity is linked to elevated striatal dopamine function in adulthood. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Striatal Dopamine Transporter Binding Does Not Correlate with Clinical Severity in Dementia with Lewy Bodies

    DEFF Research Database (Denmark)

    Ziebell, Morten; Andersen, Birgitte B; Pinborg, Lars H

    2013-01-01

    cognitively evaluated with the Mini Mental State Examination. RESULTS: There was no correlation between Mini Mental State Examination, Hoehn and Yahr score, fluctuations or hallucinations, and striatal DAT availability as measured with (123)I-PE2I and SPECT. CONCLUSION: In patients with newly diagnosed DLB...

  4. The use of amniotic membrane in the repair of duodenal wounds in Wistar rats Uso da membrana amniótica no reparo de feridas duodenais em ratos Wistar

    Directory of Open Access Journals (Sweden)

    Luciano Rodrigues Schimidt

    2010-02-01

    Full Text Available Purpose: In the search of a new material to repair duodenal wounds, a trial was conducted to assess the behavior of human amniotic membrane in the repair of the duodenal wall in rats. METHODS: Fifty Wistar rats weighing between 250 and 350g, male, were submitted to duodenotomy and randomly distributed into two groups. Group A (n=8 had no treatment and was used as the control group. In Group B (n=42 the duodenal wound was treated with a patch of human amniotic membrane. RESULTS: All animals in Group A died. In Group B no changes were observed with regards to death or the formation of duodenal fistula. All animals presented peritoneal adherences in the region on the duodenal wall repair and intestinal obstruction was observed in two animals. Healing of the duodenal wall in the region of the patch took place progressively as the post-operatory period increased, with regeneration of the mucosa and of the smooth muscle layer. CONCLUSION: From the clinical standpoint, the amniotic membrane proved to be a biological tissue which served as a temporary seal and allowed the wound to heal by second-intention, with re-establishment of the duodenal wall structure.OBJETIVO: Na busca de um novo material para o reparo dos ferimentos duodenais, foi efetuado um estudo para avaliar o comportamento da membrana amniótica humana no reparo da parede duodenal em ratos. MÉTODOS: Foram utilizados 50 ratos Wistar, com peso entre 250 e 350g, machos, distribuídos, aleatoriamente, em dois grupos. Grupo A (n=8, submetido à duodenotomia sem tratamento, utilizados como controle. Grupo B (n=42, submetido a um remendo de membrana amniótica humana para tratamento de ferimento duodenal provocado. RESULTADOS: Todos os animais do grupo A foram a óbito. No grupo B não foram observadas alterações quanto a óbito ou formação de fístula duodenal. Observaram-se em todos os animais aderências peritoneais à região do reparo da parede do duodeno e obstrução intestinal em

  5. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Imis Dogan

    2015-01-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG. For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1 and inferior frontal junction (IFJ. The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM. MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments

  6. Effects of postnatal anoxia on striatal dopamine metabolism and prepulse inhibition in rats

    DEFF Research Database (Denmark)

    Sandager-Nielsen, Karin; Andersen, Maibritt B; Sager, Thomas N

    2004-01-01

    in schizophrenic patients. There was no effect of postnatal anoxia on either baseline or d-amphetamine-induced deficit in the prepulse inhibition (PPI) paradigm in adulthood. Accordingly, although oxygen deficiency early in life has been discussed as vulnerability factor in developing schizophrenia, exposure...

  7. Role of contingency in striatal response to incentive in adolescents with anxiety.

    Science.gov (United States)

    Benson, Brenda E; Guyer, Amanda E; Nelson, Eric E; Pine, Daniel S; Ernst, Monique

    2015-03-01

    This study examines the effect of contingency on reward function in anxiety. We define contingency as the aspect of a situation in which the outcome is determined by one's action-that is, when there is a direct link between one's action and the outcome of the action. Past findings in adolescents with anxiety or at risk for anxiety have revealed hypersensitive behavioral and neural responses to higher value rewards with correct performance. This hypersensitivity to highly valued (salient) actions suggests that the value of actions is determined not only by outcome magnitude, but also by the degree to which the outcome is contingent on correct performance. Thus, contingency and incentive value might each modulate reward responses in unique ways in anxiety. Using fMRI with a monetary reward task, striatal response to cue anticipation is compared in 18 clinically anxious and 20 healthy adolescents. This task manipulates orthogonally reward contingency and incentive value. Findings suggest that contingency modulates the neural response to incentive magnitude differently in the two groups. Specifically, during the contingent condition, right-striatal response tracks incentive value in anxious, but not healthy, adolescents. During the noncontingent condition, striatal response is bilaterally stronger to low than to high incentive in anxious adolescents, while healthy adolescents exhibit the expected opposite pattern. Both contingency and reward magnitude differentiate striatal activation in anxious versus healthy adolescents. These findings may reflect exaggerated concern about performance and/or alterations of striatal coding of reward value in anxious adolescents. Abnormalities in reward function in anxiety may have treatment implications.

  8. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  9. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation

    International Nuclear Information System (INIS)

    Calvini, Piero; Rodriguez, Guido; Nobili, Flavio; Inguglia, Fabrizio; Mignone, Alessandro; Guerra, Ugo P.

    2007-01-01

    To design a novel algorithm (BasGan) for automatic segmentation of striatal 123 I-FP-CIT SPECT. The BasGan algorithm is based on a high-definition, three-dimensional (3D) striatal template, derived from Talairach's atlas. A blurred template, obtained by convolving the former with a 3D Gaussian kernel (FWHM = 10 mm), approximates striatal activity distribution. The algorithm performs translations and scale transformation on the bicommissural aligned image to set the striatal templates with standard size in an appropriate initial position. An optimization protocol automatically performs fine adjustments in the positioning of blurred templates to best match the radioactive counts, and locates an occipital ROI for background evaluation. Partial volume effect correction is included in the process of uptake computation of caudate, putamen and background. Experimental validation was carried out by means of six acquisitions of an anthropomorphic striatal phantom. The BasGan software was applied to a first set of patients with Parkinson's disease (PD) versus patients affected by essential tremor. A highly significant correlation was achieved between true binding potential and measured 123 I activity from the phantom. 123 I-FP-CIT uptake was significantly lower in all basal ganglia in the PD group versus controls with both BasGan and a conventional ROI method used for comparison, but particularly with the former. Correlations with the motor UPDRS score were far more significant with the BasGan. The novel BasGan algorithm automatically performs the 3D segmentation of striata. Because co-registered MRI is not needed, it can be used by all nuclear medicine departments, since it is freely available on the Web. (orig.)

  10. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    Science.gov (United States)

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    Science.gov (United States)

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  12. Nature or Nurture? Determining the Heritability of Human Striatal Dopamine Function: an [18F]-DOPA PET Study

    Science.gov (United States)

    Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D

    2013-01-01

    Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions. PMID:23093224

  13. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  14. Decrease of Na, K-ATPase Electrogenic Contribution and Resting Membrane Potential of Rat Soleus after 3 Days of Hindlimb Unloading

    Science.gov (United States)

    Krivoi, I. I.; Kravtsova, V. V.; Drabkina, T. M.; Prokofiev, A. V.; Nikolsky, E. E.; Shenkman, B. S.

    2008-06-01

    The Na,K-ATPase activity is critically important for excitability, electrogenesis and contractility of skeletal muscle expressing ? and ? isoforms of the enzyme [6, 9]. It is well known that disuse induced by hindlimb unloading (HU) leads to progressive atrophy of skeletal muscle; the muscle undergoes a number of dramatic remodeling events. In particular, changes in ion channel expression in response to muscle unweighting were observed [1, 8]. Decrease of resting membrane potential (RMP), electrogenic contribution of Na,K-ATPase and membrane resistance during 7-28 days of HU was shown [8, 10]. The intrinsic mechanisms involved in the process have not been revealed until present. At the same time, the understanding of these mechanisms could be crucial for the disclosing the mechanisms underlying the resting Ca2+ accumulation in the cytoplasm of the unloaded muscle [3, 7]. In the present study, the effect of early (3 days) HU-induced disuse of slow-twitch soleus muscle on membrane electrogenesis as well as on electrogenic contribution of Na,K-ATPase isoforms was investigated.

  15. Increased binding of LDL and VLDL to apo B,E receptors of hepatic plasma membrane of rats treated with Fibernat.

    Science.gov (United States)

    Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H

    2003-10-01

    Research has focussed on the hypocholesterolemic effects of certain types of dietary fiber such as enhancing conversion of hepatic cholesterol to bile acids or increase in catabolism of low density lipoprotein (LDL) via the apo B,E receptor. The effect of oral administration of a unique fibre cocktail of fenugreek seed powder, guar gum and wheat bran (Fibernat) and its varied effects on some aspects of lipid metabolism and cholesterol homeostasis in rats were examined. Rats were administered Fibernat along with the atherogenic diet containing 1.5 % cholesterol and 0.1 % cholic acid. Amounts of hepatic lipids, hepatic and fecal bile acids and activity of hepatic triglyceride lipase (HTGL) were determined. Transmission electron microscopic examination of the liver tissue and extent of uptake of (125)I-LDL and (125)I-VLDL by the hepatic apo B,E receptor was carried out. Food intake and body weight gain were similar between the 3 different dietary groups. Fibernat intake significantly increased apo B,E receptor expression in rat liver as reflected by an increase in the maximum binding capacity (B(max)) of the apo B,E receptor to (125)I-LDL and (125)I-VLDL. The activity of HTGL was increased by approximately 1.5-fold in Fibernat-fed rats as compared to those fed the atherogenic diet alone. A marked hypocholesterolemic effect was observed. Cholesterol homeostasis was achieved in Fibernat-fed rats. Two possible mechanisms are postulated to be responsible for the observed hypocholesterolemic effect a) an increase in conversion of cholesterol to bile acids and b) possibly by intra-luminal binding which resulted in increased fecal excretion of bile acids and neutral sterols. The resulting reduction in cholesterol content of liver cells coupled with upregulation of hepatic apo B,E receptors and increased clearance of circulating atherogenic lipoproteins-LDL and very low density lipoprotein (LDL and VLDL)-is the main mechanism involved in the hypocholesterolemic effect of

  16. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  17. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  18. Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia.

    Science.gov (United States)

    Grimm, Oliver; Heinz, Andreas; Walter, Henrik; Kirsch, Peter; Erk, Susanne; Haddad, Leila; Plichta, Michael M; Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Schäfer, Axel; Cichon, Sven; Nöthen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2014-05-01

    Attenuated ventral striatal response during reward anticipation is a core feature of schizophrenia that is seen in prodromal, drug-naive, and chronic schizophrenic patients. Schizophrenia is highly heritable, raising the possibility that this phenotype is related to the genetic risk for the disorder. To examine a large sample of healthy first-degree relatives of schizophrenic patients and compare their neural responses to reward anticipation with those of carefully matched controls without a family psychiatric history. To further support the utility of this phenotype, we studied its test-retest reliability, its potential brain structural contributions, and the effects of a protective missense variant in neuregulin 1 (NRG1) linked to schizophrenia by meta-analysis (ie, rs10503929). Examination of a well-established monetary reward anticipation paradigm during functional magnetic resonance imaging at a university hospital; voxel-based morphometry; test-retest reliability analysis of striatal activations in an independent sample of 25 healthy participants scanned twice with the same task; and imaging genetics analysis of the control group. A total of 54 healthy first-degree relatives of schizophrenic patients and 80 controls matched for demographic, psychological, clinical, and task performance characteristics were studied. Blood oxygen level-dependent response during reward anticipation, analysis of intraclass correlations of functional contrasts, and associations between striatal gray matter volume and NRG1 genotype. Compared with controls, healthy first-degree relatives showed a highly significant decrease in ventral striatal activation during reward anticipation (familywise error-corrected P systems-level functional phenotype is reliable (with intraclass correlation coefficients of 0.59-0.73), independent of local gray matter volume (with no corresponding group differences and no correlation to function, and with all uncorrected P values >.05), and affected by

  19. Pre-pulse inhibition and striatal dopamine in subjects at an ultra-high risk for psychosis

    NARCIS (Netherlands)

    de Koning, Mariken B.; Bloemen, Oswald J. N.; van Duin, Esther D. A.; Booij, Jan; Abel, Kathryn M.; de Haan, Lieuwe; Linszen, Don H.; van Amelsvoort, Thérèse A. M. J.

    2014-01-01

    Reduced prepulse inhibition (PPI) of the acoustic startle response is thought to represent a robust biomarker in schizophrenia. Reduced PPI has been demonstrated in subjects at ultra high risk (UHR) for developing psychosis. Imaging studies report disruption of striatal dopaminergic

  20. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    Science.gov (United States)

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  1. The development of striatal patch/matrix organization after prenatal methylazoxymethanol: a combined immunocytochemical and bromo-deoxy-uridine birthdating study.

    Science.gov (United States)

    Snyder-Keller, A M

    1995-10-01

    The antimitotic drug methylazoxymethanol was used to destroy striatal patch neurons during their three-day-period of neurogenesis in the rat. Single or multiple injections of methylazoxymethanol were given during embryonic days 13-15, the period when patch neurons are known to undergo their final cell division. Methylazoxymethanol treatments produced a dramatic reduction in striatal volume. Immunocytochemical analysis revealed the continued presence of patches of neurons that were substance P-immunoreactive and devoid of calbindin and enkephalin immunoreactivity. Both the number of patches and relative volume occupied by patches was reduced in methylazoxymethanol-treated striata. Patch neurons could also be labelled by an intrastriatal injection of FluoroGold during the first postnatal week. The early ingrowth of nigrostriatal dopamine afferents was less noticeably patchy in the methylazoxymethanol-treated animals, in part owing to an overall increase in density. Large reductions in the number of neurons immunoreactive for choline acetyltransferase were observed, whereas NADPH diaphorase-stained neurons were not reduced unless methylazoxymethanol was given on embryonic day 15. Injections of bromo-deoxy-uridine, either during or after the 24 h that each methylazoxymethanol injection was considered to be effective, revealed that (i) some patch neurons continued to be generated in the 24-h period following methylazoxymethanol administration, and (ii) many patch neurons were generated after the effects of methylazoxymethanol had worn off. These findings demonstrate that it was impossible to completely eliminate the patches using methylazoxymethanol injections during the period of patch neurogenesis. However, methylazoxymethanol treatment during this time did produce a dramatic loss of cells and a relatively greater reduction in patch volume. Despite this disruption, the appropriate compartmentalization of neuroactive substances appeared to be maintained.