WorldWideScience

Sample records for rat shock model

  1. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  2. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    Science.gov (United States)

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  3. Low-energy Shock Wave Therapy Ameliorates Erectile Dysfunction in a Pelvic Neurovascular Injuries Rat Model.

    Science.gov (United States)

    Li, Huixi; Matheu, Melanie P; Sun, Fionna; Wang, Lin; Sanford, Melissa T; Ning, Hongxiu; Banie, Lia; Lee, Yung-Chin; Xin, Zhongcheng; Guo, Yinglu; Lin, Guiting; Lue, Tom F

    2016-01-01

    Erectile dysfunction (ED) caused by pelvic injuries is a common complication of civil and battlefield trauma with multiple neurovascular factors involved, and no effective therapeutic approach is available. To test the effect and mechanisms of low-energy shock wave (LESW) therapy in a rat ED model induced by pelvic neurovascular injuries. Thirty-two male Sprague-Dawley rats injected with 5-ethynyl-2'-deoxyuridine (EdU) at newborn were divided into 4 groups: sham surgery (Sham), pelvic neurovascular injury by bilateral cavernous nerve injury and internal pudendal bundle injury (PVNI), PVNI treated with LESW at low energy (Low), and PVNI treated with LESW at high energy (High). After LESW treatment, rats underwent erectile function measurement and the tissues were harvested for histologic and molecular study. To examine the effect of LESW on Schwann cells, in vitro studies were conducted. The intracavernous pressure (ICP) measurement, histological examination, and Western blot (WB) were conducted. Cell cycle, Schwann cell activation-related markers were examined in in vitro experiments. LESW treatment improves erectile function in a rat model of pelvic neurovascular injury by leading to angiogenesis, tissue restoration, and nerve generation with more endogenous EdU(+) progenitor cells recruited to the damaged area and activation of Schwann cells. LESW facilitates more complete re-innervation of penile tissue with regeneration of neuronal nitric oxide synthase (nNOS)-positive nerves from the MPG to the penis. In vitro experiments demonstrated that LESW has a direct effect on Schwann cell proliferation. Schwann cell activation-related markers including p-Erk1/2 and p75 were upregulated after LESW treatment. LESW-induced endogenous progenitor cell recruitment and Schwann cell activation coincides with angiogenesis, tissue, and nerve generation in a rat model of pelvic neurovascular injuries. Copyright © 2016 International Society for Sexual Medicine. Published by

  4. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Urodynamic and molecular characteristics of detrusor underactivity in a rat cryoinjury model and effects of low energy shock wave therapy.

    Science.gov (United States)

    Chuang, Yao-Chi; Tyagi, Pradeep; Wang, Hung-Jen; Huang, Chao-Cheng; Lin, Chih-Chieh; Chancellor, Michael B

    2018-02-01

    Low energy shock wave (LESW) has been shown to facilitate tissue regeneration and reduce inflammation. We investigated the effects of LESW in an underactive (DU) model induced by cryoinjury of rat detrusor. Forty-six female Sprague-Dawley rats were divided into sham, cryoinjury with or without LESW (0.12 mJ/mm 2 ; 200 pulses). Under halothane anesthesia, a low midline incision was made and a cryoinjury of detrusor was induced by placing an aluminum rod (chilled with dry ice) for 30 s on the serosal side of the bladder filled with 1 mL sterile saline bilaterally. Awake cystometrogram (CMG), molecular and histopathology studies were performed on Day 8 or 15 after cryoinjury. Significant urodynamic, histological, and molecular changes induced by cryoinjury of rat detrusor were detected on Day 8 and decrease in the contraction amplitude (54.3%), a significant increase in wet bladder weight (64.1%), edematous changes, muscle thinning and downregulation of α-SMA, IL-6, and upregulation of COX-2. LESW reversed the cryoinjury induced histological and COX-2 expression to cause a 49.0% increase in the contraction amplitude (P < 0.05). LESW induced cell proliferation was revealed by increased CD31 and Ki67 immunostaining. The effect of cryoinjury on urodynamic and histological changes was maintained till Day 15. The cryoinjury of rat detrusor models myogenic DU, which is partially reversed by LESW. LESW may afford a simple, non-invasive modality to facilitate tissue regeneration and improve voiding function in myogenic detrusor underactivity. © 2017 Wiley Periodicals, Inc.

  6. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression

    Directory of Open Access Journals (Sweden)

    Luo J

    2014-09-01

    Full Text Available Jie Luo, Su Min, Ke Wei, Jun Cao, Bin Wang, Ping Li, Jun Dong, Yuanyuan Liu Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Background: Although a rapid and efficient psychiatric treatment, electroconvulsive therapy (ECT induces memory impairment. Modified ECT requires anesthesia for safety purposes. Although traditionally found to exert amnesic effects in general anesthesia, which is an inherent part of modified ECT, some anesthetics have been found to protect against ECT-induced cognitive impairment. However, the mechanisms remain unclear. We investigated the effects of propofol (2,6-diisopropylphenol on memory in depressed rats undergoing electroconvulsive shock (ECS, the analog of ECT in animals, under anesthesia as well as its mechanisms.Methods: Chronic unpredictable mild stresses were adopted to reproduce depression in a rodent model. Rats underwent ECS (or sham ECS with anesthesia with propofol or normal saline. Behavior was assessed in sucrose preference, open field and Morris water maze tests. Hippocampal long-term potentiation (LTP was measured using electrophysiological techniques. PSD-95, CREB, and p-CREB protein expression was assayed with western blotting.Results: Depression induced memory damage, and downregulated LTP, PSD-95, CREB, and p-CREB; these effects were exacerbated in depressed rats by ECS; propofol did not reverse the depression-induced changes, but when administered in modified ECS, propofol improved memory and reversed the downregulation of LTP and the proteins. Conclusion: These findings suggest that propofol prevents ECS-induced memory impairment, and modified ECS under anesthesia with propofol improves memory in depressed rats, possibly by reversing the excessive changes in hippocampal synaptic plasticity. These observations provide a novel insight into potential targets for optimizing the clinical use of ECT for psychiatric

  7. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-05-01

    Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Anatolii V Dobrodumov,4 Anastasiy S Dayneko,5 Alexey A Shmonin,5,6 Timur D Vlasov,5 Elena V Melnikova,5 Alexander D Vilisov,4,5 Irina V Guzhova,1 Alexander M Ischenko,3 Anastasiya L Mikhrina,7 Oleg V Galibin,5 Igor V Yakovenko,2 Boris A Margulis1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2AL Polenov Russian Research Scientific Institute of Neurosurgery, St Petersburg, Russia; 3Research Institute of Highly Pure Biopreparations, St Petersburg, Russia; 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 5First St Petersburg IP Pavlov State Medical University, St Petersburg, Russia; 6Federal Almazov Medical Research Centre, St Petersburg, Russia; 7IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, Russia Abstract: Recombinant 70 kDa heat shock protein (Hsp70 is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg. To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia. Rats were then kept alive for 72 hours. The

  8. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  9. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model.

    Science.gov (United States)

    Wang, Hung-Jen; Lee, Wei-Chia; Tyagi, Pradeep; Huang, Chao-Cheng; Chuang, Yao-Chi

    2017-08-01

    Low energy shock wave (LESW) is known to facilitate tissue regeneration with analgesic and anti-inflammatory effects. We examined the effects of LESW on the expression of inflammatory molecules, pain behavior, and bladder function in a rat cystitis model. Control and experimental animals were injected with saline or cyclophosphamide (CYP; 75 mg/kg intraperitoneally) on day 1 and 4. After lower midline incision, the bladders were exposed to LESW (300 pulses, 0.12 mJ/mm 2 ) or sham operation on day 2. In study 1 (N = 12, 4 for each group), the nociceptive effects of CYP were evaluated for 30 min by behavioral assessment on day 4 one hour after CYP injection. In study 2 (N = 21, 7 for each group), continuous cystometry (CMG) was performed on day 8. The bladder was harvested after behavioral assessment or CMG for histology and Western blotting. CYP-induced upregulation of COX2 and IL6 expression, caused pain behavior (eye closing and hypolocomotion), and bladder inflammation was noted on days 4 and 8 along with bladder hyperactivity. LESW treatment reduced pain behavior and downregulated the NGF expression (33.3%, P < 0.05) on day 4 and IL6 (40.9%, P < 0.05). LESW treatment suppressed bladder overactivity (intercontraction interval 77.8% increase, P < 0.05) by decreasing inflammation and COX2 (38.6%, P < 0.05) expression and NGF expression (25.2%, P = 0.0812). CYP-induced bladder pain, inflammation, and overactivity involves activation of IL6, NGF, and COX2 expression. These changes are suppressed by LESW, indicating it as a potential candidate for relieving bladder inflammatory conditions and overactivity. © 2016 Wiley Periodicals, Inc.

  10. The effects of meptazinol in comparison with pentazocine, morphine and naloxone in a rat model of anaphylactic shock.

    Science.gov (United States)

    Paciorek, P M; Todd, M H; Waterfall, J F

    1985-02-01

    The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission.

  11. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats

    OpenAIRE

    Legrand, Matthieu; Mik, Egbert; Balestra, Gianmarco; Lutter, Rene; Pirracchio, Romain; Payen, Didier; Ince, Can

    2010-01-01

    textabstractBackground: The resuscitation strategy for hemorrhagic shock remains controversial, with the kidney being especially prone to hypoxia. Methods: The authors used a three-phase hemorrhagic shock model to investigate the effects of fluid resuscitation on renal oxygenation. After a 1-h shock phase, rats were randomized into four groups to receive either normal saline or hypertonic saline targeting a mean arterial pressure (MAP) of either 40 or 80 mmHg. After such resuscitation, rats w...

  12. Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress.

    Science.gov (United States)

    Bible, Letitia E; Pasupuleti, Latha V; Gore, Amy V; Sifri, Ziad C; Kannan, Kolenkode B; Mohr, Alicia M

    2015-09-01

    Propranolol has been shown previously to decrease the mobilization of hematopoietic progenitor cells (HPCs) after acute injury in rodent models; however, this acute injury model does not reflect the prolonged period of critical illness after severe trauma. Using our novel lung contusion/hemorrhagic shock/chronic restraint stress model, we hypothesize that daily administration of propranolol will decrease prolonged mobilization of HPCs without worsening lung healing. Male Sprague-Dawley rats underwent 6 days of restraint stress after undergoing lung contusion or lung contusion/hemorrhagic shock. Restraint stress consisted of a daily 2-hour period of restraint interrupted every 30 minutes by alarms and repositioning. Each day after the period of restraint stress, the rats received intraperitoneal propranolol (10 mg/kg). On day 7, peripheral blood was analyzed for granulocyte-colony stimulating factor (G-CSF) and stromal cell-derived factor 1 via enzyme-linked immunosorbent assay and for mobilization of HPCs using c-kit and CD71 flow cytometry. The lungs were examined histologically to grade injury. Seven days after lung contusion and lung contusion/hemorrhagic shock, the addition of chronic restraint stress significantly increased the mobilization of HPC, which was associated with persistently increased levels of G-CSF and increased lung injury scores. The addition of propranolol to lung contusion/chronic restraint stress and lung contusion/hemorrhagic shock/chronic restraint stress models greatly decreased HPC mobilization and restored G-CSF levels to that of naïve animals without worsening lung injury scores. The daily administration of propranolol after both lung contusion and lung contusion/hemorrhagic shock subjected to chronic restraint stress decreased the prolonged mobilization of HPC from the bone marrow and decreased plasma G-CSF levels. Despite the decrease in mobilization of HPC, lung healing did not worsen. Alleviating chronic stress with propranolol

  13. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  14. Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock.

    Science.gov (United States)

    Yamada, Noriaki; Martin, Lukas B; Zechendorf, Elisabeth; Purvis, Gareth S D; Chiazza, Fausto; Varrone, Barbara; Collino, Massimo; Shepherd, Joanna; Heinbockel, Lena; Gutsmann, Thomas; Correa, Wilmar; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias; Brohi, Karim; Thiemermann, Christoph

    2017-03-10

    To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 μg/kg · h (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ± 4 vs 54 ± 5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.

  15. A fresh frozen plasma to red blood cell transfusion ratio of 1:1 mitigates lung injury in a rat model of damage control resuscitation for hemorrhagic shock.

    Science.gov (United States)

    Zhao, Jingxiang; Pan, Guocheng; Wang, Bo; Zhang, Yuhua; You, Guoxing; Wang, Ying; Gao, Dawei; Zhou, Hong; Zhao, Lian

    2015-06-01

    We aimed to evaluate the effects of resuscitation with different ratios of fresh frozen plasma (FFP) to red blood cells (RBCs) on pulmonary inflammatory injury and to illuminate the beneficial effects of FFP on lung protection compared with lactated ringers (LR) using a rat model of hemorrhagic shock. Rats underwent pressure-controlled hemorrhage for 60 minutes and were then transfused with LR for initial resuscitation. Thereafter, the rats were transfused with varying ratios of FFP:RBC (1:4, 1:2, 1:1, and 2:1) or LR:RBC (1:1) to hold their mean arterial pressure (MAP) at 100 ± 3 mm Hg for 30 minutes. After 4 hours of observation, lung tissue was harvested to determine the wet/dry weight, myeloperoxidase levels, tumor necrosis factor α levels, macrophage inflammatory protein 2 (MIP-2) levels, inducible nitric oxide synthase activity, and the nuclear factor κB p65 DNA-binding activity. With an increase in the FFP:RBC ratio, the volume of required RBC to maintain the target MAP decreased. The MAP value in each group was not significantly different during the whole experiment period. The values of the wet/dry weights and MIP-2 were significantly lower in the FFP:RBC = 1:1 group than the other groups (P ratio of FFP to RBC results in decreased lung inflammation. Compared with LR, FFP could further mitigate lung inflammatory injury. Copyright © 2015. Published by Elsevier Inc.

  16. Resuscitative therapy with erythropoietin reduces oxidative stress and inflammatory responses of vital organs in a rat severe fixed-volume hemorrhagic shock model.

    Science.gov (United States)

    Ranjbaran, Mina; Kadkhodaee, Mehri; Seifi, Behjat; Mirzaei, Reza; Ahghari, Parisa

    2018-01-01

    Hemorrhagic shock (HS) still has a high mortality rate and none of the known resuscitative regimens completely reverse its adverse outcomes. This study investigated the effects of different models of resuscitative therapy on the healing of organ damage in a HS model. Male Wistar rats were randomized into six groups: Sham, without HS induction; HS, without resuscitation; HS+Blood, resuscitation with the shed blood; HS+Blood+NS, resuscitation with blood and normal saline; HS+Blood+RL, resuscitation with blood and Ringer's lactate; EPO, erythropoietin was added to the blood and RL. Blood and urine samples were obtained 3 h after resuscitation. Kidney, liver and brain tissue samples were harvested for multiple organ failure evaluation. Survival rate was the highest in the Sham, EPO and HS+Blood+RL groups compared to others. Plasma creatinine concentration, ALT, AST, urinary NAG activity and renal NGAL mRNA expression significantly increased in the HS+Blood+RL group compared to the Sham group. There was a significant increase in tissue oxidative stress markers and pro-inflammatory cytokines in HS+Blood+RL group compared to the Sham rats. EPO had more protective effects on multiple organ failure compared to the HS+Blood+RL group. EPO, as a resuscitative treatment, attenuated HS-induced organ damage. It seems that it has a potential to be attractive for clinical trials.

  17. Essential amino acid enriched high-protein enteral nutrition modulates insulin-like growth factor-1 system function in a rat model of trauma-hemorrhagic shock.

    Directory of Open Access Journals (Sweden)

    Xianfeng Xia

    Full Text Available Nutrition support for critically ill patients supplemented with additional modular protein may promote skeletal muscle protein anabolism in addition to counteracting acute nitrogen loss. The present study was designed to investigate whether the essential amino acid (EAA enriched high-protein enteral nutrition (EN modulates the insulin-like growth factor-1 (IGF-1 system and activates the mammalian target of rapamycin (mTOR anabolic signaling pathway in a trauma-hemorrhagic shock (T-HS rat model.Male Sprague-Dawley rats (n = 90, 278.18 ± 0.94 g were randomly assigned to 5 groups: (1 normal control, (2 pair-fed, (3 T-HS, (4 T-HS and standard EN, and (5 T-HS and EAA enriched high-protein EN. Six animals from each group were harvested on days 2, 4, and 6 for serum, gastrocnemius, soleus, and extensor digitorum longus sample collection. T-HS significantly reduced muscle mass. Nutrition support maintained muscle mass, especially the EAA enriched high-protein EN. Meanwhile, a pronounced derangement in IGF-1-IGFBPs axis as well as impaired mTOR transduction was observed in the T-HS group. Compared with animals receiving standard EN, those receiving EAA enriched high-protein EN presented 18% higher serum free IGF-1 levels following 3 days of nutrition support and 22% higher after 5 days. These changes were consistent with the concomitant elevation in serum insulin and reduction in corticosterone levels. In addition, phosphorylations of downstream anabolic signaling effectors - including protein kinase B, mTOR, and ribosomal protein S6 kinase1 - increased significantly in rats receiving EAA enriched high-protein EN.Our findings firstly demonstrate the beneficial effect of EAA enriched high-protein EN on the metabolic modulation of skeletal muscle protein anabolism by regulating the IGF-1 system and downstream anabolic signaling transduction.

  18. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  19. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  20. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model.

    Science.gov (United States)

    Inoue, Ken; Naito, Yuji; Takagi, Tomohisa; Hayashi, Natsuko; Hirai, Yasuko; Mizushima, Katsura; Horie, Ryusuke; Fukumoto, Kohei; Yamada, Shinya; Harusato, Akihito; Hirata, Ikuhiro; Omatsu, Tatsushi; Yoshida, Naohisa; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Wakabayashi, Naoki; Yagi, Nobuaki; Ichikawa, Hiroshi; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-01-01

    Heat shock protein (HSP) 47 may play an important role in the pathogenesis of intestinal fibrosis. Daikenchuto (DKT), a traditional Japanese herbal (Kampo) medicine, has been reported to ameliorate intestinal inflammation. The aims of this study were to determine time-course profiles of several parameters of fibrosis in a rat model, to confirm the HSP47-expressing cells in the colon, and finally to evaluate DKT's effects on intestinal fibrosis. Colitis was induced in male Wistar rats weighing 200 g using an enema of trinitrobenzene sulfonic acid (TNBS). HSP47 localization was determined by immunohistochemistry. Colonic inflammation and fibrosis were assessed by macroscopic, histological, morphometric, and immunohistochemical analyses. Colonic mRNA expression of transforming growth factor β1 (TGF-β1), HSP47, and collagen type I were assessed by real time-polymerase chain reaction (PCR). DKT was administered orally once a day from 8 to 14 d after TNBS administration. The colon was removed on the 15th day. HSP47 immunoreactivity was coexpressed with α-smooth muscle actin-positive cells located in the subepithelial space. Intracolonic administration of TNBS resulted in grossly visible ulcers. Colonic inflammation persisted for 6 weeks, and fibrosis persisted for 4 weeks after cessation of TNBS treatment. The expression levels of mRNA and proteins for TGF-β1, HSP47, and collagen I were elevated in colonic mucosa treated with TNBS. These fibrosis markers indicated that DKT treatment significantly inhibited TNBS-induced fibrosis. These findings suggest that DKT reduces intestinal fibrosis associated with decreasing expression of HSP47 and collagen content in the intestine.

  1. Studying shocks in model astrophysical flows

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  2. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    Science.gov (United States)

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  3. Awara (Astrocaryum vulgare M.) pulp oil: chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation.

    Science.gov (United States)

    Bony, Emilie; Boudard, Frédéric; Brat, Pierre; Dussossoy, Emilie; Portet, Karine; Poucheret, Patrick; Giaimis, Jean; Michel, Alain

    2012-01-01

    Awara (Astrocaryum vulgare M.) is a palm fruit mainly used in nutrition. We analysed the pulp oil for fatty acid, tocopherol, carotenoid, and phytosterol and we evaluated whether this oil may attenuate inflammation in vivo. In an endotoxic shock model, awara pulp oil treatment decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines. In a pulmonary inflammation model, awara pulp oil treatment reduced eosinophil and lymphocyte numbers recovered into the broncho-alveolar lavages. These results suggest that awara pulp oil administration can efficiently counteract an acute and chronic inflammatory response in vivo that is probably mediated by fatty acids and minor compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Model for shock wave chaos.

    Science.gov (United States)

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  5. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  6. Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.P.; Niu, C.Y.; Zhao, Z.G.; Zhang, L.M.; Si, Y.H. [Institute of Microcirculation, Hebei North University, Hebei (China)

    2013-08-10

    Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca{sup 2+} were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca{sup 2+} at various concentrations. Maximum contractility (E{sub max}) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca{sup 2+} (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca{sup 2+} at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in E{sub max} for NE and from 0.729±0.037 to 0.645±0.056 g/mg in E{sub max} for Ca{sup 2+}, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.

  7. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Zhao, Z.G.; Zhang, L.M.; Li, S.G.; Niu, C.Y. [Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou (China)

    2015-04-28

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H{sub 2}S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H{sub 2}S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H{sub 2}S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H{sub 2}S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H{sub 2}S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H{sub 2}S and H{sub 2}S-mediated inflammation.

  8. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  9. Shock circle model for ejector performance evaluation

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong

    2007-01-01

    In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods

  10. Comparison of the cardiovascular effects of meptazinol and naloxone following haemorrhagic shock in rats and cats.

    Science.gov (United States)

    Chance, E.; Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.

    1985-01-01

    The cardiovascular effects of the opioid mixed agonist-antagonist, meptazinol, and the opioid antagonist, naloxone, have been evaluated in conscious rats, anaesthetized rats and anaesthetized cats following the induction of haemorrhagic shock. The mean arterial pressure of conscious rats decreased by 17-29 mmHg following a haemorrhage of 20% of blood volume. Meptazinol (17 mg kg-1, i.m.) administered after haemorrhage evoked a rapid and sustained increase in mean arterial pressure to pre-haemorrhage levels. Naloxone (10 mg kg-1, i.v.) also increased mean arterial pressure to a level significantly higher than post-haemorrhage values. Neither haemorrhage nor subsequent drug treatments evoked significant changes in the heart rates of conscious rats. In anaesthetized rats, 20% haemorrhage evoked decreases in mean arterial pressure, heart rate and cardiac output. Blood flow to the heart, skin, skeletal muscle, kidneys, spleen and liver (arterial) was decreased. Meptazinol and naloxone increased blood pressure and total peripheral resistance, but did not significantly alter heart rate or cardiac output. Hepatic arterial flow decreased further in both drug and vehicle treated groups. In addition meptazinol slightly reduced skeletal muscle flow. In anaesthetized cats 40% haemorrhage decreased mean arterial pressure by 46 +/- 3 mmHg. An intravenous infusion of either meptazinol or naloxone (cumulative 2 mg kg-1, i.v.) partially restored blood pressure. In experimental animal models of haemorrhagic shock, meptazinol has a similar cardiovascular profile to naloxone. The established analgesic activity of meptazinol may confer an advantage in some shock states. PMID:4052729

  11. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  12. Constitutive modeling of shock response of PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Reanyansky, Anatoly D [DSTO, AUSTRALIA; Bourne, Neil K [AWE, UK; Millett, Jeremy C F [AWE, UK

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.

  13. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    Science.gov (United States)

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  14. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  15. Monetary Shocks in Models with Inattentive Producers.

    Science.gov (United States)

    Alvarez, Fernando E; Lippi, Francesco; Paciello, Luigi

    2016-04-01

    We study models where prices respond slowly to shocks because firms are rationally inattentive. Producers must pay a cost to observe the determinants of the current profit maximizing price, and hence observe them infrequently. To generate large real effects of monetary shocks in such a model the time between observations must be long and/or highly volatile. Previous work on rational inattentiveness has allowed for observation intervals that are either constant-but-long ( e.g . Caballero, 1989 or Reis, 2006) or volatile-but-short ( e.g . Reis's, 2006 example where observation costs are negligible), but not both. In these models, the real effects of monetary policy are small for realistic values of the duration between observations. We show that non-negligible observation costs produce both of these effects: intervals between observations are infrequent and volatile. This generates large real effects of monetary policy for realistic values of the average time between observations.

  16. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  17. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  18. Characteristics of brain injury induced by shock wave propagation in solids after underwater explosion in rats

    Directory of Open Access Journals (Sweden)

    Xin-ling LI

    2016-09-01

    Full Text Available Objective  To observe the characteristics of rat brain injury induced by shock wave propagation in solids resulting from underwater explosion and explore the related mechanism. Methods  Explosion source outside the simulated ship cabin underwater was detonated for establishing a model of brain injury in rats by shock wave propagation in solid; 72 male SD rats were randomly divided into normal control group (n=8, injury group 1 (600mg RDX paper particle explosion source, n=32, injury group 2 (800mg RDX paper particle explosion source, n=32. The each injury group was randomly divided into 4 subgroups (n=8, 3, 6, 24 and 72h groups. The division plate as a whole and the head of 8 rats in each injury group were measured for the peak value of the solid shock wave, its rising time and the duration time of shock wave propagation in solid. To observe the physiological changes of animals after injury, plasma samples were collected for determination of brain damage markers, NSE and S-100β. All the animals were sacrificed, the right hemisphere of the brain was taken in each group of animals, weighting after baking, and the brain water content was calculated. Pathological examination was performed for left cerebral hemisphere in 24-h group. The normal pyramidal cells in the hippocampal CA1 region were counted. Results  The peak value, rising time and duration time of shock wave propagation on the division plate and head were 1369.74±91.70g, 0.317±0.037ms and 24.85±2.53ms, 26.83±3.09g, 0.901±0.077ms and 104.21±6.26ms respectively in injury group 1, 1850.11±83.86g, 0.184±0.031ms and 35.61±2.66ms, 39.75±3.14g, 0.607±0.069ms and 132.44±7.17ms in injury group 2 (P<0.01. After the injury, there was no abnormality in the anatomy, and brain damage markers NSE, S-100β increased, reached the peak at 24 h, and they were highest in injury group 2 and lowest in control group with a statistically significant difference (P<0.05. The brain water content

  19. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  20. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  1. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  2. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  3. [Effect of different volumes of fluid resuscitation on hemorrhagic shock with pulmonary edema at high altitude in the unacclimated rat].

    Science.gov (United States)

    Liu, Liang-ming; Hu, De-yao; Liu, Jian-cang; Li, Ping; Liu, Hou-dong; Xiao, Nan; Zhou, Xue-wu; Tian, Kun-lun; Huo, Xiao-ping; Shi, Quan-gui; He, Yan-mei; Yin, Zuo-ming

    2003-05-01

    To study the effects of different volumes of fluid resuscitation on hemorrhagic shock with pulmonary edema at high altitude in the unacclimated rat. One hundred and twenty-six SD rats transported to Lasa, Tibet, 3 760 meters above the sea level, were anesthetized one week later with sodium pentobarbital (30 mg/kg, intraperitoneal). Hemorrhagic shock with pulmonary edema model was induced by hemorrhage (50 mm Hg for 1 hour, 1 mmHg=0.133 kPa) plus intravenous injection of oleic acid (50 microl/kg). Experiments were then conducted in two parts. Sixty-three rats in part I were equally divided into nine groups (n=7): normal control, hemorrhagic shock control, hemorrhagic shock with pulmonary edema (HSPE) without fluid infusion, HSPE plus infusing lactated Ringer's solution (LR) with 0.5-, 1-, 1.5-, 2- or 3- fold volume shed blood, and 1 volume of LR plus mannitol (10 ml/kg). Hemodynamic parameters including mean arterial blood pressure (MAP), left intraventricular systolic pressure (LVSP) and the maximal change rate of intraventricular pressure rise or decline (+/- dp/dt max) were observed at 15, 30, 60 and 120 minutes after infusion, blood gases were measured at 30 and 120 minutes after infusion and the water content of lung and brain was determined at 120 minutes after infusion. In part II, additional 63 rats were used to observe the effect of different volumes of fluid resuscitation on survival time of HSPE rats. 0.5 volume of LR infusion significantly improved MAP, LVSP and +/- dp/dt max, prolonged the survival time of HSPE animals (all P<0.01), while it did not increase the water content of lung and brain and had no marked influence on blood gases. One volume of LR infusion slightly improved hemodynamic parameters, prolonged the survival time and increased the water content of lung. More than 1 volume of LR infusion including 1.5-, 2- and 3- fold volume LR deteriorated the hemodynamic parameters and decreased the survival time of shocked animal, meanwhile they

  4. On a Stochastic Failure Model under Random Shocks

    Science.gov (United States)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  5. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats

    Institute of Scientific and Technical Information of China (English)

    Wan-fu Liu; Chao Liu

    2015-01-01

    Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group):ip injection of 5 ml saline;ip injection of 5 ml of 10 mg/kg MK-801;ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock;ip injection of 5 ml of 200 mg/kg propofol;ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock;and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by

  6. out-of-n systems with shock model

    African Journals Online (AJOL)

    distributed. Sarhan, A.M. and Abouammoh (2000) used the shock model to derive the re- liability function of k-out-of-n systems with nonindependent and nonidentical components. They assumed that a system is subjected to n + m independent types of shocks. Liu et al. (2008) proposed a model to evaluate the reliability ...

  7. Experimental models of sepsis and septic shock: an overview

    Directory of Open Access Journals (Sweden)

    Garrido Alejandra G.

    2004-01-01

    Full Text Available Sepsis remains a major cause of morbidity and mortality in surgical patients and trauma victims, mainly due to sepsis-induced multiple organ dysfunction. In contrast to preclinical studies, most clinical trials of promising new treatment strategies for sepsis have fails to demonstrate efficacy. Although many reasons could account for this discrepancy, the misinterpretation of preclinical data obtained from experimental studies, and especially the use of animal models that do not adequately mimic human sepsis may have been contributing factors. In this review, the benefits and limitations of various animal models of sepsis are discussed to clarify the extend to which findings are relevant to human sepsis, particularly with respect to the subsequent design and execution of clinical trials. Such models include intravascular infusion of endotoxin or live bacteria, bacterial peritonitis, cecal ligation and perforation, soft tissue infection, pneumonia or meningitis models, using different animal species including rats, mice, rabbits, dogs, pigs, sheep and nonhuman primates. Despite several limitations, animal models remain essential in the development of all new therapies for sepsis and septic shock, because they provide fundamental information about the pharmacokinetics, toxicity, and mechanism of drug action that cannot be duplicated by other methods. New therapeutic agents should be studies in infection models, even after the initiation of the septic process. Furthermore, debility conditions need to be reproduced to avoid the exclusive use of healthy animals, which often do not represent the human septic patient.

  8. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    Science.gov (United States)

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  9. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhong-Cheng Xin

    2013-05-01

    Full Text Available To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT on the erectile dysfunction (ED in streptozotocin (STZ induced diabetic rats. SD rats (n = 75 were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups. Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  10. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model

    Directory of Open Access Journals (Sweden)

    Zhenghui Li

    2017-04-01

    Full Text Available The effects of financial factors on real business cycle is rising to one of the most popular discussions in the field of macro business cycle theory. The objective of this paper is to discuss the features of business cycle under financial shocks by quantitative technology. More precisely, we introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics of the model. The shocks include external shock and internal shock, both of which are expressed as noises. The dynamics of the model can help us understand the effects of financial shocks on business cycle and improve our knowledge about financial business cycle. In the case of external shock, if the intensity of shock is less than some threshold value, the economic system behaves randomly periodically. If the intensity of shock is beyond the threshold value, the economic system will converge to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value, the economic system behaves periodically as the case without shock. If the intensity of shock exceeds the threshold value, the economic system either behaves periodically or converges to a normalcy. It is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the intensities of shocks under which the economic system behaves randomly periodically or disorderly, or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are presented.

  12. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  13. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  14. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  15. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  16. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  17. Low Intensity Extracorporeal Shock Wave Therapy Improves Erectile Function in a Model of Type II Diabetes Independently of NO/cGMP Pathway.

    Science.gov (United States)

    Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine

    2016-09-01

    Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should

  18. [MK-801 or DNQX reduces electroconvulsive shock-induced impairment of learning-memory and hyperphosphorylation of Tau in rats].

    Science.gov (United States)

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Liu, Xiao-Bin

    2012-08-25

    This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and

  19. Potential early predictors for outcomes of experimental hemorrhagic shock induced by uncontrolled internal bleeding in rats.

    Directory of Open Access Journals (Sweden)

    Zaid A Abassi

    Full Text Available Uncontrolled hemorrhage, resulting from traumatic injuries, continues to be the leading cause of death in civilian and military environments. Hemorrhagic deaths usually occur within the first 6 hours of admission to hospital; therefore, early prehospital identification of patients who are at risk for developing shock may improve survival. The aims of the current study were: 1. To establish and characterize a unique model of uncontrolled internal hemorrhage induced by massive renal injury (MRI, of different degrees (20-35% unilateral nephrectomy in rats, 2. To identify early biomarkers those best predict the outcome of severe internal hemorrhage. For this purpose, male Sprague Dawley rats were anesthetized and cannulas were inserted into the trachea and carotid artery. After abdominal laparotomy, the lower pole of the kidney was excised. During 120 minutes, hematocrit, pO2, pCO2, base excess, potassium, lactate and glucose were measured from blood samples, and mean arterial pressure (MAP was measured through arterial tracing. After 120 minutes, blood loss was determined. Statistical prediction models of mortality and amount of blood loss were performed. In this model, the lowest blood loss and mortality rate were observed in the group with 20% nephrectomy. Escalation of the extent of nephrectomy to 25% and 30% significantly increased blood loss and mortality rate. Two phases of hemodynamic and biochemical response to MRI were noticed: the primary phase, occurring during the first 15 minutes after injury, and the secondary phase, beginning 30 minutes after the induction of bleeding. A Significant correlation between early blood loss and mean arterial pressure (MAP decrements and survival were noted. Our data also indicate that prediction of outcome was attainable in the very early stages of blood loss, over the first 15 minutes after the injury, and that blood loss and MAP were the strongest predictors of mortality.

  20. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    Science.gov (United States)

    1979-12-01

    also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970

  1. Characteristics of laser-induced shock wave injury to the inner ear of rats

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  2. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  3. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  4. Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress and inflammation

    NARCIS (Netherlands)

    Aksu, Ugur; Bezemer, R.; Yavuz, B.; Kandil, Asli; Demirci, C.; Ince, C.

    2012-01-01

    Background: The aim of the present study was to test the hypothesis that balanced crystalloid resuscitation would be better for the kidney than unbalanced crystalloid resuscitation in a rat hemorrhagic shock model. Methods: Male Wistar rats were randomly assigned to four groups (n = 6/group): (1)

  5. On numerical considerations for modeling reactive astrophysical shocks

    International Nuclear Information System (INIS)

    Papatheodore, Thomas L.; Messer, O. E. Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  6. Gain curves and hydrodynamic modeling for shock ignition

    International Nuclear Information System (INIS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-01-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  7. Histological and autoradiographic studies on rat joints after experimental nervous shock

    International Nuclear Information System (INIS)

    Kohl, C.

    1981-01-01

    22 SPF-Wistar-rats of both sexes, ranging in age from 49 to 56 days, were used in this investigation. Of these, 6 served as controls. The remaining 16 rats received i.v. injections of E. coli-neurotoxin serotyp 0 139 : K 82 (B). 6 rats died in acute shock. The surviving animals received 4 injections of the neurotoxin. The maximum weight loss 24 h p.i. amounted to an average of 8.3% in the females and 10.4% in the males. The clinical symptoms after the inducement of skock are slight to severe apathy, rough coat, dyspnoe and nervous symptoms which are expressed in various degrees of oversensitivity to touch or sound. The light microscopic examination of the synovial membrane from control animals coincides with the findings of previous investigations. In acute shock the joints show a middle to high degree of hyperemia, slight sticking effect, and isolated microthrombi in the vessels of the subsynoviocytic tissue as well as increased exsudation in the joint cavities. Edemas of the subsynoviocytic tissue are found to a small extent. The joints of animals in protracted shock show none of the changes evident in acute shock. Autoradiological examinations were performed on 13 rats which had been injected with 1 μCi/g body weight 3H-thymidine 1 hour before killing. Joints were embedded in paraffin- and methyl-methacrylat. Comparison cuts from the same stifle joint resulted each time in reproducable labeling indices. This can be taken as a confirmation of the applicability of 3H-autoradiography in the case of joint cuts embedded in methacrylat. (orig./MG) [de

  8. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  9. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  10. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  11. Opiate-like electroencephalographic and behavioral effects of electroconvulsive shock in rats.

    Science.gov (United States)

    Tortella, F C; Cowan, A; Belenky, G L; Holaday, J W

    1981-12-03

    Rats were studied (a) after a single transauricular electroshock (acute ECS) and (b) following 10 consecutive once-daily shocks (chronic ECS). ECS produced a generalized convulsion marked by a polyspike EEG seizure. The seizure was followed by a period of postictal depression (PID) characterized by EEG high-voltage synchrony, EMG quietening, and an associated stuporous behavior in the rat. Acute ECS produced a maximal of 33 +/- 8 (S.E.) percent above control in the EEG voltage output during postictus, with the PID lasting 2680 +/- 658 sec. Chronic ECS resulted in a significant enhancement of these acute responses. Pretreating rats with naloxone (0.3-10 mg/kg s.c.) antagonized the postictal effects of acute ECS, but not of chronic ECS. These naloxone-sensitive postictal EEG and behavioral changes appear to reflect a release of endogenous opioid peptides during ictus, a finding consistent with the hypothesis that electroshock activates opioid systems.

  12. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    Science.gov (United States)

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of electrohydraulic extracorporeal shock wave lithotripsy on submandibular gland in the rat: electron microscopic evaluation.

    Science.gov (United States)

    Bayar, Nuray; Kaymaz, F Figen; Apan, Alpaslan; Yilmaz, Erdal; Cakar, A Nur

    2002-05-15

    Extracorporeal shockwave lithotripsy (ESWL) has been applied in sialolithiasis as a new treatment modality. The aim of this experimental study is to investigate the local effects of electrohydraulic ESWL applied to the right submandibular gland of the rats. This prospective study was conveyed in four groups; groups I, II, III and IV; each group consisting of 20, 20, 18 and 9 rats, respectively, with a randomized distribution. Groups I, II, III and IV received 250, 500, 1000 and 2000 shock waves at 14-16 kV (average 15.1 kV), respectively, to the right submandibular glands on the 0th day. In groups I, II, III, right submandibular glands of the rats were removed on the 0th, 1st, 7th and 15th days; in group IV, this procedure could be managed only on the 0th and 7th days. Light and electron microscopic evaluation were assessed. Using the light microscopic changes, severity of damage score of the glands (SDS) was found. Statistical analysis was done using SDSs. Light and electron microscopic observations have shown that the damage produced by the shock waves were confined to focal areas in the acinar cells (AC), granulated convoluted tubule (GCT) cells and blood vessels at all doses applied. Vacuolization in the cytoplasms of the AC and GCT cells, disintegration of membranes, alteration in the cytoplasmic organization, swelling of the mitochondria and loss of the features were observed on electron microscopy. Increase in the secretion rate; stasis and dilatation in the blood vessels; blebbing and loss of features in the cytoplasm of the endothelial cells were observed. According to the result of the statistical analysis using SDSs; at 250 shock wave dose, a statistically significant difference between the SDSs of the days (0th, 1st, 7th and 15th) was found (Pwaves (Pwaves was found to have the lower value than the SDS at the 2000 shock wave. It was observed that produced damage was less prominent by small doses (250, 500 doses) initially (0th day). Electrohydraulic

  14. A new model for friction under shock conditions

    Directory of Open Access Journals (Sweden)

    Dambakizi F.

    2011-01-01

    Full Text Available This article is aimed at the developpement of a new model for friction under shock conditions. Thanks to a subgrid model and a specific Coulomb friction law, it takes into account the interface temperature and deformation but also the influence of asperities when the contact pressure is relatively low (≤ 3 GPa.

  15. A multiple shock model for common cause failures using discrete Markov chain

    International Nuclear Information System (INIS)

    Chung, Dae Wook; Kang, Chang Soon

    1992-01-01

    The most widely used models in common cause analysis are (single) shock models such as the BFR, and the MFR. But, single shock model can not treat the individual common cause separately and has some irrational assumptions. Multiple shock model for common cause failures is developed using Markov chain theory. This model treats each common cause shock as separately and sequently occuring event to implicate the change in failure probability distribution due to each common cause shock. The final failure probability distribution is evaluated and compared with that from the BFR model. The results show that multiple shock model which minimizes the assumptions in the BFR model is more realistic and conservative than the BFR model. The further work for application is the estimations of parameters such as common cause shock rate and component failure probability given a shock,p, through the data analysis

  16. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  17. Oil shocks in New Keynesian models: Positive and normative implications

    Science.gov (United States)

    Chang, Jian

    Chapter 1 investigates optimal monetary policy response towards oil shocks in a New Keynesian model. We find that optimal policy, in general, becomes contractionary in response to an adverse oil shock. However, the optimal policy rule and the inflation-output trade-off depend on the specific structure of the model. The benchmark economy consists of a flexible-price energy sector and a sticky-price manufacturing sector where energy is used as an intermediate input. We show that optimal policy is to stabilize the sticky (core) price level. We then show that after incorporating a less oil-dependent sticky-price service sector, the model exhibits a trade-off in stabilizing prices and output gaps in the different sticky-price sectors. It predicts that central bank should not try to stabilize the core price level, and the economy will experience higher inflation and rising output gaps, even if central banks respond optimally. Chapter 2 addresses the observed volatility and persistence of real exchange rates and the terms of trade. It contributes to the literature with a quantitative study on the U.S. and Canada. A two-country New Keynesian model consisting of traded, non-traded, and oil production sectors is proposed to examine the time series properties of the real exchange rate, the terms of trade and the real oil price. We find that after incorporating several realistic features (namely oil price shocks, sector specific labor, non-traded goods, asymmetric pricing decisions of exporters and asymmetric consumer preferences over tradables), the benchmark model broadly matches the volatilities of the relative prices and some business cycle correlations. The model matches the data more closely after adding real demand shocks, suggesting their importance in explaining the relative price movements between the US and Canada. Chapter 3 explores several sources and transmission channels of international relative price movements. In particular, we elaborate on the role of

  18. Avoidance Expression in Rats as a Function of Signal-Shock Interval: Strain and Sex Differences

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2015-07-01

    Full Text Available Inbred Wistar Kyoto (WKY rats express inhibited temperament, increased sensitivity to stress, and exaggerated expressions of avoidance. A long-standing observation for lever press escape/avoidance learning in rats is the duration of the warning signal (WS determines whether avoidance is expressed over escape. Outbred female Sprague-Dawley (SD rats trained with a 10-s WS efficiently escaped, but failed to exhibit avoidance; avoidance was exhibited to a high degree with WSs longer than 20-s. We examined this longstanding WS duration function and extended it to male SD and male and female WKY rats. A cross-over design with two WS durations (10 s or 60 s was employed. Rats were trained (20 trials/session in four phases: acquisition (10 sessions, extinction (10 sessions, re-acquisition (8 sessions and re-extinction (8 sessions. Consistent with the literature, female and male SD rats failed to express avoidance to an appreciable degree with a 10-s WS. When these rats were switched to a 60-s WS, performance levels in the initial session of training resembled the peak performance of rats trained with a 60-s WS. Therefore, the avoidance relationship was acquired, but not expressed at 10-s WS. Further, poor avoidance at 10-s does not adversely affect expression at 60-s. Failure to express avoidance with a 10-s WS likely reflects contrasting reinforcement value of avoidance, not a reduction in the amount of time available to respond or competing responses. In contrast, WKY rats exhibited robust avoidance with a 10-s WS, which was most apparent in female WKY rats. Exaggerated expression of avoidances by WKY rats, especially female rats, further confirms this inbred strain as a model of anxiety vulnerability.

  19. Frontiers in Anisotropic Shock-Wave Modeling

    Science.gov (United States)

    2012-02-01

    Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar / Epoxy materials recovered after...model development for the Nextel and Kevlar / Epoxy materials subject to hypervelocity impact. They also performed the experimental inverse flyer test...IFPT) for Nextel and Kevlar / Epoxy . Their models were to be macro-mechanically based and suitable for implementation into a hydrocode coupled with EOS

  20. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  1. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats.

    Science.gov (United States)

    Reisz, Julie A; Slaughter, Anne L; Culp-Hill, Rachel; Moore, Ernest E; Silliman, Christopher C; Fragoso, Miguel; Peltz, Erik D; Hansen, Kirk C; Banerjee, Anirban; D'Alessandro, Angelo

    2017-07-25

    Red blood cells (RBCs) are the most abundant host cell in the human body and play a critical role in oxygen transport and systemic metabolic homeostasis. Hypoxic metabolic reprogramming of RBCs in response to high-altitude hypoxia or anaerobic storage in the blood bank has been extensively described. However, little is known about the RBC metabolism following hemorrhagic shock (HS), the most common preventable cause of death in trauma, the global leading cause of total life-years lost. Metabolomics analyses were performed through ultra-high pressure liquid chromatography-mass spectrometry on RBCs from Sprague-Dawley rats undergoing HS (mean arterial pressure [MAP], 80 mm Hg). Steady-state measurements were accompanied by metabolic flux analysis upon tracing of in vivo-injected 13 C 15 N-glutamine or inhibition of glutaminolysis using the anticancer drug CB-839. RBC metabolic phenotypes recapitulated the systemic metabolic reprogramming observed in plasma from the same rodent model. Results indicate that shock RBCs rely on glutamine to fuel glutathione (GSH) synthesis and pyruvate transamination, whereas abrogation of glutaminolysis conferred early mortality and exacerbated lactic acidosis and systemic accumulation of succinate, a predictor of mortality in the military and civilian critically ill populations. Glutamine is here identified as an essential amine group donor in HS RBCs, plasma, liver, and lungs, providing additional rationale for the central role glutaminolysis plays in metabolic reprogramming and survival following severe hemorrhage.

  2. Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress.

    Science.gov (United States)

    Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M

    2017-03-01

    Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  4. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  5. Regional GABA concentration and [3H]-diazepam binding in rat brain following repeated electroconvulsive shock

    International Nuclear Information System (INIS)

    Bowdler, J.M.; Green, A.R.; Minchin, M.C.W.; Nutt, D.J.

    1983-01-01

    It has been confirmed that 24 hours following a series of electroconvulsive shocks (ECS) given once daily for 10 days (ECS x 10) to rats there is an increase in GABA concentration in the corpus striatum. A similar change was seen after the ECS had been given to rats anaesthetised with halothane, or when 5 ECS were given spread out over 10 days, the rats being anaesthetised during the ECS. A daily convulsion for 10 days elicited by flurothyl exposure resulted in an increased striatal GABA concentration, but also increased the GABA concentration in the hypothalamus, hippocampus and cortex. The increase in striatal GABA concentration was present 24 hours after ECS daily for 5 days or 3 days after ECS daily for 10 days. No change in [ 3 H]-diazepam binding was seen in hippocampus, cortex or corpus striatum 24 hours after the last of 10 once daily ECS. The increase in striatal GABA concentration was therefore seen at all times when enhanced monoaminemediated behaviours have been demonstrated following seizures. (Author)

  6. RAT HIPPOCAMPAL LACTATE EFFLUX DURING ELECTROCONVULSIVE SHOCK OR STRESS IS DIFFERENTLY DEPENDENT ON ENTORHINAL CORTEX AND ADRENAL INTEGRITY

    NARCIS (Netherlands)

    KRUGERS, HJ; JAARSMA, D; KORF, J

    The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named

  7. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  8. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  9. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  10. [The role of nitric oxide on the dysfunction of intestinal motility in rats subjected to hemorrhagic shock].

    Science.gov (United States)

    Zhang, Yu-ping; Wang, Xiao-rong; Zhao, Xiao-qi; Qiao, Hai-xia

    2013-09-01

    To determine the role of nitric oxide (NO) in intestinal motility dysfunction in rats subjected to hemorrhagic shock (HS). Sixteen male Wistar rats were randomly and equally divided into two groups. The HS model of rat was induced by bleeding from femoral artery. After animal models were made, different inducers were added, and duodenum samples were harvested for the determination of contractile response to acetylcholine (ACh) in vitro, activities of inducible nitric oxide synthase (iNOS), contents of NO in tissue, and morphological changes. The spontaneous contraction of intestinal smooth muscle and contractile response induced by ACh were significantly decreased at 180 minutes in HS group, compared with control group, the contractile response induced by ACh of intestinal smooth muscle was decreased by almost 60% (0.40±0.11 g×mm(-2)×s(-1) vs. 1.00±0.20 g×mm(-2)×s(-1), Phydrochloride (L-NAME) could significantly restore the suppressed contractile response of smooth muscle strips obtained from HS rats (0.97±0.25 vs. 0.40±0.11, P0.05). Compared with those of control group, iNOS activities (2.295±0.310 U/g vs. 1.319±0.322 U/g) and NO contents (2.880±0.353 μmol/g vs. 1.505±0.387 μmol/g) in duodenum of HS rats were both significantly increased (both P<0.01). Under light microscopy, the most significant morphological change in duodenum following HS was the infiltration of obvious inflammatory cells. The NO produced by the overexpression of iNOS induced by HS involves in the motility dysfunction of intestine through the mechanism of cyclic guanosine monophosphate (cGMP) system. Moreover, NO-mediated infiltration of inflammatory cells in tissue may also contribute to the development of motility dysfunction of intestine following HS.

  11. Shock Absorbers Multi-Modeling and Suspension Optimization

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2013-05-01

    Full Text Available The standard dampers used by more 90% of vehicles have damping coefficients constant along stroke, so they can’t solve simultaneous all of them, situation solving practically using a relative dampingcoefficient able to made compromise between them. This paper design and simulation testing multi-models of two types of Damp (DSA and VZN. To compare the two types of suspension they are simulated in various road and load conditions. Analysis of simulation results is presente a new VZN shock absorber. This is an invention of the Institute of Mechanics of the Romanian Academy, and patented at European and U.S. [1], [2]. This is Called VZN shock absorber, iscoming from Variable Zeta Necessary acronym, for well moving in all road and load Conditions, Where zeta Represents the relative damping, Which is Adjusted automatically, stepwise, According to the piston positions [3,4,5]. Suspension systems are used in all air and ground transportation to protect that building transportation and cargo transported around against shocks and vibrations induced in the systemfrom the road Modifying damping coefficients (Zeta function piston position, being correlated with vehicle load and road unevenness.

  12. H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores

    Science.gov (United States)

    SONOBE, TAKASHI; HAOUZI, PHILIPPE

    2015-01-01

    Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting

  13. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    Science.gov (United States)

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  14. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  15. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.

    Science.gov (United States)

    Fleischmann, A; Hirschmann, S; Dolberg, O T; Dannon, P N; Grunhaus, L

    1999-03-15

    Studies in laboratory animals suggest that repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive shock (ECS) increase seizure inhibition acutely. This study was designed to explore whether chronic rTMS would also have seizure inhibition properties. To this purpose we administered rTMS (Magstim Rapid) and sham rTMS twice daily (2.5 T, 4-sec train duration, 20 Hz) to two groups of 10 rats for 16 days. The rTMS coil was a 50-mm figure-8 coil held directly over the rat's head. Raters were blind to experimental groups. On days 11, 17, and 21 (5 days after the last rTMS) ECS was administered with a Siemens convulsator using three electrical charge levels. Variables examined were the presence or absence of seizures and seizure length (measured from the initiation of the tonic contraction until the end of the limb movement). At day 11 rTMS had no effect on seizures, and both rTMS and sham rTMS animals convulsed equally. At day 17, however, rTMS-treated animals convulsed significantly less (both at presence/absence of seizures, and at seizure length) than sham rTMS animals. At day 21 the effects of rTMS had disappeared. These findings suggest that rTMS administered chronically leads to changes in seizure threshold similar to those reported for ECS and ECT; however, these effects were short-lived.

  16. The effects of ionizing radiation on the performance of signaled and unsignalled bar-press shock postponement in the rat

    International Nuclear Information System (INIS)

    Burghardt, W.F. Jr.

    1988-01-01

    Forty-eight rats in four conditions were used to determine the efficacy of preshock warning tones in maintaining bar-press shock postponement performance after irradiation. The SIDMAN group performed without external cues. The SIGNAL group received a 5 sec warning tone preceding shock. The COSAV group had preshock warning tones available for 60 sec following a response on another lever, and was used to assess the ability to maintain performance on two levers simultaneously. In VISIG, warning tones always preceded shocks, but followed shock postponement responses unpredictably. Sham-irradiated control groups were used to compare baseline performance on each task, and for comparison with irradiated subjects. Irradiated subjects could perform the movements necessary to successfully avoid shock. They were able to detect and respond appropriately to preshock warning tones when present, although COSAV subjects did not continue to respond to produce them. Irradiated subjects experienced a significant and lasting increase in the number of shocks received, except when no external cues were available

  17. Climate Shocks and Migration: An Agent-Based Modeling Approach

    Science.gov (United States)

    Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-01-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725

  18. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Resilience in shock and swim stress models of depression

    Directory of Open Access Journals (Sweden)

    Robert Charles Drugan

    2013-02-01

    Full Text Available Experimental models of depression often entail exposing a rodent to a stressor and subsequently characterizing changes in learning and anhedonia, which may reflect symptoms of human depression. Importantly, not all people and not all laboratory rats exposed to stressors develop depressed behavior; these resilient individuals are the focus of our review. Herein we describe research from the learned helplessness and intermittent swim stress models of depression in which rats that were allowed to cope with the stressor appear to be behaviorally and neurochemically similar to rats that were not allowed to cope yet appeared resilient in behavioral tests. For example, rats exposed to inescapable tailshock, but do not develop learned helplessness, exhibit altered sensitivity to the behavioral effects of GABAA receptor antagonists and reduced in vitro benzodiazepine receptor ligand binding. This pattern suggested that resilience might involve activation of an endogenous benzodiazepine-like compound, possibly an allostatic modulator of the GABAA receptor like allopregnanolone. From the intermittent swim stress model, we have observed in resilient rats protection from stressor-induced glucocorticoid increases and immune activation. In order to identify the neural mediators of these correlates of resilience, non-invasive measures are needed to predict the resilient or vulnerable phenotype prior to analysis of neural endpoints. To this end, we found that ultrasonic vocalizations (USVs appear to predict the resilient phenotype in the intermittent swim stress paradigm. We propose that combining non-invasive predictive measures, such as USVs with biological endpoint measures, will facilitate future research into the neural correlates of resilience.

  20. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  1. Formation of intermediate shocks in both two-fluid and hybrid models

    International Nuclear Information System (INIS)

    Wu, C.C.; Hada, T.

    1991-01-01

    Intermediate shocks are shocks with shock frame fluid velocities greater than the Alfven speed ahead and less than the Alfven speed behind, or equivalently, across intermediate shocks the sign of the transverse component of the magnetic field changes. These shocks had been considered extraneous, or nonevolutionary, or unstable, and they had been thought not to correspond to physical reality [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowitz and Petschek, 1966]. However, it has been shown that intermediate shocks can be formed from continuous waves according to dissipative magnetohydrodynamics (MHD) [Wu, 1987, 1988a, b, 1990]. Thus according to the formation argument which requires that physical shocks be formed by the wave steepening process, the intermediate shocks should be considered physical. Here, intermediate shocks are studied in a two-fluid model that includes finite ion inertia dispersion and in a hybrid model in which the full ion dynamics is retained while the electrons are treated as a massless fluid. The authors show that in both models intermediate shocks can be formed through wave steepening, meaning that they are stable and possess shock structures

  2. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.

    Science.gov (United States)

    Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A

    2007-03-30

    We have previously shown that acute stress-induced release of norepinephrine (NE) facilitates anxiety-like behavioral responses to stress, such as reduction in open-arm exploration on the elevated-plus maze and in social behavior on the social interaction test. Since these responses represent inhibition of ongoing behavior, it is important to also address whether NE facilitates a response that represents an activation of behavior. Correspondingly, it is unknown how a chronic elevation in tonic steady-state noradrenergic (NA) neurotransmission induced by NE reuptake blockade might alter this acute modulatory function, a regulatory process that may be pertinent to the anxiolytic effects of NE reuptake blockers such as desipramine (DMI). Therefore, in this study, we investigated noradrenergic modulation of the shock-probe defensive burying response in the lateral septum (LS). In experiment 1, shock-probe exposure induced an acute 3-fold increase in NE levels measured in LS of male Sprague-Dawley rats by microdialysis. Shock-probe exposure also induced a modest rise in plasma ACTH, taken as an indicator of perceived stress, that returned to baseline more rapidly in rats that were allowed to bury the probe compared to rats prevented from burying by providing them with minimal bedding, indicating that the active defensive burying behavior is an effective coping strategy that reduces the impact of acute shock probe-induced stress. In experiment 2, blockade of either alpha(1)- or beta-adrenergic receptors in LS by local antagonist microinjection immediately before testing reduced defensive burying and increased immobility. In the next experiment, chronic DMI treatment increased basal extracellular NE levels in LS, and attenuated the acute shock probe-induced increase in NE release in LS relative to baseline. Chronic DMI treatment decreased shock-probe defensive burying behavior in a time-dependent manner, apparent only after 2 weeks or more of drug treatment. Moreover

  3. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  4. The effects of acute foot shock stress on empathy levels in rats.

    Science.gov (United States)

    Karakilic, Aslı; Kizildag, Servet; Kandis, Sevim; Guvendi, Guven; Koc, Basar; Camsari, Gamze B; Camsari, Ulas M; Ates, Mehmet; Arda, Sevil Gonenc; Uysal, Nazan

    2018-09-03

    Empathy defined as the ability to understand and the share the feelings, thoughts, and attitudes of another, is an important skill in survival and reproduction. Among many factors that affect empathy include psychological stress, anxiety states. The aim of this study was to investigate the impact of acute psychological stress on empathic behavior and its association with oxytocin and vasopressin levels in amygdala and prefrontal cortex. Rats were subjected to 0.2 mA (low) and 1.6 mA (high) intensity of foot shock stress for duration of 20 min. Empathic behavior was found to be improved as a response to low intensity stress, but not to high intensity stress. As a response to lower intensity stress, vasopressin was increased in prefrontal cortex and amygdala; oxytocin was increased in only prefrontal cortex, and corticosterone levels increased in general. Anxiety indicators did not change in low intensity stress group yet; high intensity stress group demonstrated a lesser degree of anxiety response. High intensity stress group stayed unexpectedly more active in middle area of elevated plus maze test equipment, which may support impaired executive decision making abilities in the setting of high anxiety states. Further research is needed to investigate gender effects, the role of dopaminergic system and other stress related pathways in acute stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantification model of the consequences of monetary policy shocks

    Directory of Open Access Journals (Sweden)

    Coralia Emilia POPA

    2017-11-01

    Full Text Available The monetary analysis based on the BVAR (Bayesian Vector Autoregression model is extremely important in the monetary policy implementation strategy, the information provided is important not only for the Central Bank, but also for the economic agents and the population. Therefore, conducting this analysis at the level of Romania helps to understand better the mechanism by which monetary policy is transmitted in order to achieve the set target, namely inflation targeting, but it also provides us with important information regarding the accession to the euro area. The model we are trying to test helps us understand through the correlations between the interest rate, GDP and the inflation rate how monetary policy responds to shocks. The model follows the methodology presented by Sims and Zha (1998 in the paper "Bayesian Methods for Dynamic Multivariate Models and Using the Bayesian Autoregressive Vector". In the analysis of this model, quarterly data for a minimum of three years, three variables are used to make the results relevant. The data needed to model the model are used in logarithmic form, except for the interest rate, and the outcome is applied to a differentiated premium operator. Of the variables used, the interest rate is the only one that does not allow seasonal adjustment.

  6. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  7. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  8. [Role of mesenteric lymph drainage improving the metabolism of red blood cell in hemorrhagic shock rats following fluid resuscitation].

    Science.gov (United States)

    Han, Rui; Du, Hui-bo; Lu, Bei; Si, Yong-hua; Zhang, Li-min; Zhang, Yu-pin; Zhao, Zi-gang; Niu, Chun-yu

    2012-08-01

    To observe the effects of mesenteric lymph drainage on the metabolism of red blood cell (RBC) in hemorrhagic shock (HS) rats following fluid resuscitation. Eighteen male Wistar rats were randomly divided into sham group (n=6), HS group (n=6), HS + drainage group (n=6). After 1.5 hours of HS model prepared, the animals were given fluid resuscitation by lost blood plus equal volume of Ringer solution within 30 minutes in HS and HS + drainage groups, and mesenteric lymph drainage was performed after 1 hour of hypotension in HS + drainage group. At 3 hours after resuscitation or corresponding time, blood samples were obtained from abdominal aorta. Membrane suspensions of RBC prepared from part of whole blood samples were used to measure the activities of adenosine triphosphate ase (ATPase) and contents of ATP and lactic acid (LA), the intracellular fluid of RBC prepared from part of whole blood samples was used to determine the concentration of 2,3-diphosphoglyceric acid (2,3-DPG), Na(+) and K(+), plasma samples isolated from blood by centrifugation were used to determine the concentration of Na(+), K(+), Cl(-) and total Ca. Compared with sham group, the content of ATP (μmol/g), activity of Na(+)-K(+)-ATPase (μmol×mg(-1)×h(-1)) and Ca(2+)-ATPase (μmol×mg(-1)×h(-1)) in RBC membrane and total Ca (mmol/L) in plasma were decreased markedly (ATP: 6.698±0.938 vs. 10.670±1.466, Na(+)-K(+)-ATPase: 0.042±0.010 vs. 0.066±0.019, Ca(2+)-ATPase: 0.054±0.015 vs. 0.081±0.017, total Ca: 2.27±0.18 vs. 2.66±0.21, P0.05). Compared with HS group, the contents of 2,3-DPG (4.459±0.900) and ATP (8.859±1.189), the activities of Na(+)-K(+)-ATPase (0.089±0.022), Ca(2+)-ATPase (0.082±0.020) of RBC were increased in HS + drainage group, and the level of LA (2.060±0.810) was decreased observably (Pdrainage plays an important role in improving the metabolism of RBC in HS rats following fluid resuscitation, subsequently, may preserve the structure and function of RBC.

  9. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Science.gov (United States)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  10. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  11. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    Energy Technology Data Exchange (ETDEWEB)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D. [Dicle Univ., Diyarbakir (Turkey). Medical School

    2001-12-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ({sup 99m}Tc MAA) via penil vein. After injection of {sup 99m}Tc MAA, 3 minutes fixed images were detected by a {gamma} camera in posterior position at 15 minutes and 5 hours. {sup 99m}Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  12. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    International Nuclear Information System (INIS)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D.

    2001-01-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ( 99m Tc MAA) via penil vein. After injection of 99m Tc MAA, 3 minutes fixed images were detected by a γ camera in posterior position at 15 minutes and 5 hours. 99m Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  13. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    Science.gov (United States)

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  14. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation

    Directory of Open Access Journals (Sweden)

    Hu Zhao-Yuan

    2009-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsps are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. Methods Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. Results Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. Conclusion Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

  15. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  16. Topics in Computational Modeling of Shock and Wave Propagation

    National Research Council Canada - National Science Library

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  17. On terminating Poisson processes in some shock models

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Maxim, E-mail: FinkelMI@ufs.ac.z [Department of Mathematical Statistics, University of the Free State, Bloemfontein (South Africa); Max Planck Institute for Demographic Research, Rostock (Germany); Marais, Francois, E-mail: fmarais@csc.co [CSC, Cape Town (South Africa)

    2010-08-15

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  18. On terminating Poisson processes in some shock models

    International Nuclear Information System (INIS)

    Finkelstein, Maxim; Marais, Francois

    2010-01-01

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  19. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  20. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats.

    Science.gov (United States)

    Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang

    2017-01-01

    Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.

  1. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  2. Dynamics and distribution of /sup 3/H-dopamine in serum and tissues of heart, brain and adrenal glands of rats with endotoxic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rainov, A; Boschkov, B; Nikolov, N [Meditsinska Akademiya, Sofia (Bulgaria)

    1980-04-01

    The dynamics and the distribution of /sup 3/H-dopamine in the serum and tissues of the heart, hypothalamus, cerebral cortex and adrenal glands were studied in 60 Wistar rats. The rats received intravenously 7.4 MBq /sup 3/H-dopamine/kg body weight 10 minutes before they were killed. The experimental animals were subjected to endotoxic shock by injecting them with 2 mg endotoxin of E. coli O 111:B/sub 4//kg body weight, and killed after 5, 10, 15, 20 and 30 min, respectively. Maximum increase of the tritium activity in the organs investigated was observed 20 min after the shock.

  3. Effect of Extracorporeal Shock Wave Treatment on Deep Partial-Thickness Burn Injury in Rats: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Gabriel Djedovic

    2014-01-01

    Full Text Available Extracorporeal shock wave therapy (ESWT enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N=15, but not to group 2 (N=15. On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P<0.05. The reepithelialization rate was improved significantly on day 15 (P<0.05. The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future.

  4. An empirical model of the Earth's bow shock based on an artificial neural network

    Science.gov (United States)

    Pallocchia, Giuseppe; Ambrosino, Danila; Trenchi, Lorenzo

    2014-05-01

    All of the past empirical models of the Earth's bow shock shape were obtained by best-fitting some given surfaces to sets of observed crossings. However, the issue of bow shock modeling can be addressed by means of artificial neural networks (ANN) as well. In this regard, here it is presented a perceptron, a simple feedforward network, which computes the bow shock distance along a given direction using the two angular coordinates of that direction, the bow shock predicted distance RF79 (provided by Formisano's model (F79)) and the upstream alfvénic Mach number Ma. After a brief description of the ANN architecture and training method, we discuss the results of the statistical comparison, performed over a test set of 1140 IMP8 crossings, between the prediction accuracies of ANN and F79 models.

  5. Improved bow shock models for Herbig-Haro objects - application to HH 2A-prime

    International Nuclear Information System (INIS)

    Raymond, J.C.; Hartmann, L.; Hartigan, P.

    1988-01-01

    An improved version of the bow shock theory previously applied to Herbig-Haro objects is presented. The modifications provide a more accurate calculation of the ionization state of material entering the bow shock. The revised preionization does not drastically affect the emission-line predictions for a 200 km/s bow shock model, though the effects will be more severe for slower shock velocities. The line profiles of the new models resemble the observed profiles somewhat more closely, and the relative emission-line intensities typically differ by 30 percent from those predicted by the older models. The models agree well with new IUE spectra and existing optical data for HH 2A-prime. 32 references

  6. Effect of diatrizoate (Angiografin) on the aortic endothelium in rats during the course of endotoxin shock

    Energy Technology Data Exchange (ETDEWEB)

    Gospos, C; Freudenberg, N; Hauenstein, K H; Kauffmann, G W; Koch, H K

    1982-08-01

    Investigations have been carried out on the endothelial changes produced by diatrizoate (Angiografin) during the course of endotoxin shock. A single injection was given directly into the aorta of 1 ml of the contrast medium, with an iodine content of 300 mg/ml. The increased proliferation of the aortic endothelium could be shown to be due to the endotoxin shock, but was not further increased by administration of the contrast medium.

  7. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  8. Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts

    Science.gov (United States)

    2017-11-01

    Many TBIs are associated with blast from improvised explosive devices.2–4 Explosions are physical, chemical , or nuclear reactions involving a rapid...ARL-TR-8210 ● NOV 2017 US Army Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave...Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts by Nicole E Zander, Thuvan

  9. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  10. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  11. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  12. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    Science.gov (United States)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  13. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  14. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  15. A model for precursor structure in supercritical perpendicular, collisionless shock waves

    International Nuclear Information System (INIS)

    Sherwell, D.; Cairns, R.A.

    1978-01-01

    Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jsub(y)(x) of trapped ions perpendicular to Bsub(z)(x) and the wave velocity Vsub(x). Suitable ions are found immediately upstream of perpendicular collisionless shock waves and these are coincident with the often observed 'foot' in magnetic field profiles of moderately supercritical shocks. The theory is applied to previous experiments by modelling Jsub(y)(x), where Jsub(y)(x) is observed, the profiles in the foot are reproduced and explained. Insight into a number of features of fast shocks is obtained. (author)

  16. Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia.

    Directory of Open Access Journals (Sweden)

    Shunichi Sato

    Full Text Available Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3-4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of

  17. Pain Relief with Wet Cupping Therapy in Rats is Mediated by Heat Shock Protein 70 and ß-Endorphin.

    Science.gov (United States)

    Subadi, Imam; Nugraha, Boya; Laswati, Hening; Josomuljono, Harjanto

    2017-07-01

    Wet cupping therapy is a complementary therapy in pain management. The mechanism of this therapy, however, needs further elucidation. Cells injured by wet cupping therapy seem to stimulate the expression of heat shock protein 70 (HSP70). Its benefit in pain reduction could be mediated by the expression of ß-endorphin. This study aimed at determining the correlation between HSP70 and ß-endorphin after wet cupping therapy. Sixteen male Wistar rats were divided into control (CG; n=8) and treatment (TG; n=8) groups. The rats in both groups were injected with complete Freund's adjuvant (CFA) at the footpad. In the TG, wet cupping therapy was done at the left and right paralumbar regions 48 hours after the CFA injection. Twenty-four hours after therapy, the hot plate test was done to assess pain threshold. Thereafter, immunohistochemistry from the skin subjected to wet cupping therapy was conducted for HSP70 and ß-endorphin. The expression of HSP70 was significantly higher in the keratinocytes of the TG (20.25±3.53; Pcupping therapy was significantly higher in the TG (22.81±6.34 s; P=0.003) than in the CG (11.78±3.56 s). The benefit of wet cupping therapy in terms of pain reduction in rats could be mediated by the expression of HSP70 and ß-endorphin.

  18. Synchronisation under shocks: The Lévy Kuramoto model

    Science.gov (United States)

    Roberts, Dale; Kalloniatis, Alexander C.

    2018-04-01

    We study the Kuramoto model of identical oscillators on Erdős-Rényi (ER) and Barabasi-Alberts (BA) scale free networks examining the dynamics when perturbed by a Lévy noise. Lévy noise exhibits heavier tails than Gaussian while allowing for their tempering in a controlled manner. This allows us to understand how 'shocks' influence individual oscillator and collective system behaviour of a paradigmatic complex system. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered, but overlaid by exponential tempering of rate λ. In an earlier paper we found that synchrony takes a variety of forms for identical Kuramoto oscillators subject to stable Lévy noise, not seen for the Gaussian case, and changing with α: a noise-induced drift, a smooth α dependence of the point of cross-over of synchronisation point of ER and BA networks, and a severe loss of synchronisation at low values of α. In the presence of tempering we observe both analytically and numerically a dramatic change to the α synchronisation is sustained over a larger range of values of the 'noise strength' σ, improved compared to the α > 1 tempered cases. Analytically we study the system close to the phase synchronised fixed point and solve the tempered fractional Fokker-Planck equation. There we observe that densities show stronger support in the basin of attraction at low α for fixed coupling, σ and tempering λ. We then perform numerical simulations for networks of size N = 1000 and average degree d ¯ = 10. There, we compute the order parameter r as a function of σ for fixed α and λ and observe values of r ≈ 1 over larger ranges of σ for α synchronisation down to low values of α. We propose a mechanism for this in terms of the basic shape of the tempered stable Lévy densities for various α and how it feeds into Kuramoto oscillator dynamics and illustrate this with examples of specific paths.

  19. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    Science.gov (United States)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  20. Shock-darkening in ordinary chondrites: impact modelling

    Czech Academy of Sciences Publication Activity Database

    Moreau, J.; Kohout, Tomáš; Wünnemann, K.

    2016-01-01

    Roč. 88, Special volume (2016), s. 285-285 ISSN 0367-5211. [ Nordic Geological Winter Meeting /32./. 13.01.2016-15.01.2016, Helsinki] Institutional support: RVO:67985831 Keywords : impact, shock * reflectance spectra * chondrite * meteorite * Chelyabinsk Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.geologinenseura.fi/bulletin/Special_Volume_1_2016/BGSF-NGWM2016_Abstract_Volume.pdf

  1. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  2. Role of the renin-angiotensin system, renal sympathetic nerve system, and oxidative stress in chronic foot shock-induced hypertension in rats.

    Science.gov (United States)

    Dong, Tao; Chen, Jing-Wei; Tian, Li-Li; Wang, Lin-Hui; Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Zhao, Xiao-Dong; Zhu, Wei; Wang, Guo-Qing; Sun, Wan-Ping; Zhang, Guo-Xing

    2015-01-01

    The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension.

  3. Kinetic modeling of methyl butanoate in shock tube.

    Science.gov (United States)

    Huynh, Lam K; Lin, Kuang C; Violi, Angela

    2008-12-25

    An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation

  4. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  5. A composite model for a class of electric-discharge shock tubes

    Science.gov (United States)

    Elkins, R. T.; Baganoff, D.

    1973-01-01

    A gasdynamic model is presented and analyzed for a class of shock tubes that utilize both Joule heating and electromagnetic forces to produce high-speed shock waves. The model consists of several stages of acceleration in which acceleration to sonic conditions is achieved principally through heating, and further acceleration of the supersonic flow is obtained principally through use of electromagnetic forces. The utility of the model results from the fact that it predicts a quasi-steady flow process, mathematical analysis is straightforward, and it is even possible to remove one or more component stages and still have the model related to a possible shock-tube flow. Initial experiments have been performed where the electrical discharge configuration and current level were such that Joule heating was the dominant form of energy addition present. These experiments indicate that the predictions of the model dealing with heat addition correspond quite closely to reality. The experimental data together with the theory show that heat addition to the flowing driver gas after diaphragm rupture (approach used in the model) is much more effective in producing high-speed shock waves than heating the gas in the driver before diaphragm rupture, as in the case of the arc-driven shock tube.

  6. A preventive maintenance model for leased equipment subject to internal degradation and external shock damage

    International Nuclear Information System (INIS)

    Zhou, Xiaojun; Wu, Changjie; Li, Yanting; Xi, Lifeng

    2016-01-01

    A periodic preventive maintenance modeling method is proposed for leased equipment with continuous internal degradation and stochastic external shock damage considered simultaneously, which can facilitate the equipment lessor to optimize the maintenance schedule for the same kind of equipment rented by different lessees. A novel interactive mechanism between the continuous internal degradation and the stochastic external shock damage is established on the hazard rate of the equipment with integrating the imperfect effect of maintenance. Two improvement factors are defined for the modeling of imperfect maintenance. The number of failures resulting from internal degradation and from external shocks are both mathematically deduced based on this interactive mechanism. The optimal preventive maintenance scheme is obtained by minimizing the cumulative maintenance cost throughout the lease period. Numerical example shows that the proposed preventive maintenance model not only can reflect the reliability status of the equipment but also can clearly distinguish between the impact from internal degradation and that from external shocks. - Highlights: • We propose an imperfect periodic preventive maintenance model for leased equipment. • It can distinguish between the impact from internal degradation and that from external shocks. • An internal–external interactive mechanism is proposed. • Two improvement factors are introduced into the modeling of imperfect maintenance. • The model is helpful for the PM scheduling of the same equipment rented by different lessees.

  7. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  8. The effect of high-energy extracorporeal shock waves on hyaline cartilage of adult rats in vivo.

    Science.gov (United States)

    Mayer-Wagner, Susanne; Ernst, Judith; Maier, Markus; Chiquet, Matthias; Joos, Helga; Müller, Peter E; Jansson, Volkmar; Sievers, Birte; Hausdorf, Jörg

    2010-08-01

    The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Effect of mechanical ventilation on systemic oxygen extraction and lactic acidosis during early septic shock in rats.

    Science.gov (United States)

    Griffel, M I; Astiz, M E; Rackow, E C; Weil, M H

    1990-01-01

    We studied the effect of mechanical ventilation on systemic oxygen extraction and lactic acidosis in peritonitis and shock in rats. Sepsis was induced by cecal ligation and perforation. After tracheostomy, rats were randomized to spontaneous breathing (S) or mechanical ventilation with paralysis (V). Five animals were studied in each group. The V animals were paralyzed with pancuronium bromide to eliminate respiratory effort. Mechanical ventilation consisted of controlled ventilation using a rodent respirator with periodic adjustment of minute ventilation to maintain PaCO2 and pH within normal range. Arterial and central venous blood gases and thermodilution cardiac output were measured at baseline before abdominal surgery, and sequentially at 0.5, 3.5, and 6 h after surgery. At 6 h, cardiac output was 193 +/- 30 ml/kg.min in S animals and 199 +/- 32 ml/kg.min in V animals (NS). The central venous oxygen saturation was 27.4 +/- 4.7% in S animals and 30.0 +/- 6.4% in V animals (NS). Systemic oxygen extraction was 70 +/- 5% in S animals and 67 +/- 6% in V animals (NS). Arterial lactate was 2.4 +/- 0.4 mmol/L in S animals and 2.2 +/- 0.5 mmol/L in V animals (NS). The S animals developed lethal hypotension at 6.6 +/- 0.4 h compared to 6.8 +/- 0.4 h in V animals (NS). These data suggest that mechanical ventilation does not decrease systemic oxygen extraction or ameliorate the development of lactic acidosis during septic shock.

  10. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness.

    Science.gov (United States)

    Smalheiser, Neil R; Lugli, Giovanni; Rizavi, Hooriyah S; Zhang, Hui; Torvik, Vetle I; Pandey, Ghanshyam N; Davis, John M; Dwivedi, Yogesh

    2011-11-01

    MicroRNA (miRNA) expression was measured within frontal cortex of male Holtzman rats subjected to repeated inescapable shocks at days 1 and 7, tested for learned helplessness (LH) at days 2 and 8, and sacrificed at day 15. We compared rats that did vs. did not exhibit LH, as well as rats that were placed in the apparatus and tested for avoidance but not given shocks (tested controls, TC). Non-learned helpless (NLH) rats showed a robust adaptive miRNA response to inescapable shock whereas LH rats showed a markedly blunted response. One set of 12 miRNAs showed particularly large, significant down-regulation in NLH rats relative to tested controls (mir-96, 141, 182, 183, 183*, 298, 200a, 200a*, 200b, 200b*, 200c, 429). These were encoded at a few shared polycistronic loci, suggesting that the down-regulation was coordinately controlled at the level of transcription. Most of these miRNAs are enriched in synaptic fractions. Moreover, almost all of these share 5'-seed motifs with other members of the same set, suggesting that they will hit similar or overlapping sets of target mRNAs. Finally, half of this set is predicted to hit Creb1 as a target. We also identified a core miRNA co-expression module consisting of 36 miRNAs that are highly correlated with each other across individuals of the LH group (but not in the NLH or TC groups). Thus, miRNAs participate in the alterations of gene expression networks that underlie the normal (NLH) as well as aberrant (LH) response to repeated shocks.

  11. Mathematical Model of a Shim Valve of a Monotube Shock Absorber

    Directory of Open Access Journals (Sweden)

    Paulius Skačkauskas

    2016-12-01

    Full Text Available In the work, a mathematical model of a shim valve, used in monotube shock absorbers, designed to determine the deformations of the shims which form during the exploitation of the shock absorbers, is presented. The characteristic of the damping force formed by the shock absorber depends on the deformations. In the designed model, the amount, geometric dimensions, arrangement and the material properties of the shims are evaluated, and the contact forces, which form between the shims, are determined. The described model of the shim valve is presented in the environment of the software package MATLAB/Simulink, the analysis of the designed model is done using the software package ANSYS 15.0.

  12. Oxidative stress of crystalline lens in rat menopausal model

    OpenAIRE

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Gro...

  13. Development and Realization of a Shock Wave Test on Expert Flap Qualification Model

    Science.gov (United States)

    De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.

    2012-07-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.

  14. Modeling of shock wave propagation in large amplitude ultrasound.

    Science.gov (United States)

    Pinton, Gianmarco F; Trahey, Gregg E

    2008-01-01

    The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.

  15. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  16. Time-history of shock waves overrunning three-dimensional, cylindrical models

    International Nuclear Information System (INIS)

    Langheim, H.; Loeffler, E.

    To investigate the time-history of the Mach-stem of a shock wave overrunning a nuclear power plant shadowgraphs of threedimensional, cylindrical models with a globe cap were analysed. These models simulating the containment building differ only in the height of the cylinder. They were exposed with shock waves of shock strengths of 1.2 and 1.4, being equal to a peak reflexion overpressure of 0.45 resp. 1.0 bar. The time-histories of the Mach-stem differ only slightly. For this reason it can be stated that these time-histories are independent of the shock strength and the height of the cylinder in the prescribed range of the research program. In comparison with values given in the literature great differences were found at the rear side near the stagnation point of the globe cap resp. the stagnation line of the cylinder. The measured time for overrunning of the shock wave is the same as the time of arrival of the pressure-pulse at the interesting point of the model. This knowledge is a necessary premise for pressure-measurings from which the total load of structure can be determined. (orig.) [de

  17. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    International Nuclear Information System (INIS)

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  18. Protective effects of heat shock protein 70 on the acute lung injury of rats with heat stroke and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan GENG

    2017-06-01

    Full Text Available Objective To investigate the protective effect of heat shock protein (HSP 70 on the acute lung injury (ALI of rats with heat stroke. Methods Sixty four rats were randomly (by employing a random number table assigned into a sham-heated group (Sham group, heat stress group (HS group, and HS plus gluttamine treatment group (HS+GLN group and HS plus quercet in treatment group (HS+QU group, 16 each. All rats were housed in a artificial climate chamber, with the rats in the sham groups exposed to a temperature of 23℃ and humidity of 55%±5%, while the rats of HS, HS+GLN and HS+QU groups to an ambient temperature of 39℃ and humidity of 65%. During heat stress or sham heating, rectal temperature (Tr, systolic blood pressure (SBP and pulse rate (PR were monitored to observe the difference in heat stress response among the groups. The time point at which the SBP started to drop from the peak level was taken as the point of HS onset. At the onset of HS, heat exposure was terminated, then the rats were immediately removed from the chamber, and returned to room temperature. The rats were scarified 0h and 6h after HS onset respectively. After bronchoalveolar lavage fluid (BALF was collected, the lungs of all animals were harvested for pathological examination of lung injury. The concentrations of IL-1β, TNF-α and IL-6 in BALF and HSP70 in lung homogenate were measured by using an enzyme linked immunosorbent assay kit. Results Compared with HS and HS+QU groups, the rats in HS+GLN group required significantly greater heat load to induce HS (P<0.001, and had longer survival time span after HS onset. Compared with Sham group, the concentration of HSP70 in lung homogenate in HS group increased in a time-dependent manner (P<0.001. In comparison with HS group, the concentration of HSP70 in lung homogenate from HS+GLN group was significantly elevated at each time point (P<0.001, while the treatment with QU significantly inhibited the expression of HSP70 (P<0

  19. Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats.

    Science.gov (United States)

    Zhang, Fan; Luo, Jie; Min, Su; Ren, Li; Qin, Peipei

    2016-07-01

    This study investigated the effects of propofol and electroconvulsive shock (ECS), the analogue of electroconvulsive therapy (ECT) in animals, on tissue plasminogen activator (tPA) and its inhibitor (PAI-1) as well as the precursor of brain-derived neurotrophic factor (proBDNF)/mature BDNF (mBDNF) ratio in depressive rats. ECT is an effective treatment for depression, but can cause cognitive deficit. Some studies have indicated that propofol can ameliorate cognitive decline induced by ECT, but the underlying molecular mechanism is still unclear. Recent evidence has found that mBDNF and its precursor proBDNF are related to depression and cognitive function; they elicit opposite effects on cellular functions. Chronic unpredicted mild stress is widely used to induce depressive behaviors in rodents. This study found that the depression resulted in an increased expression of PAI-1 and upregulation of the proBDNF/mBDNF ratio, together with a decreased level of tPA, long-term potentiation (LTP) impairment, and cognitive decline. The proBDNF/mBDNF ratio was further upregulated after the ECS treatment in depressive rats, resulting in the deterioration of cognitive function and hippocampal LTP. Propofol alone did not reverse the changes in depressive rats, but when co-administered with ECS, it improved the cognitive function, alleviated the impairment of LTP, downregulated the proBDNF/mBDNF ratio, and increased the tPA expression. The results of this study suggest that propofol ameliorates cognitive decline induced by ECT, which was partly by modulating the proBDNF/mBDNF ratio and reversing the excessive changes in hippocampal synaptic plasticity, providing a new evidence for involving the proBDNF/mBDNF system in the progression and treatment of depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evidence on a Real Business Cycle Model with Neutral and Investment-Specific Technology Shocks using Bayesian Model Averaging

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2010-01-01

    textabstractThe empirical support for a real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure. This procedure makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is

  1. Nonaligned shocks for discrete velocity models of the Boltzmann equation

    Directory of Open Access Journals (Sweden)

    J. M. Greenberg

    1991-05-01

    Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.

  2. IDENTIFICATION AND DESCRIPTION OF A NOVEL MURINE MODEL FOR POLYTRAUMA AND SHOCK

    Science.gov (United States)

    Gentile, Lori F; Nacionales, Dina C; Cuenca, Alex G; Armbruster, Michael; Ungaro, Ricardo F; Abouhamze, Amer S; Lopez, Cecelia; Baker, Henry V; Moore, Frederick A; Ang, Darwin N; Efron, Philip A

    2013-01-01

    Objective To develop a novel polytrauma model that better recapitulates the immunological response of the severely injured patient by combining long-bone fracture, muscle tissue damage and cecectomy with hemorrhagic shock, resulting in an equivalent Injury Severity Score of greater than 15. We compared this new polytrauma/shock model to historically-used murine trauma-hemorrhage models. Design Pre-clinical controlled in vivo laboratory study. Setting Laboratory of Inflammation Biology and Surgical Science. Subjects 6–10 wk old C57BL/6 (B6) mice Interventions Mice underwent 90 minutes of shock (MAP 30 mmHg) and resuscitation via femoral artery cannulation followed by either laparotomy (TH), laparotomy with femur fracture (H+FFx), or laparotomy with cecetomy and femur fracture with muscle tissue damage (PT). Mice were euthanized at two hours, one day and three days post injury. Measurements and Main Results The spleen, bone marrow, blood, and serum were collected from mice for analysis at the above time points. None of the models were lethal. Mice undergoing PT exhibited a more robust inflammatory response with significant elevations in cytokine/chemokine concentrations when compared to traditional models. PT was the only model to induce neutrophilia (Ly6G+CD11b+ cells) on days 1 and 3 (ppolytrauma model better replicates the human leukocyte, cytokine, and overall inflammatory response following injury and hemorrhagic shock. PMID:23399937

  3. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  4. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  5. Distribution of iodine-labelled fibrinogen in rat during endotoxin shock

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J [Semmelweis Orvostudomanyi Egyetem, Budapest (Hungary); Spett, B; Bertok, L; Kocsar, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1978-10-01

    Animals of the experimental and control groups received 10-10 microcurie i.v. /sup 125/I-fibrinogen. The fibrinogen forms a deposit on the surface of the microthrombi and we can find more activity where the thrombi were formed. 60 minutes after administering endotoxin the activity of the ilium of the shocked animals increased significantly (exceeding that of the control group by 37%). A considerable difference may be observed also 120 minutes later, and the activity of the liver amounts to twice the activity of control animals two hours after i.v. /sup 125/I-fibrinogen injection.

  6. In vivo Evaluation of Venular Glycocalyx during Hemorrhagic Shock in Rats using Intravital Microscopy

    Science.gov (United States)

    2013-01-01

    and by Universidade do Estado do Rio de Janeiro (UERJ). The views expressed herein are the private views of the authors and are not to be construed as...Animals. Male Sprague– Dawley rats (Charles River Laboratories, Wilmington, MA, 220±10 g body weight) breathing spontaneously room air or 100% oxygen were

  7. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  8. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    CERN Document Server

    Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  9. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J P [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Bonneau, F [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France); Dayma, G [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Boustie, M [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Resseguier, T de [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Combis, P [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France)

    2002-11-11

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm{sup -2}. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm{sup -2}, the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  10. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    International Nuclear Information System (INIS)

    Romain, J P; Bonneau, F; Dayma, G; Boustie, M; Resseguier, T de; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm -2 . The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence -2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface

  11. New test of bow-shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.; Solf, J.; Max-Planck-Institut fuer Astronomie, Heidelberg, West Germany)

    1986-01-01

    Long-slit, high-resolution spectroscopy of the Herbig-Haro oject HH 32 has shown that the emission-line profiles in all four condensations A, B, C, and D show high- and low-velocity components. The spatial maxima of these two components are always arranged in a double-layer pattern, with the maximum of the high-velocity component 0.6-1.0 arcsecs closer to the central star (AS 353A) than the low-velocity maximum. A study of the emission-line profiles predicted from a model of a radiating bow shock shows that such a double-layer structure appears naturally for this type of flow. In this case both the high-velocity and the low-velocity components come from the post-shock gas, in agreement with the theoretical prediction that it should be very difficult to detect the pre-shock gas observationally. The present results agree qualitatively well with observations of HH 32, strengthening the case for a bow-shock interpretation of this Herbig-Haro object. It is shown that the double-layer effect will be more easily observable for bow shocks which move at a relatively large angle with respect to the plane of the sky (i.e., for Herbig-Haro objects which have large radial velocities). 31 references

  12. Localization of Heat Shock Protein 27 (Hsp27) in the Rat Gingiva and its Changes with Tooth Eruption

    International Nuclear Information System (INIS)

    Sasaki, Au; Yamada, Tohru; Inoue, Katsuyuki; Momoi, Tomoko; Tokunaga, Hiroshi; Sakiyama, Koji; Kanegae, Haruhide; Suda, Naoto; Amano, Osamu

    2011-01-01

    Heat shock protein 27 kDa (Hsp27) functions as a molecular chaperon to prevent apoptosis as well as to contribute to the regulation of cell proliferation and differentiation during development. In the present study, the localization of Hsp27 in the oral epithelium of rats and its expression change during formation of the gingiva with the tooth eruption were examined immunohistochemically to elucidate the roles of Hsp27 in the oral mucosa. In adult rats, Hsp27-immunoreactivity was localized in the prickle and granular layers but absent in the basal and horny layers of the oral epithelium. On the other hand, in the outer and sulcular epithelia of the free gingival, Hsp27-immunoreactivity was detected in the whole layers, while it was not found in the proliferation zone of the junctional epithelium immunoreactive for Ki67. In immature rats on 10th postnatal day, Hsp27-immunoreactivity was intense in the prickle and granular layers of the oral epithelium, but was not detected in its basal layer. In rats at the eruptive phase on 15th postnatal day, Hsp27-immunoreactivity was detected in sites of the basal layer adjacent to where the dental cusps penetrated through the oral epithelium. Although the immunoreactivity for Ki67 was found in the basal layer of the oral epithelium, it was not localized in the Hsp27-immunopositive sites of tooth-penetration in the basal layer. Just after the tooth-eruption on 20th postnatal day, Hsp27-immunoreactivity was not found in the stratified squamous epithelium at the dentogingival junction, whereas it was intense in a single layer of cuboidal epithelial cells attached to the tooth neck. Ki67-positive cells were scattered in the stratified squamous epithelium at the dentogingival junction, whereas no positive cells were found in the portion of a single layer of cuboidal epithelial cells. These findings suggest that the outer and sulcular epithelia of the free gingiva have a relatively slower rate of proliferation than other gingival and

  13. Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level

    International Nuclear Information System (INIS)

    Holian, B.L.; Patterson, C.W.; Mareschal, M.; Salomons, E.

    1993-01-01

    We model a shock wave in an ideal gas by solving a modified version of the compressible Navier-Stokes equations of hydrodynamics, where, following an earlier conjecture by Holian [Phys. Rev. A 37, 2562 (1988)], we use the temperature in the direction of shock propagation T xx , rather than the average temperature T=(T xx +T yy +T zz )/3, in the evaluation of the linear transport coefficients. The results are found to agree much better with the molecular-dynamics simulations of Salomons and Mareschal [Phys. Rev. Lett. 69, 269 (1992)] than standard Navier-Stokes theory

  14. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  15. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  16. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  17. Model for calculating shock loading and release paths for multicomponent geologic media

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Moran, B.; Burton, D.E.

    1981-07-01

    A model has been devised to calculate shock Hugoniots and release paths off the Hugoniots for multicomponent rocks containing silicate, carbonate, and water. Hugoniot equations of state are constructed from relatively simple measurements of rock properties including bulk density, grain density of the silicate component, and weight fractions of water and carbonate. Release paths off the composite Hugoniot are calculated by mixing release paths off the component Hugoniots according to their weight fractions. If the shock imparts sufficient energy to the component to cause vaporization, a gas equation of state is used to calculate the release paths. For less energetic shocks, the rock component will unload like a solid or liquid, taking into account the irreversible removal of air-filled porosity

  18. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  19. Thermodynamic model of the compaction of powder materials by shock waves

    NARCIS (Netherlands)

    Dijken, Durandus; Hosson, J.Th.M. De

    1994-01-01

    For powder materials a model is proposed to predict the mean temperature behind the shock wave, the ratio between the increase of thermal energy and increase of total internal energy, as well as the mean final temperature after release of adiabatic pressure. Further, the change of pressure, specific

  20. Social Skills Difficulty: Model of Culture Shock for International Graduate Students

    Science.gov (United States)

    Chapdelaine, Raquel Faria; Alexitch, Louise R.

    2004-01-01

    This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…

  1. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  2. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  3. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan; Kim, Daesang; Tempone, Raul; Bisetti, Fabrizio; Farooq, Aamir; Knio, Omar; Prudhomme, Serge

    2014-01-01

    in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based

  4. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  5. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    Science.gov (United States)

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  6. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  7. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-09-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.

  8. Pain Relief with Wet Cupping Therapy in Rats is Mediated by Heat Shock Protein 70 and ß-Endorphin

    Directory of Open Access Journals (Sweden)

    Imam Subadi

    2017-07-01

    Full Text Available Background: Wet cupping therapy is a complementary therapy in pain management. The mechanism of this therapy, however, needs further elucidation. Cells injured by wet cupping therapy seem to stimulate the expression of heat shock protein 70 (HSP70. Its benefit in pain reduction could be mediated by the expression of ß-endorphin. This study aimed at determining the correlation between HSP70 and ß-endorphin after wet cupping therapy. Methods: Sixteen male Wistar rats were divided into control (CG; n=8 and treatment (TG; n=8 groups. The rats in both groups were injected with complete Freund’s adjuvant (CFA at the footpad. In the TG, wet cupping therapy was done at the left and right paralumbar regions 48 hours after the CFA injection. Twenty-four hours after therapy, the hot plate test was done to assess pain threshold. Thereafter, immunohistochemistry from the skin subjected to wet cupping therapy was conducted for HSP70 and ß-endorphin. Results: The expression of HSP70 was significantly higher in the keratinocytes of the TG (20.25±3.53; P<0.001 than in the keratinocytes of the CG (10.50±2.44; P<0.001. The expression of ß-endorphin was significantly higher in the keratinocytes of the TG (22.37±3.52; P<0.001 than in the keratinocytes of the CG (5.12±1.72; P<0.001. The results also revealed a high correlation between HSP70 and ß-endorphin (β=0.864; P<0.001. Pain threshold after wet cupping therapy was significantly higher in the TG (22.81±6.34 s; P=0.003 than in the CG (11.78±3.56 s. Conclusions: The benefit of wet cupping therapy in terms of pain reduction in rats could be mediated by the expression of HSP70 and ß-endorphin.

  9. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  10. A Novel Porcine Model of Septic Shock Induced by Acute Respiratory Distress Syndrome due to Methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-01-01

    Conclusions: In the present study, we developed a novel porcine model of septic shock induced by ARDS due to severe MRSA pneumonia with characteristic hyperdynamic and hypodynamic phases in 24 h, which mimicked the hemodynamic changing of septic shock in human.

  11. Structural model of dodecameric heat-shock protein Hsp21

    DEFF Research Database (Denmark)

    Rutsdottir, Gudrun; Härmark, Johan; Weide, Yoran

    2017-01-01

    for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer...

  12. A General Microscopic Traffic Model Yielding Dissipative Shocks

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Caputo, Jean Guy; Christiansen, Peter Leth

    2018-01-01

    We consider a general microscopic traffic model with a delay. An algebraic traffic function reduces the equation to the Aw-Rascle microscopic model while a sigmoid function gives the standard “follow the leader”. For zero delay we prove that the homogeneous solution is globally stable...

  13. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  14. A System Shock Approach to Modelling Clandestine Network Disruption

    National Research Council Canada - National Science Library

    Dipper, Tamlan

    2004-01-01

    .... This model took as its focus the disruption of successful terrorist operations. In doing so it drew upon operational art, group behavioural studies, and psychological research into problem solving...

  15. Oscillations in a Growth Model with Capital, Technology and Environment with Exogenous Shocks

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2015-07-01

    Full Text Available This paper generalizes the dynamic growth model with wealth accumulation, technological change and environmental change by Zhang (2012 by making all the parameters as time-dependent parameters. The model treats physical capital accumulation, knowledge creation and utilization, and environmental change as endogenous variables. It synthesizes the basic ideas of the neoclassical growth theory, Arrow’s learning-by-doing model and the traditional dynamic models of environmental change within a comprehensive framework. The behavior of the household is described with an alternative approach to household behavior. We simulated the model to demonstrate existence of equilibrium points, motion of the dynamic system, and oscillations due to different exogenous shocks.

  16. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    International Nuclear Information System (INIS)

    May, Chadd M; Tarver, Craig M

    2014-01-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several Kapton TM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  17. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  18. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com [RAMDO Solutions, LLC, Iowa City, IA 52240 (United States); Choi, K.K., E-mail: kyung-choi@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Jacobs, Gustaaf, E-mail: gjacobs@sdsu.edu [Aerospace Engineering, San Diego State University, San Diego, CA 92115 (United States); Udaykumar, H.S., E-mail: hs-kumar@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-05-01

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.

  19. Ideal Experimental Rat Models for Liver Diseases.

    Science.gov (United States)

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-05-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

  20. Organ distribution of radiolabeled enteric Escherichia coli during and after hemorrhagic shock

    International Nuclear Information System (INIS)

    Redan, J.A.; Rush, B.F.; McCullough, J.N.; Machiedo, G.W.; Murphy, T.F.; Dikdan, G.S.; Smith, S.

    1990-01-01

    Translocation of intestinal bacteria to the blood during hemorrhagic shock (HS) has been confirmed in rats and humans. The current study was designed to trace the path of translocated intestinal bacteria in a murine HS model. Thirty-one rats were gavaged with 1,000,000 counts of viable 14C oleic acid-labeled Escherichia coli. Forty-eight hours later the animals were bled to 30 mmHg until either 80% of their maximal shed blood was returned or 5 hours of shock had elapsed and they were resuscitated with Ringer's lactate as previously described. Control animals were cannulated but not shocked. Eight rats immediately after shock and resuscitation, 6 rats 24 hours after shock, 3 rats 48 hours after shock, and 4 animals that died in shock had their heart, lung, liver, spleen, kidney, and serum harvested, cultured, and radioactive content measured. Translocated enteric bacteria are found primarily in the lung immediately after shock with redistribution to the liver and kidney 24 hours later. Animals surviving to 48 hours were capable of eliminating the majority of the bacteria from their major organ systems. Positive cultures for E. coli were also found in the blood, lung, liver, and kidney. We speculate that the inflammatory response stimulated by the bacteria in these organs may contribute to the multiple-organ failure syndrome seen after HS

  1. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  2. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  3. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  4. Structure of intermediate shocks in collisionless anisotropic Hall-magnetohydrodynamics plasma models

    International Nuclear Information System (INIS)

    Sánchez-Arriaga, G.

    2013-01-01

    The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

  5. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  6. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  7. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    . Our results quantitatively describe the deviatoric stress conditions of rocks in shock, which are consistent with observations of shock deformation. Our integrated analysis provides further support for the dynamic collapse model of peak-ring formation, and places dynamic constraints on the conditions of peak-ring formation.

  8. [Establishment of rat model of psychical erectile dysfunction].

    Science.gov (United States)

    Wang, Qiu-lin; Wang, Shu-ren; Duan, Jin

    2006-01-01

    To set up a method of establishing the animal model of psychical erectile dysfunction with emotional stress. All thirty-six male rats with normal sexual function were divided into three groups, i. e. normal group, model group and demasculinized group randomly according to their weights. The rats in the model group were suspended upside down in midair over the water and irritated repeatedly. Two weeks later, the sexual abilities of all rats, i. e. the times of mounting and intromitting the estrus female rats, the latent period of mounting, intromission and ejaculation, were recorded, and the number of rats that had sexual activities was also counted. And the hemorheology indices of the rats were measured. Compared with the normal rats, the latency of mounting [(152.5 +/- 24.6) s vs (42.4 +/- 9.6) s] and intromission [(437.0 +/- 67.7) s vs (130.8 +/- 39.1) s] of the model rats were longer (P 0.05). The hemorheology indices, e. g. blood viscosity, hematocrit (Hct) and red cell aggregation (RCA), of the model rats was significant higher than that of the normal and demasculinized rats (P erectile dysfunction can be made ideally with psychical stress.

  9. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    International Nuclear Information System (INIS)

    Baudin, G; Roudot, M; Genetier, M; Mateille, P; Lefrançois, A

    2014-01-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  10. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    Science.gov (United States)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  11. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  12. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  13. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  14. How Non-Gaussian Shocks Affect Risk Premia in Non-Linear DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper studies how non-Gaussian shocks affect risk premia in DSGE models approximated to second and third order. Based on an extension of the results in Schmitt-Grohé & Uribe (2004) to third order, we derive propositions for how rare disasters, stochastic volatility, and GARCH affect any risk...... premia in a wide class of DSGE models. To quantify these effects, we then set up a standard New Keynesian DSGE model where total factor productivity includes rare disasters, stochastic volatility, and GARCH. We …find that rare disasters increase the mean level of the 10-year nominal term premium, whereas...

  15. Persistent vs. Permanent Income Shocks in the Buffer-Stock Model

    DEFF Research Database (Denmark)

    Druedahl, Jeppe; Jørgensen, Thomas Høgholm

    2017-01-01

    relative risk aversion (CRRA) coefficient. If used for calibration, misspecified preferences could, for example, lead to a serious misjudgment in the value of social insurance mechanisms. Economic behavior, such as the marginal propensity to consume (MPC), of households simulated from the estimated......We investigate the effects of assuming a fully permanent income shock in a standard buffer-stock consumption model, when the true income process is only highly persistent. This assumption is computationally very advantageous, and thus often used, but might be problematic due to the implied...... (misspecified) model is, on the other hand, rather close to that from the correctly specified model....

  16. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  17. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  18. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based approach to estimate the expected information gain in the proposed experiments and select the best experimental set-ups corresponding to the optimal expected information gains. Third, we use the synthetic data to carry out virtual validation of our methodology.

  19. A One-Dimensional Relativistic Shock Model for the Light Curve of Gamma-ray Bursts

    Institute of Scientific and Technical Information of China (English)

    Cheng-Yue Su; Yi-Ping Qin; Jun-Hui Fan; Zhang-Yu Han

    2006-01-01

    We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.

  20. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  1. Triiodothyronine Administration in a Model of Septic Shock: A Randomized Blinded Placebo-Controlled Trial.

    Science.gov (United States)

    Maiden, Matthew J; Chapman, Marianne J; Torpy, David J; Kuchel, Timothy R; Clarke, Iain J; Nash, Coralie H; Fraser, Jonathan D; Ludbrook, Guy L

    2016-06-01

    Triiodothyronine concentration in plasma decreases during septic shock and may contribute to multiple organ dysfunction. We sought to determine the safety and efficacy of administering triiodothyronine, with and without hydrocortisone, in a model of septic shock. Randomized blinded placebo-controlled trial. Preclinical research laboratory. Thirty-two sheep rendered septic with IV Escherichia coli and receiving protocol-guided sedation, ventilation, IV fluids, and norepinephrine infusion. Two hours following induction of sepsis, 32 sheep received a 24-hour IV infusion of 1) placebo + placebo, 2) triiodothyronine + placebo, 3) hydrocortisone + placebo, or 4) triiodothyronine + hydrocortisone. Primary outcome was the total amount of norepinephrine required to maintain a target mean arterial pressure; secondary outcomes included hemodynamic and metabolic indices. Plasma triiodothyronine levels increased to supraphysiological concentrations with hormonal therapy. Following 24 hours of study drug infusion, the amount of norepinephrine required was no different between the study groups (mean ± SD μg/kg; placebo + placebo group 208 ± 392; triiodothyronine + placebo group 501 ± 370; hydrocortisone + placebo group 167 ± 286; triiodothyronine + hydrocortisone group 466 ± 495; p = 0.20). There was no significant treatment effect on any hemodynamic variable, metabolic parameter, or measure of organ function. A 24-hour infusion of triiodothyronine, with or without hydrocortisone, in an ovine model of septic shock did not markedly alter norepinephrine requirement or any other physiological parameter.

  2. The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage.

    Science.gov (United States)

    Schiller, Alicia M; Howard, Jeffrey T; Convertino, Victor A

    2017-04-01

    The ability to quickly diagnose hemorrhagic shock is critical for favorable patient outcomes. Therefore, it is important to understand the time course and involvement of the various physiological mechanisms that are active during volume loss and that have the ability to stave off hemodynamic collapse. This review provides new insights about the physiology that underlies blood loss and shock in humans through the development of a simulated model of hemorrhage using lower body negative pressure. In this review, we present controlled experimental results through utilization of the lower body negative pressure human hemorrhage model that provide novel insights on the integration of physiological mechanisms critical to the compensation for volume loss. We provide data obtained from more than 250 human experiments to classify human subjects into two distinct groups: those who have a high tolerance and can compensate well for reduced central blood volume (e.g. hemorrhage) and those with low tolerance with poor capacity to compensate.We include the conceptual introduction of arterial pressure and cerebral blood flow oscillations, reflex-mediated autonomic and neuroendocrine responses, and respiration that function to protect adequate tissue oxygenation through adjustments in cardiac output and peripheral vascular resistance. Finally, unique time course data are presented that describe mechanistic events associated with the rapid onset of hemodynamic failure (i.e. decompensatory shock). Impact Statement Hemorrhage is the leading cause of death in both civilian and military trauma. The work submitted in this review is important because it advances the understanding of mechanisms that contribute to the total integrated physiological compensations for inadequate tissue oxygenation (i.e. shock) that arise from hemorrhage. Unlike an animal model, we introduce the utilization of lower body negative pressure as a noninvasive model that allows for the study of progressive

  3. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    Science.gov (United States)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  4. Modeling of the plasma generated in a rarefied hypersonic shock layer

    International Nuclear Information System (INIS)

    Farbar, Erin D.; Boyd, Iain D.

    2010-01-01

    In this study, a rigorous numerical model is developed to simulate the plasma generated in a rarefied, hypersonic shock layer. The model uses the direct simulation Monte Carlo (DSMC) method to treat the particle collisions and the particle-in-cell (PIC) method to simulate the plasma dynamics in a self-consistent manner. The model is applied to compute the flow along the stagnation streamline in front of a blunt body reentering the Earth's atmosphere at very high velocity. Results from the rigorous DSMC-PIC model are compared directly to the standard DSMC modeling approach that uses the ambipolar diffusion approximation to simulate the plasma dynamics. It is demonstrated that the self-consistent computation of the plasma dynamics using the rigorous DSMC-PIC model captures many physical phenomena not accurately predicted by the standard modeling approach. These computations represent the first assessment of the validity of the ambipolar diffusion approximation when predicting the rarefied plasma generated in a hypersonic shock layer.

  5. Shock and rarefaction waves in a hyperbolic model of incompressible materials

    Directory of Open Access Journals (Sweden)

    Tommaso Ruggeri

    2013-01-01

    Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.

  6. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  7. Effects of panaxadiol saponins on contents of TNF-α and IL-6 in two-hit rat models with hemorrhage and lipopolysaech

    International Nuclear Information System (INIS)

    Yu Zhenxiang; Ding Yanhua; Li Lu; Zhao Xuejian

    2005-01-01

    Objective: To explore the changes of serum TNF-α and IL-6 contents in the two-hit rat models with hemorrhage and lipopolysaech (LPS) and the effects of panaxadiol saponins (PDS) on TNF-α and contents IL-6. Methods: Adult Wistar rats were randomly divided into 5 groups: sham operational group (S), hemorrhage group (H), two-hit group with hemorrhage and LPS groups (HL), Dexamethasone pretreatment group (HLD), PDS pretreatment group (HLP). The rat models were made by hemorrhagic shock as the first hit and with endotoxin as the second hit. Then the rats were killed after 6 h. The contents of serum TNF-α and IL-6 in rats were measured by radioimmunoassay. Results: The serum TNF-α and IL-6 contents in HL group were increased significantly compared with S group or H group (P<0.001). The TNF-α and IL-6 contents in HLP group and HLD group were significantly lower than those in HL group (P<0.01). Conclusion: LPS can increase significantly the contents of serum TNF-α and IL-6 in rats with hemorrhagic shock. PDS can inhibit the release of serum TNF-α and IL-6, and has the same effects with DEX to protect against the tissue injuries of two-hit rats with hemorrhage and LPS. (authors)

  8. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210 (United States); Heinze, Jonas; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, D-15738 Zeuthen (Germany); Murase, Kohta, E-mail: bustamanteramirez.1@osu.edu, E-mail: walter.winter@desy.de, E-mail: jonas.heinze@desy.de, E-mail: murase@psu.edu [Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, University Park, PA16802 (United States)

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  9. A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases

    Directory of Open Access Journals (Sweden)

    Holian B.L.

    2011-01-01

    Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.

  10. Multi-messenger light curves from gamma-ray bursts in the internal shock model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Ohio State Univ., Columbus, OH (United States). Center for Cosmology and AstroParticle Physics (CCAPP); Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Murase, Kohta [Pennsylvania State Univ., University Park, PA (United States). Center for Particle and Gravitational Astrophysics; Pennsylvania State Univ., University Park, PA (United States). Dept. of Astronomy and Astrophysics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-06-15

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  11. Oxidative stress may be involved in distant organ failure in tourniquet shock model mice.

    Science.gov (United States)

    Nishikata, Rie; Kato, Naho; Hiraiwa, Kouichi

    2014-03-01

    Crush syndrome is characterized by prolonged shock resulting from extensive muscle damage and multiple organ failure. However, the pathogenesis of multiple organ failure has not yet been completely elucidated. Therefore, we investigated the molecular biological and histopathological aspects of distant organ injury in crush syndrome by using tourniquet shock model mice. DNA microarray analysis of the soleus muscle showed an increase in the mRNA levels of Cox-2, Hsp70, c-fos, and IL-6, at 3h after ischemia/reperfusion injury at the lower extremity. In vivo staining with hematoxylin and eosin (HE) showed edema and degeneration in the soleus muscle, but no change in the distant organs. Immunohistological staining of the HSP70 protein revealed nuclear translocation in the soleus muscle, kidney, liver, and lung. The c-fos mRNA levels were elevated in the soleus muscle, kidney, and liver, displaying nuclear translocation of c-FOS protein. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis suggested the involvement of apoptosis in ischemia/reperfusion injury in the soleus muscle. Apoptotic cells were not found in greater quantities in the kidney. Oxidative stress, as determined using a free radical elective evaluator (d-ROM test), markedly increased after ischemia/reperfusion injury. Therefore, examination of immunohistological changes and determination of oxidative stress are proposed to be useful in evaluating the extent of tourniquet shock, even before changes are observed by HE staining. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. ENU mutagenesis to generate genetically modified rat models.

    Science.gov (United States)

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  13. Thrombolytic and anticoagulation treatment in a rat embolic stroke model

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Overgaard, K; Meden, P

    2003-01-01

    OBJECTIVES: The effects of pentasaccharide (PENTA), given alone or combined with thrombolysis using recombinant tissue plasminogen activator (rt-PA), on infarct size and clinical outcome were evaluated in a rat embolic stroke model. MATERIALS AND METHODS: Ninety-two rats were embolized unilateral...... alone or combined with rt-PA did not significantly increase mortality or tendency for hemorrhage.......OBJECTIVES: The effects of pentasaccharide (PENTA), given alone or combined with thrombolysis using recombinant tissue plasminogen activator (rt-PA), on infarct size and clinical outcome were evaluated in a rat embolic stroke model. MATERIALS AND METHODS: Ninety-two rats were embolized unilaterally...

  14. Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2011-01-01

    Objective To define systemic release kinetics of a panel of cytokines and heat shock proteins (HSP) in porcine polytrauma/hemorrhage models and to evaluate whether they could be useful as early trauma biomarkers. Design and Setting Prospective study in a research laboratory. Subjects Twenty-one Yorkshire pigs. Measurements and Main Results Pigs underwent polytrauma (femur fractures/lung contusion, P), hemorrhage (mean arterial pressure 25-30mmHg, H), polytrauma plus hemorrhage (P/H) or sham procedure (S). Plasma was obtained at baseline, in 5-15min intervals during a 60min shock period without intervention and in 60-120min intervals during fluid resuscitation for up to 300min. Plasma was assayed for IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-13, IL-17, IL-18, IFNγ, TGFβ, TNFα, HSP40, HSP70 and HSP90 by ELISA. All animals after S, P and H survived (n=5/group). Three of six animals after P/H died. IL-10 increased during shock after P and this increase was attenuated after H. TNFα increased during the shock period after P, H and also after S. P/H abolished the systemic IL-10 and TNFα release and resulted in 20-30% increased levels of IL-6 during shock. As fluid resuscitation was initiated TNFα and IL-10 levels decreased after P, H and P/H, HSP 70 increased after P, IL-6 levels remained elevated after P/H and also increased after P and S. Conclusions Differential regulation of the systemic cytokine release after polytrauma and/or hemorrhage, in combination with the effects of resuscitation, can explain the variability and inconsistent association of systemic cytokine/HSP levels with clinical variables in trauma patients. Insults of major severity (P/H) partially suppress the systemic inflammatory response. The plasma concentrations of the measured cytokines/HSPs do not reflect injury severity or physiological changes in porcine trauma models and are unlikely to be able to serve as useful trauma biomarkers in patients. PMID:21983369

  15. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  16. Striatal grafts in a rat model of Huntington's disease

    DEFF Research Database (Denmark)

    Guzman, R; Meyer, M; Lövblad, K O

    1999-01-01

    Survival and integration into the host brain of grafted tissue are crucial factors in neurotransplantation approaches. The present study explored the feasibility of using a clinical MR scanner to study striatal graft development in a rat model of Huntington's disease. Rat fetal lateral ganglionic...... time-points graft location could not be further verified. Measures for graft size and ventricle size obtained from MR images highly correlated with measures obtained from histologically processed sections (R = 0.8, P fetal rat lateral ganglionic...

  17. Therapeutic Effects of Extinction Learning as a Model of Exposure Therapy in Rats

    Science.gov (United States)

    Fucich, Elizabeth A; Paredes, Denisse; Morilak, David A

    2016-01-01

    Current treatments for stress-related psychiatric disorders, such as depression and posttraumatic stress disorder (PTSD), are inadequate. Cognitive behavioral psychotherapies, including exposure therapy, are an alternative to pharmacotherapy, but the neurobiological mechanisms are unknown. Preclinical models demonstrating therapeutic effects of behavioral interventions are required to investigate such mechanisms. Exposure therapy bears similarity to extinction learning. Thus, we investigated the therapeutic effects of extinction learning as a behavioral intervention to model exposure therapy in rats, testing its effectiveness in reversing chronic stress-induced deficits in cognitive flexibility and coping behavior that resemble dimensions of depression and PTSD. Rats were fear-conditioned by pairing a tone with footshock, and then exposed to chronic unpredictable stress (CUS) that induces deficits in cognitive set-shifting and active coping behavior. They then received an extinction learning session as a therapeutic intervention by repeated exposure to the tone with no shock. Effects on cognitive flexibility and coping behavior were assessed 24 h later on the attentional set-shifting test or shock-probe defensive burying test, respectively. Extinction reversed the CUS-induced deficits in cognitive flexibility and coping behavior, and increased phosphorylation of ribosomal protein S6 in the medial prefrontal cortex (mPFC) of stress-compromised rats, suggesting a role for activity-dependent protein synthesis in the therapeutic effect. Inhibiting protein synthesis by microinjecting anisomycin into mPFC blocked the therapeutic effect of extinction on cognitive flexibility. These results demonstrate the utility of extinction as a model by which to study mechanisms underlying exposure therapy, and suggest these mechanisms involve protein synthesis in the mPFC, the further study of which may identify novel therapeutic targets. PMID:27417516

  18. The administration of renoprotective agents extends warm ischemia in a rat model.

    Science.gov (United States)

    Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael

    2013-03-01

    Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.

  19. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Chronic Porcine Two-Hit Model with Hemorrhagic Shock and textitPseudomonas aeruginosa Sepsis

    OpenAIRE

    Eissner, B.;Matz, K.;Smorodchenko, A.;Röschmann, A.;Specht, B. U. v.

    2016-01-01

    Background: Sepsis is still a major cause of death despite well-developed therapeutical strategies such as antibiotics and supportive medication. The aim of this study was to characterize the long-term effects of a two-hit porcine sepsis model with a hemorrhagic shock as ‘first hit’ followed by a Pseudomonas aeruginosa infusion as ‘second hit’. Materials and Methods: Twelve juvenile healthy pigs were anesthetized and hemodynamically monitored. The two-hit group (n = 6) underwent a hemorrhagic...

  1. Comparison of Hydroxocobalamin Versus Norepinephrine Versus Saline in a Swine Model of Servere Septic Shock

    Science.gov (United States)

    2016-05-20

    Versus Saline in a Swine Model of Severe Septic Shock presented at/published to SURF Conference, San Antonio, TX 20 May 2016 with MDWJ 41-108, and has...of Wilford Hall Ambulatory Surgical Center (WHASC) internship and residency programs. 3. Please know that if you are a Graduate Health Sciences...must complete page two of this form: a. In Section 2, add the funding source for your study (e.g., S9 MOW CRD Graduate Health Sciences Education (GHSE

  2. Letter: Modeling reactive shock waves in heterogeneous solids at the continuum level with stochastic differential equations

    Science.gov (United States)

    Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.

    2018-05-01

    A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.

  3. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  4. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  5. SHOCK, Nonlinear Dynamic Structure Analysis, Spring and Mass Model, Runge-Kutta-Gill Method

    International Nuclear Information System (INIS)

    Gabrielson, V. K.

    1981-01-01

    1 - Description of problem or function: SHOCK calculates the dynamic response of a structure modeled as a spring-mass system having one or two degrees of freedom for each mass when subjected to specified environments. The code determines the behavior of each lumped mass (displacement, velocity, and acceleration for each degree of freedom) and the behavior of each spring or coupling (force, shear, moment, and displacement) as a function of time. Two types of models, axial, having one degree of freedom, and lateral, having two degrees of freedom at each mass can be processed. Damping can be included in all models and shock spectrums of responses can be obtained. 2 - Method of solution: Two methods of numerical integration of the second-order dynamic equations are provided: the Runge-Kutta-Gill method with variable step-size is recommended for highly nonlinear problems, and a variation of the Newmark-Beta method is available for use with large linear problems. 3 - Restrictions on the complexity of the problem: Maxima of: 100 masses, 200 springs or couplings. Complex arrangements of nonlinear options must be carefully checked by the user

  6. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition

    Science.gov (United States)

    McGilvray, M.; Dann, A. G.; Jacobs, P. A.

    2013-07-01

    Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.

  7. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  8. A Rat Excised Larynx Model of Vocal Fold Scar

    Science.gov (United States)

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  9. ENU mutagenesis to generate genetically modified rat models

    NARCIS (Netherlands)

    van Boxtel, R.; Gould, M.; Cuppen, E.; Smits, B.M.

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach

  10. Systemic Inflammatory Effects of Traumatic Brain Injury, Femur Fracture, and Shock: An Experimental Murine Polytrauma Model

    Directory of Open Access Journals (Sweden)

    C. Probst

    2012-01-01

    Full Text Available Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation. Methods. 45 male C57BL/6J mice (mean weight 27 g were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI, a femoral fracture and hemorrhagic shock (FX-SH. Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations. Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P<0.05. TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P<0.05, CCL2 (78/96/227; P<0.05 and IL-6 (16/48/281; P=0.05 showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P= n.s., CD-8 (7/28/34, P<0.05, CD-4-CD-8 (11/12/18; P= n.s., CD-56 (36/7/8; P<0.05. Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated.

  11. Use of artificial intelligence to identify cardiovascular compromise in a model of hemorrhagic shock.

    Science.gov (United States)

    Glass, Todd F; Knapp, Jason; Amburn, Philip; Clay, Bruce A; Kabrisky, Matt; Rogers, Steven K; Garcia, Victor F

    2004-02-01

    To determine whether a prototype artificial intelligence system can identify volume of hemorrhage in a porcine model of controlled hemorrhagic shock. Prospective in vivo animal model of hemorrhagic shock. Research foundation animal surgical suite; computer laboratories of collaborating industry partner. Nineteen, juvenile, 25- to 35-kg, male and female swine. Anesthetized animals were instrumented for arterial and systemic venous pressure monitoring and blood sampling, and a splenectomy was performed. Following a 1-hr stabilization period, animals were hemorrhaged in aliquots to 10, 20, 30, 35, 40, 45, and 50% of total blood volume with a 10-min recovery between each aliquot. Data were downloaded directly from a commercial monitoring system into a proprietary PC-based software package for analysis. Arterial and venous blood gas values, glucose, and cardiac output were collected at specified intervals. Electrocardiogram, electroencephalogram, mixed venous oxygen saturation, temperature (core and blood), mean arterial pressure, pulmonary artery pressure, central venous pressure, pulse oximetry, and end-tidal CO(2) were continuously monitored and downloaded. Seventeen of 19 animals (89%) died as a direct result of hemorrhage. Stored data streams were analyzed by the prototype artificial intelligence system. For this project, the artificial intelligence system identified and compared three electrocardiographic features (R-R interval, QRS amplitude, and R-S interval) from each of nine unknown samples of the QRS complex. We found that the artificial intelligence system, trained on only three electrocardiographic features, identified hemorrhage volume with an average accuracy of 91% (95% confidence interval, 84-96%). These experiments demonstrate that an artificial intelligence system, based solely on the analysis of QRS amplitude, R-R interval, and R-S interval of an electrocardiogram, is able to accurately identify hemorrhage volume in a porcine model of lethal

  12. Inherited behaviors, BDNF expression and response to treatment in a novel multifactorial rat model for depression.

    Science.gov (United States)

    Gersner, Roman; Gal, Ram; Levit, Ofir; Moshe, Hagar; Zangen, Abraham

    2014-06-01

    Major depressive disorder (MDD) is a common and devastating mental illness behaviorally characterized by various symptoms, including reduced motivation, anhedonia and psychomotor retardation. Although the etiology of MDD is still obscure, a genetic predisposition appears to play an important role. Here we used, for the first time, a multifactorial selective breeding procedure to generate a distinct 'depressed' rat line (DRL); our selection was based upon mobility in the forced swim test, sucrose preference and home-cage locomotion, three widely used tests associated with core characteristics of MDD. Other behavioral effects of the selection process, as well as changes in brain-derived neurotrophic factor (BDNF) and the response to three antidepressant treatments, were also examined. We show that decreased mobility in the forced swim test and decreased sucrose preference (two directly selected traits), as well as decreased exploration in the open field test (an indirectly selected trait), are hereditary components in DRL rats. In addition, lower BDNF levels are observed in the dorsal hippocampus of DRL rats, complying with the neurotrophic hypothesis of depression. Finally, electroconvulsive shocks (ECS) but not pharmacological treatment normalizes both the depressive-like behavioral impairments and the BDNF-related molecular alterations in DRL rats, highlighting the need for robust treatment when the disease is inherited and not necessarily triggered by salient chronic stress. We therefore provide a novel multifactorial genetic rat model for depression-related behaviors. The model can be used to further study the etiology of the disease and suggest molecular correlates and possible treatments for the disease.

  13. A preclinical model for identifying rats at risk of alcohol use disorder

    KAUST Repository

    Jadhav, Kshitij S.; Magistretti, Pierre J.; Halfon, Olivier; Augsburger, Marc; Boutrel, Benjamin

    2017-01-01

    Alcohol use is one of the world's leading causes of death and disease, although only a small proportion of individuals develop persistent alcohol use disorder (AUD). The identification of vulnerable individuals prior to their chronic intoxication remains of highest importance. We propose here to adapt current methodologies for identifying rats at risk of losing control over alcohol intake by modeling diagnostic criteria for AUD: Inability to abstain during a signaled period of reward unavailability, increased motivation assessed in a progressive effortful task and persistent alcohol intake despite aversive foot shocks. Factor analysis showed that these three addiction criteria loaded on one underlying construct indicating that they represent a latent construct of addiction trait. Further, not only vulnerable rats displayed higher ethanol consumption, and higher preference for ethanol over sweetened solutions, but they also exhibited pre-existing higher anxiety as compared to resilient rats. In conclusion, the present preclinical model confirms that development of an addiction trait not only requires prolonged exposure to alcohol, but also depends on endophenotype like anxiety that predispose a minority of individuals to lose control over alcohol consumption.

  14. A preclinical model for identifying rats at risk of alcohol use disorder

    KAUST Repository

    Jadhav, Kshitij S.

    2017-08-21

    Alcohol use is one of the world\\'s leading causes of death and disease, although only a small proportion of individuals develop persistent alcohol use disorder (AUD). The identification of vulnerable individuals prior to their chronic intoxication remains of highest importance. We propose here to adapt current methodologies for identifying rats at risk of losing control over alcohol intake by modeling diagnostic criteria for AUD: Inability to abstain during a signaled period of reward unavailability, increased motivation assessed in a progressive effortful task and persistent alcohol intake despite aversive foot shocks. Factor analysis showed that these three addiction criteria loaded on one underlying construct indicating that they represent a latent construct of addiction trait. Further, not only vulnerable rats displayed higher ethanol consumption, and higher preference for ethanol over sweetened solutions, but they also exhibited pre-existing higher anxiety as compared to resilient rats. In conclusion, the present preclinical model confirms that development of an addiction trait not only requires prolonged exposure to alcohol, but also depends on endophenotype like anxiety that predispose a minority of individuals to lose control over alcohol consumption.

  15. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  16. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  17. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal; Pryor, Owen; Koroglu, Batikan; Sarathy, Mani; Masunov, Artë m E.; Vasu, Subith S.

    2017-01-01

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  18. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    Science.gov (United States)

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  19. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  20. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  1. A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data

    Directory of Open Access Journals (Sweden)

    Vijay Barethiye

    2017-12-01

    Full Text Available Modeling dynamic characteristics of an automotive shock absorber is a challenging task due to its complex behavior. In the present paper, the nonparametric and hybrid approach is proposed to represent the nonlinear and hysteresis characteristics of the shock absorber. An experiment is carried out on a car damper utilizing INSTRON to obtain force-velocity characteristics of the shock absorber. The experimental data is used to devise two different models, namely, piecewise linear model and hysteresis model, to capture the damping properties of the absorber and for consequent use in simulations. The complexity involved due to certain physical phenomenon such as oil compressibility, gas entrapment etc. gives rise to hysteresis behavior and the present paper tries to model such behavior with the help of Neural Networks. Finally, a combined (hybrid shock absorber model (including the characteristics of both piecewise linear and hysteresis behavior is developed in Simulink and integrated into a quarter car simulation to verify its feasibility. The results generated by the combined (hybrid model are compared with linear as well as piecewise linear model and the comparison shows that the proposed model substantially a better option to study the vehicle characteristics more accurately and precisely.

  2. Analgesic synergism of gabapentin and carbamazepine in rat model ...

    African Journals Online (AJOL)

    Analgesic synergism of gabapentin and carbamazepine in rat model of diabetic neuropathic pain. Sinan Mohammed Abdullah AL-Mahmood, Shahrin Tarmizi Bin Che Abdullah, Nik Nur Fatnoon Nik Ahmad, Abdul Hadi Bin Mohamed, Tariq Abdul Razak ...

  3. Intification and modelling of flight characteristics for self-build shock flyer type UAV

    Science.gov (United States)

    Rashid., Z. A.; Dardin, A. S. F. Syed.; Azid, A. A.; Ahmad, K. A.

    2018-02-01

    The development of an autonomous Unmanned Aerial Vehicle (UAV) requires a fundamentals studies of the UAV's flight characteristic. The aim of this study is to identify and model the flight characteristic of a conventional fixed-wing type UAV. Subsequence to this, the mode of flight of the UAV can be investigated. One technique to identify the characteristic of a UAV is a flight test where it required specific maneuvering to be executed while measuring the attitude sensor. In this study, a simple shock flyer type UAV was used as the aircraft. The result shows that the modeled flight characteristic has a significant relation with actual values but the fitting value is rather small. It is suggested that the future study is conducted with an improvement of the physical UAV, data filtering and better system identification methods.

  4. Experimental models of acute infection and Toll-like receptor driven septic shock.

    Science.gov (United States)

    Ferstl, Ruth; Spiller, Stephan; Fichte, Sylvia; Dreher, Stefan; Kirschning, Carsten J

    2009-01-01

    Mainly Gram-negative and Gram-positive bacterial infections, but also other infections such as with fungal or viral pathogens, can cause the life-threatening clinical condition of septic shock. Transgression of the host immune response from a local level limited to the pathogen's place of entry to the systemic level is recognised as a major mode of action leading to sepsis. This view has been established upon demonstration of the capacity of specific pathogen-associated molecular patterns (PAMPs) to elicit symptoms of septic shock upon systemic administration. Immune stimulatory PAMPs are agonists of soluble, cytoplasmic, as well as/or cell membrane-anchored and/or -spanning pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). However, reflection of pathogen-host crosstalk triggering sepsis pathogenesis upon an infection by a host response to challenge with an isolated PAMP is incomplete. Therefore, an experimental model more reflective of pathogen-host interaction requires experimental host confrontation with a specific pathogen in its viable form resulting in a collective stimulation of a variety of specific PRRs. This chapter describes methods to analyse innate pathogen sensing by the host on both a cellular and systemic level.

  5. Multiscale modeling, coarse-graining and shock wave computer simulationsin materials science

    Directory of Open Access Journals (Sweden)

    Martin O. Steinhauser

    2017-12-01

    Full Text Available My intention in this review article is to briefly discuss several major topics of presentdaycomputational materials science in order to show their importance for state-of-the-art materialsmodeling and computer simulation. The topics I discuss are multiscale modeling approaches forhierarchical systems such as biological macromolecules and related coarse-graining techniques, whichprovide an effcient means to investigate systems on the mesoscale, and shock wave physics whichhas many important and interesting multi- and interdisciplinary applications in research areas wherephysics, biology, chemistry, computer science, medicine and even engineering meet. In fact, recently,as a new emerging field, the use of coarse-grained approaches for the simulation of biologicalmacromolecules such as lipids and bilayer membranes and the investigation of their interaction withshock waves has become very popular. This emerging area of research may contribute not only toan improved understanding of the microscopic details of molecular self-assembly but may also leadto enhanced medical tumor treatments which are based on the destructive effects of High IntensityFocused Ultrasound (HIFU or shock waves when interacting with biological cells and tissue; theseare treatments which have been used in medicine for many years, but which are not well understoodfrom a fundamental physical point of view.

  6. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  7. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  8. Dietary models for inducing hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Sheyla Leite Matos

    2005-03-01

    Full Text Available The present work aimed at finding a dietetical model capable of promoting the highest hypercholesterolemia without affecting the development of the rats. Sixty female Fisher rats were divided into five groups. The first one was fed a control diet; the remaining four were fed hypercholesterolemic diets with cholesterol and different contents of soybean oil, starch, casein, micronutrients and fiber and, consequently, different caloric values. After eight weeks animals were evaluated in relation to growth, fecal excretion, liver weight and fat, cholesterol and its fractions, serum biochemical parameters and sistolic pressure and compared with controls. The best result was obtained with the diet containing 25 % soybean oil, 1.0 % cholesterol, 13 % fiber and 4,538.4 Kcal/Kg, since it promoted an increase in LDL-cholesterol, a decrease in the HDL fraction and affected less the hepatic function of the animals.Modelos animais têm sido usados para investigar a relação entre desordens no metabolismo do colesterol e a aterogênese. A estratégia utilizada a fim de induzir hipercolesterolemia (dietas com alto teor de gordura e com colesterol adicionado leva à redução de sua ingestão pelos animais, o que induz desnutrição. O presente trabalho objetivou encontrar um modelo dietético capaz de promover a maior hipercolesterolemia, sem afetar o desenvolvimento dos animais. Sessenta ratas Fisher foram divididas em cinco grupos. O primeiro foi alimentado com uma dieta controle; os quatros restantes receberam dietas hipercolesterolêmicas, com colesterol e diferentes teores de óleo de soja, amido, caseína, micronutrientes e fibra e, conseqüentemente, diferentes valores calóricos. Após oito semanas os animais foram avaliados em relação ao crescimento, excreção fecal, peso e teor de gordura do fígado, colesterol e suas frações, parâmetros bioquímicos séricos e pressão sistólica. Os melhores resultados foram obtidos com a dieta contendo 25

  9. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  10. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    Science.gov (United States)

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  11. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    Science.gov (United States)

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  12. A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control

    Science.gov (United States)

    Baurle, Robert A.; Norris, Andrew T.

    2011-01-01

    A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.

  13. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  14. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  15. Double shock experiments and reactive flow modeling on LX-17 to understand the reacted equation of state

    International Nuclear Information System (INIS)

    Vandersall, Kevin S; Garcia, Frank; Fried, Laurence E; Tarver, Craig M

    2014-01-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.

  16. Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye

    2017-01-01

    brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for51Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure......, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB...

  17. Phenotypic Characterization of LEA Rat: A New Rat Model of Nonobese Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Tadashi Okamura

    2013-01-01

    Full Text Available Animal models have provided important information for the genetics and pathophysiology of diabetes. Here we have established a novel, nonobese rat strain with spontaneous diabetes, Long-Evans Agouti (LEA rat derived from Long-Evans (LE strain. The incidence of diabetes in the males was 10% at 6 months of age and 86% at 14 months, while none of the females developed diabetes. The blood glucose level in LEA male rats was between 200 and 300 mg/dl at 120 min according to OGTT. The glucose intolerance in correspondence with the impairment of insulin secretion was observed in male rats, which was the main cause of diabetes in LEA rats. Histological examination revealed that the reduction of β-cell mass was caused by progressive fibrosis in pancreatic islets in age-dependent manner. The intracytoplasmic hyaline droplet accumulation and the disappearance of tubular epithelial cell layer associated with thickening of basement membrane were evident in renal proximal tubules. The body mass index and glycaemic response to exogenous insulin were comparable to those of control rats. The unique characteristics of LEA rat are a great advantage not only to analyze the progression of diabetes, but also to disclose the genes involved in type 2 diabetes mellitus.

  18. Particle force model effects in a shock-driven multiphase instability

    Science.gov (United States)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  19. Modeling Acute Traumatic Hemorrhagic Shock Injury: Challenges and Guidelines for Preclinical Studies.

    Science.gov (United States)

    Tremoleda, Jordi L; Watts, Sarah A; Reynolds, Penny S; Thiemermann, Christoph; Brohi, Karim

    2017-12-01

    Trauma is responsible for a large proportion of the world's burden of disease, and is by far the biggest killer of young adults. Hemorrhage is the leading cause of preventable death and its effects are directly correlated with the incidence multi-organ failure in survivors. Trauma research is challenging due to patient heterogeneity, limited randomized controlled trials, and in vitro studies that fail to mimic the systemic injury response. Preclinical research remains essential for mechanistic and therapeutic discovery. Yet modeling the multifaceted nature of traumatic injury poses important experimental and welfare challenges associated with the onset of injury and prehospital and intra-operative care, the limited inter-species validation of coagulation profiles, the use of anesthesia/analgesia, and its impact on the systemic response to trauma; and the challenge of sustaining intensive care in recovery models. Proper model selection depends on the purpose of a given model and the criteria by which the experimental readouts will be clinically relevant. Such complexity warrants further refinement of experimental methodology and outcome measures to improve its clinical efficacy, while ensuring animal well-being. We review the experimental methodologies currently used for modeling traumatic hemorrhagic shock and addressing their impact on clinical translation. The aim of the review is to improve transparency and form a consensus when reporting methodology in trauma modeling.

  20. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  1. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  2. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  3. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  4. Mesenteric microcirculatory dysfunctions and translocation of indigenous bacteria in a rat model of strangulated small bowel obstruction

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Zanoni

    2009-01-01

    Full Text Available PRUPOSE: Bacterial translocation has been shown to occur in critically ill patients after extensive trauma, shock, sepsis, or thermal injury. The present study investigates mesenteric microcirculatory dysfunctions, the bacterial translocation phenomenon, and hemodynamic/metabolic disturbances in a rat model of intestinal obstruction and ischemia. METHODS: Anesthetized (pentobarbital 50 mg/kg, i.p. male Wistar rats (250-350 g were submitted to intestinal obstruction or laparotomy without intestinal obstruction (Sham and were evaluated 24 hours later. Bacterial translocation was assessed by bacterial culture of the mesenteric lymph nodes (MLN, liver, spleen, and blood. Leukocyte-endothelial interactions in the mesenteric microcirculation were assessed by intravital microscopy, and P-selectin and intercellular adhesion molecule (ICAM-1 expressions were quantified by immunohistochemistry. Hematocrit, blood gases, lactate, glucose, white blood cells, serum urea, creatinine, bilirubin, and hepatic enzymes were measured. RESULTS: About 86% of intestinal obstruction rats presented positive cultures for E. coli in samples of the mesenteric lymph nodes, liver, and spleen, and 57% had positive hemocultures. In comparison to the Sham rats, intestinal obstruction induced neutrophilia and increased the number of rolling (~2-fold, adherent (~5-fold, and migrated leukocytes (~11-fold; this increase was accompanied by an increased expression of P-selectin (~2-fold and intercellular adhesion molecule-1 (~2-fold in the mesenteric microcirculation. Intestinal obstruction rats exhibited decreased PaCO2, alkalosis, hyperlactatemia, and hyperglycemia, and increased blood potassium, hepatic enzyme activity, serum urea, creatinine, and bilirubin. A high mortality rate was observed after intestinal obstruction (83% at 72 h vs. 0% in Sham rats. CONCLUSION: Intestinal obstruction and ischemia in rats is a relevant model for the in vivo study of mesenteric microcirculatory

  5. Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation

    KAUST Repository

    Li, Sijie; Sarathy, Mani; Davidson, David Frank; Hanson, Ronald Kenneth; Westbrook, Charles K.

    2015-01-01

    High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves using conventional and constrained reaction volume (CRV) methods. The ignition delay time measurements covered the temperature range 666-1216K, pressure range 12-27atm, and equivalence ratio of 0.5 and 1. The ignition delay time temperatures span the low-, intermediate- and high-temperature regimes for 2,7-dimethyloctane (2,7-DMO) oxidation. Clear evidence of negative temperature coefficient behavior was observed near 800K. Fuel time-history measurements were also carried out in pyrolysis experiments in mixtures of 2000ppm 2,7-DMO/argon at pressures near 16 and 35atm, and in the temperature range of 1126-1455K. Based on the fuel removal rates, the overall 2,7-DMO decomposition rate constant can be represented with k =4.47×105 exp(-23.4[kcal/mol]/RT) [1/s]. Ethylene time-history measurements in pyrolysis experiments at 16atm are also provided. The current shock tube dataset was simulated using a novel chemical kinetic model for 2,7-DMO. The reaction mechanism includes comprehensive low- and high-temperature reaction classes with rate constants assigned using established rules. Comparisons between the simulated and experimental data show simulations reproduce the qualitative trends across the entire range of conditions tested. However, the present kinetic modeling simulations cannot quantitatively reproduce a number of experimental data points, and these are analyzed herein.

  6. Multiscale modeling of beryllium: quantum mechanics and laser-driven shock experiments using novel diagnostics

    International Nuclear Information System (INIS)

    Swift, D.C.; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan

    2002-01-01

    Ab initio quantum mechanics was used to construct a thermodynamically complete and rigorous equation of state for beryllium in the hexagonal and body-centred cubic structures, and to predict elastic constants as a function of compression. The equation of state agreed well with Hugoniot data and previously-published equations of state, but the temperatures were significantly different. The hexagonal/bcc phase boundary agreed reasonably well with published data, suggesting that the temperatures in our new equation of state were accurate. Shock waves were induced in single crystals and polycrystalline foils of beryllium, by direct illumination using the TRIDENT laser at Los Alamos. The velocity history at the surface of the sample was measured using a line-imaging VISAR, and transient X-ray diffraction (TXD) records were obtained with a plasma backlighter and X-ray streak cameras. The VISAR records exhibited elastic precursors, plastic waves, phase changes and spall. Dual TXD records were taken, in Bragg and Laue orientations. The Bragg lines moved in response to compression in the uniaxial direction. Because direct laser drive was used, the results had to be interpreted with the aid of radiation hydrodynamics simulations to predict the loading history for each laser pulse. In the experiments where there was evidence of polymorphism in the VISAR record, additional lines appeared in the Bragg and Laue records. The corresponding pressures were consistent with the phase boundary predicted by the quantum mechanical equation of state for beryllium. A model of the response of a single crystal of beryllium to shock loading is being developed using these new theoretical and experimental results. This model will be used in meso-scale studies of the response of the microstructure, allowing us to develop a more accurate representation of the behaviour of polycrystalline beryllium.

  7. Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation

    KAUST Repository

    Li, Sijie

    2015-05-01

    High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves using conventional and constrained reaction volume (CRV) methods. The ignition delay time measurements covered the temperature range 666-1216K, pressure range 12-27atm, and equivalence ratio of 0.5 and 1. The ignition delay time temperatures span the low-, intermediate- and high-temperature regimes for 2,7-dimethyloctane (2,7-DMO) oxidation. Clear evidence of negative temperature coefficient behavior was observed near 800K. Fuel time-history measurements were also carried out in pyrolysis experiments in mixtures of 2000ppm 2,7-DMO/argon at pressures near 16 and 35atm, and in the temperature range of 1126-1455K. Based on the fuel removal rates, the overall 2,7-DMO decomposition rate constant can be represented with k =4.47×105 exp(-23.4[kcal/mol]/RT) [1/s]. Ethylene time-history measurements in pyrolysis experiments at 16atm are also provided. The current shock tube dataset was simulated using a novel chemical kinetic model for 2,7-DMO. The reaction mechanism includes comprehensive low- and high-temperature reaction classes with rate constants assigned using established rules. Comparisons between the simulated and experimental data show simulations reproduce the qualitative trends across the entire range of conditions tested. However, the present kinetic modeling simulations cannot quantitatively reproduce a number of experimental data points, and these are analyzed herein.

  8. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  9. The Alteration of Emotion Regulation Precedes the Deficits in Interval Timing in the BACHD Rat Model for Huntington Disease

    Directory of Open Access Journals (Sweden)

    Daniel Garces

    2018-05-01

    Full Text Available Huntington disease (HD is an autosomal dominantly inherited, progressive neurodegenerative disorder which is accompanied by executive dysfunctions and emotional alteration. The aim of the present study was to assess the impact of emotion/stress on on-going highly demanding cognitive tasks, i.e., temporal processing, as a function of age in BACHD rats (a “full length” model of HD. Middle-aged (4–6 months and old (10–12 months rats were first trained on a 2 vs. 8-s temporal discrimination task, and then exposed to a series of bisection tests under normal and stressful (10 mild unpredictable foot-shocks conditions. The animals were then trained on a peak interval task, in which reinforced fixed-interval (FI 30-s trials were randomly intermixed with non-reinforced probe trials. After training, the effect of stress upon time perception was again assessed. Sensitivity to foot-shocks was also assessed independently. The results show effects of both age and genotype, with largely greater effects in old BACHD animals. The older BACHD animals had impaired learning in both tasks, but reached equivalent levels of performance as WT animals at the end of training in the temporal discrimination task, while remaining impaired in the peak interval task. Whereas sensitivity to foot-shock did not differ between BACHD and WT rats, delivery of foot-shocks during the test sessions had a disruptive impact on temporal behavior in WT animals, an effect which increased with age. In contrast, BACHD rats, independent of age, did not show any significant disruption under stress. In conclusion, BACHD rats showed a disruption in temporal learning in late symptomatic animals. Age-related modification in stress-induced impairment of temporal control of behavior was also observed, an effect which was greatly reduced in BACHD animals, thus confirming previous results suggesting reduced emotional reactivity in HD animals. The results suggest a staggered onset in cognitive

  10. Endogenous leukotriene formation during anaphylactic shock

    International Nuclear Information System (INIS)

    Keppler, A.; Oerning, L.; Bernstroem, K.; Hammarstroem, S.

    1987-01-01

    Leukotriene (LT)C 4 is a biologically active substance, presumed to play major roles as a mediator of allergic and anaphylactic reactions. It is formed e.g. by basophilic and eosinophilic leukocytes, monocytes, macrophages, and mast cells. In cells having IgE receptors, bridging of these by divalent anti-IgE-receptor antibodies or by interaction between receptor-bound IgE and anti-IgE will induce LTC 4 formation. Leukotriene formation has also been demonstrated in other in vitro models of immediate hypersensivity. The biological actions of LTC 4 , comprise induction of airway obstruction, constriction of coronary arteries, hypotension, and plasma extravasation. Leukotriene formation in vivo may mediate anaphylactic shock symptoms and cause the death of an animal. In order to prove the presumed mediator role of this substance in anaphylactic reactions, it is necessary to demonstrate its endogenous formation during shock. Studies on the metabolism of LTC 4 have revealed rapid catabolism by various transformations of the peptide substituent. Recently, three metabolites were demonstrated to be excreted as end-products in man (LTE 4 ,) and the rat (N-acetyl LTE 4 and N-acetyl 11-trans LTE 4 ). By monitoring biliary N-acetyl LTE 4 levels, endogenous leukotriene formation in the rat was demonstrated in vivo after tissue trauma and endotoxin shock. We now wish to report evidence for endogenous leukotriene C 4 production during anaphylactic shock in guinea pigs. 37 refs. (author)

  11. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  12. Examining platelet-fibrin interactions during traumatic shock in a swine model using platelet contractile force and clot elastic modulus.

    Science.gov (United States)

    White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R

    2011-07-01

    A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt. Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, Pshock, platelet function was preserved, whereas terminal clot elastic modulus was reduced during shock in a manner most consistent with early changes in the mechanical properties of the developing fibrin fiber network.

  13. Disequilibrium macro model and catastrophe theory: the case of an oil shock

    Energy Technology Data Exchange (ETDEWEB)

    German, I.

    1983-01-01

    This study builds a simple disequilibrium macromodel of a small open economy that imports oil from an exogenous unit. The model is motivated by very slow adjustment of prices and wages to disequilibrium. Output on the other hand adjusts to its final level instantaneously. A rationing scheme is specified that explicitly takes into account the spillover effects and differentiates between notional, effective, and actual quantities. In a Solow-Stiglitz (1968) setting, a dynamic model is developed in which the dynamic forces depend on the economic environment specified by the Malinvandian regimes: Classical Unemployment, Keynesian Unemployment, Repressed Inflation, and the Walrasian Equilibrium. Given that dynamic system, the author seeks to identify the stationary points of the system (quasi-equilibria) and to find their stability properties. To the disequilibrium model an oil shock is introduced and its effects on employment, real output, real wage, and the stationary points of the system are investigated. A one-time increase (decrease) in the real price of oil and a continuous increase (decrease) in the real price of oil are considered. The path the economy takes and, in particular, the continuous and discontinuous behavior of the quasi-equilibria are investigated. Finally, the model government policy is incorporated and different policy alternatives are studied.

  14. DAM-BREAK SHOCK WAVES WITH FLOATING DEBRIS: EXPERIMENTALANALYSIS AND TWO-PHASE MODELLING

    Directory of Open Access Journals (Sweden)

    Stefano Mambretti

    2008-06-01

    Full Text Available To predict floods and debris flow dynamics a numerical model, based on 1D De Saint Venant (SV equations, was developed. The McCormack – Jameson shock capturing scheme was employed for the solution of the equations, written in a conservative law form. This technique was applied to determine both the propagation and the profile of a two – phase debris flow resulting from the instantaneous and complete collapse of a storage dam. To validate the model, comparisons have been made between its predictions and laboratory measurements concerning flows of water and homogeneous granular mixtures in a uniform geometry flume reproducing dam – break waves. Agreements between computational and experimental results are considered very satisfactory for mature (non – stratified debris flows, which embrace most real cases. To better predict immature (stratified flows, the model should be improved in order to feature, in a more realistic way, the distribution of the particles of different size within the mixture. On the whole, the model proposed can easily be extended to channels with arbitrary cross sections for debris flow routing, as well as for solving different problems of unsteady flow in open channels by incorporating the appropriate initial and boundary conditions.

  15. Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations

    Science.gov (United States)

    Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team

    2017-06-01

    The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.

  16. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    Science.gov (United States)

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  17. Cannabis exacerbates depressive symptoms in rat model induced by reserpine.

    Science.gov (United States)

    Khadrawy, Yasser A; Sawie, Hussein G; Abdel-Salam, Omar M E; Hosny, Eman N

    2017-05-01

    Cannabis sativa is one of the most widely recreational drugs and its use is more prevalent among depressed patients. Some studies reported that Cannabis has antidepressant effects while others showed increased depressive symptoms in Cannabis users. Therefore, the present study aims to investigate the effect of Cannabis extract on the depressive-like rats. Twenty four rats were divided into: control, rat model of depression induced by reserpine and depressive-like rats treated with Cannabis sativa extract (10mg/kg expressed as Δ9-tetrahydrocannabinol). The depressive-like rats showed a severe decrease in motor activity as assessed by open field test (OFT). This was accompanied by a decrease in monoamine levels and a significant increase in acetylcholinesterase activity in the cortex and hippocampus. Na + ,K + -ATPase activity increased in the cortex and decreased in the hippocampus of rat model. In addition, a state of oxidative stress was evident in the two brain regions. This was indicated from the significant increase in the levels of lipid peroxidation and nitric oxide. No signs of improvement were observed in the behavioral and neurochemical analyses in the depressive-like rats treated with Cannabis extract. Furthermore, Cannabis extract exacerbated the lipid peroxidation in the cortex and hippocampus. According to the present findings, it could be concluded that Cannabis sativa aggravates the motor deficits and neurochemical changes induced in the cortex and hippocampus of rat model of depression. Therefore, the obtained results could explain the reported increase in the depressive symptoms and memory impairment among Cannabis users. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel model of invasive fungal rhinosinusitis in rats.

    Science.gov (United States)

    Zhang, Fang; An, Yunfang; Li, Zeqing; Zhao, Changqing

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a life-threatening inflammatory disease that affects immunocompromised patients, but animal models of the disease are scarce. This study aimed to develop an IFRS model in neutropenic rats. The model was established in three consecutive steps: unilateral nasal obstruction with Merocel sponges, followed by administration of cyclophosphamide (CPA), and, finally, nasal inoculation with Aspergillus fumigatus. Fifty healthy Wistar rats were randomly divided into five groups, with group I as the controls, group II undergoing unilateral nasal obstruction alone, group III undergoing nasal obstruction with fungal inoculation, group IV undergoing nasal obstruction with administration of CPA, and group V undergoing nasal obstruction with administration of CPA and fungal inoculation. Hematology, histology, and mycology investigations were performed. The changes in the rat absolute neutrophil counts (ANCs) were statistically different across the groups. The administration of CPA decreased the ANCs, whereas nasal obstruction with fungal inoculation increased the ANCs, and nasal obstruction did not change them. Histological examination of the rats in group V revealed the hyphal invasion of sinus mucosa and bone, thrombosis, and tissue infarction. No pathology indicative of IFRS was observed in the remaining groups. Positive rates of fungal culture in tissue homogenates from the maxillary sinus (62.5%) and lung (25%) were found in group V, whereas groups I, II, III, and IV showed no fungal culture in the homogenates. A rat IFRS model was successfully developed through nasal obstruction, CPA-induced neutropenia, and fungal inoculation. The disease model closely mimics the pathophysiology of anthropic IFRS.

  19. Cerebral microbleeds in a neonatal rat model.

    Directory of Open Access Journals (Sweden)

    Brianna Carusillo Theriault

    Full Text Available In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter.Pregnant Wistar rats were subjected to intrauterine ischemia (IUI and low-dose maternal lipopolysaccharide (mLPS at embryonic day (E 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks.mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2 and protein (CD31, MMP2, MMP9 for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls.In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.

  20. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  1. Oxidative stress of crystalline lens in rat menopausal model.

    Science.gov (United States)

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  2. Oxidative stress of crystalline lens in rat menopausal model

    Directory of Open Access Journals (Sweden)

    Semra Acer

    Full Text Available ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1. From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2, 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3, and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4. Total oxidant status (TOS, total antioxidant capacity (TAC, and oxidative stress index (OSI measurements of the crystalline lenses were analyzed. Results: The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05. The mean TOS values were similar between the groups (p >0.05, whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001. Conclusions: Our results indicate that menopause may not promote cataract formation.

  3. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    Science.gov (United States)

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  4. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  5. Hsp70 Expression Profile in Preeclampsia Model of Pregnant Rat (Rattus norvegicus) after Giving the EVOO

    Science.gov (United States)

    Irianti, E.; ilyas, S.; Rosidah; Hutahaean, S.

    2017-03-01

    Heat shock protein (Hsp) has long been known to protect cells from oxidative stress. In this case an increased expression is found on several cases of preeclampsia. One of the efforts to prevent preeclampsia is by giving antioxidants such as Extra Virgin Olive Oil (EVOO) or it’s better known as olive oil (Oleoa europaea), in the form of extra virgin known for its rich antioxidant content of tocopherols (vitamin E). The purpose of this study is to determine the expression levels of Hsp70 serum on pregnant white rat model of preeclampsia after being given EVOO. This type of research is true experiment; the subjects were female white rats and male virgin with Sprague Dawley, ± 8-11 weeks old, 180g BB s / d 200g, healthy and didn’t show any physical defects. Samples were 25 animals, divided into 5 groups, which consisted of different control and treatment given to T2 (rat model of preeclampsia), T3 (rat model of preeclampsia + EVOO 0.45g/bw/day), T4 (rat model of preeclampsia + EVOO 0.9g/bw/day) and T5 (rat model of preeclampsia + EVOO 1.8g/bw/day). The determination of each group was done by simple random sampling. Result on serum levels of Hsp70 that were tested by Elisa test in rats showed the average control was 14.64 mg / ml, group T2: 22:51 mg/ml, T3: 13.62 mg/ml, T4: 15.92 mg/ml, T5: 16:09 mg/ml. ANOVA test showed the P value was 0.001 <0.005, which meant there were significant differences on serum Hsp70 levels in the control and treatment pregnant rats group. It was known that there was a significant difference level of Hsp70 serum in group of control rats with T2 (P value <0.001) after LSD test was conducted, but not so with the group T3, T4, and T5, where the difference was not significant. There was a significant difference in the levels of Hsp70 serum on group T2 and T3 (P value 0.000), T4 (0004), T5 (0000). The gift of EVOO in the treatment group which was given EVOO with even low doses was able to control the induction of Hsp70 serum levels, which

  6. SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING

    International Nuclear Information System (INIS)

    Bain, H. M.; Luhmann, J. G.; Li, Y.; Mays, M. L.; Jian, L. K.; Odstrcil, D.

    2016-01-01

    During periods of increased solar activity, coronal mass ejections (CMEs) can occur in close succession and proximity to one another. This can lead to the interaction and merger of CME ejecta as they propagate in the heliosphere. The particles accelerated in these shocks can result in complex solar energetic particle (SEP) events, as observing spacecraft form both remote and local shock connections. It can be challenging to understand these complex SEP events from in situ profiles alone. Multipoint observations of CMEs in the near-Sun environment, from the Solar Terrestrial Relations Observatory –Sun Earth Connection Coronal and Heliospheric Investigation and the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph, greatly improve our chances of identifying the origin of these accelerated particles. However, contextual information on conditions in the heliosphere, including the background solar wind conditions and shock structures, is essential for understanding SEP properties well enough to forecast their characteristics. Wang–Sheeley–Arge WSA-ENLIL + Cone modeling provides a tool to interpret major SEP event periods in the context of a realistic heliospheric model and to determine how much of what is observed in large SEP events depends on nonlocal magnetic connections to shock sources. We discuss observations of the SEP-rich periods of 2010 August and 2012 July in conjunction with ENLIL modeling. We find that much SEP activity can only be understood in the light of such models, and in particular from knowing about both remote and local shock source connections. These results must be folded into the investigations of the physics underlying the longitudinal extent of SEP events, and the source connection versus diffusion pictures of interpretations of SEP events.

  7. SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Bain, H. M.; Luhmann, J. G.; Li, Y. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Mays, M. L. [Catholic University of America, Washington, DC (United States); Jian, L. K.; Odstrcil, D., E-mail: hbain@ssl.berkeley.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-01

    During periods of increased solar activity, coronal mass ejections (CMEs) can occur in close succession and proximity to one another. This can lead to the interaction and merger of CME ejecta as they propagate in the heliosphere. The particles accelerated in these shocks can result in complex solar energetic particle (SEP) events, as observing spacecraft form both remote and local shock connections. It can be challenging to understand these complex SEP events from in situ profiles alone. Multipoint observations of CMEs in the near-Sun environment, from the Solar Terrestrial Relations Observatory –Sun Earth Connection Coronal and Heliospheric Investigation and the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph, greatly improve our chances of identifying the origin of these accelerated particles. However, contextual information on conditions in the heliosphere, including the background solar wind conditions and shock structures, is essential for understanding SEP properties well enough to forecast their characteristics. Wang–Sheeley–Arge WSA-ENLIL + Cone modeling provides a tool to interpret major SEP event periods in the context of a realistic heliospheric model and to determine how much of what is observed in large SEP events depends on nonlocal magnetic connections to shock sources. We discuss observations of the SEP-rich periods of 2010 August and 2012 July in conjunction with ENLIL modeling. We find that much SEP activity can only be understood in the light of such models, and in particular from knowing about both remote and local shock source connections. These results must be folded into the investigations of the physics underlying the longitudinal extent of SEP events, and the source connection versus diffusion pictures of interpretations of SEP events.

  8. Effect of astragalus and dopamine on changes of blood and renal tissue contents of NO, ET in experimental rat models of acute renal failure

    International Nuclear Information System (INIS)

    Wu Yajun; Zheng Bingjie; Shi Lan; Fan Yaping

    2004-01-01

    Objective: To explore the effect of intravenous or intra-renal-capsular administration of astragalus and dopamine on the serum NO and renal tissue NO, ET contents in rat models of acute renal failure. Methods: Experimental rat models of acute renal failure induced by intraperitoneal injection of E. Coli endotoxin (lipo-polysaccharide) were prepared (n=60). Treatment with astragalus and dopamine was administered via either intravenous on intra-renal-capsular route (n=20 in each group). Serum NO and renal tissue NO (with nitric acid reductase method), ET (with RIA) contents were determined at 4, 8, 12, 16h after injection of endotoxin. Twenty shock models were left untreated and additional twenty rats receiving saline injection only served as controls. Results: In the intravenously treated group, the increase of serum NO and renal tissue NO, ET contents were significantly less than those in the untreated group (P<0.05). In the group treated via the intracapsular route , the increase of renal tissue NO and ET contents were much less than those in the intravenous group at 12 and 16h (P<0.05). Conclusion: Combined treatment with astragalus and dopamine could abate the abnormally high renal tissue contents of NO and ET after endotoxin shock in experimental rats and treatment with intra capsular administration seems to be more effective. (authors)

  9. Gut Microbial Diversity in Rat Model Induced by Rhubarb

    Science.gov (United States)

    Peng, Ying; Wu, Chunfu; Yang, Jingyu; Li, Xiaobo

    2014-01-01

    Rhubarb is often used to establish chronic diarrhea and spleen (Pi)-deficiency syndrome animal models in China. In this study, we utilized the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) method to detect changes in bacterial diversity in feces and the bowel mucosa associated with this model. Total microbial genomic DNA from the small bowel (duodenum, jejunum, and ileum), large bowel (proximal colon, distal colon, and rectum), cecum, and feces of normal and rhubarb-exposed rats were used as templates for the ERIC-PCR analysis. We found that the fecal microbial composition did not correspond to the bowel bacteria mix. More bacterial diversity was observed in the ileum of rhubarb-exposed rats (Panalysis with the SPSS software, the Canonical Discriminant Function Formulae for model rats was established. PMID:25048267

  10. Characterizing a Rat Brca2 Knockout Model

    Science.gov (United States)

    2007-05-01

    Brca2 was tested in various tumor inducing experimental settings [49,52] * activated form Hs = Homo sapiens ; Rn = Rattus norvegicus; MMTV...sequencing gDNA from a wild-type 2 SD rat over a region of intron 21 that contains the splicing branch site 2 (underlined). ( el The same sequence from the...from the El pups at 1 week of age for macromolecule isolation. We also visually checked all Fk pups for gross abnormalities in physi- cal

  11. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  12. Simulation of shock-induced bubble collapse using a four-equation model

    Science.gov (United States)

    Goncalves, E.; Hoarau, Y.; Zeidan, D.

    2018-02-01

    This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.

  13. Persistent estrus rat models of polycystic ovary disease: an update.

    Science.gov (United States)

    Singh, Krishna B

    2005-10-01

    To critically review published articles on polycystic ovary (PCO) disease in rat models, with a focus on delineating its pathophysiology. Review of the English-language literature published from 1966 to March 2005 was performed through PubMed search. Keywords or phrases used were persistent estrus, chronic anovulation, polycystic ovary, polycystic ovary disease, and polycystic ovary syndrome. Articles were also located via bibliographies of published literature. University Health Sciences Center. Articles on persistent estrus and PCO in rats were selected and reviewed regarding the methods for induction of PCO disease. Changes in the reproductive cycle, ovarian morphology, hormonal parameters, and factors associated with the development of PCO disease in rat models were analyzed. Principal methods for inducing PCO in the rat include exposure to constant light, anterior hypothalamic and amygdaloidal lesions, and the use of androgens, estrogens, antiprogestin, and mifepristone. The validated rat PCO models provide useful information on morphologic and hormonal disturbances in the pathogenesis of chronic anovulation in this condition. These studies have aimed to replicate the morphologic and hormonal characteristics observed in the human PCO syndrome. The implications of these studies to human condition are discussed.

  14. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  15. Morphofunctional analysis of experimental model of esophageal achalasia in rats.

    Science.gov (United States)

    Sabirov, A G; Raginov, I S; Burmistrov, M V; Chelyshev, Y A; Khasanov, R Sh; Moroshek, A A; Grigoriev, P N; Zefirov, A L; Mukhamedyarov, M A

    2010-10-01

    We carried out a detailed analysis of rat model of esophageal achalasia previously developed by us. Manifest morphological and functional disorders were observed in experimental achalasia: hyperplasia of the squamous epithelium, reduced number of nerve fibers, excessive growth of fibrous connective tissue in the esophageal wall, high contractile activity of the lower esophageal sphincter, and reduced motility of the longitudinal muscle layer. Changes in rat esophagus observed in experimental achalasia largely correlate with those in esophageal achalasia in humans. Hence, our experimental model can be used for the development of new methods of disease treatment.

  16. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    Science.gov (United States)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  17. A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes

    International Nuclear Information System (INIS)

    Caballé, N.C.; Castro, I.T.; Pérez, C.J.; Lanza-Gutiérrez, J.M.

    2015-01-01

    This paper proposes a condition-based maintenance strategy for a system subject to two dependent causes of failure: degradation and sudden shocks. The internal degradation is reflected by the presence of multiple degradation processes in the system. Degradation processes start at random times following a Non-homogeneous Poisson process and their growths are modelled by using a gamma process. When the deterioration level of a degradation process exceeds a predetermined value, we assume that a degradation failure occurs. Furthermore, the system is subject to sudden shocks that arrive at the system following a Doubly Stochastic Poisson Process. A sudden shock provokes the total breakdown of the system. Thus, the state of the system is evaluated at inspection times and different maintenance tasks can be carried out. If the system is still working at an inspection time, a preventive maintenance task is performed if the deterioration level of a degradation process exceeds a certain threshold. A corrective maintenance task is performed if the system is down at an inspection time. A preventive (corrective) maintenance task implies the replacement of the system by a new one. Under this maintenance strategy, the expected cost rate function is obtained. A numerical example illustrates the analytical results. - Highlights: • A condition-based maintenance model is proposed. • Two dependent causes of failure are considered: deterioration and external shocks. • Deterioration is given by multiple degradation processes growing by a gamma process. • The initiation of degradation processes follows a Non-homogeneous Poisson process. • External shocks arrive at the system by using a Doubly Stochastic Poisson Process

  18. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  19. A Recipe for implementing the Arrhenius-Shock-Temperature State Sensitive WSD (AWSD) model, with parameters for PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Tariq Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-03

    A reactive ow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. The equation of state for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration are carried over from the Wescott-Stewart-Davis (WSD) model7,8. Thus, modifying an existing WSD model in a hydrocode should be rather straightforward.

  20. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  1. Evaluation of Resuscitation Fluids on Endothelial Glycocalyx, Venular Blood Flow, and Coagulation Function After Hemorrhagic Shock in Rats

    Science.gov (United States)

    2013-10-01

    Associateship at the US Army Institute of Surgical Research, and I.T.F. was employed by Universidade do Estado do Rio de Janeiro and Premier Consulting...Dawley rats (Charles River Laboratories, Wilmington, MA; body weight, 220 T 10 g) breathing spontaneously 100% oxygen were maintained under isoflurane (2...diffusion of small solutes. Microvasc Res. 2010;80(3):394Y401. 22. Harris PD, Longnecker DE , Greenwald EK, Miller FN. Small vessel constriction in the

  2. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    International Nuclear Information System (INIS)

    Angileri, Francesca; Morrow, Geneviève; Roy, Vincent; Orejuela, Diana; Tanguay, Robert M.

    2014-01-01

    Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC

  3. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    Directory of Open Access Journals (Sweden)

    Francesca Angileri

    2014-04-01

    Full Text Available Hereditary Tyrosinemia type 1 (HT1 is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH, an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethylbenzoyl] cyclohexane-1,3-dione. However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC.

  4. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    Energy Technology Data Exchange (ETDEWEB)

    Angileri, Francesca; Morrow, Geneviève; Roy, Vincent; Orejuela, Diana; Tanguay, Robert M., E-mail: robert.tanguay@ibis.ulaval.ca [Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, 1030 avenue de la médecine, Université Laval, Québec G1V 0A6 (Canada)

    2014-04-23

    Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC.

  5. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  6. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    International Nuclear Information System (INIS)

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra

    2014-01-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud

  8. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    Energy Technology Data Exchange (ETDEWEB)

    Raghav, Anil; Lotekar, Ajay [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India); Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra, E-mail: raghavanil1984@gmail.com, E-mail: ankushbhaskar@gmail.com, E-mail: ablotekar@gmail.com, E-mail: vicharegeeta@gmail.com, E-mail: virendray.iig@gmail.com [Indian Institute of Geomagnetism, Plot 5, Sector 18, New Panvel, Navi Mumbai-410218 (India)

    2014-10-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud.

  9. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  10. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  11. N-Acetylcysteine and Desferoxamine Reduce Pulmonary Oxidative Stress Caused by Hemorrhagic Shock in a Porcine Model.

    Science.gov (United States)

    Mani, Alexandra; Staikou, Chryssoula; Karmaniolou, Iosifina; Orfanos, Nikolaos; Mylonas, Anastassios; Nomikos, Tzortzis; Pafiti, Agathi; Papalois, Apostolos; Arkadopoulos, Nikolaos; Smyrniotis, Vassilios; Theodoraki, Kassiani

    2017-02-01

    To investigate the pulmonary oxidative stress and possible protective effect of N-Acetylcysteine (NAC) and Desferoxamine (DFX)in a porcine model subjected to hemorrhagic shock. Twenty-one pigs were randomly allocated to Group-A (sham, n = 5), Group-B (fluid resuscitation, n = 8) and Group-C (fluid, NAC and DFX resuscitation, n = 8). Groups B and C were subjected to a 40-min shock period induced by liver trauma, followed by a 60-min resuscitation period. During shock, the mean arterial pressure (MAP) was maintained at 30-40 mmHg. Resuscitation consisted of crystalloids (35 mL/kg) and colloids (18 mL/kg) targeting to MAP normalization (baseline values ± 10%). In addition, Group-C received pretreatment with NAC 200 mg/kg plus DFX 2 g as intravenous infusions. Thiobarbituric Acid Reactive Substances (TBARS), protein carbonyls and glutathione peroxidase (GPx) activity were determined in lung tissue homogenates. Also, histological examination of pulmonary tissue specimens was performed. TBARS were higher in Group-B than in Group-A or Group-C: 2.90 ± 0.47, 0.57 ± 0.10, 1.78 ± 0.47 pmol/μg protein, respectively (p 0.05). GPx activity did not differ significantly between the three groups (p > 0.05). Lung histology was improved in Group-C versus Group-B, with less alveolar collapse, interstitial edema and inflammation. NAC plus DFX prevented the increase of pulmonary oxidative stress markers and protein damage after resuscitated hemorrhagic shock and had beneficial effect on lung histology. NAC/DFX combination may be used in the multimodal treatment of hemorrhagic shock, since it may significantly prevent free radical injury in the lung.

  12. Simvastatin Exposure and Rotator Cuff Repair in a Rat Model.

    Science.gov (United States)

    Deren, Matthew E; Ehteshami, John R; Dines, Joshua S; Drakos, Mark C; Behrens, Steve B; Doty, Stephen; Coleman, Struan H

    2017-03-01

    Simvastatin is a common medication prescribed for hypercholesterolemia that accelerates local bone formation. It is unclear whether simvastatin can accelerate healing at the tendon-bone interface after rotator cuff repair. This study was conducted to investigate whether local and systemic administration of simvastatin increased tendon-bone healing of the rotator cuff as detected by maximum load to failure in a controlled animal-based model. Supraspinatus tendon repair was performed on 120 Sprague-Dawley rats. Sixty rats had a polylactic acid membrane overlying the repair site. Of these, 30 contained simvastatin and 30 did not contain medication. Sixty rats underwent repair without a polylactic acid membrane. Of these, 30 received oral simvastatin (25 mg/kg/d) and 30 received a regular diet. At 4 weeks, 5 rats from each group were killed for histologic analysis. At 8 weeks, 5 rats from each group were killed for histologic analysis and the remaining 20 rats were killed for biomechanical analysis. One rat that received oral simvastatin died of muscle necrosis. Average maximum load to failure was 35.2±6.2 N for those receiving oral simvastatin, 36.8±9.0 N for oral control subjects, 39.5±12.8 N for those receiving local simvastatin, and 39.1±9.3 N for control subjects with a polylactic acid membrane. No statistically significant differences were found between any of the 4 groups (P>.05). Qualitative histologic findings showed that all groups showed increased collagen formation and organization at 8 weeks compared with 4 weeks, with no differences between the 4 groups at each time point. The use of systemic and local simvastatin offered no benefit over control groups. [Orthopedics. 2017; 40(2):e288-e292.]. Copyright 2016, SLACK Incorporated.

  13. Investigation of Intravenous Hydroxocobalamin Compared to Hextend for Resuscitation in a Swine Model of Uncontrolled Hemorrhagic Shock: A Preliminary Report

    Science.gov (United States)

    2017-08-27

    in blood loss from the injury (1005 vs 1100 ml). There was a significant difference by time between groups (pɘ.5) post treatment. No significant...effective as IV Hextend® in improving systolic blood pressure (SBP) in a controlled hemorrhagic shock model. We aimed to compare IV hydroxocobalamin (HOC...volume, portable drug that improves blood pressure and survival. Objective To compare systolic blood pressure over time in swine that have

  14. Splenectomy Versus Sham Splenectomy in a Swine Model of Controlled Hemorrhagic Shock.

    Science.gov (United States)

    Boysen, Søren R; Caulkett, Nigel A; Brookfield, Caroline E; Warren, Amy; Pang, Jessica M

    2016-10-01

    Splenectomy is controversial in acute hemorrhagic shock models. To compare splenectomized (SP) versus sham-splenectomized (SSP) swine during acute controlled hemorrhage. Twenty-six male Landrace White swine (mean body weight ± standard deviation, 33.8 ± 2.9 kg) were used. Ethics approval was obtained. Landrace swine underwent splenectomy (n = 13) or sham-splenectomy (n = 13), were bled to mean arterial blood pressure (MAP) of 40 mm Hg, which was held for 60 min, given 125 mL IV RescueFlow, held for a further 60 min, given whole blood, and held for a final 60 min. Tissue oxygen saturation, thromboelastography, oncotic pressure, urine volume and specific gravity, complete blood count, serum chemistry, body temperature, hematocrit, total solids, arterial and mixed venous blood gas, bispectral index, SAP, MAP, DAP, cardiac index, total blood volume (TBV) removed and returned, rate of hemorrhage and transfusion, spleen weight, heart rate (HR), arterial pH, lactate, PaO2, PaCO2, respiratory rate, cranial mesenteric and renal artery blood flow were recorded. Groups were compared using two-way ANOVA with post hoc Bonferroni (P splenectomy for the duration of the experiment (P splenectomy (P Splenectomy likely accounts for the transient increase in hematocrit and the higher HR in SP swine prior to hemorrhage, and the differences in TBV removed between the two groups during hemorrhage. With a fixed end point model using a moderate rate of acute hemorrhage and an MAP of 40 mm Hg, splenectomy is not necessary and may confound results.

  15. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    Science.gov (United States)

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  16. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    Science.gov (United States)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-05-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  17. Role of Heat Shock Protein 70 in Induction of Stress Fiber Formation in Rat Arterial Endothelial Cells in Response to Stretch Stress

    International Nuclear Information System (INIS)

    Luo, Shan-Shun; Sugimoto, Keiji; Fujii, Sachiko; Takemasa, Tohru; Fu, Song-Bin; Yamashita, Kazuo

    2007-01-01

    We investigated the mechanism by which endothelial cells (ECs) resist various forms of physical stress using an experimental system consisting of rat arterial EC sheets. Formation of actin stress fibers (SFs) and expression of endothelial heat-shock stress proteins (HSPs) in response to mechanical stretch stress were assessed by immunofluorescence microscopy. Stretch stimulation increased expression of HSPs 25 and 70, but not that of HSP 90. Treatment with SB203580, a p38 MAP kinase inhibitor that acts upstream of the HSP 25 activation cascade, or with geldanamycin, an inhibitor of HSP 90, had no effect on the SF formation response to mechanical stretch stress. In contrast, treatment with quercetin, an HSP 70 inhibitor, inhibited both upregulation of endothelial HSP 70 and formation of SFs in response to tensile stress. In addition, treatment of stretched ECs with cytochalasin D, which disrupts SF formation, did not adversely affect stretch-induced upregulation of endothelial HSP 70. Our data suggest that endothelial HSP 70 plays an important role in inducing SF formation in response to tensile stress

  18. Development and characterization of an effective food allergy model in Brown Norway rats.

    Science.gov (United States)

    Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2015-01-01

    Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.

  19. Development and characterization of an effective food allergy model in Brown Norway rats.

    Directory of Open Access Journals (Sweden)

    Mar Abril-Gil

    Full Text Available Food allergy (FA is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods.The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization.Rats received an intraperitoneal injection of ovalbumin (OVA with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group. A group of rats receiving only the i.p. injection (IP group were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified.Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression.These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.

  20. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  1. Steroid-associated osteonecrosis animal model in rats

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    2018-04-01

    Full Text Available Summary: Objective: Established preclinical disease models are essential for not only studying aetiology and/or pathophysiology of the relevant diseases but more importantly also for testing prevention and/or treatment concept(s. The present study proposed and established a detailed induction and assessment protocol for a unique and cost-effective preclinical steroid-associated osteonecrosis (SAON in rats with pulsed injections of lipopolysaccharide (LPS and methylprednisolone (MPS. Methods: Sixteen 24-week-old male Sprague–Dawley rats were used to induce SAON by one intravenous injection of LPS (0.2 mg/kg and three intraperitoneal injections of MPS (100 mg/kg with a time interval of 24 hour, and then, MPS (40 mg/kg was intraperitoneally injected three times a week from week 2 until sacrifice. Additional 12 rats were used as normal controls. Two and six weeks after induction, animals were scanned by metabolic dual energy X-ray absorptiometry for evaluation of tissue composition; serum was collected for bone turnover markers, Microfil perfusion was performed for angiography, the liver was collected for histopathology and bilateral femora and bilateral tibiae were collected for histological examination. Results: Three rats died after LPS injection, i.e., with 15.8% (3/19 mortality. Histological evaluation showed 100% incidence of SAON at week 2. Dual energy X-ray absorptiometry showed significantly higher fat percent and lower lean mass in SAON group at week 6. Micro-computed tomography (Micro-CT showed significant bone degradation at proximal tibia 6 weeks after SAON induction. Angiography illustrated significantly less blood vessels in the proximal tibia and significantly more leakage particles in the distal tibia 2 weeks after SAON induction. Serum amino-terminal propeptide of type I collagen and osteocalcin were significantly lower at both 2 and 6 weeks after SAON induction, and serum carboxy-terminal telopeptide was significantly

  2. Low-volume resuscitation using polyethylene glycol-20k in a preclinical porcine model of hemorrhagic shock.

    Science.gov (United States)

    Plant, Valerie; Limkemann, Ashley; Liebrecht, Loren; Blocher, Charles; Ferrada, Paula; Aboutanos, Michel; Mangino, Martin J

    2016-12-01

    Polyethylene glycol-20k (PEG-20k) is highly effective for low-volume resuscitation (LVR) by increasing tolerance to the low-volume state. In our rodent shock model, PEG-20k increased survival and expanded the "golden hour" 16-fold compared to saline. The molecular mechanism is largely attributed to normalizations in cell and tissue fluid shifts after low-flow ischemia resulting in efficient microvascular exchange. The objective of this study was to evaluate PEG-20k as an LVR solution for hemorrhagic shock in a preclinical model. Anesthetized male Yorkshire pigs (30-40 kg) were hemorrhaged to a mean arterial pressure (MAP) of 35 to 40 mm Hg. Once lactate reached 7 mmol/L, either saline (n = 5) or 10% PEG-20k (n = 5) was rapidly infused at 10% calculated blood volume. The primary outcome was LVR time, defined by the time from LVR administration to the time when lactate again reached 7 mmol/L. Other outcomes measured included MAP, heart rate, cardiac output, mixed venous oxygen saturation, splanchnic blood flow, and hemoglobin. Relative to saline, PEG-20k given after controlled hemorrhage increased LVR time by 16-fold, a conservative estimate given that the lactate never rose after LVR in the PEG-20k group. Survival was 80% for PEG-20k LVR compared to 0% for the saline controls (p the intravascular compartment. In a preclinical model of controlled hemorrhagic shock, PEG-20k-based LVR solution increased tolerance to the shock state 16-fold compared to saline. Polyethylene glycol-20k is a superior crystalloid for LVR that may increase safe transport times in the prehospital setting and find use in hospital emergency departments and operating rooms for patients awaiting volume replacement or normalization of cell, tissue, and compartment fluid volumes.

  3. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    Science.gov (United States)

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  4. Establishment of an induced rat model of malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Han Dan; Wu Beihai; Yang Hongsheng; Song Guangyi

    2004-01-01

    Objective: To establish a convenient and practical malignant pleural mesothelioma (MPM) model induced by crocidolite in Da Yao, which has a high induction rate and can be used for imaging and multiple experimental studies and is similar to human MPM. Methods 40 mg of crocidolite suspension was injected into the right chest cavity in 100 Wistar rats in the test group, while same amount of sterilized saline water was injected in 20 rats in the control group. The animals were observed daily , and weighted once a month. CT scanning was performed regularly. When the rats were dead or dying, they were dissected immediately and pathological changes were recorded after CT examination. The experiment lasted for 2 years. Results: The overall induction rate was 71.6%. The survival time of the first MPM rat was 285 days. The mean living span of rats with MPM was (469 ± 21) days. The pathological features of the induced MPMs were multiple morphologically and there were some CT features in different periods. CT imaging could show some MPM features and find the tumour earlier. Conclusion: The cause, positions, tissues and clinical condition of induced tumors were the same as humans. The model had a higher similarity with human MPM in differentiation degree and histological type, and the model can be used to study the mechanism of MPM, to discuss the measures of prevention, and to guide clinical diagnosis and treatment. Multi-morphology of the history from the induced tumors could make up the shortage, which was the difficulty in getting all periods of tissue samples in clinical research and being used in imaging and many kinds of researches. It was a valuable animal model to study MPM. (authors)

  5. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. A novel fluid resuscitation strategy modulates pulmonary transcription factor activation in a murine model of hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Todd W. Costantini

    2010-01-01

    Full Text Available INTRODUCTION: Combining the hemodynamic and immune benefits of hypertonic saline with the anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline (HSPTX as a hemorrhagic shock resuscitation strategy reduces lung injury when compared with the effects of Ringer's lactate (RL. We hypothesized that HSPTX exerts its anti-inflammatory effects by interfering with nuclear factor kappa B/cAMP response element-binding protein (NF-κB-CREB competition for the coactivator CREB-binding protein (CBP in lung tissue, thus affecting pro-inflammatory mediator production. METHODS: Male Sprague-Dawley rats underwent 60 minutes of hemorrhagic shock to reach a mean arterial blood pressure of 35 mmHg followed by resuscitation with either RL or HSPTX (7.5% HS + 25 mg/kg PTX. After four hours, lung samples were collected. NF-κB activation was assessed by measuring the levels of phosphorylated cytoplasmic inhibitor of kappa B (I-κB and nuclear NF-κB p65 by western blot. NF-κB and CREB DNA-binding activity were measured by electrophoretic mobility shift assay (EMSA. Competition between NF-κB and CREB for the coactivator CBP was determined by immunoprecipitation. Interleukin-8 (IL-8 levels in the lung were measured by ELISA. RESULTS: RL resuscitation produced significantly higher levels of lung IL-8 levels, I-κB phosphorylation, p65 phosphorylation, and NF-κB DNA binding compared with HSPTX. NF-κB-CBP-binding activity was similar in both groups, whereas CREB-CBP-binding activity was significantly increased with HSPTX. CREB-DNA binding-activity increased to a greater level with HSPTX compared with RL. DISCUSSION: HSPTX decreases lung inflammation following hemorrhagic shock compared with conventional resuscitation using RL through attenuation of NF-κB signaling and increased CREB-DNA binding activity. HSPTX may have therapeutic potential in the attenuation of ischemia-reperfusion injury observed after severe hemorrhagic shock.

  7. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  8. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  9. Effects of adenosine on the organ injury and dysfunction caused by hemorrhagic shock

    International Nuclear Information System (INIS)

    Soliman, M.M.

    2009-01-01

    Objectives: Adenosine has been shown in animal and human studies to decrease the post-ischemic myocardial injury by lowering the levels of tumor necrosis factor-a. The objectives of the study was to examine the protective effects of adenosine on the organ injury (liver, kidney, pancreas) associated with hemorrhagic shock in rats. Methodology: The study was conducted at Cardiovascular Physiology laboratory, King Saud University, Riyadh in 2007-2008. Anesthetized male Sprague- Dawley rats were assigned to hemorrhage and resuscitation treated with 20mM adenosine , untreated, or similar time matched control groups (n=6 per group). Rats were hemorrhaged for one hour using a reservoir model. Arterial blood pressure was monitored for one hour, and maintained at a mean arterial blood pressure of 40 mmHg. Adenosine 20mM was injected intra-arterially, before resuscitation in the adenosine treated group. Resuscitation was performed by re infusion of the sheded blood for 30 minutes. Arterial blood samples were analyzed for biochemical indicators of multiple organ injury: 1) liver function: aspartate aminotransferase (AST), alanine aminotransferase (ALT), 2) renal function: urea and creatinine, 3) pancreatic function: amylase. Results: In the control group there was no significant rise in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. While in the adenosine treated group, resuscitation from one hour of hemorrhagic shock resulted in significant rises in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. Treatment of rats with 20mM adenosine before resuscitation following one hour of hemorrhagic shock decreased the multiple organ injury and dysfunction caused by hemorrhagic shock. Conclusion: Adenosine attenuated the renal, liver and pancreatic injury caused by hemorrhagic shock and resuscitation in rats. Thus

  10. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    Science.gov (United States)

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  11. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  12. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  13. Verification of the production of peptide leukotrienes (LT) in traumatic shock

    International Nuclear Information System (INIS)

    Hock, C.E.; Craft, D.V.; Lefer, D.J.; Lefer, A.M.

    1986-01-01

    Both lipoxygenase inhibition and leukotriene receptor antagonism have been demonstrated to provide significant protection in traumatic shock. Despite these findings, leukotrienes have not been found in circulating blood in Noble-Collip drum induced traumatic shock using radioimmunoassay techniques. Anesthetized rats subjected to Noble-Collip drum trauma developed a shock state characterized by a significant reduction in mean arterial blood pressure, a 4.5 fold increase in plasma cathepsin D activity, a 3-fold increase in myocardial depressant factor activity and a mean survival time of 1.9 +/- 0.3 hours. Plasma and bile samples were analyzed by reverse phase high pressure liquid chromatography to determine LT production in this shock model. No detectable peptide leukotrienes or their metabolites were found in plasma. The major peptide leukotriene from bile eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 . This metabolite increased from 6 +/- 3 to 41 +/- 4 units in traumatic shock when compared to sham trauma (p 4 , LTD 4 and LTE 4 (10 μg/kg/h) also resulted in the metabolism of > 90% of the parent LT to this metabolite in bile. Therefore, plasma LTs accumulate in the bile following trauma in rats. Moreover, LTC 4 , LTD 4 and LTE 4 apparently are rapidly metabolized to N-acetyl LTE 4 . These findings further support a role for leukotrienes in the pathogenesis of traumatic shock in rats

  14. Shaofu Zhuyu Decoction Regresses Endometriotic Lesions in a Rat Model

    Directory of Open Access Journals (Sweden)

    Guanghui Zhu

    2018-01-01

    Full Text Available The current therapies for endometriosis are restricted by various side effects and treatment outcome has been less than satisfactory. Shaofu Zhuyu Decoction (SZD, a classic traditional Chinese medicinal (TCM prescription for dysmenorrhea, has been widely used in clinical practice by TCM doctors to relieve symptoms of endometriosis. The present study aimed to investigate the effects of SZD on a rat model of endometriosis. Forty-eight female Sprague-Dawley rats with regular estrous cycles went through autotransplantation operation to establish endometriosis model. Then 38 rats with successful ectopic implants were randomized into two groups: vehicle- and SZD-treated groups. The latter were administered SZD through oral gavage for 4 weeks. By the end of the treatment period, the volume of the endometriotic lesions was measured, the histopathological properties of the ectopic endometrium were evaluated, and levels of proliferating cell nuclear antigen (PCNA, CD34, and hypoxia inducible factor- (HIF- 1α in the ectopic endometrium were detected with immunohistochemistry. Furthermore, apoptosis was assessed using the terminal deoxynucleotidyl transferase (TdT deoxyuridine 5′-triphosphate (dUTP nick-end labeling (TUNEL assay. In this study, SZD significantly reduced the size of ectopic lesions in rats with endometriosis, inhibited cell proliferation, increased cell apoptosis, and reduced microvessel density and HIF-1α expression. It suggested that SZD could be an effective therapy for the treatment and prevention of endometriosis recurrence.

  15. Characterization of a frozen shoulder model using immobilization in rats.

    Science.gov (United States)

    Kim, Du Hwan; Lee, Kil-Ho; Lho, Yun-Mee; Ha, Eunyoung; Hwang, Ilseon; Song, Kwang-Soon; Cho, Chul-Hyun

    2016-12-08

    The objective of this study was to investigate serial changes for histology of joint capsule and range of motion of the glenohumeral joint after immobilization in rats. We hypothesized that a rat shoulder contracture model using immobilization would be capable of producing effects on the glenohumeral joint similar to those seen in patients with frozen shoulder. Sixty-four Sprague-Dawley rats were randomly divided into one control group (n = 8) and seven immobilization groups (n = 8 per group) that were immobilized with molding plaster for 3 days, or for 1, 2, 3, 4, 5, or 6 weeks. At each time point, eight rats were euthanized for histologic evaluation of the axillary recess and for measurement of the abduction angle. Infiltration of inflammatory cells was found in the synovial tissue until 2 weeks after immobilization. However, inflammatory cells were diminished and fibrosis was dominantly observed in the synovium and subsynovial tissue 3 weeks after immobilization. From 1 week after immobilization, the abduction angle of all immobilization groups at each time point was significantly lower than that of the control group. Our study demonstrated that a rat frozen shoulder model using immobilization generates the pathophysiologic process of inflammation leading to fibrosis on the glenohumeral joint similar to that seen in patients with frozen shoulder. This model was attained within 3 weeks after immobilization. It may serve as a useful tool to investigate pathogenesis at the molecular level and identify potential target genes that are involved in the development of frozen shoulder.

  16. Genital mycoplasmosis in rats: a model for intrauterine infection.

    Science.gov (United States)

    Brown, M B; Peltier, M; Hillier, M; Crenshaw, B; Reyes, L

    2001-09-01

    Microbial infections of the chorioamnion and amniotic fluid have devastating effects on pregnancy outcome and neonatal morbidity and mortality. The mechanisms by which bacterial pathogens cause adverse effects are best addressed by an animal model of the disease with a naturally-occurring pathogen. Intrauterine infection in humans as well as genital mycoplasmosis in humans and rodents is reviewed. We describe a genital infection in rats, which provides a model for the role of infection in pregnancy, pregnancy wastage, low birth weight, and fetal infection. Infection of Sprague-Dawley rats with Mycoplasma pulmonis either vaginally or intravenously resulted in decreased litter size, increased adverse pregnancy outcome, and in utero transmission of the microorganism to the fetus. Mycoplasma pulmonis is an ideal model to study maternal genital infection during pregnancy, the impact of infections on pregnancy outcome, fetal infection, and maternal-fetal immune interactions.

  17. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  18. Combating Combination of Hypertension and Diabetes in Different Rat Models

    Directory of Open Access Journals (Sweden)

    Talma Rosenthal

    2010-03-01

    Full Text Available Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD, and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH rats. The use of various drugs, such as angiotensin-converting enzyme (ACE inhibitors (ACEIs, various angiotensin receptor blockers (ARBs, and calcium channel blockers (CCBs, to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.

  19. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats.

    Science.gov (United States)

    Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U

    2012-01-17

    Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.

  20. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  1. Time to achieve target mean arterial pressure during resuscitation from experimental anaphylactic shock in an animal model. A comparison of adrenaline alone or in combination with different volume expanders.

    Science.gov (United States)

    Tajima, K; Zheng, F; Collange, O; Barthel, G; Thornton, S N; Longrois, D; Levy, B; Audibert, G; Malinovsky, J M; Mertes, P M

    2013-11-01

    Anaphylactic shock is a rare, but potentially lethal complication, combining life-threatening circulatory failure and massive fluid shifts. Treatment guidelines rely on adrenaline and volume expansion by intravenous fluids, but there is no solid evidence for the choice of one specific type of fluid over another. Our purpose was to compare the time to achieve target mean arterial pressure upon resuscitation using adrenaline alone versus adrenaline with different resuscitation fluids in an animal model and to compare the tissue oxygen pressures (PtiO2) with the various strategies. Twenty-five ovalbumin-sensitised Brown Norway rats were allocated to five groups after anaphylactic shock induction: vehicle (CON), adrenaline alone (AD), or adrenaline with isotonic saline (AD+IS), hydroxyethyl starch (AD+HES) or hypertonic saline (AD+HS). Time to reach a target mean arterial pressure value of 75 mmHg, cardiac output, skeletal muscle PtiO2, lactate/pyruvate ratio and cumulative doses of adrenaline were recorded. Non-treated rats died within 15 minutes. The target mean arterial pressure value was reached faster with AD+HES (median: 10 minutes, range: 7.5 to 12.5 minutes) and AD+IS (median: 17.5 minutes, range: 5 to 25 minutes) versus adrenaline alone (median: 25 minutes, range: 20-30 minutes). There were also reduced adrenaline requirements in these groups. The skeletal muscle PtiO2 was restored only in the AD+HES group. Although direct extrapolation to humans should be made with caution, our results support the combined use of adrenaline and volume expansion for resuscitation from anaphylactic shock. When used with adrenaline the most effective fluid was hydroxyethyl starch, whereas hypertonic saline was the least effective.

  2. Prevention of injury by resveratrol in a rat model of adenine-induced ...

    African Journals Online (AJOL)

    phosphorous, and fibroblast growth factor-23 (FGF-23) in rat urine samples after 2 months of adenine ... parathyroid hormone, phosphorous and FGF-23 levels (p < 0.002). In rats ... cartilage degradation in animal models of arthritis. [11].

  3. Protective effects of Naringin in a rat model of spinal cord ischemia ...

    African Journals Online (AJOL)

    generation and downregulating inflammatory markers in an SCI rat model. Keywords: Naringin ... intestinal microflora to yield a metabolite called naringenin ... disease (PD). Moreover .... CAT was significantly reduced in SCII rats compared ...

  4. Shock Wave Propagation and Gas-Debris Transport into a Vacuum: A Novel Computational Model - TEXAS-NCV

    International Nuclear Information System (INIS)

    Utschig, Tristan T.; Corradini, Michael L.

    2003-01-01

    Pulsed power experiments for basic physics investigations as well as inertial confinement fusion designs have developed Z-pinch technologies that produce terawatt level power using multiwire arrays. The energy released from such pulsed power tests results in fragmentation and vaporization of structures at the central wire array as well as shock wave propagation to the chamber boundaries. Practical design and safety considerations require that tracking of this shock front and the associated gas-debris field be done for a variety of experimental configurations to predict the arrival time of hazardous or radioactive debris at fast closure valve locations. A novel computational model has been developed to handle gas expansion into vacuum using a computer model (TEXAS) operating on a Eulerian mesh. Upon expansion of a high-pressure gas into a region of hard vacuum where free molecular transport dominates, the transport model switches between a traditional Eulerian continuum mechanics model and a free molecular transport model across the interface between the two regions. The interface location then propagates along the mesh as the gas expands. This new quasi-one-dimensional model (TEXAS-NCV) has been implemented and tested for two benchmark cases. Such a model can be useful in the design of inertial fusion systems

  5. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  6. Shocks in coupled socio-ecological systems: what are they and how can we model them?

    NARCIS (Netherlands)

    Filatova, Tatiana; Polhill, Gary; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Coupled socio-ecological systems (SES) are complex systems characterized by self-organization, non-linearities, interactions among heterogeneous elements within each subsystem, and feedbacks across scales and among subsystems. When such a system experiences a shock or a crisis, the consequences are

  7. Monitoring Microcirculatory Blood Flow with a New Sublingual Tonometer in a Porcine Model of Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Péter Palágyi

    2015-01-01

    Full Text Available Tissue capnometry may be suitable for the indirect evaluation of regional hypoperfusion. We tested the performance of a new sublingual capillary tonometer in experimental hemorrhage. Thirty-six anesthetized, ventilated mini pigs were divided into sham-operated (n=9 and shock groups (n=27. Hemorrhagic shock was induced by reducing mean arterial pressure (MAP to 40 mmHg for 60 min, after which fluid resuscitation started aiming to increase MAP to 75% of the baseline value (60–180 min. Sublingual carbon-dioxide partial pressure was measured by tonometry, using a specially coiled silicone rubber tube. Mucosal red blood cell velocity (RBCV and capillary perfusion rate (CPR were assessed by orthogonal polarization spectral (OPS imaging. In the 60 min shock phase a significant drop in cardiac index was accompanied by reduction in sublingual RBCV and CPR and significant increase in the sublingual mucosal-to-arterial PCO2 gap (PSLCO2 gap, which significantly improved during the 120 min resuscitation phase. There was significant correlation between PSLCO2 gap and sublingual RBCV (r=-0.65, p<0.0001, CPR (r=-0.64, p<0.0001, central venous oxygen saturation (r=-0.50, p<0.0001, and central venous-to-arterial PCO2 difference (r=0.62, p<0.0001. This new sublingual tonometer may be an appropriate tool for the indirect evaluation of circulatory changes in shock.

  8. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.; Badra, Jihad; Javed, Tamour; Alabbad, Mohammed; Bokhumseen, Nehal; Gaillard, Patrick; Babiker, Hassan; Farooq, Aamir; Sarathy, Mani

    2015-01-01

    work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range

  9. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  10. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  11. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    International Nuclear Information System (INIS)

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-01-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  12. Establishment of reproducible osteosarcoma rat model using orthotopic implantation technique.

    Science.gov (United States)

    Yu, Zhe; Sun, Honghui; Fan, Qingyu; Long, Hua; Yang, Tongtao; Ma, Bao'an

    2009-05-01

    In experimental musculoskeletal oncology, there remains a need for animal models that can be used to assess the efficacy of new and innovative treatment methodologies for bone tumors. Rat plays a very important role in the bone field especially in the evaluation of metabolic bone diseases. The objective of this study was to develop a rat osteosarcoma model for evaluation of new surgical and molecular methods of treatment for extremity sarcoma. One hundred male SD rats weighing 125.45+/-8.19 g were divided into 5 groups and anesthetized intraperitoneally with 10% chloral hydrate. Orthotopic implantation models of rat osteosarcoma were performed by injecting directly into the SD rat femur with a needle for inoculation with SD tumor cells. In the first step of the experiment, 2x10(5) to 1x10(6) UMR106 cells in 50 microl were injected intraosseously into median or distal part of the femoral shaft and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from ultrasound with findings from necropsia and determining time of survival. In the third stage, the orthotopically implanted tumors and lung nodules were resected entirely, sectioned, and then counter stained with hematoxylin and eosin for histopathologic evaluation. The tumor take rate was 100% for implants with 8x10(5) tumor cells or more, which was much less than the amount required for subcutaneous implantation, with a high lung metastasis rate of 93.0%. Ultrasound and necropsia findings matched closely (r=0.942; p<0.01), which demonstrated that Doppler ultrasonography is a convenient and reliable technique for measuring cancer at any stage. Tumor growth curve showed that orthotopically implanted tumors expanded vigorously with time-lapse, especially in the first 3 weeks. The median time of survival was 38 days and surgical mortality was 0%. The UMR106 cell line has strong carcinogenic capability and high lung metastasis frequency. The present rat

  13. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  14. Creation of Consistent Burn Wounds: A Rat Model

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-07-01

    Full Text Available Background Burn infliction techniques are poorly described in rat models. An accurate study can only be achieved with wounds that are uniform in size and depth. We describe a simple reproducible method for creating consistent burn wounds in rats. Methods Ten male Sprague-Dawley rats were anesthetized and dorsum shaved. A 100 g cylindrical stainless-steel rod (1 cm diameter was heated to 100℃ in boiling water. Temperature was monitored using a thermocouple. We performed two consecutive toe-pinch tests on different limbs to assess the depth of sedation. Burn infliction was limited to the loin. The skin was pulled upwards, away from the underlying viscera, creating a flat surface. The rod rested on its own weight for 5, 10, and 20 seconds at three different sites on each rat. Wounds were evaluated for size, morphology and depth. Results Average wound size was 0.9957 cm2 (standard deviation [SD] 0.1845 (n=30. Wounds created with duration of 5 seconds were pale, with an indistinct margin of erythema. Wounds of 10 and 20 seconds were well-defined, uniformly brown with a rim of erythema. Average depths of tissue damage were 1.30 mm (SD 0.424, 2.35 mm (SD 0.071, and 2.60 mm (SD 0.283 for duration of 5, 10, 20 seconds respectively. Burn duration of 5 seconds resulted in full-thickness damage. Burn duration of 10 seconds and 20 seconds resulted in full-thickness damage, involving subjacent skeletal muscle. Conclusions This is a simple reproducible method for creating burn wounds consistent in size and depth in a rat burn model.

  15. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    Science.gov (United States)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  16. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  17. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  18. induced cerebral injury in a rat model

    African Journals Online (AJOL)

    Results: There was a significant decrease in neurological deficit, brain oedema, and volume of ... This is an Open Access article that uses a funding model which does not charge readers or .... Moreover, the percentage of infarct volume was.

  19. Ideal Experimental Rat Models for Liver Diseases

    OpenAIRE

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-01-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and dive...

  20. Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs.

    Directory of Open Access Journals (Sweden)

    Edgard Salomão

    Full Text Available The analysis of heart rate variability (HRV has been shown as a promising non-invasive technique for assessing the cardiac autonomic modulation in trauma. The aim of this study was to evaluate HRV during hemorrhagic shock and fluid resuscitation, comparing to traditional hemodynamic and metabolic parameters.Twenty anesthetized and mechanically ventilated pigs were submitted to hemorrhagic shock (60% of estimated blood volume and evaluated for 60 minutes without fluid replacement. Surviving animals were treated with Ringer solution and evaluated for an additional period of 180 minutes. HRV metrics (time and frequency domain as well as hemodynamic and metabolic parameters were evaluated in survivors and non-survivors animals.Seven of the 20 animals died during hemorrhage and initial fluid resuscitation. All animals presented an increase in time-domain HRV measures during haemorrhage and fluid resuscitation restored baseline values. Although not significantly, normalized low-frequency and LF/HF ratio decreased during early stages of haemorrhage, recovering baseline values later during hemorrhagic shock, and increased after fluid resuscitation. Non-surviving animals presented significantly lower mean arterial pressure (43±7 vs 57±9 mmHg, P<0.05 and cardiac index (1.7±0.2 vs 2.6±0.5 L/min/m2, P<0.05, and higher levels of plasma lactate (7.2±2.4 vs 3.7±1.4 mmol/L, P<0.05, base excess (-6.8±3.3 vs -2.3±2.8 mmol/L, P<0.05 and potassium (5.3±0.6 vs 4.2±0.3 mmol/L, P<0.05 at 30 minutes after hemorrhagic shock compared with surviving animals.The HRV increased early during hemorrhage but none of the evaluated HRV metrics was able to discriminate survivors from non-survivors during hemorrhagic shock. Moreover, metabolic and hemodynamic variables were more reliable to reflect hemorrhagic shock severity than HRV metrics.

  1. The concentration of kynurenine in rat model of asthma.

    Directory of Open Access Journals (Sweden)

    Barbara Mroczko

    2008-06-01

    Full Text Available Asthma is a chronic inflammatory disease that involves the immune system activation. Evidence is accumulating about the role of kynurenine pathway in the immune system regulation. The kynurenine pathway includes several metabolites of tryptophan, among others kynurenine (KYN. To study the immunological system regulation in asthma a simple and sensitive models of asthma are required. In the present study we induced rat model of asthma using ovalbumin (OVA sensitization followed by challenge with OVA. The development of asthma has been confirmed by plasma total IgE measurement and the histological examination. The concentration of KYN has been determined in plasma, lungs and liver by high-performance liquid chromatography (HPLC. In OVA sensitized rats the concentration of total IgE was statistically significantly increased as compared to VEH sensitized control groups (437.6 +/- 97.7 kU/l vs 159.2 +/- 22.7 kU/l, respectively; p< 0.01. In asthmatic animals, the number of eosinophils, neutrophils and mast cells increased considerably, and epithelial lesion and the increase in airway epithelium goblet cells and edema of bronchial mucosa were present. We did not observe any significant changes in the concentration of KYN in plasma, lungs or liver between studied groups. In conclusion, the concentration of KYN remains unchanged in asthmatic animals as compared to control groups. Further studies using rat model of asthma are warranted to establish the role of kynurenine pathway regulation in asthma.

  2. Aerosol Infection Model of Tuberculosis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sheshagiri Gaonkar

    2010-01-01

    Full Text Available We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the next 12 weeks. We observed macroscopically visible granulomas in the lungs with demonstrable acid-fast bacilli and associated histopathology. Rifampicin (RIF at a dose range of 30 to 270 mg/kg exhibited a sharp dose response while isoniazid (INH at a dose range of 10 to 90 mg/kg and ethambutol (EMB at 100 to 1000 mg/kg showed shallow dose responses. Pyrazinamide (PZA had no dose response between 300 and 1000 mg/kg dose range. In a separate time kill study at fixed drug doses (RIF 90 mg/kg, INH 30 mg/kg, EMB 300 mg/kg, and PZA 300 mg/kg the bactericidal effect of all the four drugs increased with longer duration of treatment from two weeks to four weeks. The observed infection profile and therapeutic outcomes in this rat model suggest that it can be used as an additional, pharmacologically relevant efficacy model to develop novel antitubercular compounds at the interface of discovery and development.

  3. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  4. The Fischer 344 rat as a model of presbycusis.

    Science.gov (United States)

    Syka, Josef

    2010-06-01

    Due to the rising number of the aged human population all over the world, presbycusis is a phenomenon that deserves the increasing attention of the medical community as regards to prevention and treatment. This requires finding appropriate animal models for human presbycusis that will be useful in future experiments. Among the available rat strains, the Fischer 344 (F344) strain promises to serve as a model producing prompt and profound presbycusis. Hearing thresholds begin to increase in this strain during the first year of life; toward the end of the second year, the thresholds are very high. The threshold shifts progress independently in both ears. The rapid deterioration of distortion product otoacoustic emissions, with the majority of outer hair cells (OHC) being present and morphologically intact, is apparently produced by the disruption of prestin. The age-related changes within inner ear function are accompanied by deterioration of acoustical signal processing within central auditory system, mainly due to impaired GABA inhibition. The loss of GABA inhibition in old animals is expressed primarily in the inferior colliculus but is also present in the cochlear nuclei and the auditory cortex. Sound-evoked behavioral reactions are also impaired in old F344 rats. Taken together, the described characteristics of the aging F344 rat auditory system supports the idea that this strain may serve as a suitable model for studying the mechanisms of presbycusis, its prevention and treatment. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Lower energy radial shock wave therapy improves characteristics of hypertrophic scar in a rabbit ear model.

    Science.gov (United States)

    Zhao, Jing-Chun; Zhang, Bo-Ru; Shi, Kai; Wang, Jian; Yu, Qing-Hua; Yu, Jia-Ao

    2018-01-01

    The aim of the present study was to investigate the effects of radial extracorporeal shock wave therapy (rESWT) on scar characteristics and transforming growth factor (TGF)-β1/Smad signaling in order to explore a potential modality for the treatment of hypertrophic scars (HS). The HS model was generated in rabbit ears, then rabbits were randomly divided into 3 groups: Lower (L)-ESWT [treated with rESWT with lower energy flux density (EFD) of 0.1 mJ/mm 2 ], higher (H)-ESWT (treated with a higher EFD of 0.18 mJ/mm 2 ) and the sham ESWT group (S-ESWT; no ESWT treatment). Scar characteristics (wrinkles, texture, diameter, area, volume of elevation, hemoglobin and melanin) were assessed using the Antera 3D ® system. The protein and mRNA expression of TGF-β1, Smad2, Smad3 and Smad7 was assessed by enzyme-linked immunosorbent assay and reverse transcription-quantitative polymerase chain reaction, respectively. The Antera 3D ® results indicated that wrinkles and hemoglobin of the HS were significantly improved in both of the rESWT groups when compared with the S-ESWT group. However, these changes appeared much earlier in the L-ESWT group than the H-ESWT. Scar texture was also improved in the L-ESWT group. However, rESWT did not influence HS diameter, area, volume of elevation or melanin levels. rESWT had no effect on TGF-β1 or Smad7 expression in either of rESWT groups. Although no difference was observed in Smad2 mRNA expression in the L-ESWT group, the Smad3 mRNA and protein expression significantly decreased when compared with the H-ESWT and S-ESWT groups. By contrast, Smad2 and Smad3 mRNA expression were upregulated in the H-ESWT group. These results demonstrated that rESWT with 0.1 mJ/mm 2 EFD improved some characteristics of the HS tissue. Downregulation of Smad3 expression may underlie this inhibitory effect. Inhibition of the TGF-β1/Smad signal transduction pathway may be a potential therapeutic target for the management of HS.

  6. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. An improved experimental model for peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Q.M. Dias

    2013-03-01

    Full Text Available A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively, but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively. The modified method required less surgical skill than the spinal nerve ligation model.

  8. An improved experimental model for peripheral neuropathy in rats

    International Nuclear Information System (INIS)

    Dias, Q.M.; Rossaneis, A.C.; Fais, R.S.; Prado, W.A.

    2013-01-01

    A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model

  9. An improved experimental model for peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Q.M. Dias

    Full Text Available A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively, but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively. The modified method required less surgical skill than the spinal nerve ligation model.

  10. An improved experimental model for peripheral neuropathy in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Q.M.; Rossaneis, A.C.; Fais, R.S.; Prado, W.A. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-03-15

    A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model.

  11. A rat model for embolic encephalitis

    DEFF Research Database (Denmark)

    Astrup, Lærke Boye; Rasmussen, Rune Skovgaard; Aalbæk, Bent

    2011-01-01

    have recently shown that sepsis is a common cause of microabscesses in the brain, and that S. aureus is one of the most common organisms isolated from these abscesses. This raises the question whether the blood-brain barrier truly makes the brain an immune-privileged organ or not. This makes the brain...... a most interesting organ in sepsis patients. However, symptoms of brain infection may be confused with systemic responses and gross neuropathologic lesions may be absent. Brain infection in sepsis patients is therefore prone to misclassification or diagnostic delay, and when the diagnosis is made...... it is difficult to obtain tissue for further examination. This puts a hard demand on animal models of brain lesions in sepsis. We hereby present a novel animal model of embolic encephalitis. Our model introduces bacteria by an embolus to an area of brain necrosis and damage to the blood-brain...

  12. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  13. A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases

    OpenAIRE

    Holian B.L.

    2011-01-01

    From its inception in the mid-Fifties, the method of molecular-dynamics (MD) computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms). When direct me...

  14. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  15. Analysis of Simplifications Applied in Vibration Damping Modelling for a Passive Car Shock Absorber

    Directory of Open Access Journals (Sweden)

    Łukasz Konieczny

    2016-01-01

    Full Text Available The paper presents results of research on hydraulic automotive shock absorbers. The considerations provided in the paper indicate certain flaws and simplifications resulting from the fact that damping characteristics are assumed as the function of input velocity only, which is the case of simulation studies. An important aspect taken into account when determining parameters of damping performed by car shock absorbers at a testing station is the permissible range of characteristics of a shock absorber of the same type. The aim of this study was to determine the damping characteristics entailing the stroke value. The stroke and rotary velocities were selected in a manner enabling that, for different combinations, the same maximum linear velocity can be obtained. Thus the influence of excitation parameters, such as the stroke value, on force versus displacement and force versus velocity diagrams was determined. The 3D characteristics presented as the damping surface in the stoke and the linear velocity function were determined. An analysis of the results addressed in the paper highlights the impact of such factors on the profile of closed loop graphs of damping forces and point-type damping characteristics.

  16. Modeling the mechanical properties of liver fibrosis in rats.

    Science.gov (United States)

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Rat Model for Muscle Regeneration in the Soft Palate

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  18. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, Mylene [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France); Coustols, Eric [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France)]. E-mail: Eric.Coustols@onera.fr

    2006-08-15

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M {>=} 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow.

  19. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    International Nuclear Information System (INIS)

    Thiery, Mylene; Coustols, Eric

    2006-01-01

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow

  20. MicroRNA Profiling in the Medial and Lateral Habenula of Rats Exposed to the Learned Helplessness Paradigm: Candidate Biomarkers for Susceptibility and Resilience to Inescapable Shock.

    Science.gov (United States)

    Svenningsen, Katrine; Venø, Morten T; Henningsen, Kim; Mallien, Anne S; Jensen, Line; Christensen, Trine; Kjems, Jørgen; Vollmayr, Barbara; Wiborg, Ove

    2016-01-01

    Depression is a highly heterogeneous disorder presumably caused by a combination of several factors ultimately causing the pathological condition. The genetic liability model of depression is likely to be of polygenic heterogeneity. miRNAs can regulate multiple genes simultaneously and therefore are candidates that align with this model. The habenula has been linked to depression in both clinical and animal studies, shifting interest towards this region as a neural substrate in depression. The goal of the present study was to search for alterations in miRNA expression levels in the medial and lateral habenula of rats exposed to the learned helplessness (LH) rat model of depression. Ten miRNAs showed significant alterations associating with their response to the LH paradigm. Of these, six and four miRNAs were significantly regulated in the MHb and LHb, respectively. In the MHb we identified miR-490, miR-291a-3p, MiR-467a, miR-216a, miR-18b, and miR-302a. In the LHb miR-543, miR-367, miR-467c, and miR-760-5p were significantly regulated. A target gene analysis showed that several of the target genes are involved in MAPK signaling, neutrophin signaling, and ErbB signaling, indicating that neurotransmission is affected in the habenula as a consequence of exposure to the LH paradigm.

  1. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    Science.gov (United States)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  2. Hypovolemic shock

    Science.gov (United States)

    ... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  3. Regulation of retinal proteome by topical antiglaucomatous eye drops in an inherited glaucoma rat model.

    Directory of Open Access Journals (Sweden)

    Maurice Schallenberg

    Full Text Available Examination of the response of the retinal proteome to elevated intraocular pressure (IOP and to the pharmacological normalization of IOP is crucial, in order to develop drugs with neuroptorective potential. We used a hereditary rat model of ocular hypertension to lower IOP with travaprost and dorzolamide applied topically on the eye surface, and examine changes of the retinal proteome. Our data demonstrate that elevated IOP causes alterations in the retinal protein profile, in particular in high-mobility-group-protein B1 (HMGB1, calmodulin, heat-shock-protein (HSP 70 and carbonic anhydrase II expression. The changes of the retinal proteome by dorzolamide or travoprost are different and independent of the IOP lowering effect. This fact suggests that the eye drops exert a direct IOP-independent effect on retinal metabolism. Further investigations are required to elucidate the potential neuroprotective mechanisms signaled through changes of HMGB1, calmodulin, HSP70 and carbonic anhydrase II expression in glaucoma. The data may facilitate development of eye drops that exert neuroprotection through direct pharmacological effect.

  4. [Establishment of rat model with diabetes mellitus and concomitant periodontitis and the carotid artery lesions in the model rats].

    Science.gov (United States)

    Ren, X Y; Wang, C; Liu, X; Li, H; Gao, J H; Ge, X J

    2017-12-09

    Objectives: To establish SD rat model with type 2 diabetes mellitus (DM) and concomitant chronic periodontitis (CP) and to evaluate the influence of periodontitis on the vascular lesions of type 2 diabetes rats. Methods: Totally 241 clean level SD rats were randomly divided into four groups, group A (normal control, NC, n= 27), group B (DM, n= 34), group C (CP, n= 90) and group D (DM+CP, n= 90). The rats of DM group were fed with high-fat and high-sugar diet for 8 to 10 weeks, and then were multiply injected with small dose streptozotocin under the condition of ice bath. Blood sugar levels after the injection were dynamically monitored at 72 h, 1 week, 2 weeks and 4 weeks, respectively. The CP model was established by means of ligation. Bilateral maxillary first and second molars were selected and ligated using 0.2 mm orthodontic wires binding with 4-0 surgical suture soaked with Porphyromonas gingivalis (Pg) suspension. After a period of 14 weeks, all the rats were put to death. Maxillary samples were subjected to methylene blue staining to observe alveolar bone loss. Bilateral carotid artery specimens were collected. The left carotid artery specimens were used to detect the prevalence of Pg using quantitative real-time PCR. The right carotid artery specimens were used to observe pathological changes. Results: Blood sugar levels of rats in group B and D increased and changed sharply after Streptozotocin injection with in 1 week. Symptoms of 'more drink, more food and body weight loss' appeared. The fasting blood glucose (FBG) was more than 7.8 mmol/L and (or) the random blood glucose (RBG) was more than 17.8 mmol/L. Both FBG and RBG became stable after 2 to 3 weeks. Levels of HbA1C in group B and D ([7.32±0.45]%, [9.41±0.45]%) were significantly higher than that of group A ([4.02±0.45]%) ( Pdiabetes vascular lesions.

  5. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  6. Stem cell-like dog placenta cells afford neuroprotection against ischemic stroke model via heat shock protein upregulation.

    Directory of Open Access Journals (Sweden)

    Seongjin Yu

    Full Text Available In this study, we investigated the dog placenta as a viable source of stem cells for stroke therapy. Immunocytochemical evaluation of phenotypic markers of dog placenta cells (DPCs cultured in proliferation and differentiation medium revealed that DPCs expressed both stem cell and neural cell markers, respectively. Co-culture with DPCs afforded neuroprotection of rat primary neural cells in a dose-dependent manner against oxygen-glucose deprivation. Subsequent in vivo experiments showed that transplantation of DPCs, in particular intravenous and intracerebral cell delivery, produced significant behavioral recovery and reduced histological deficits in ischemic stroke animals compared to those that received intra-arterial delivery of DPCs or control stroke animals. Furthermore, both in vitro and in vivo studies implicated elevated expression of heat shock protein 27 (Hsp27 as a potential mechanism of action underlying the observed therapeutic benefits of DPCs in stroke. This study supports the use of stem cells for stroke therapy and implicates a key role of Hsp27 signaling pathway in neuroprotection.

  7. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)

    2010-07-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  8. Preemptive analgesic effects of midazolam and diclofenac in rat model

    Directory of Open Access Journals (Sweden)

    Antigona Hasani

    2011-05-01

    Full Text Available The aim of the present study was to investigate the preemptive analgesic effects of intraperitoneally administrated midazolam and diclofenac, before acute and inflammatory induced pain in rat model.One hundred twenty-eight (n=8 in each group male Sprague Dawley rats were included in the study. Paw movements in response to thermal stimulation or paw flinching in response to formalin injection were compared after midazolam (0.1, 1, 5 and 10 mg/kg and diclofenac (10 mg/kg, intraperitoneal administration. Saline was used as a control.Preemptive analgesic effect was significant in both tests when diclofenac and midazolam was administrated before the pain stimuli (p<0.01 and p<0.001. Intraperitoneal injection of midazolam in doses 5 and 10 mg/kg, increase the response time in hot plate test and decrease the number of flinches in formalin test (p<0.01 vs. p<0.001. ED50 of midazolam (with diclofenac in hot plate test was 2.02 mg/kg (CI95% =-3.47-5.03 mg; and, 0.9 mg/kg (CI95% =-0.87-4.09 mg in phase I and 0.7 mg/kg (CI95% = 0.48-6.63 mg in phase II, in formalin test.Intraperitoneally administered midazolam and diclofenac had preemptive analgesic effects on acute thermal, and inflammatory induced pain in rats.

  9. Animal model of rapid crystalloid infusion in rats

    Directory of Open Access Journals (Sweden)

    Flavio Stillitano Orgaes

    2013-04-01

    Full Text Available PURPOSE: To describe an animal model of rapid intravenous infusion with different volumes of crystalloid and discuss the clinical findings. METHODS: Fifty six male Wistar rats were used, divided randomly in seven groups (n = 8. The rats of groups 1 to 6 received lactated Ringer´s solution intravenously, in the rate of 25 ml/min, with different volumes proportional to blood volume (BV. The rats of group 0 were submitted to the same procedure, but did not receive the fluid (control group. The data included respiratory rate, heart rate, saturation of peripheral oxygen (SpO2 in two times (before and after the infusion, and upshots (respiratory arrest and death. Dunnett´s test and ANOVA were used. RESULTS: The clinical signs significantly changed in the 2, 2.5 and 3 fold BV groups. The respiratory arrest was observed in the 1.5, 2, 2.5 and 3 fold BV groups, but death was present only in 2.5 and 3 fold BV groups. CONCLUSIONS: The infusion of crystalloid in the same volume of blood volume did not cause significant variation in respiratory and heart rate, saturation of peripheral oxygen and did not induce respiratory arrest. The infusion of a volume of 3 fold blood volume was lethal to all animals.

  10. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  11. Laser-Generated Shocks and Bubbles as Laboratory-Scale Models of Underwater Explosions

    Directory of Open Access Journals (Sweden)

    Theodore G. Jones

    2003-01-01

    Full Text Available Underwater shocks and bubbles were generated using a high energy pulsed laser system. The advantages of this experimental approach are: (1 precisely controlled and measured experimental conditions; (2 improved diagnostics, including extensive imaging capabilities; (3 unique experiments, including a simultaneously detonated line charge; and (4 the ability to provide validation quality data for hydrodynamic simulation codes. Bubble sensitivity to variation of several experimental parameters was examined. Numerical simulations were performed corresponding to the experimental shots, showing that empirical bubble theory, experimental bubble data, and simulations were all in good agreement.

  12. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  13. Comparison of two models of inflammatory bowel disease in rats.

    Science.gov (United States)

    Catana, Cristina Sorina; Magdas, Cristian; Tabaran, Flaviu Alexandru; Crăciun, Elena Cristina; Deak, Georgiana; Magdaş, Virginia Ana; Cozma, Vasile; Gherman, Călin Mircea; Berindan-Neagoe, Ioana; Dumitraşcu, Dan Lucian

    2018-03-26

    There is a need for experimental animal models for inflammatory bowel diseases (IBD), but no proposed model has been unanimously accepted. The aim of this study was to develop 2 affordable models of IBD in rats and to compare them. We produced IBD in rats using either dextran sodium sulfate (DSS) or 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The requirements for experimental models were: a predictable clinical course, histopathology and inflammation similar to human ulcerative colitis (UC) and Crohn's disease (CD). The effect of acute administration of DSS and TNBS on oxidative stress (as measured by the assessment of glutathione peroxidase - GPx) was verified. The activity of whole blood GPx was measured using a commercially available Randox kit (Crumlin, UK). The administration of DSS increased GPx activity compared to the control and TNBS-treated groups, but not to a statistically significant degree. Histological examination of the colonic mucosa following the administration of DSS showed multifocal erosions with minimal to mild inflammatory infiltrate, mainly by polymorphonuclear cells (PMN), lymphocytes and plasma cells. For TNBS-induced colitis, the histological changes manifested as multifocal areas of ulcerative colitis with mild to severe inflammatory infiltrate. Whole blood GPx values displayed a direct dependence on the chemical agent used. Our results show a correlation between histopathology, proinflammatory state and oxidative stress. The experimental DSSor TNBS-induced bowel inflammation used in this study corresponds to human IBD and is reproducible with characteristics indicative of acute inflammation in the case of the protocols mentioned.

  14. The linkage between oil price shocks and economic growth with inflation in the presence of technological advances: a CGE model

    International Nuclear Information System (INIS)

    Doroodian, K.; Boyd, Roy

    2003-01-01

    This study examines whether oil price shocks are inflationary in the US. We increase the price of oil in the year 2000 in a manner consistent with the oil price shock of 1973-74 and let the economy experience a Hicksian technological change. Then using a dynamic computable general equilibrium (CGE) model, we conduct our analyses under two separate cases: (1) regular economic growth, and (2) low economic growth. We also run three technological scenarios: (1) no technology change, (2) technological advances in the manufacturing and refining sectors, and (3) technological advances in the manufacturing, refining, chemical, and service sectors. The effects of these changes are analyzed over the next 20 years until the year 2020. Our results suggest that while a shock of the magnitude experienced in the 1970s will have a fairly severe effect on such things as gasoline and refinery prices, the aggregate price changes will be largely dissipated over time at the aggregate level. Furthermore, the aggregate level of prices (CPI and PPI) will fall over time as the level of technological advances rise under both growth scenarios. There are several reasons why we would obtain such results. First of all, the structure of the US economy has changed remarkably since the early 1970s. Rather than being a manufacturing based economy, the US is largely a service based economy today and hence it is more protected form raw materials shortages. Second, the economy has had a steady history of strong growth and the faster an economy grows the quicker disruptions to that economy are dissipated. Finally, our economy is experiencing rapid technological advances in information systems which have served to reduce costs and maintain output in a wide number of economic sectors

  15. The linkage between oil price shocks and economic growth with inflation in the presence of technological advances: a CGE model

    International Nuclear Information System (INIS)

    Doroodian, K.; Boyd, R.

    2003-01-01

    This study examines whether oil price shocks are inflationary in the US. We increase the price of oil in the year 2000 in a manner consistent with the oil price shock of 1973-74 and let the economy experience a Hicksian technological change. Then using a dynamic computable general equilibrium (CGE) model, we conduct our analyses under two separate cases: (1) regular economic growth, and (2) low economic growth. We also run three technological scenarios: (1) no technology change, (2) technological advances in the manufacturing and refining sectors, and (3) technological advances in the manufacturing, refining, chemical, and service sectors. The effects of these changes are analyzed over the next 20 years until the year 2020. Our results suggest that while a shock of the magnitude experienced in the 1970s will have a fairly severe effect on such things as gasoline and refinery prices, the aggregate price changes will be largely dissipated over time at the aggregate level. Furthermore, the aggregate level of prices (CPI and PPI) will fall over time as the level of technological advances rise under both growth scenarios. There are several reasons why we would obtain such results. First of all, the structure of the US economy has changed remarkably since the early 1970s. Rather than being a manufacturing based economy, the US is largely a service based economy today and hence it is more protected from raw materials shortages. Second, the economy has had a steady history of strong growth and the faster an economy grows the quicker disruptions to that economy are dissipated. Finally, our economy is experiencing rapid technological advances in information systems which have served to reduce costs and maintain output in a wide number of economic sectors.(author)

  16. Essays in the Application of Linear and Non-linear Bayesian VAR Models to the Macroeconomic Impacts of Energy Price Shocks

    Science.gov (United States)

    Nguyen, Bao H.

    This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the

  17. Modeling postpartum depression in rats: theoretic and methodological issues

    Science.gov (United States)

    Ming, LI; Shinn-Yi, CHOU

    2016-01-01

    The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254

  18. Modeling postpartum depression in rats: theoretic and methodological issues

    Directory of Open Access Journals (Sweden)

    Ming LI

    2018-06-01

    Full Text Available The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions.

  19. Vascularized anal autotransplantation model in rats: preliminary report.

    Science.gov (United States)

    Araki, J; Mihara, M; Narushima, M; Iida, T; Sato, T; Koshima, I

    2011-11-01

    Ostomy has served as an effective surgery for various anorectal disfunctions. However, it must also be noted that those patients suffered greatly from stresses caused by their stoma. Many alternative therapies have been developed, but none have solved this critical issue. Meanwhile, due to the improvements in operative methods and immunosuppressive therapy, allotranplantation has gained great popularity in recent years. Therefore, we began development of an anal transplantation model. The operation was performed in six adult Wistar rats that were divided into two groups. Group 1 underwent vascular anastomoses, while group 2 did not Group 1 grafts survived, fully recovering anal function. However, many of the group 2 grafts did not survive; those that did survive showed major defects in their anus, never recovering anal function. We succeeded in establishing the rat anal transplantation model utilizing super-microsurgery. While research in anal transplantation was behind compared to that in other fields, we hope that this model will bring significant possibilities for the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Primary Screening for Proteins Differentially Expressed in the Myocardium of a Rat Model of Acute Methamphetamine Intoxication

    Directory of Open Access Journals (Sweden)

    Guoqiang Qu

    2016-01-01

    Full Text Available The mechanism of myocardial injury induced by the cardiovascular toxicity of methamphetamine (MA has been shown to depend on alterations in myocardial proteins caused by MA. Primary screening of the expression of myocardial proteins in a rat model of MA intoxication was achieved by combining two-dimensional electrophoresis and mass spectrometry analyses, which revealed a total of 100 differentially expressed proteins. Of these, 13 displayed significantly altered expression. Moreover, Western blotting and real-time reverse transcription quantitative polymerase chain reaction analyses of several relative proteins demonstrated that acute MA intoxication lowers protein expression and mRNA transcription of aldehyde dehydrogenase-2 and NADH dehydrogenase (ubiquinone 1 alpha subcomplex subunit 10. In contrast, MA intoxication elevated the protein expression and mRNA transcription of heat shock protein family B (small member 1. By combining behavioral assessments of experimental rat models with the histological and pathological changes evident in cardiomyocytes, a mechanism accounting for MA myocardial toxicity was suggested. MA alters the regulation of gene transcription and the subsequent expression of certain proteins that participate in myocardial respiration and in responding to oxidative stress, resulting in myocardial dysfunction and structural changes that affect the functioning of the cardiovascular system.

  1. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  2. Gas tonometry for evaluation of gastrointestinal mucosal perfusion: experimental models of trauma, shock and complex surgical maneuvers - Part 1

    Directory of Open Access Journals (Sweden)

    Figueiredo Luiz Francisco Poli de

    2002-01-01

    Full Text Available Substantial clinical and animal evidences indicate that the mesenteric circulatory bed, particularly the gut mucosa, is highly vulnerable to reductions in oxygen supply and prone to early injury in the course of hemodynamic changes induced by trauma, shock, sepsis and several complex surgical maneuvers. Gut hypoxia or ischemia is one possible contributing factor to gastrointestinal tract barrier dysfunction that may be associated with the development of systemic inflammatory response and multiple organ dysfunction syndrome, a common cause of death after trauma, sepsis or major surgeries. Monitoring gut perfusion during experiments may provide valuable insights over new interventions and therapies highly needed to reduce trauma and sepsis-related morbidity and mortality. We present our experience with gas tonometry as a monitor of the adequacy of gastrointestinal mucosal perfusion in clinical and experimental models of trauma, shock and surgical maneuvers associated with abrupt hemodynamic changes, such as aortic occlusion and hepatic vascular exclusion. Next issue we will be presenting our experience with gas tonometry in experimental and clinical sepsis.

  3. Modeling the distribution of Norway rats (Rattus norvegicus on offshore islands in the Falkland Islands

    Directory of Open Access Journals (Sweden)

    Michael A. Tabak

    2015-01-01

    Full Text Available Non-native rats (Rattus spp. threaten native island species worldwide. Efforts to eradicate them from islands have increased in frequency and become more ambitious in recent years. However, the long-term success of some eradication efforts has been compromised by the ability of rats, particularly Norway rats (Rattus norvegicus which are good swimmers, to recolonize islands following eradications. In the Falkland Islands, an archipelago in the South Atlantic Ocean, the distance of 250 m between islands (once suggested as the minimum separation distance for an effective barrier to recolonization has shown to be insufficient. Norway rats are present on about half of the 503 islands in the Falklands. Bird diversity is lower on islands with rats and two vulnerable passerine species, Troglodytes cobbi (the only endemic Falkland Islands passerine and Cinclodes antarcticus, have greatly reduced abundances and/or are absent on islands with rats. We used logistic regression models to investigate the potential factors that may determine the presence of Norway rats on 158 islands in the Falkland Islands. Our models included island area, distance to the nearest rat-infested island, island location, and the history of island use by humans as driving variables. Models best supported by data included only distance to the nearest potential source of rats and island area, but the relative magnitude of the effect of distance and area on the presence of rats varied depending on whether islands were in the eastern or western sector of the archipelago. The human use of an island was not a significant parameter in any models. A very large fraction (72% of islands within 500 m of the nearest potential rat source had rats, but 97% of islands farther than 1,000 m away from potential rat sources were free of rats.

  4. A novel model for NSAID induced gastroenteropathy in rats.

    Science.gov (United States)

    Singh, Devendra Pratap; Borse, Swapnil P; Nivsarkar, Manish

    2016-01-01

    Progress in management of Nonsteroidal anti-inflammatory drug (NSAID) induced gastrointestinal toxicity requires the availability of appropriate experimental animal models that are as close to humans as feasible. Our objective was to develop a rat model for NSAID-induced gastroenteropathy and also to simulate the common clinical scenario of co-administration of NSAID and proton pump inhibitor (PPI) to explore if PPI contribute to exacerbation of NSAID-enteropathy. Rats were treated twice daily with pantoprazole sodium (PTZ; 10mg/kg peroral) or vehicle for a total of 10days. In some experiments, Diclofenac sodium (DCF; 9mg/kg) or vehicle was administered orally twice daily for the final 5days of PTZ/vehicle administration. After the last dose on 9th day, rats in all the groups were fasted but water was provided ad libitum. 12h after the last dose on 10th day, rats in all the groups were euthanized and their gastrointestinal tracts were assessed for haemorrhagic lesions, lipid peroxidation, intestinal permeability and gastrointestinal luminal pH alterations. Changes in haemoglobin, haematocrit and serum levels of albumin, total protein, ALT and bilirubin were calculated. The macroscopic and histological evidence suggested that administration of DCF resulted in significant gastroenteropathic damage and co-administration of PTZ resulted in significant exacerbation of NSAID enteropathy, while attenuation of NSAID induced gastropathy was observed. Our results were further supported by the significant decrease in haemoglobin and haematocrit levels and serum levels of albumin and total proteins, an increase in oxidative stress and intestinal permeability with the use of DCF either alone or in combination with PTZ. This model was developed to simulate the human clinical situation during NSAID therapy and indeed the present DCF regimen caused both gastric and small bowel alterations, such as multiple erosive lesions, together with a decrease in haemoglobin, haematocrit

  5. Microsurgical Bypass Training Rat Model: Part 2-Anastomosis Configurations.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Lawton, Michael T; Yousef, Sonia; Mokhtari, Pooneh; Gandhi, Sirin; Benet, Arnau

    2017-11-01

    Mastery of microsurgical anastomosis is key to achieving good outcomes in cerebrovascular bypass procedures. Animal models (especially rodents) provide an optimal preclinical bypass training platform. However, the existing models for practicing different anastomosis configurations have several limitations. We sought to optimize the use of the rat's abdominal aorta and common iliac arteries (CIA) for practicing the 3 main anastomosis configurations commonly used in cerebrovascular surgery. Thirteen male Sprague-Dawley rats underwent inhalant anesthesia. The abdominal aorta and the CIAs were exposed. The distances between the major branches of the aorta were measured to find the optimal location for an end-to-end anastomosis. Also, the feasibility of performing side-to-side and end-to-side anastomoses between the CIAs was assessed. All bypass configurations could be performed between the left renal artery and the CIA bifurcation. The longest segments of the aorta without major branches were 1) between the left renal and left iliolumbar arteries (16.9 mm ± 4.6), and 2) between the right iliolumbar artery and the aortic bifurcation (9.7 mm ± 4.7). The CIAs could be juxtaposed for an average length of 7.6 mm ± 1.3, for a side-to-side anastomosis. The left CIA could be successfully reimplanted on to the right CIA at an average distance of 9.1 mm ± 1.6 from the aortic bifurcation. Our results show that rat's abdominal aorta and CIAs may be effectively used for all the anastomosis configurations used in cerebral revascularization procedures. We also provide technical nuances and anatomic descriptions to plan for practicing each bypass configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  7. The physiological response of obese rat model with rambutan peel extract treatment

    Directory of Open Access Journals (Sweden)

    Sri Rahayu Lestari

    2014-09-01

    Full Text Available Objective: To determine body weight gain, expression of Igf-1 and Igf-1 receptor on obese rat model treated with rambutan peel extract (RPE as a physiological response. Methods: Normal and obese rat feed with normal and high calorie diet around 1 2 weeks and continued to treat with ellagic acid, RPE 15, 30 and 60 mg/kg body weight respectively. Physiological responses observed were weight gain and expression of Igf-1 with its receptor. Body weight of rat was weighed once per week. Expression of Igf-1 and igf-1R observed with fluorescence immunohistochemistry. The intensity of Igf-1 and Igf-1R expression was analysis using FSX-BSW software. Results: The lowest weight gain was obtained on obese rat model treated with RPE 30 mg/kg body weight. The expression of Igf-1 and Igf-1R were reduced on obese rat model treated with RPE compared with obese rat model of non treatment (P<0.05. The low expression of Igf-1 and Igf-1R was found on obese rat model treated with ellagic acid and RPE 30 mg/kg body weight. Conclusions: The RPE was effecting to the physiological response on obese rat model. The RPE 30 mg/kg body weight inhibited body weight gain and decreased the expression of Igf-1 and Igf- 1R of obese rat model.

  8. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    Science.gov (United States)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  9. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  10. Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen

    Science.gov (United States)

    Blackwell, H. E.

    1991-01-01

    An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.

  11. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  12. A rat model of concurrent combined injuries (polytrauma)

    Science.gov (United States)

    Akscyn, Robert M; Franklin, J Lee; Gavrikova, Tatyana A; Schwacha, Martin G; Messina, Joseph L

    2015-01-01

    Polytrauma, a combination of injuries to more than one body part or organ system, is common in modern warfare and in automobile and industrial accidents. The combination of injuries can include burn injury, fracture, hemorrhage, trauma to the extremities, and trauma to specific organ systems. To investigate the effects of combined injuries, we have developed a new and highly reproducible model of polytrauma. This model combines burn injury with soft tissue and gastrointestinal (GI) tract trauma. Male Sprague Dawley rats were subjected to a 15-20% total body surface area scald burn, or a single puncture of the cecum with a G30 needle, or the combination of both injuries (polytrauma). Unlike many ‘double hit’ models, the injuries in our model were performed simultaneously. We asked whether multiple minor injuries, when combined, would result in a distinct phenotype, different from single minor injuries or a more severe single injury. There were differences between the single injuries and polytrauma in the maintenance of blood glucose, body temperature, body weight, hepatic mRNA and circulating levels of TNF-α, IL-1β and IL-6, and hepatic ER-stress. It has been suggested that models utilizing combinatorial injuries may be needed to more accurately model the human condition. We believe our model is ideal for studying the complex sequelae of polytrauma, which differs from single injuries. Insights gained from this model may suggest better treatment options to improve patient outcomes. PMID:26884923

  13. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  14. Multiwaveband Variability of Blazars from Turbulent Plasma Passing through a Standing Shock: The Mother of Multi-zone Models

    Science.gov (United States)

    Marscher, Alan P.

    2011-09-01

    Multi-wavelength light curves of bright gamma-ray blazars (e.g., 3C 454.3) are compared with the model proposed by Marscher and Jorstad. In this scenario, much of the optical and high-energy radiation in a blazar is emitted near the 43 GHz core of the jet as seen in VLBA images, parsecs from the central engine. The main physical features are a turbulent ambient jet plasma that passes through a standing recollimation shock in the jet. The model allows for short time-scales of optical and gamma-ray variability by restricting the highest-energy electrons radiating at these frequencies to a small fraction of the turbulent cells, perhaps those with a particular orientation of the magnetic field relative to the shock front. Because of this, the volume filling factor at high frequencies is relatively low, while that of the electrons radiating below about 10 THz is near unity. Such a model is consistent with the (1) red-noise power spectra of flux variations, (2) shorter time-scales of variability at higher frequencies, (3) frequency dependence of polarization and its variability, and (4) breaks in the synchrotron spectrum by more than the radiative loss value of 0.5. Simulated light curves are generated by a numerical code that (as of May 2011) includes synchrotron radiation as well as inverse Compton scattering of seed photons from both a dust torus and a Mach disk at the jet axis. The latter source of seed photons produces more pronounced variability in gamma-ray than in optical light curves, as is often observed. More features are expected to be added to the code by the time of the presentation. This research is supported in part by NASA through Fermi grants NNX08AV65G and NNX10AO59G, and by NSF grant AST-0907893.

  15. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  16. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  17. 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25-35.

    Science.gov (United States)

    Ortega, Laura; Calvillo, Minerva; Luna, Félix; Pérez-Severiano, Francisca; Rubio-Osornio, Moisés; Guevara, Jorge; Limón, Ilhuicamina Daniel

    2014-08-01

    Molecular chaperones, or heat shock proteins (HSP), have been implicated in numerous neurodegenerative disorders characterized by the accumulation of protein aggregates, such as Alzheimer disease. The agglomeration of insoluble structures of Aβ is thought to be responsible for neuronal death, which in turn leads to the loss of cognitive functions. Recent findings have shown that the induction of HSP decreases the level of abnormal protein aggregates, as well as demonstrating that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an analogue of geldanamycin (GA), increases Aβ clearance through the induction of molecular chaperones in cell culture. In light of this discovery that HSP overexpression can be neuroprotective, the search for a way to pharmacologically induce the overexpression of HSP and other associated chaperones may lead to a promising approach for the treatment of neurodegenerative diseases. The aim of our study was to evaluate both the effect of 17-AAG on the cognitive process and the HSP response in rats injected with Aβ25-35 into the CA1 of the hippocampus. The results show that the injection of Aβ caused a significant increase in the expression of the HSP involved in the regulation of cellular proteostasis. While the HSP did not reverse excitotoxic damage, given that experimental subjects showed learning and memory deficits, the administration of 17-AAG prior to the injection of Aβ25-35 did show an improvement in the behavioral assessment that correlated with the upregulation of HSP70 in subjects injured with Aβ. Overall, our data shows that the pharmacological induction of HSP using 17-AAG may be an alternative treatment of neurodegenerative diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Physiologically-Based Pharmacokinetic (PBPK) Model for the Thyroid Hormones in the Pregnant Rat and Fetus.

    Science.gov (United States)

    A developmental PBPK model is constructed to quantitatively describe the tissue economy of the thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), in the rat. The model is also used to link maternal (THs) to rat fetal tissues via placental transfer. THs are importan...

  19. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecuti...

  20. Establishment of a rat model of early-stage liver failure and Th17/Treg imbalance

    OpenAIRE

    LI Dong; LU Zhonghua; GAN Jianhe

    2016-01-01

    ObjectiveTo investigate the methods for establishing a rat model of early-stage liver failure and the changes in Th17, Treg, and Th17/Treg after dexamethasone and thymosin interventions. MethodsA total of 64 rats were randomly divided into carbon tetrachloride (CCl4) group and endotoxin [lipopolysaccharide (LPS)]/D-galactosamine (D-GalN) combination group to establish the rat model of early-stage liver failure. The activities of the rats and changes in liver function and whole blood Th17 and ...

  1. Curative effect of sesame oil in a rat model of chronic kidney disease.

    Science.gov (United States)

    Liu, Chuan-Teng; Chien, Se-Ping; Hsu, Dur-Zong; Periasamy, Srinivasan; Liu, Ming-Yie

    2015-12-01

    Chronic kidney disease causes a progressive and irreversible loss of renal function. We investigated the curative effect of sesame oil, a natural, nutrient-rich, potent antioxidant, in a rat model of chronic kidney disease. Chronic kidney disease was induced by subcutaneously injecting uni-nephrectomized rats with deoxycorticosterone acetate (DOCA) and 1% NaCl [DOCA/salt] in drinking water. Four weeks later, the rats were gavaged with sesame oil (0.5 or 1 mL/kg per day) for 7 days. Renal injury, histopathological changes, hydroxyl radical, peroxynitrite, lipid peroxidation, Nrf2, osteopontin expression, and collagen were assessed 24 h after the last dose of sesame oil. Blood urea nitrogen, creatinine, urine volume, and albuminuria were significantly higher in the DOCA/salt treated rats than in control rats. Sesame oil significantly decreased these four tested parameters in DOCA/salt treated rats. In addition, creatinine clearance rate and nuclear Nrf2 expression were significantly decreased in the DOCA/salt treated rats compared to control rats. Sesame oil significantly decreased hydroxyl radical, peroxynitrite level, lipid peroxidation, osteopontin, and renal collagen deposition, but increased creatinine clearance rate and nuclear Nrf2 expression in DOCA/salt treated rats. We conclude that supplementation of sesame oil mitigates DOCA/salt induced chronic kidney disease in rats by activating Nrf2 and attenuating osteopontin expression and inhibiting renal fibrosis in rats. © 2015 Asian Pacific Society of Nephrology.

  2. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models

    Science.gov (United States)

    2016-01-01

    ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747

  3. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  4. A new model of progressive pulmonary fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.A.; Gelzleichter, T.R.; Pinkerton, K.E.; Walker, R.M.; Witschi, H. (Univ. of California, Davis (United States))

    1993-08-01

    Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxy-pyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.

  5. Wendan decoction improves learning and memory deficits in a rat model of schizophrenia

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yang; Changchun Cai; Xiaojin Yang; Yanping Yang; Zhigang Zhou; Jianhua Liu; Heping Ye; Hongjiao Wan

    2012-01-01

    An experimental model of schizophrenia was established using dizocilpine (MK-801). Rats were intragastrically administered with Wendan decoction or clozapine for 21 days prior to establishing the model. The results revealed that the latency of schizophrenia model rats to escape from the hidden platform in the Morris water maze was significantly shortened after administration of Wendan decoction or clozapine. In addition, the treated rats crossed the platform significantly more times than the untreated model rats. Moreover, the rate of successful long-term potentiation induction in the Wendan decoction group and clozapine group were also obviously increased compared with the model group, and the population spike peak latency was significantly shortened. These experimental findings suggest that Wendan decoction can improve the learning and memory ability of schizophrenic rats to the same extent as clozapine treatment.

  6. Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.

    Science.gov (United States)

    Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu

    2015-01-01

    We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.

  7. Altered explorative strategies and reactive coping style in the FSL rat model of depression

    Directory of Open Access Journals (Sweden)

    Salvatore eMagara

    2015-04-01

    Full Text Available Modeling depression in animals is based on the observation of behaviors interpreted as analogue to human symptoms. Typical tests used in experimental depression research are designed to evoke an either-or outcome. It is known that explorative and coping strategies are relevant for depression, however these aspects are generally not considered in animal behavioral testing. Here we investigate the Flinders Sensitive Line (FSL, a rat model of depression, compared to the Sprague-Dawley (SD rat in three independent tests where the animals are allowed to express a more extensive behavioral repertoire. The multivariate concentric square field™ (MCSF and the novel cage tests evoke exploratory behaviors in a novel environment and the home cage change test evokes social behaviors in the re-establishment of a social hierarchy. In the MCSF test, FSL rats exhibited less exploratory drive and more risk-assessment behavior compared to SD rats. When re-exposed to the arena, FSL, but not SD rats, increased their exploratory behavior compared to the first trial and displayed risk-assessment behavior to the same extent as SD rats. Thus, the behavior of FSL rats was more similar to that of SDs when the rats were familiar with the arena. In the novel cage test FSL rats exhibited a reactive coping style, consistent with the reduced exploration observed in the MCSF. Reactive coping is associated with less aggressive behavior. Accordingly, FSL rats displayed less aggressive behavior in the home cage change test. Taken together, our data show that FSL rats express altered explorative behavior and reactive coping style. Reduced interest is a core symptom of depression, and individuals with a reactive coping style are more vulnerable to the disease. Our results support the use of FSL rats as an animal model of depression and increase our understanding of the FSL rat beyond the behavioral dimensions targeted by the traditional depression-related tests.

  8. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    as lesion size (3285.44¿±¿130.81 mm3 vs. 2509.41¿±¿297.44 mm3, p¿=¿0.04). This was also associated with decreased cardiac output (NS: 4.37¿±¿0.12 l/min vs. 6.35¿±¿0.10 l/min, p¿brain compared......BackgroundOptimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP......) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol.Methods23...

  9. Double Shock Experiments Performed at -55°C on LX-17 with Reactive Flow Modeling to Understand the Reacted Equation of State

    Science.gov (United States)

    Dehaven, Martin R.; Vandersall, Kevin S.; Strickland, Shawn L.; Fried, Laurence E.; Tarver, Craig M.

    2017-06-01

    Experiments were performed at -55°C to measure the reacted state of LX-17 (92.5% TATB and 7.5% Kel-F by weight) using a double shock technique using two flyer materials (with known properties) mounted on a projectile that send an initial shock through the material close to the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. Information on the reacted state is obtained by measuring the relative timing and magnitude of the first and second shock waves. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include a comparison to prior work at ambient temperature, the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Bioburden Increases Heterotopic Ossification Formation in an Established Rat Model.

    Science.gov (United States)

    Pavey, Gabriel J; Qureshi, Ammar T; Hope, Donald N; Pavlicek, Rebecca L; Potter, Benjamin K; Forsberg, Jonathan A; Davis, Thomas A

    2015-09-01

    Heterotopic ossification (HO) develops in a majority of combat-related amputations wherein early bacterial colonization has been considered a potential early risk factor. Our group has recently developed a small animal model of trauma-induced HO that incorporates many of the multifaceted injury patterns of combat trauma in the absence of bacterial contamination and subsequent wound colonization. We sought to determine if (1) the presence of bioburden (Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus [MRSA]) increases the magnitude of ectopic bone formation in traumatized muscle after amputation; and (2) what persistent effects bacterial contamination has on late microbial flora within the amputation site. Using a blast-related HO model, we exposed 48 rats to blast overpressure, femur fracture, crush injury, and subsequent immediate transfemoral amputation through the zone of injury. Control injured rats (n = 8) were inoculated beneath the myodesis with phosphate-buffered saline not containing bacteria (vehicle) and treatment rats were inoculated with 1 × 10(6) colony-forming units of A baumannii (n = 20) or MRSA (n = 20). All animals formed HO. Heterotopic ossification was determined by quantitative volumetric measurements of ectopic bone at 12-weeks postinjury using micro-CT and qualitative histomorphometry for assessment of new bone formation in the residual limb. Bone marrow and muscle tissue biopsies were collected from the residual limb at 12 weeks to quantitatively measure the bioburden load and to qualitatively determine the species-level identification of the bacterial flora. At 12 weeks, we observed a greater volume of HO in rats infected with MRSA (68.9 ± 8.6 mm(3); 95% confidence interval [CI], 50.52-85.55) when compared with A baumannii (20.9 ± 3.7 mm(3); 95% CI, 13.61-28.14; p infection but were positive for other strains of bacteria (1.33 × 10(2) ± 0.89 × 10(2); 95% CI, -0.42 × 10(2)-3.08 × 10(2) and 1.25 × 10(6) ± 0

  11. Effectiveness of Saccharomyces boulardii in a rat model of colitis.

    Science.gov (United States)

    Soyturk, Mujde; Saygili, Saba Mukaddes; Baskin, Huseyin; Sagol, Ozgul; Yilmaz, Osman; Saygili, Fatih; Akpinar, Hale

    2012-11-28

    To investigate the effects of Saccharomyces boulardii (S. boulardii) in an experimental rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thirty-two Wistar albino female rats were categorized into five groups. On the first day of the study, 50 mg TNBS was administered via a rectal catheter in order to induce colitis in all rats, except those in the control group. For 14 d, the rats were fed a standard diet, without the administration of any additional supplements to either the control or TNBS groups, in addition to 1 mg/kg per day S. boulardii to the S. boulardii group, 1 mg/kg per day methyl prednisolone (MP) to the MP group. The animals in the S. boulardii + MP group were coadministered these doses of S. boulardii and MP. During the study, weight loss, stool consistency, and the presence of obvious blood in the stool were evaluated, and the disease activity index (DAI) for colitis was recorded. The intestines were examined and colitis was macro- and microscopically scored. The serum and tissue levels of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were determined, and fungemia was evaluated in the blood samples. The mean DAI scores for the MP and S. boulardii + MP groups was significantly lower than the TNBS group (3.69 ± 0.61 vs 4.46 ± 0.34, P = 0.018 and 3.77 ± 0.73 vs 4.46 ± 0.34, P = 0.025, respectively). While no significant differences between the TNBS and the S. boulardii or MP groups could be determined in terms of serum NO levels, the level of serum NO in the S. boulardii + MP group was significantly higher than in the TNBS and S. boulardii groups (8.12 ± 4.25 μmol/L vs 3.18 ± 1.19 μmol/L, P = 0.013; 8.12 ± 4.25 μmol/L vs 3.47 ± 1.66 μmol/L, P = 0.012, respectively). The tissue NO levels in the S. boulardii, MP and S. boulardii + MP groups were significantly lower than the TNBS group (16.62 ± 2.27 μmol/L vs 29.72 ± 6.10 μmol/L, P = 0.002; 14.66 ± 5.18 μmol/L vs 29.72 ± 6.10 μmol/L, P = 0.003; 11.95 ± 2

  12. The Effect of Infrarenal Aortic Balloon Occlusion on Weaning from Supraceliac Aortic Balloon Occlusion in a Porcine Model (Sus scrofa) of Hemorrhagic Shock

    Science.gov (United States)

    2017-06-15

    all animals , and continued for six hours. Half of the animals were randomly assigned to Zone-3 REBOA for an additional 45 minutes following Zone-1...concentration or resuscitation requirements.Conclusion: In an animal model of hemorrhagic shock and Zone-1 REBOA, subsequent Zone-3 aortic occlusion did not add

  13. Clinical and pathological manifestations of cardiovascular disease in rat models: the influence of acute ozone exposure

    Science.gov (United States)

    This paper shows that rat models of cardiovascular diseases have differential degrees of underlying pathologies at a young age. Rodent models of cardiovascular diseases (CVD) and metabolic disorders are used for examining susceptibility variations to environmental exposures. How...

  14. Efficacy of integrative medicine in deficiency of both qi and yin in the rat model of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-10-01

    Conclusions: A rat model of T2DM with both qi and yin deficiency was successfully replicated. CHF appeared to be more efficacious than IM and PIO in the rat model of qi and yin deficiency pattern of T2DM, though IM and PIO were each found to have their merits and drawbacks in attenuating T2DM indicators in the rat model.

  15. A rat uterine horn model of genital tract wound healing.

    Science.gov (United States)

    Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A

    1987-11-01

    A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.

  16. Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter

    International Nuclear Information System (INIS)

    Kao, Jim; Flicker, Dawn; Ide, Kayo; Ghil, Michael

    2006-01-01

    This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand

  17. Effects of response-shock interval and shock intensity on free-operant avoidance responding in the pigeon1

    Science.gov (United States)

    Klein, Marty; Rilling, Mark

    1972-01-01

    Two experiments investigated free-operant avoidance responding with pigeons using a treadle-pressing response. In Experiment I, pigeons were initially trained on a free-operant avoidance schedule with a response-shock interval of 32 sec and a shock-shock interval of 10 sec, and were subsequently exposed to 10 values of the response-shock parameter ranging from 2.5 to 150 sec. The functions relating response rate to response-shock interval were similar to the ones reported by Sidman in his 1953 studies employing rats, and were independent of the order of presentation of the response-shock values. Shock rates decreased as response-shock duration increased. In Experiment II, a free-operant avoidance schedule with a response-shock interval of 20 sec and a shock-shock interval of 5 sec was used, and shock intensities were varied over five values ranging from 2 to 32 mA. Response rates increased markedly as shock intensity increased from 2 to 8 mA, but rates changed little with further increases in shock intensity. Shock rates decreased as intensity increased from 2 to 8 mA, and showed little change as intensity increased from 8 to 32 mA. PMID:4652617

  18. Aberrant Pregnancy Adaptations in the Peripheral Immune Response in Type 1 Diabetes: A Rat Model.

    Directory of Open Access Journals (Sweden)

    Bart Groen

    Full Text Available Despite tight glycemic control, pregnancy complication rate in type 1 diabetes patients is higher than in normal pregnancy. Other etiological factors may be responsible for the development of adverse pregnancy outcome. Acceptance of the semi-allogeneic fetus is accompanied by adaptations in the maternal immune-response. Maladaptations of the immune-response has been shown to contribute to pregnancy complications. We hypothesized that type 1 diabetes, as an autoimmune disease, may be associated with maladaptations of the immune-response to pregnancy, possibly resulting in pregnancy complications.We studied pregnancy outcome and pregnancy-induced immunological adaptations in a normoglycemic rat-model of type 1 diabetes, i.e. biobreeding diabetes-prone rats (BBDP; 5 non-pregnant rats, 7 pregnant day 10 rats and 6 pregnant day 18 rats , versus non-diabetic control rats (i.e. congenic non-diabetic biobreeding diabetes-resistant (BBDR; 6 non-pregnant rats, 6 pregnant day 10 rats and 6 pregnant day 18 rats and Wistar-rats (6 non-pregnant, 6 pregnant day 10 rats and 5 pregnant day 18 rats.We observed reduced litter size, lower fetal weight of viable fetuses and increased numbers of resorptions versus control rats. These complications are accompanied by various differences in the immune-response between BBDP and control rats in both pregnant and non-pregnant animals. The immune-response in non-pregnant BBDP-rats was characterized by decreased percentages of lymphocytes, increased percentages of effector T-cells, regulatory T-cells and natural killer cells, an increased Th1/Th2-ratio and activated monocytes versus Wistar and BBDR-rats. Furthermore, pregnancy-induced adaptations in BBDP-rats coincided with an increased Th1/Th2-ratio, a decreased mean fluorescence intensity CD161a/NKR-P1b ratio and no further activation of monocytes versus non-diabetic control rats.This study suggests that even in the face of strict normoglycemia, pregnancy complications

  19. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  20. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  1. Low-energy extracorporeal shockwave therapy (ESWT improves metaphyseal fracture healing in an osteoporotic rat model.

    Directory of Open Access Journals (Sweden)

    Gina A Mackert

    Full Text Available As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT, was evaluated as a treatment option for the improvement of osteoporotic fracture healing.A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2 as well as different numbers of ESWT applications (once, three times, or five times throughout the 35-day healing period were applied to the osteoporotic fractures. Fracture healing was investigated quantitatively and qualitatively using micro-CT imaging, quantitative real-time polymerase chain reaction (qRT-PCR analysis, histomorphometric analysis and biomechanical analysis.The results of this study show a qualitative and quantitative improvement in the osteoporotic fracture healing under low-energy (energy flux intensity: 0,15 mJ/mm2 ESWT and with fewer treatment applications per healing period.In conclusion, low-energy ESWT seems to exhibit a beneficial effect on the healing of osteoporotic fractures, leading to improved biomechanical properties, enhanced callus-quantity and -quality, and an increase in the expression of bone specific transcription factors. The results suggest that low-energy ESWT, as main treatment or as adjunctive treatment in addition to a surgical intervention, may prove to be an effective, simple to use, and cost-efficient option for the qualitative and quantitative improvement of osteoporotic fracture healing.

  2. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  3. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  4. Evaluation of Lercanidipine in Paclitaxel-Induced Neuropathic Pain Model in Rat: A Preliminary Study

    OpenAIRE

    Saha, Lekha; Hota, Debasish; Chakrabarti, Amitava

    2012-01-01

    Objective. To demonstrate the antinociceptive effect of lercanidipine in paclitaxel-induced neuropathy model in rat. Materials and Methods. A total of 30 rats were divided into five groups of six rats in each group as follows: Gr I: 0.9% NaCl, Gr II: paclitaxel + 0.9% NaCl, Gr III: paclitaxel + lercanidipine 0.5 μg/kg, Gr IV: paclitaxel + lercanidipine 1 μg/kg, and Gr V: paclitaxel + lercanidipine 2.5 μg/kg. Paclitaxel-induced neuropathic pain in rat was produced by single intraperitoneal (i....

  5. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  6. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model.

    Directory of Open Access Journals (Sweden)

    Chengbai Liang

    Full Text Available OBJECTIVE: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS, which mimics the irritable bowel syndrome (IBS. METHODS: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. RESULTS: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP, thyrotropin-releasing hormone (TRH, motilin (MTL, and cholecystokinin (CCK in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP, calcitonin gene-related peptide (CGRP and corticotropin releasing hormone (CRH in WAS rats were not significantly changed and peptide YY (PYY in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl increased the amplitude of IKv and IBKCa in normal rats. CONCLUSION: These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.

  8. MRI and morphological observation in C6 glioma model rats and significance

    International Nuclear Information System (INIS)

    Zhou Ying; Yuan Bo; Wang Hao; Lu Jin; Yuan Changji; Ma Yue; Tong Dan; Zhang Kun; Gao Feng; Wu Xiaogang

    2013-01-01

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×10 6 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  9. Naked DNA Immunization for Prevention of Prostate Cancer in a Dunning Rat Prostate Tumor Model

    National Research Council Canada - National Science Library

    Mincheff, Milcho

    2003-01-01

    ...: H-PSMA-T, R-"PSMA"-T, H-PSA, H-PSA-T, H-PAP-T and R"PSMA"-S. Preliminary studies using the Copenhagen rat tumor prostate model showed uniform tumor development in rats that were injected subcutaneously with 100 000 AT3B-lPSMA,PSA cells...

  10. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    Science.gov (United States)

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  11. Influence of omentoplasty on colonic anastomosis in animals submitted to hemorrhagic shock in rats Influência da omentoplastia na anastomose cólica de animais submetidos a choque hemorrágico em ratos

    Directory of Open Access Journals (Sweden)

    Ricardo Bolzam-Nascimento

    2009-06-01

    Full Text Available PURPOSE: To analyze influence of omentoplasty on anastomosis in descending colon of rats. Rats were submitted to the hypovolemic shock of the hemorrhagic type by the Biomechanical Test of Pressure of Rupture by Liquid Distension (BTPRLD. In addition, establish a type of acute anemia in rats that are provided to the study. METHODS: Comparative study between two groups of animals with ten rats in each one, all submitted to hemorrhagic shock for 30% volemic removal by the carotid artery. An anastomosis was performed in left colon. An anastomosis was performed in the left colon. Group 1 took place anastomosis with Polyvinyl Chloride (P.V.C film to prevent the adhesions formation on sature line. Group 2 placed the great omentum around the anastomosis. Euthanasia occurred on the fifth day, when the anastomoses were submitted to the biomechanical test of pressure of rupture by liquid distension (BTPRLD. RESULTS: High rupture pressure was gained with omentoplasty group in relation to the group in which anastomosis was protected from adhesions formation. A statistical significance was noted. CONCLUSION: Protection by great omentum has increased the anastomosis resistance of the shocked animals. Also, the proposed hemorrhagic shock type has proven to be useful for this study.OBJETIVO: Analisar a influência da omentoplastia sobre anastomose realizada em cólon descendente de ratos que foram submetidos a choque hipovolêmico do tipo hemorrágico, por meio do Teste Biomecânico de Pressão de Ruptura à Distensão por Líquido. Além disso, estabelecer modelo de anemia aguda em rato que se preste ao referido estudo. MÉTODOS: Estudo comparativo entre dois grupos de animais com 10 ratos em cada, todos submetidos a choque hemorrágico por retirada volêmica de 30% através da artéria carótida, sendo realizada anastomose em cólon esquerdo. No grupo 1 realizou-se proteção da anastomose com película de polivinilcloreto para impedir a formação de ader

  12. Bladder overdistension with polyuria in a hypertensive rat model.

    Science.gov (United States)

    Velasquez Flores, Monica; Mossa, Abubakr H; Cammisotto, Philippe; Campeau, Lysanne

    2018-03-31

    Polyuria can lead to progressive chronic bladder overdistension. The impact of polyuria on the bladder has been extensively studied in settings of either diabetes or sucrose diuresis in animals. The goal of this study was to investigate the outcomes of polyuria in a hypertension setting. Male Dahl/SS rats, a hypertension model, received a high-salt or normal diet for 6 weeks. Twenty-four-hour water intake, micturition patterns, and blood pressures were recorded biweekly. Conscious cystometry was carried out at the end of this period. Bladders were collected to measure contractile force and for histological analysis. Paired t-tests were used to compare changes between Week 0 and Week 6 within each group. Unpaired t-tests were used for comparisons between groups for all parameters at Week 6. Six weeks of high-salt diet significantly increased water intake and total urine. Blood pressures and volume of urine per micturition was higher in rats on high-salt diet. Bladder overdistension in the high-salt diet group was confirmed by cystometry, shown by a significantly higher bladder capacity, and compliance. No difference in detrusor contractility was observed between both groups. Collagen content was significantly higher in the lamina propria of the high-salt group compared to the normal group, while the opposite was observed in the muscularis. Polyuria, in a hypertension context, leads to changes in bladder morphology and function. These findings help clarify the deleterious clinical impact of polyuria on voiding function, highlighting the variable consequences of bladder overdistension according to the underlying pathology. © 2018 Wiley Periodicals, Inc.

  13. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Science.gov (United States)

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  14. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention.

    Directory of Open Access Journals (Sweden)

    Chuyan Wu

    Full Text Available To develop a new polycystic ovary syndrome (PCOS rat model suitable for exercise intervention.Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24, PCOS rats with ordinary diet (PO, n = 6, and control rats with ordinary diet (CO, n = 6. Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6, sedentary with a continuation of high-fat diet (PF-SF, n = 6, exercise with an ordinary diet (PF-EO, n = 6. Fasting blood glucose (FBG and insulin (FINS, estrogen (E2, progesterone (P, and testosterone (T in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0.Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1, 2 h postprandial blood glucose (PBG2, FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO.By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention.

  15. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats

    OpenAIRE

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; Almeida, Francine Maria de; Silva, Bárbara Soares da; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and...

  16. Simulating certain aspects of hypogravity: Effects on the mandibular incisors of suspended rats (PULEH model)

    Science.gov (United States)

    Simmons, D. J.; Winter, F.; Morey-Holton, E. R.

    1984-01-01

    The effect of a hypogravity simulating model on the rate of mandibular incisor formation, dentinogenesis and, amelogenesis in laboratory rats was studied. The model is the partial unloading by elevating the hindquarters. In this system, rat hindquarters are elevated 30 to 40 deg from the cage floors to completely unload the hindlimbs, but the animals are free to move about using their forelimbs. This model replicates the fluid sift changes which occur during the weightlessness of spaceflight and produces an osteopenia in the weight bearing skeletons. The histogenesis and/or mineralization rates of the mandibular incisor during the first 19d of PULEH in young growing rats are recorded.

  17. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Amine Mnif

    2017-01-01

    Full Text Available Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ, and the solute permeability coefficient (Ps. The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution.

  18. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  19. Comparative Proteomic Analysis of Two Uveitis Models in Lewis Rats.

    Science.gov (United States)

    Pepple, Kathryn L; Rotkis, Lauren; Wilson, Leslie; Sandt, Angela; Van Gelder, Russell N

    2015-12-01

    Inflammation generates changes in the protein constituents of the aqueous humor. Proteins that change in multiple models of uveitis may be good biomarkers of disease or targets for therapeutic intervention. The present study was conducted to identify differentially-expressed proteins in the inflamed aqueous humor. Two models of uveitis were induced in Lewis rats: experimental autoimmune uveitis (EAU) and primed mycobacterial uveitis (PMU). Differential gel electrophoresis was used to compare naïve and inflamed aqueous humor. Differentially-expressed proteins were separated by using 2-D gel electrophoresis and excised for identification with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Expression of select proteins was verified by Western blot analysis in both the aqueous and vitreous. The inflamed aqueous from both models demonstrated an increase in total protein concentration when compared to naïve aqueous. Calprotectin, a heterodimer of S100A8 and S100A9, was increased in the aqueous in both PMU and EAU. In the vitreous, S100A8 and S100A9 were preferentially elevated in PMU. Apolipoprotein E was elevated in the aqueous of both uveitis models but was preferentially elevated in EAU. Beta-B2-crystallin levels decreased in the aqueous and vitreous of EAU but not PMU. The proinflammatory molecules S100A8 and S100A9 were elevated in both models of uveitis but may play a more significant role in PMU than EAU. The neuroprotective protein β-B2-crystallin was found to decline in EAU. Therapies to modulate these proteins in vivo may be good targets in the treatment of ocular inflammation.

  20. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS