WorldWideScience

Sample records for rat primary astrocyte

  1. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-01-01

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  2. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  3. Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaodan Xu

    2017-01-01

    Full Text Available Objective. To observe the protective effect of edaravone (Eda on astrocytes after prolonged exposure to carbon monoxide (CO and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.

  4. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    OpenAIRE

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-J...

  5. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  6. Characterisation of an in vitro blood-brain barrier model based on primary porcine capillary endothelial cells in monoculture or co-culture with primary rat or porcine astrocytes and pericytes

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Larsen, Annette Burkhart; Moos, Torben

    to in vivo such as efflux transporters, tight junction proteins, and high transendothelial electric resistance (TEER). Primary BCECs are isolated from a variety of mammals such as rats, mice, cattle and pigs. Often bovine and porcine BCECs are cultured in monoculture or in co-culture with rat astrocytes......In vitro blood-brain barrier (BBB) models based on primary brain capillary endothelial cells (BCECs) in monoculture or in co-culture with primary astrocytes and pericytes are often applied for studying physiology of the BBB. Primary BCECs retain many morphological and biochemical properties similar...... obtained from neonatal rats which have been shown to strengthen the barrier properties of the BCECs. In this study, brain endothelial cells (PBECs), astrocytes and pericytes are isolated from pig brains donated by the local abattoir. The brains are from 6 month old domestic pigs. The availability and high...

  7. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  8. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Science.gov (United States)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  9. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    International Nuclear Information System (INIS)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-01-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO 3 ) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  10. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes...... subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions...... of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system....

  11. Ethanol-induced swelling in neonatal rat primary astrocyte cultures.

    Science.gov (United States)

    Aschner, M; Allen, J W; Mutkus, L A; Cao, C

    2001-05-11

    We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.

  12. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    , and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA...... tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured...

  13. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  14. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.

    Science.gov (United States)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf

    2017-11-01

    Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    International Nuclear Information System (INIS)

    Park, Jin-Sun; Kim, Hee-Sun

    2014-01-01

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes

  16. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem

    Directory of Open Access Journals (Sweden)

    Eduardo Bondan

    Full Text Available ABSTRACT Recent studies have demonstrated that curcumin (Cur has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB injections into the central nervous system (CNS are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP. This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.

  17. 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes.

    Science.gov (United States)

    Ehrke, Eric; Arend, Christian; Dringen, Ralf

    2015-07-01

    The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes. © 2014 Wiley Periodicals, Inc.

  18. Assessment of mitochondrial electron transport chain function in a primary astrocyte cell model of hyperhomocystinaemia.

    Science.gov (United States)

    Turkes, Fiona; Murphy, Elaine; Land, John; Demiray, Berna; Duberley, Kate; Briddon, Antony; Hargreaves, Iain

    2013-07-01

    Elevated plasma homocysteine (Hcy) has been detected in patients with various neurodegenerative conditions. Studies on neurones and cerebral tissue have revealed that hyperhomocystinaemia may inhibit mitochondrial electron transport chain (ETC) enzyme activity resulting in neuronal morbidity. As astrocytes convey a protective and supportive role towards neurones, we postulated that Hcy-induced astrocytic ETC inhibition may contribute to neurological dysfunction. In order to investigate this hypothesis, we established a cellular model of hyperhomocystinaemia using primary rat astrocytes. Which were incubated were incubated with 200 µM, 500 µM Hcy and the Hcy metabolite, thiolactone (10 µM). Following 96 h of incubation with 200 µM and 500 µM Hcy, an approximate two-fold (1.11 nmol/mg) and three-fold (1.45 nmol/mg) increase in mitochondrial levels of Hcy, respectively, were detected compared to control levels (0.54 nmol/mg). However, on exposure to Hcy (200 or 500 µM) and Hcy-thiolactone (10 µM), the activities of astrocytic ETC complex I, II-III and IV were found to be comparable to control levels. In addition, the extracellular lactate:pyruvate ratio and the intracellular glutathione status of primary rat astrocytes were not significantly different between Hcy (200 or 500 µM) treated and controls. In conclusion, the results of this study suggest that Hcy induced impairment of astrocytic ETC function may not contribute to the pathophysiology of hyperhomocystinaemia.

  19. Transcriptomic analyses of primary astrocytes under TNFα treatment

    Directory of Open Access Journals (Sweden)

    Cindy Birck

    2016-03-01

    Full Text Available Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1,2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set of progressive gene expression and cellular changes [3]. Interestingly, in this context, astrocytes can re-acquire neurogenic properties. It has been shown that astrocytes can undergo dedifferentiation upon injury and inflammation, and may re-acquire the potentiality of neural progenitors [4,5,6,7].To assess the effect of inflammation on astrocytes, primary mouse astrocytes were treated with tumor necrosis factor α (TNFα, one of the main pro-inflammatory cytokines. The strength of this study is that pure primary astrocytes were used. As microglia are highly reactive immune cells, we used a magnetic cell sorting separation (MACS method to further obtain highly pure astrocyte cultures devoid of microglia.Here, we provide details of the microarray data, which have been deposited in the Gene Expression Omnibus (GEO under the series accession number GSE73022. The analysis and interpretation of these data are included in Gabel et al. (2015. Analysis of gene expression indicated that the NFκB pathway-associated genes were induced after a TNFα treatment. We have shown that primary astrocytes devoid of microglia can respond to a TNFα treatment with the re-expression of genes implicated in the glial cell development. Keywords: Primary astrocytes, Inflammation, Microarrays, Gene expression

  20. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Martin Aldasoro

    Full Text Available Ranolazine (Rn is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M. Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.

  1. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures.

    Science.gov (United States)

    Howe, Charles L; Kaptzan, Tatiana; Magaña, Setty M; Ayers-Ringler, Jennifer R; LaFrance-Corey, Reghann G; Lucchinetti, Claudia F

    2014-05-01

    Neuromyelitis optica (NMO) is a primary astrocyte disease associated with central nervous system inflammation, demyelination, and tissue injury. Brain lesions are frequently observed in regions enriched in expression of the aquaporin-4 (AQP4) water channel, an antigenic target of the NMO IgG serologic marker. Based on observations of disease reversibility and careful characterization of NMO lesion development, we propose that the NMO IgG may induce a dynamic immunological response in astrocytes. Using primary rat astrocyte-enriched cultures and treatment with NMO patient-derived serum or purified IgG, we observed a robust pattern of gene expression changes consistent with the induction of a reactive and inflammatory phenotype in astrocytes. The reactive astrocyte factor lipocalin-2 and a broad spectrum of chemokines, cytokines, and stress response factors were induced by either NMO patient serum or purified IgG. Treatment with IgG from healthy controls had no effect. The effect is disease-specific, as serum from patients with relapsing-remitting multiple sclerosis, Sjögren's, or systemic lupus erythematosus did not induce a response in the cultures. We hypothesize that binding of the NMO IgG to AQP4 induces a cellular response that results in transcriptional and translational events within the astrocyte that are consistent with a reactive and inflammatory phenotype. Strategies aimed at reducing the inflammatory response of astrocytes may short circuit an amplification loop associated with NMO lesion development. Copyright © 2014 Wiley Periodicals, Inc.

  2. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    Directory of Open Access Journals (Sweden)

    Kumamaru Hiromi

    2012-05-01

    Full Text Available Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. Methods The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6 stimulation. Results The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in

  3. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats.

    Science.gov (United States)

    Iwata, Masaaki; Shirayama, Yukihiko; Ishida, Hisahito; Hazama, Gen-i; Nakagome, Kazuyuki

    2011-08-01

    The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus. Copyright © 2010 Wiley-Liss, Inc.

  4. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  5. Different Astrocytic Activation between Adult Gekko japonicus and Rats during Wound Healing In Vitro.

    Directory of Open Access Journals (Sweden)

    Yun Gu

    Full Text Available Glial scar formation is a major obstacle to regeneration after spinal cord injury. Moreover, it has been shown that the astrocytic response to injury differs between species. Gekko japonicas is a type of reptile and it shows differential glial activation compared to that of rats. The purpose of the present study was to compare the proliferation and migration of astrocytes in the spinal cords of geckos and rats after injury in vitro. Spinal cord homogenate stimulation and scratch wound models were used to induce astrocytic activation in adult and embryonic rats, as well as in adult geckos. Our results indicated that astrocytes from the adult rat were likely activated by mechanical stimulation, even though they showed lower proliferation abilities than the astrocytes from the gecko under normal conditions. Furthermore, a transcriptome analysis revealed that the differentially expressed genes in astrocytes from adult rats and those from geckos were enriched in pathways involved in proliferation and the response to stimuli. This implies that intrinsic discrepancies in gene expression patterns might contribute to the differential activation of astrocytes between species.

  6. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    Directory of Open Access Journals (Sweden)

    Xu L

    2015-09-01

    Full Text Available Liming Xu,1,2,* Mo Dan,1,* Anliang Shao,1 Xiang Cheng,1,3 Cuiping Zhang,4 Robert A Yokel,5 Taro Takemura,6 Nobutaka Hanagata,6 Masami Niwa,7,8 Daisuke Watanabe7,81National Institutes for Food and Drug Control, No 2, Temple of Heaven, Beijing, 2School of Information and Engineering, Wenzhou Medical University, Wenzhou, 3School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, People’s Republic of China; 5College of Pharmacy, University of Kentucky, Lexington, KY, USA; 6Nanotechnology Innovation Station for Nanoscale Science and Technology, National Institute for Materials Science, Tsukuba, Ibaraki, 7Department of Pharmacology, Nagasaki University, 8BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, Japan*These authors contributed equally to this workBackground: Silver nanoparticles (Ag-NPs can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB and the underlying mechanism(s of action on the BBB and the brain are not well understood.Method: To investigate Ag-NP suspension (Ag-NPS-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM. Global gene expression of astrocytes was measured using a DNA microarray.Results: A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the

  7. Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons**

    OpenAIRE

    Kidambi, Srivatsan; Lee, Ilsoon; Chan, Christina

    2008-01-01

    We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties involved in attaching primary cells onto synthetic surfaces. To our knowledge this is the first demons...

  8. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.

  9. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  10. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    Science.gov (United States)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-04-01

    Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal model (activity-based anorexia, ABA). Female rats had 24 h/day running wheel access and received reduced food intake until a 25% weight reduction was reached and maintained for 2 weeks. In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astrocytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and 63%. In neurons no changes were observed. The findings were complemented by a 60% and 49% reduction in astrocyte (GFAP) mRNA expression. Volumetric brain changes in ABA animals mirror those in human AN patients. These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research target for understanding and treating semi-starvation and AN.

  12. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  13. Palmitoylethanolamide Blunts Amyloid-β42-Induced Astrocyte Activation and Improves Neuronal Survival in Primary Mouse Cortical Astrocyte-Neuron Co-Cultures.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Ferraro, Luca; Tanganelli, Sergio; Antonelli, Tiziana; Tomasini, Maria Cristina

    2018-01-01

    Based on the pivotal role of astrocytes in brain homeostasis and the strong metabolic cooperation existing between neurons and astrocytes, it has been suggested that astrocytic dysfunctions might cause and/or contribute to neuroinflammation and neurodegenerative processes. Therapeutic approaches aimed at both neuroprotection and neuroinflammation reduction may prove particularly effective in slowing the progression of these diseases. The endogenous lipid mediator palmitoylethanolamide (PEA) displayed neuroprotective and anti(neuro)inflammatory properties, and demonstrated interesting potential as a novel treatment for Alzheimer's disease. We firstly evaluated whether astrocytes could participate in regulating the Aβ42-induced neuronal damage, by using primary mouse astrocytes cell cultures and mixed astrocytes-neurons cultures. Furthermore, the possible protective effects of PEA against Aβ42-induced neuronal toxicity have also been investigated by evaluating neuronal viability, apoptosis, and morphometric parameters. The presence of astrocytes pre-exposed to Aβ42 (0.5μM; 24 h) induced a reduction of neuronal viability in primary mouse astrocytes-neurons co-cultures. Furthermore, under these experimental conditions, an increase in the number of neuronal apoptotic nuclei and a decrease in the number of MAP-2 positive neurons were observed. Finally, astrocytic Aβ42 pre-exposure induced an increase in the number of neurite aggregations/100μm as compared to control (i.e., untreated) astrocytes-neurons co-cultures. These effects were not observed in neurons cultured in the presence of astrocytes pre-exposed to PEA (0.1μM), applied 1 h before and maintained during Aβ42 treatment. Astrocytes contribute to Aβ42-induced neurotoxicity and PEA, by blunting Aβ42-induced astrocyte activation, improved neuronal survival in mouse astrocyte-neuron co-cultures.

  14. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    Science.gov (United States)

    JOHNSON, RYAN T.; BREEDLOVE, S. MARC; JORDAN, CYNTHIA L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to determine whether MePD astrocytes are sexually differentiated and whether ARs have a role. Unbiased stereological methods revealed laterality and sex differences in MePD astrocyte number and complexity. The right MePD contained more astrocytes than the left in all three genotypes, and the number of astrocytes was also sexually differentiated in the right MePD, with males having more astrocytes than females. In contrast, the left MePD contained more complex astrocytes than did the right MePD in all three genotypes, and males had more complex astrocytes than females in this hemisphere. TFM males were comparable to wildtype females, having fewer astrocytes on the right and simpler astrocytes on the left than do wildtype males. Taken together, these results demonstrate that astrocytes are sexually dimorphic in the adult MePD and that the nature of the sex difference is hemisphere-dependent: a sex difference in astrocyte number in the right MePD and a sex difference in astrocyte complexity in the left MePD. Moreover, functional ARs appear to be critical in establishing these sex differences in MePD astrocyte morphology. PMID:18853427

  15. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    International Nuclear Information System (INIS)

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-01-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  16. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  17. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Nilsen, Linn Hege; Witter, Menno P; Sonnewald, Ursula

    2014-05-01

    Regional hypometabolism of glucose in the brain is a hallmark of Alzheimer's disease (AD). However, little is known about the specific alterations of neuronal and astrocytic metabolism involved in homeostasis of glutamate and GABA in AD. Here, we investigated the effects of amyloid β (Aβ) pathology on neuronal and astrocytic metabolism and glial-neuronal interactions in amino acid neurotransmitter homeostasis in the transgenic McGill-R-Thy1-APP rat model of AD compared with healthy controls at age 15 months. Rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate, and extracts of the hippocampal formation as well as several cortical regions were analyzed using (1)H- and (13)C nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Reduced tricarboxylic acid cycle turnover was evident for glutamatergic and GABAergic neurons in hippocampal formation and frontal cortex, and for astrocytes in frontal cortex. Pyruvate carboxylation, which is necessary for de novo synthesis of amino acids, was decreased and affected the level of glutamine in hippocampal formation and those of glutamate, glutamine, GABA, and aspartate in the retrosplenial/cingulate cortex. Metabolic alterations were also detected in the entorhinal cortex. Overall, perturbations in energy- and neurotransmitter homeostasis, mitochondrial astrocytic and neuronal metabolism, and aspects of the glutamate-glutamine cycle were found in McGill-R-Thy1-APP rats.

  18. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  19. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement.

    Science.gov (United States)

    Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian

    2014-10-01

    The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.

  20. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  1. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele Lana

    2017-09-01

    Full Text Available The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention. The current study focussed on the interplay between neurons and astroglia in the Granule Layer (GL and the Polymorphic Layer (PL of the Dentate Gyrus (DG of adult, aged and LPS-treated rats. In GL and PL of aged and LPS-treated rats, astrocytes were less numerous than in adult rats. In GL of LPS-treated rats, astrocytes acquired morphological features of reactive astrocytes, such as longer branches than was observed in adult rats. Total and activated microglia increased in the aged and LPS-treated rats, as compared to adult rats. In the GL of aged and LPS-treated rats many neurons were apoptotic. Neurons decreased significantly in GL and PL of aged but not in rats treated with LPS. In PL of aged and LPS-treated rats many damaged neurons were embraced by microglia cells and were infiltrated by branches of astrocyte, which appeared to be bisecting the cell body, forming triads. Reactive microglia had a scavenging activity of dying neurons, as shown by the presence of neuronal debris within their cytoplasm. The levels of the chemokine fractalkine (CX3CL1 increased in hippocampal homogenates of aged rats and rats treated with LPS, and CX3CL1 immunoreactivity colocalized with activated microglia cells. Here we demonstrated that in the DG of aged and LPS-treated rats, astrocytes and microglia cooperate and participate in phagocytosis/phagoptosis of apoptotic granular neurons. The differential expression/activation of astroglia and the alteration of their intercommunication may be responsible for

  3. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  4. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  5. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  6. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes.

    Science.gov (United States)

    Oyanagi, Koshi; Tashiro, Tomoko; Negishi, Takayuki

    2015-08-01

    Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.

  7. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte.

    Science.gov (United States)

    Gu, Yan; He, Mulan; Zhou, Xiaoqin; Liu, Jinngjing; Hou, Nali; Bin, Tan; Zhang, Yun; Li, Tingyu; Chen, Jie

    2016-01-14

    Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway.

  8. Astrocytes mediated the nootropic and neurotrophic effects of Sarsasapogenin-AA13 via upregulating brain-derived neurotrophic factor.

    Science.gov (United States)

    Dong, Dong; Mao, Yu; Huang, Cui; Jiao, Qian; Pan, Hui; Ma, Lei; Wang, Rui

    2017-01-01

    Rhizoma Anemarrhena , a widely used traditional Chinese medicine, has previously been shown to have neuroprotective effect. Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of Sarsasapogenin, which is extracted from Rhizoma Anemarrhena . The aim of this study is to investigate the nootropic and neurotrophic effects of AA13 and underlying mechanisms. In vitro , cell viability of rat primary astrocytes treated with AA13 and neurons cultured with conditioned medium of AA13-treated rat primary astrocytes was tested by MTT assays. In vivo , a pharmacological model of cognitive impairment induced by scopolamine was employed and spatial memory of the mice was assessed by Morris water maze. This study found that AA13 increased cell viability of primary astrocytes and AA13-treated astrocyte-conditioned medium enhanced the survival rate of primary neurons. Interestingly, AA13 markedly enhanced the level of BDNF in astrocytes. Furthermore, AA13 (6 mg/kg) improved the cognitive deficits in animal models (p<0.05) and BDNF and PSD95 levels were increased in brain. Therefore, we hypothesize that AA13 exerts nootropic and neurotrophic activities through astrocytes mediated upregulation of BDNF secretion. The results suggest that AA13 could be a potential compound for cognitive impairment after further research.

  9. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  10. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  11. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  12. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    International Nuclear Information System (INIS)

    Ohnishi, Masatoshi; Urasaki, Tomoka; Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito; Inoue, Atsuko

    2015-01-01

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  13. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masatoshi, E-mail: ohnishi@fupharm.fukuyama-u.ac.jp [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Urasaki, Tomoka [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito [Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Inoue, Atsuko [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan)

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  14. The effect of Urtica dioica extract on the number of astrocytes in the dentate gyrus of diabetic rats.

    Science.gov (United States)

    Jahanshahi, M; Golalipour, M J; Afshar, M

    2009-05-01

    Diabetes mellitus is associated with cerebral alterations in both human and animal models of the disease. These alterations include abnormal expression of hypothalamic neuropeptides and hippocampal astrogliosis. Urtica dioica (Nettle) is among several species listed for their use against diabetes in folk medicine. The aim of this study was the evaluation of the astrocyte number in the dentate gyrus of diabetic rats after treatment with nettle. A total of 21 male albino Wistar rats were used in the present study. The animals were divided into three groups: control, nettle-untreated diabetic, and nettle treated diabetic. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin, the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. After a 5-week survival period, all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres. The area densities of the astrocytes were measured and compared between the three groups (p < 0.05). The number of astrocytes increased in the diabetic rats (24.06 +/- 9.57) compared with the controls (17.52 +/- 6.66). The densities in the treated rats (19.50 +/- 6.16) were lower than in the diabetic rats. Furthermore, the control and treated rats showed similar densities. We concluded that U. dioica extract helped compensate for astrocytes in the treatment rats dentate gyrus in comparison with diabetic rats.

  15. Astrocyte oxidative metabolism and metabolite trafficking after fluid percussion brain injury in adult rats.

    Science.gov (United States)

    Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L

    2010-12-01

    Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.

  16. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  17. Ultrastructural study of myelinating cells and sub-pial astrocytes in developing rat spinal cord.

    Science.gov (United States)

    Nagashima, K

    1979-12-01

    The anterior funiculus of the spinal cervical cord of post-natal rats was examined ultrastructurally. The myelinating cells found one day after brith contained a large amount of evenly distributed ribosomes up to the outer tongue of mesaxons, representing the cytoplasmic density. These cells were separated by astrocytic processes from the pial basement membrane, even when they were located on the pial surface. Astrocytes contained glial fibrils from one day onwards and often attached their processes to the pial basement membrane. Although the cytoplasmic processes of astrocytes occasionally wrapped axons, they were never shown to form the initial layer of myelin sheaths. However, the tenuous processes of the sub-pial astrocytes were occasionally rolled in myelin lamellae, as if a part of the myelin sheaths was constructed by astrocytic processes. The interpretation for this finding is discussed in relation to function and potency of the astrocytes, and variations and anomalies of nervous ontogeny.

  18. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  19. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  20. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Simenc, Janez; Lipnik-Stangelj, Metoda

    2012-01-01

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10 −7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10 −6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  1. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    Science.gov (United States)

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  3. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  4. Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes

    Directory of Open Access Journals (Sweden)

    Michelle A. Clark

    2013-01-01

    Full Text Available It is postulated that central effects of angiotensin (Ang II may be indirect due to rapid conversion to Ang III by aminopeptidase A (APA. Previously, we showed that Ang II and Ang III induced mitogen-activated protein (MAP kinases ERK1/2 and stress-activated protein kinase/Jun-terminal kinases (SAPK/JNK phosphorylation in cultured rat astrocytes. Most importantly, both peptides were equipotent in causing phosphorylation of these MAP kinases. In these studies, we used brainstem and cerebellum astrocytes to determine whether Ang II’s phosphorylation of these MAP kinases is due to the conversion of the peptide to Ang III. We pretreated astrocytes with 10 μM amastatin A or 100 μM glutamate phosphonate, selective APA inhibitors, prior to stimulating with either Ang II or Ang III. Both peptides were equipotent in stimulating ERK1/2 and SAPK/JNK phosphorylation. The APA inhibitors failed to prevent Ang II- and Ang III-mediated phosphorylation of the MAP kinases. Further, pretreatment of astrocytes with the APA inhibitors did not affect Ang II- or Ang III-induced astrocyte growth. These findings suggest that both peptides directly induce phosphorylation of these MAP kinases as well as induce astrocyte growth. These studies establish both peptides as biologically active with similar intracellular and physiological effects.

  5. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Landry, M.E.; Max, S.R.

    1990-01-01

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U- 14 C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  6. Effects of lactic acid on astrocytes in primary culture.

    Science.gov (United States)

    Norenberg, M D; Mozes, L W; Gregorios, J B; Norenberg, L O

    1987-03-01

    Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed chromatin clumping, an increase of lipid and dense bodies, a loss of polyribosomal clusters, slightly increased cytoplasmic lucency, swollen mitochondria and tangled intermediate filaments. These alterations progressed with lower pH and longer exposure. Irreversible changes occurred one to two hours after exposure at pH 6; after 30 to 60 minutes (min) at pH 5.5 and after ten to 30 min at pH 5. Comparable results were obtained with the use of other weak acids indicating that the observed changes were due to increased hydrogen ion concentration rather than secondary to lactate per se. Additionally, various concentrations of lactic acid adjusted to identical pH produced similar morphologic alterations. Thus, while lactic acid caused marked and at times irreversible alterations in astrocytes, severe and prolonged acidosis was required to produce such injurious effects. This relative resistance of astrocytes to acidosis is in keeping with their potential role in pH regulation in brain.

  7. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet.

    Science.gov (United States)

    Price, Diana L; Ludwig, Jeffrey W; Mi, Huaiyu; Schwarz, Thomas L; Ellisman, Mark H

    2002-11-29

    Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain. Strong rSlo immunolabeling was present around the vasculature of most brain regions. Examination of dye-filled hippocampal astrocytes revealed rSlo immunolabeling polarized in astrocytic endfeet. Ultrastructural analysis confirmed that the rSlo staining was concentrated in astrocytic endfeet ensheathing capillaries as well as abutting the pia mater. Immunostaining within the endfeet was predominantly distributed at the plasma membrane directly adjacent to either the vascular basal lamina or the pial surface. The distribution of the aquaporin-4 (AQP-4) water channel was also examined using dye-filled hippocampal astrocytes. In confirmation of earlier reports, intense AQP-4 immunolabeling was generally observed at the perimeter of blood vessels, and coincided with perivascular endfeet and rSlo labeling. We propose that rSlo K(Ca) channels, with their sensitivity to membrane depolarization and intracellular calcium, play a role in the K(+) modulation of cerebral blood flow. Additional knowledge of the molecular and cellular machinery present at perivascular endfeet may provide insight into the structural and functional molecular elements responsible for the neuronal activity-dependent regulation of cerebral blood flow. Copyright 2002 Elsevier Science B.V.

  8. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  9. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801

    Science.gov (United States)

    Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling. PMID:26700309

  10. [Inhibition of gap junctional intercellular communication protects astrocytes from hypoxia/reoxygenation injury].

    Science.gov (United States)

    Tong, Xu-Hui; Gu, Yu-Chen; Jiao, Hao; Yu, Li; Dong, Shu-Ying

    2015-01-01

    To investigate the effects of inhibiting gap junctional intercellular communication on hypoxia/reoxygenation injury in astrocytes. Primary cultured cerebral cortical astrocytes of neonate rats were divided into normal control group, hypoxia reoxygenation injury group and 18-α-glycyrrhetinic acid and oleamide (gap junctional intercellular channel inhibitors) group. The gap junction intercellular communication was determined by Parachute assay. The viability of astrocyes was detected by MTT assay. The apoptosis of astrocytes were detected with annexin V/PI and Hoechst 33258 staining. Compared with the normal control group, the gap junctional function of astrocytes was increased significantly in ischemia/reperfusion group (Pastrocytes decreased significantly (Pastrocytes in18-α-glycyrrhetinic acid and oleamide group decreased significantly (Pastrocytes increased significantly (Pastrocytes.

  11. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-01-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  12. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  13. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  14. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Science.gov (United States)

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  15. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    Science.gov (United States)

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  16. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  17. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

    Science.gov (United States)

    Campisi, Agata; Gulino, Marisa; Acquaviva, Rosaria; Bellia, Paolo; Raciti, Giuseppina; Grasso, Rosaria; Musumeci, Francesco; Vanella, Angelo; Triglia, Antonio

    2010-03-31

    The exposure of primary rat neocortical astroglial cell cultures to acute electromagnetic fields (EMF) in the microwave range was studied. Differentiated astroglial cell cultures at 14 days in vitro were exposed for 5, 10, or 20min to either 900MHz continuous waves or 900MHz waves modulated in amplitude at 50Hz using a sinusoidal waveform and 100% modulation index. The strength of the electric field (rms value) at the sample position was 10V/m. No change in cellular viability evaluated by MTT test and lactate dehydrogenase release was observed. A significant increase in ROS levels and DNA fragmentation was found only after exposure of the astrocytes to modulated EMF for 20min. No evident effects were detected when shorter time intervals or continuous waves were used. The irradiation conditions allowed the exclusion of any possible thermal effect. Our data demonstrate, for the first time, that even acute exposure to low intensity EMF induces ROS production and DNA fragmentation in astrocytes in primary cultures, which also represent the principal target of modulated EMF. Our findings also suggest the hypothesis that the effects could be due to hyperstimulation of the glutamate receptors, which play a crucial role in acute and chronic brain damage. Furthermore, the results show the importance of the amplitude modulation in the interaction between EMF and neocortical astrocytes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Potapenko, Evgeniy S; Biancardi, Vinicia C; Zhou, Yiqiang; Stern, Javier E

    2012-08-01

    Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.

  19. Chronological changes in astrocytes induced by chronic electrical sensorimotor cortex stimulation in rats.

    Science.gov (United States)

    Morishita, Takashi; Yamashita, Akiko; Katayama, Yoichi; Oshima, Hideki; Nishizaki, Yuji; Shijo, Katsunori; Fukaya, Chikashi; Yamamoto, Takamitsu

    2011-01-01

    Motor cortex stimulation (MCS) is a treatment option for various disorders such as medically refractory pain, poststroke hemiplegia, and movement disorders. However, the exact mechanisms underlying its effects remain unknown. In this study, the effects of long-term chronic MCS were investigated by observing changes in astrocytes. A quadripolar stimulation electrode was implanted on the dura over the sensorimotor cortex of adult rats, and the cortex was continuously stimulated for 3 hours, 1 week, 4 weeks, and 8 weeks. Immunohistochemical staining of microglia (ionized calcium-binding adaptor molecule 1 [Iba1] staining) and astrocytes (glial fibrillary acidic protein [GFAP] staining), and neuronal degeneration histochemistry (Fluoro-Jade B staining) were carried out to investigate the morphological changes following long-term chronic MCS. Iba1 staining and Fluoro-Jade B staining showed no evidence of Iba1-positive microglial changes or neurodegeneration. Following continuous MCS, GFAP-positive astrocytes were enlarged and their number increased in the cortex and the thalamus of the stimulated hemisphere. These findings indicate that chronic electrical stimulation can continuously activate astrocytes and result in morphological and quantitative changes. These changes may be involved in the mechanisms underlying the neuroplasticity effect induced by MCS.

  20. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  1. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  2. [Mechanism of potassium channel in hypoxia-ischemic brain edema: experiment with neonatal rat astrocyte].

    Science.gov (United States)

    Fu, Xue-mei; Xiang, Long; Liao, Da-qing; Feng, Zhi-chun; Mu, De-zhi

    2008-11-04

    To investigate the mechanism of potassium channel in brain edema caused by hypoxia-ischemia (HI). Astrocytes were obtained from 3-day-old SD rats, cultured, and randomly divided into 2 groups: normoxia group, cultured under normoxic condition, and hypoxic-ischemic group, cultured under hypoxic-ischemic condition. The cell volume was measured by radiologic method. Patch-clamp technique was used to observe the electric physiological properties of the voltage-gated potassium channels (Kv) in a whole cell configuration, and the change of voltage-gated potassium channel current (IKv) was recorded in cultured neonatal rat astrocyte during HI. Aquaporin 4 (AQP4) expression vector was constructed from pSUPER vector and transfected into the astrocytes (AQP4 RNAi) to construct AQP4 knockdown (AQP4-/-) cells. cellular volume was determined using [3H]-3-O-methyl-D-glucose uptake in both AQP4-/- and AQP4+/+ cells under the condition of HI. Real time PCR and Western blotting were used to detect the mRNA and protein expression of AQP4. The percentages of the AQP4+/+ and AQP4-/- astrocyte volumes in the condition of HI for 0.5, 1, 2, and 4 h were 104+/-7, 109+/-6, 126+/-12, and 152+/-9 times, and 97+/-7, 105+/-9, 109+/-7, and 132+/-6 times as those of their corresponding control groups (all Pastrocytes significantly increased during HI and the degrees of edema mediated by AQP4 knockdown at different time points were all significantly milder (all Pastrocytes via aquaporin-4 and then cell swelling.

  3. Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Salido, Ginés M; González, Antonio

    2013-04-01

    The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.

  4. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    Science.gov (United States)

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  5. Time dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain

    Science.gov (United States)

    Konopaske, Glenn T.; Bolo, Nicolas R.; Basu, Alo C.; Renshaw, Perry F.; Coyle, Joseph T.

    2013-01-01

    Rationale Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al. Biol Psych, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. Objectives This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. Methods We used ex vivo 13C magnetic resonance spectroscopy along with high performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. Results Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6 month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6 month cohort. Conclusions Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment. PMID:23660600

  6. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E

    International Nuclear Information System (INIS)

    Guerbay, Aylin; Gonthier, Brigitte; Barret, Luc; Favier, Alain; Hincal, Filiz

    2007-01-01

    The aim of this study was to investigate the possible cytotoxic and oxidative stress inducing effects of ciprofloxacin (CPFX) on primary cultures of rat astrocytes. The cultured cells were incubated with various concentrations of CPFX (0.5-300 mg/l), and cytotoxicity was determined by neutral red (NR) and MTT assays. Survival profile of cells was biphasic in NR assay: CPFX did not cause any alteration at any concentration for 7 h, whereas ≤50 mg/l concentrations induced significant cell proliferation in incubation periods of 24, 48, 72, and 96 h. However, cell proliferation gradually decreased at higher concentrations, and 200 and 300 mg/l of CPFX exposure was found to be significantly (p < 0.05) cytotoxic at all time periods. With MTT assay, no alteration was noted for incubation period of 7 h, as observed with NR assay. But, cell viability decreased with ∼≥50 mg/l CPFX exposure in all other time periods. Cell proliferation was only seen in 24 h of incubation with 0.5 and 5 mg/l CPFX. Vitamin E pretreatment of cell cultures were found to be providing complete protection against cytotoxicity of 300 mg/l CPFX in 96 h incubation when measured with both NR and MTT assays. The SOD pretreatment was partially protective with NR assay, but no protection was noted when measured with MTT. A significant enhancement of lipid peroxidation was observed with the cytotoxic concentration of the drug, but total glutathione content and catalase activity of cells did not change. The data obtained in this study suggest that, in accordance with our previous results with fibroblast cells, CPFX-induced cytotoxicity is related to oxidative stress. And the biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species, cell proliferation, and cell viability

  7. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  8. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family.

    Science.gov (United States)

    Gonzalez, Laura E; Juknat, A Ana; Venosa, Andrea J; Verrengia, Noemi; Kotler, Mónica L

    2008-12-01

    Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.

  9. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  10. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  11. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  12. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes.

    Science.gov (United States)

    Tan, Vanessa X; Mazzocco, Claire; Varney, Bianca; Bodet, Dominique; Guillemin, Tristan A; Bessede, Alban; Guillemin, Gilles J

    2018-01-01

    We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.

  13. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  14. Dehydration-Induced Anorexia Reduces Astrocyte Density in the Rat Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Daniel Reyes-Haro

    2015-01-01

    Full Text Available Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium in a murine model of DIA. The astrocyte density was significantly reduced (~34% for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC.

  15. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  16. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  17. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  18. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  19. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  20. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation.

    Science.gov (United States)

    Zhang, Xiang; Yao, Hao; Qian, Qingqing; Li, Nana; Jin, Wenjie; Qian, Yanning

    2016-01-01

    Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD). Although emerging evidence showed that brain mast cells (MCs) are the "first responders" in neuroinflammation, little is known about the functional communication between MCs and astrocytes. In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer) or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815) could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-11-01

    Full Text Available Background: Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD. Although emerging evidence showed that brain mast cells (MCs are the "first responders” in neuroinflammation, little is known about the functional communication between MCs and astrocytes. Methods: In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Results: Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815 could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. Conclusion: These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD.

  2. Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes.

    Science.gov (United States)

    Pierozan, Paula; Biasibetti, Helena; Schmitz, Felipe; Ávila, Helena; Parisi, Mariana M; Barbe-Tuana, Florencia; Wyse, Angela T S; Pessoa-Pureur, Regina

    2016-12-01

    QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity.

    Science.gov (United States)

    Yu, Chunjiang; Narasipura, Srinivas D; Richards, Maureen H; Hu, Xiu-Ti; Yamamoto, Bryan; Al-Harthi, Lena

    2017-10-01

    Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16 INK 4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2012-06-01

    Full Text Available Abstract Background The development of pain after peripheral nerve and tissue injury involves not only neuronal pathways but also immune cells and glia. Central sensitization is thought to be a mechanism for such persistent pain, and ATP involves in the process. We examined the contribution of glia to neuronal excitation in the juvenile rat spinal dorsal horn which is subjected to neuropathic and inflammatory pain. Results In rats subjected to neuropathic pain, immunoreactivity for the microglial marker OX42 was markedly increased. In contrast, in rats subjected to inflammatory pain, immunoreactivity for the astrocyte marker glial fibrillary acidic protein was increased slightly. Optically-recorded neuronal excitation induced by single-pulse stimulation to the dorsal root was augmented in rats subjected to neuropathic and inflammatory pain compared to control rats. The bath application of a glial inhibitor minocycline and a p38 mitogen-activated protein kinase inhibitor SB203580 inhibited the neuronal excitation in rats subjected to neuropathic pain. A specific P2X1,2,3,4 antagonist TNP-ATP largely inhibited the neuronal excitation only in rats subjected to neuropathic pain rats. In contrast, an astroglial toxin L-alpha-aminoadipate, a gap junction blocker carbenoxolone and c-Jun N-terminal kinase inhibitor SP600125 inhibited the neuronal excitation only in rats subjected to inflammatory pain. A greater number of cells in spinal cord slices from rats subjected to neuropathic pain showed Ca2+ signaling in response to puff application of ATP. This Ca2+ signaling was inhibited by minocycline and TNP-ATP. Conclusions These results directly support the notion that microglia is more involved in neuropathic pain and astrocyte in inflammatory pain.

  5. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  6. Observations on the interactions of Schwann cells and astrocytes following x irradiation of neonatal rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Blakemore, W F; Patterson, R C

    1975-10-01

    Myelination was inhibited in the spinal cord of three day-old rats with 2000 rads of x irradiation. Myelination subsequently occurred as a result of caudal migration of oligodendrocytes and extensive invasion of the cord by Schwann cells. Although oligodendrocytes were present in areas containing Schwann cells, astrocytes were absent. The presence of Schwann cells in the neuropil of the spinal cord did not stimulate production of basement membrane by astrocytes, so no new glial limiting membrane was formed. Evidence is presented which suggests that if astrocytes do not form a glial limiting membrane when opposed by large numbers of Schwann cells they are destroyed by the invading cells. It is suggested that the glial limiting membrane normally inhibits entry of Schwann cells into the central nervous system; if this is destroyed and not reconstituted, Schwann cells can migrate freely into the neuropil.

  7. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    International Nuclear Information System (INIS)

    Kadohira, Ikuko; Abe, Yoichiro; Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-01-01

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [ 32 P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  8. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  9. HYS-32, a novel analogue of combretastatin A-4, enhances connexin43 expression and gap junction intercellular communication in rat astrocytes.

    Science.gov (United States)

    Lin, Pei-Chun; Shen, Chien-Chang; Liao, Chih-Kai; Jow, Guey-Mei; Chiu, Chi-Ting; Chung, Tun-Hui; Wu, Jiahn-Chun

    2013-05-01

    HYS-32 [4-(3,4-dimethoxyphenyl)-3-(naphthalen-2-yl)-2(5H)-furanone] is a new analogue of the anti-tumor compound combretastatin A-4 containing a cis-stilbene moiety. In this study, we investigated its effects on Cx43 gap junction intercellular communication (GJIC) and the signaling pathway involved in rat primary astrocytes. Western blot analyses showed that HYS-32 dose- and time-dependently upregulated Cx43 expression. A confocal microscopic study and scrape-loading/dye transfer analyses demonstrated that HYS-32 (5μM) induced microtubule coiling, accumulation of Cx43 in gap junction plaques, and increased GJIC in astrocytes. The HYS-32-induced microtubule coiling and Cx43 accumulation in gap junction plaques was reversed when HYS-32 was removed. Treatment of astrocytes with cycloheximide resulted in time-dependent degradation of by co-treatment with HYS-32 by increasing the half-life of Cx43. Co-treatment with HYS-32 also prevented the LPS-induced downregulation of Cx43 and inhibition of GJIC in astrocytes. HYS-32 induced activation of PKC, ERK, and JNK, and co-treatment with the PKC inhibitor Go6976 or the ERK inhibitor PD98059, but not the JNK inhibitor SP600125, prevented the HYS-32-induced increase in Cx43 expression and GJIC. Go6976 suppressed the HYS-32-induced PKC phosphorylation and increase in phospho-ERK levels, while PD98059 did not prevent the HYS-32-induced increase in phospho-PKC levels, suggesting that PKC is an upstream effector of ERK. In conclusion, our results show that HYS-32 increases the half-life of Cx43 and enhances Cx43 expression and GJIC in astrocytes via a PKC-ERK signaling cascade. These novel biological effects of HYS-32 on astrocyte gap junctions support its potential for therapeutic use as a protective agent for the central nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Lei Ming; Hua Xiangdong; Xiao Ming; Ding Jiong; Han Qunying; Hu Gang

    2008-01-01

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  11. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes.

    Science.gov (United States)

    Milošević, Milena; Bataveljić, Danijela; Nikolić, Ljiljana; Bijelić, Dunja; Andjus, Pavle

    2016-01-01

    Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.

  12. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.

    Science.gov (United States)

    Castro, Maite A; Pozo, Miguel; Cortés, Christian; García, María de Los Angeles; Concha, Ilona I; Nualart, Francisco

    2007-08-01

    It has been demonstrated that glutamatergic activity induces ascorbic acid (AA) depletion in astrocytes. Additionally, different data indicate that AA may inhibit glucose accumulation in primary cultures of rat hippocampal neurons. Thus, our hypothesis postulates that AA released from the astrocytes during glutamatergic synaptic activity may inhibit glucose uptake by neurons. We observed that cultured neurons express the sodium-vitamin C cotransporter 2 and the facilitative glucose transporters (GLUT) 1 and 3, however, in hippocampal brain slices GLUT3 was the main transporter detected. Functional activity of GLUTs was confirmed by means of kinetic analysis using 2-deoxy-d-glucose. Therefore, we showed that AA, once accumulated inside the cell, inhibits glucose transport in both cortical and hippocampal neurons in culture. Additionally, we showed that astrocytes are not affected by AA. Using hippocampal slices, we observed that upon blockade of monocarboxylate utilization by alpha-cyano-4-hydroxycinnamate and after glucose deprivation, glucose could rescue neuronal response to electrical stimulation only if AA uptake is prevented. Finally, using a transwell system of separated neuronal and astrocytic cultures, we observed that glutamate can reduce glucose transport in neurons only in presence of AA-loaded astrocytes, suggesting the essential role of astrocyte-released AA in this effect.

  13. The endozepine ODN stimulates [3H]thymidine incorporation in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Gandolfo, P.; Patte, C.; Thoumas, J.L.; Leprince, J.; Vaudry, H.; Tonon, M.C.

    1999-01-01

    High concentrations of diazepam-binding inhibitor (DBI) mRNA have been detected in astrocytoma, suggesting that DBI-derived peptides may play a role in glial cell proliferation. In the present study, we have investigated the effect of a processing product of DBI, the octadecaneuropeptide ODN, on DNA synthesis in cultured rat astrocytes. At very low concentrations (10 -14 to 10 -11 M), ODN caused a dose-dependent increase of [ 3 H]thymidine incorporation. At higher doses (10 -10 to 10 -5 M), the effect of ODN gradually declined. The central-type benzodiazepine receptor antagonist flumazenil (10 -6 M) completely suppressed the stimulatory action of ODN whereas the peripheral-type benzodiazepine receptor ligand, PK11195 (10 -6 M) had no effect. The ODN-induced stimulation of [ 3 H]thymidine incorporation was mimicked by methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). The GABA A receptor antagonist bicuculline (10 -4 M) suppressed the effect of both ODN and DMCM on DNA synthesis. Exposure of cultured astrocytes to the specific GABA A agonist 3APS (10 -10 to 10 -4 M) also induced a dose-related increase of [ 3 H]thymidine incorporation. The present study indicates that ODN, acting through central-type benzodiazepine receptors associated with the GABA A receptor complex, stimulates DNA synthesis in rat glial cells. These data provide evidence for an autocrine role of endozepines in the control of glial cell proliferation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. CNF1 improves astrocytic ability to support neuronal growth and differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Fiorella Malchiodi-Albedi

    Full Text Available Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1 leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described

  15. CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Paradisi, Silvia; Di Nottia, Michela; Simone, Daiana; Travaglione, Sara; Falzano, Loredana; Guidotti, Marco; Frank, Claudio; Cutarelli, Alessandro; Fabbri, Alessia; Fiorentini, Carla

    2012-01-01

    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected

  16. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models

    Directory of Open Access Journals (Sweden)

    Tara Nguyen

    2017-01-01

    Full Text Available Traumatic spinal cord injury (SCI is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9, sham surgery (n = 8, or no surgery (n = 8. Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.

  17. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  18. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  19. Mammalian cortical astrocytes align themselves in a physiological voltage gradient.

    Science.gov (United States)

    Borgens, R B; Shi, R; Mohr, T J; Jaeger, C B

    1994-07-01

    Astrocytes obtained from primary cultures of newborn rat cerebral cortex show a marked structural rearrangement to weak (50-500 mV/mm) applied voltage gradients. Astrocytes reorient their processes so that the cells are aligned perpendicular to the voltage gradient. At field strengths of 100 mV/mm or greater, this realignment occurs in over 90% of the cell population. Furthermore, these magnitudes of electric fields completely eliminate any parallel alignments originally observed prior to application of the voltage. Realignment usually occurs by a withdrawal, followed by an extension, of cell processes. These responses occur at voltage gradients within the physiological range that naturally exist across the neural tube during early development. We suggest the possibility that architectural arrangements of developing glia and, subsequently, neurons may be regulated by endogenous transepithelial potentials that exist across embryonic neuroepithelium.

  20. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia

    2011-01-01

    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  1. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures.

    Science.gov (United States)

    Gao, Chen; Zhou, Liya; Zhu, Wenxia; Wang, Hongyun; Wang, Ruijuan; He, Yunfei; Li, Zhiyun

    2015-05-06

    Hypoxic and low-glucose stressors contribute to neuronal death in many brain diseases. Astrocytes are anatomically well-positioned to shield neurons from hypoxic injury. During hypoxia/ischemia, lactate released from astrocytes is taken up by neurons and stored for energy. This process is mediated by monocarboxylate transporters (MCTs) in the central nervous system. In the present study, we investigated the ability of astrocytes to protect neurons from oxygen- and glucose-deprivation (OGD) injury via an MCT-dependent mechanism in vitro. Primary cultures of neurons, astrocytes, and astrocytes-neurons derived from rat hippocampus were subjected to OGD, MCT inhibition with small interfering (si)RNA. Cell survival and expression of MCT4, MCT2, glial fibrillary acidic protein, and neuronal nuclear antigen were evaluated. OGD significantly increased cell death in neuronal cultures and up-regulated MCT4 expression in astrocyte cultures, but no increased cell death was observed in neuron-astrocyte co-cultures or astrocyte cultures. However, neuronal cell death in co-cultures was increased by exposure to MCT4- or MCT2-specific siRNA, and this effect was attenuated by the addition of lactate into the extracellular medium of neuronal cultures prior to OGD. These findings demonstrate that resistance to OGD injury in astrocyte-neuron co-cultures occurs via an MCT-dependent mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Santos-Galindo María

    2011-07-01

    Full Text Available Abstract Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10, TNFα, IL1β, Toll-like receptor 4 (TLR4, steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to

  3. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Science.gov (United States)

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  4. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    Science.gov (United States)

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  5. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  6. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  7. Astrocytic expression of GFAP and serum levels of IL-1β and TNF-α in rats treated with different pain relievers

    Directory of Open Access Journals (Sweden)

    Gisele Ferreira Amaral

    Full Text Available ABSTRACT Pro-inflammatory cytokines and glial cells, especially microglial cells, have been implicated in persistent pain sensitization. Less is known about the role of astrocytes in pain regulation. This study aimed to observe the expression of the astrocytic biomarker glial fibrillary acidic protein (GFAP and the serum levels of interleukin 1 beta (IL-1β and tumor necrosis factor alpha (TNF-α after short-term administration of central pain relievers in rats not submitted to noxious stimuli. Male Wistar rats were divided into five groups, receiving for nine days- (1 amitriptyline (Amt-10 mg/kg/day, by gavage; (2 gabapentin (Gb-60 mg/kg/day, by gavage; (3 methadone (Me-4.5 mg/kg/day, intraperitoneal route [IP]; (4 morphine (Mo-10 mg/kg/day, IP; or (5 0.9% saline solution, IP. Brain samples were collected for immunohistochemical study of GFAP expression in the mesencephalon and nucleus accumbens (NAc. The area of GFAP-positive cells was calculated using MetaMorph software and serum levels of IL-1β and TNF-α were measured by enzyme-linked immunosorbent assay. Serum TNF-α levels were decreased in the groups treated with Mo, Me and Gb, but not in the Amt-treated group. IL-1β decreased only in rats treated with Me. The astrocytic expression of GFAP was decreased in the brainstem with all drugs, while it was increased in the NAc with Amt, Me and Mo.

  8. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  9. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  10. CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    OpenAIRE

    Malchiodi-Albedi, Fiorella; Paradisi, Silvia; Di Nottia, Michela; Simone, Daiana; Travaglione, Sara; Falzano, Loredana; Guidotti, Marco; Frank, Claudio; Cutarelli, Alessandro; Fabbri, Alessia; Fiorentini, Carla

    2012-01-01

    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are stri...

  11. The endozepine ODN stimulates [{sup 3}H]thymidine incorporation in cultured rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfo, P.; Patte, C.; Thoumas, J.L.; Leprince, J.; Vaudry, H.; Tonon, M.C. [European Institute for Peptide Research (IFRMP no. 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U 413, UA CNRS, University of Rouen, 76821 Mont-Saint-Aignan (France)

    1999-05-15

    High concentrations of diazepam-binding inhibitor (DBI) mRNA have been detected in astrocytoma, suggesting that DBI-derived peptides may play a role in glial cell proliferation. In the present study, we have investigated the effect of a processing product of DBI, the octadecaneuropeptide ODN, on DNA synthesis in cultured rat astrocytes. At very low concentrations (10{sup -14} to 10{sup -11} M), ODN caused a dose-dependent increase of [{sup 3}H]thymidine incorporation. At higher doses (10{sup -10} to 10{sup -5} M), the effect of ODN gradually declined. The central-type benzodiazepine receptor antagonist flumazenil (10{sup -6} M) completely suppressed the stimulatory action of ODN whereas the peripheral-type benzodiazepine receptor ligand, PK11195 (10{sup -6} M) had no effect. The ODN-induced stimulation of [{sup 3}H]thymidine incorporation was mimicked by methyl 6,7-dimethoxy-4-ethyl-{beta}-carboline-3-carboxylate (DMCM). The GABA{sub A} receptor antagonist bicuculline (10{sup -4} M) suppressed the effect of both ODN and DMCM on DNA synthesis. Exposure of cultured astrocytes to the specific GABA{sub A} agonist 3APS (10{sup -10} to 10{sup -4} M) also induced a dose-related increase of [{sup 3}H]thymidine incorporation. The present study indicates that ODN, acting through central-type benzodiazepine receptors associated with the GABA{sub A} receptor complex, stimulates DNA synthesis in rat glial cells. These data provide evidence for an autocrine role of endozepines in the control of glial cell proliferation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  13. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication.

    Science.gov (United States)

    Rao, Shilpa P; Sikdar, Sujit Kumar

    2007-12-01

    Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control. (c) 2007 Wiley-Liss, Inc.

  14. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    DEFF Research Database (Denmark)

    Helms, Hans CC; Aldana, Blanca I; Groth, Simon

    2017-01-01

    The aim was to characterize the clearance pathways for L-glutamate from the brain interstitial fluid across the blood-brain barrier using a primary in vitro bovine endothelial/rat astrocyte co-culture. Transporter profiling was performed using uptake studies of radiolabeled L-glutamate with co...... brain to blood via the concerted action of abluminal and luminal transport proteins, but the total brain clearance is highly dependent on metabolism in astrocytes and endothelial cells followed by transport of metabolites....

  15. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  16. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  17. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  18. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner.

    Science.gov (United States)

    Sun, Lin; Li, Man; Ma, Xun; Feng, Haoyu; Song, Junlai; Lv, Cong; He, Yajun

    2017-11-25

    Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). The post-natal day 1-2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett's test. The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated-at least in part-via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11

  19. Electric field-induced astrocyte alignment directs neurite outgrowth.

    Science.gov (United States)

    Alexander, John K; Fuss, Babette; Colello, Raymond J

    2006-05-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth. To this end, dorsal root ganglia cells were seeded onto cultured rat astrocytes that were pre-aligned by exposure to an electric field of physiological strength (500 mV mm(-1)). Using confocal microscopy and digital image analysis, we found that neurite outgrowth at 24 hours and at 48 hours is enhanced significantly and directed consistently along the aligned astrocyte processes. Moreover, this directed neurite outgrowth is maintained when grown on fixed, aligned astrocytes. Collectively, these results indicate that endogenous electric fields present within the developing CNS might act to align astrocyte processes, which can promote and direct neurite growth. Furthermore, these results demonstrate a simple method to produce an aligned cellular substrate, which might be used to direct regenerating neurites.

  20. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy.

    Science.gov (United States)

    Aronica, Eleonora; Zurolo, Emanuele; Iyer, Anand; de Groot, Marjolein; Anink, Jasper; Carbonell, Caterina; van Vliet, Erwin A; Baayen, Johannes C; Boison, Detlev; Gorter, Jan A

    2011-09-01

    Adenosine kinase (ADK) represents the key metabolic enzyme for the regulation of extracellular adenosine levels in the brain. In adult brain, ADK is primarily present in astrocytes. Several lines of experimental evidence support a critical role of ADK in different types of brain injury associated with astrogliosis, which is also a prominent morphologic feature of temporal lobe epilepsy (TLE). We hypothesized that dysregulation of ADK is an ubiquitous pathologic hallmark of TLE. Using immunocytochemistry and Western blot analysis, we investigated ADK protein expression in a rat model of TLE during epileptogenesis and the chronic epileptic phase and compared those findings with tissue resected from TLE patients with mesial temporal sclerosis (MTS). In rat control hippocampus and cortex, a low baseline expression of ADK was found with mainly nuclear localization. One week after the electrical induction of status epilepticus (SE), prominent up-regulation of ADK became evident in astrocytes with a characteristic cytoplasmic localization. This increase in ADK persisted at least for 3-4 months after SE in rats developing a progressive form of epilepsy. In line with the findings from the rat model, expression of astrocytic ADK was also found to be increased in the hippocampus and temporal cortex of patients with TLE. In addition, in vitro experiments in human astrocyte cultures showed that ADK expression was increased by several proinflammatory molecules (interleukin-1β and lipopolysaccharide). These results suggest that dysregulation of ADK in astrocytes is a common pathologic hallmark of TLE. Moreover, in vitro data suggest the existence of an additional layer of modulatory crosstalk between the astrocyte-based adenosine cycle and inflammation. Whether this interaction also can play a role in vivo needs to be further investigated. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  1. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes

    Directory of Open Access Journals (Sweden)

    Barbara eDi Benedetto

    2016-02-01

    Full Text Available Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD. Recently, a significant reduction in the coverage of blood vessels (BVs by aquaporin-4 (AQP-4-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB, we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR astrocyte processes with respect to nonselected Wistar rats (NAB, thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression

  2. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Nina B Illarionova

    Full Text Available Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+ co-transporters. This transport is driven by the transmembrane Na(+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+ co-transporters via the 1st intracellular loop.

  3. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2017-01-01

    Full Text Available We previously found that oxygen-glucose-serum deprivation/restoration (OGSD/R induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase (PERK, eukaryotic initiation factor 2-alpha (eIF2α and activating transcription factor 4 (ATF4. We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone (0.1, 1, 10, 100 μM treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated (p-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response.

  4. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen.

    Science.gov (United States)

    Yin, Zhaobao; Lee, Eunsook; Ni, Mingwei; Jiang, Haiyan; Milatovic, Dejan; Rongzhu, Lu; Farina, Marcelo; Rocha, Joao B T; Aschner, Michael

    2011-06-01

    Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (pEbselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (pEbselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (pebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  6. The Endo-Lysosomal System of Brain Endothelial Cells Is Influenced by Astrocytes In Vitro.

    Science.gov (United States)

    Toth, Andrea E; Siupka, Piotr; P Augustine, Thomas J; Venø, Susanne T; Thomsen, Louiza B; Moos, Torben; Lohi, Hannes T; Madsen, Peder; Lykke-Hartmann, Karin; Nielsen, Morten S

    2018-03-20

    Receptor- and adsorptive-mediated transport through brain endothelial cells (BEC) of the blood-brain barrier (BBB) involves a complex array of subcellular vesicular structures, the endo-lysosomal system. It consists of several types of vesicles, such as early, recycling, and late endosomes, retromer-positive structures, and lysosomes. Since this system is important for receptor-mediated transcytosis of drugs across brain capillaries, our aim was to characterise the endo-lysosomal system in BEC with emphasis on their interactions with astrocytes. We used primary porcine BEC in monoculture and in co-culture with primary rat astrocytes. The presence of astrocytes changed the intraendothelial vesicular network and significantly impacted vesicular number, morphology, and distribution. Additionally, gene set enrichment analysis revealed that 60 genes associated with vesicular trafficking showed altered expression in co-cultured BEC. Cytosolic proteins involved in subcellular trafficking were investigated to mark transport routes, such as RAB25 for transcytosis. Strikingly, the adaptor protein called AP1-μ1B, important for basolateral sorting in epithelial cells, was not expressed in BEC. Altogether, our data pin-point unique features of BEC trafficking network, essentially mapping the endo-lysosomal system of in vitro BBB models. Consequently, our findings constitute a valuable basis for planning the optimal route across the BBB when advancing drug delivery to the brain.

  7. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection

    Directory of Open Access Journals (Sweden)

    Sauder Christian

    2008-11-01

    Full Text Available Abstract Neonatal Borna disease virus (BDV infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  8. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture.

    Directory of Open Access Journals (Sweden)

    Diana Aguirre-Rueda

    Full Text Available Alzheimer's disease (AD, a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS, and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.

  9. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  10. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  12. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization

    International Nuclear Information System (INIS)

    Chang, C.; Wan, Y.L.; Goh, C.C.; Tsai, M.J.

    1997-01-01

    Quantitative high resolution in vitro 1 H nuclear magnetic resonance spectroscopy was employed to study the metabolic effects of 3-nitropropionic acid associated with aging from perchloric acid extracts of rat striata. Systemic injection of 3-nitropropionic acid in rats at a dose of 10 mg/kg/day for seven consecutive days significantly impaired energy metabolism in rats one, four and eight months of age, as evidenced by a marked elevation of succinate and lactate levels. However, a significant decrease in N-acetyl-l-aspartate level, a neuronal marker, was observed in four- and eight-month-old rats but not in one-month-old rats. This would indicate that rats at four to eight months are more susceptible to 3-nitropropionic acid than those at one month. A significant decrease in GABA level was observed in four-month-old 3-nitropropionic acid-treated rats, which is consistent with the literature that GABAergic neurons are particularly vulnerable to 3-nitropropionic acid treatment. In addition, glutamine and glutamate levels were markedly decreased at four and eight months in 3-nitropropionic acid-treated rats. Since glutamine is synthesized predominantly in glia, the observation above suggests that 3-nitropropionic acid intoxication may involve perturbation of energy metabolism, glial injury and consequent neuronal damage. Astrocytes which are essential in the metabolism of glutamate and glutamine were used to further assess 3-nitropropionic acid-induced toxicity. Glial proliferation, mitochondrial metabolism and glutamine synthetase activity were all reduced by 3-nitropropionic acid treatment with a concomitant increase, in a dose-dependent manner, of lactate levels, suggesting that 3-nitropropionic acid is also detrimental to astrocytes in vivo and thus may affect metabolic interaction between neurons and glia.These results not only imply that 3-nitropropionic acid blocks energy metabolism prior to exerting neurotoxic damage but also demonstrate that the degree of

  13. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes

    International Nuclear Information System (INIS)

    Salazar, Miguel; Pariente, Jose Antonio; Salido, Gines Maria; Gonzalez, Antonio

    2008-01-01

    We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca 2+ ] c in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20 μM) dose dependently increases [Ca 2+ ] c , stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca 2+ -dependent, because incubation of astrocytes in the absence of extracellular Ca 2+ (medium containing 0.5 mM EGTA) and in the presence of the intracellular Ca 2+ chelator BAPTA (10 μM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage

  14. Costimulation of N-methyl-d-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes

    OpenAIRE

    Rouach, N.; Tencé, M.; Glowinski, J.; Giaume, C.

    2002-01-01

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types ...

  15. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  16. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  17. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  18. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes.

    Science.gov (United States)

    Xia, Cong-Yuan; Chu, Shi-Feng; Zhang, Shuai; Gao, Yan; Ren, Qian; Lou, Yu-Xia; Luo, Piao; Tian, Man-Tong; Wang, Zhi-Qi; Du, Guo-Hua; Tomioka, Yoshihisa; Yamakuni, Tohru; Zhang, Yi; Wang, Zhen-Zhen; Chen, Nai-Hong

    2017-08-17

    Ginsenoside Rg1 (Rg1), one of the major bioactive ingredients of Panax ginseng C. A. Mey, has neuroprotective effects in animal models of depression, but the mechanism underlying these effects is still largely unknown AIM OF THE STUDY: Gap junction intercellular communication (GJIC) dysfunction is a potentially novel pathogenic mechanism for depression. Thus, we investigated that whether antidepressant-like effects of Rg1 were related to GJIC. Primary rat prefrontal cortical and hippocampal astrocytes cultures were treated with 50μM CORT for 24h to induce gap junction damage. Rg1 (0.1, 1, or 10μM) or fluoxetine (1μM) was added 1h prior to CORT treatment. A scrape loading and dye transfer assay was performed to identify the functional capacity of gap junctions. Western blot was used to detect the expression and phosphorylation of connexin43 (Cx43), the major component of gap junctions. Treatment of primary astrocytes with CORT for 24h inhibited GJIC, decreased total Cx43 expression, and increased the phosphorylation of Cx43 at serine368 in a dose-dependent manner. Pre-treatment with 1μM and 10μM Rg1 significantly improved GJIC in CORT-treated astrocytes from the prefrontal cortex and hippocampus, respectively, and this was accompanied by upregulation of Cx43 expression and downregulation of Cx43 phosphorylation. These findings provide the first evidence indicating that Rg1 can alleviate CORT-induced gap junction dysfunction, which may have clinical significance in the treatment of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  20. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Science.gov (United States)

    Newman, Lori A; Korol, Donna L; Gold, Paul E

    2011-01-01

    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  1. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    Science.gov (United States)

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  2. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  3. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary ac...... cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes....

  4. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.

    Science.gov (United States)

    González, Antonio; Pariente, José A; Salido, Ginés M

    2007-10-31

    We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.

  5. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  6. Bi-directionally protective communication between neurons and astrocytes under ischemia.

    Science.gov (United States)

    Wu, Xiao-Mei; Qian, Christopher; Zhou, Yu-Fu; Yan, Yick-Chun; Luo, Qian-Qian; Yung, Wing-Ho; Zhang, Fa-Li; Jiang, Li-Rong; Qian, Zhong Ming; Ke, Ya

    2017-10-01

    The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Bi-directionally protective communication between neurons and astrocytes under ischemia

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Wu

    2017-10-01

    Full Text Available The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.

  8. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Renata Santos

    2017-06-01

    Full Text Available Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.

  9. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization.

    Science.gov (United States)

    Su, Zao-Zhong; Kang, Dong-Chul; Chen, Yinming; Pekarskaya, Olga; Chao, Wei; Volsky, David J; Fisher, Paul B

    2003-06-01

    Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.

  10. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuting; Zhao, Lei; Fu, Huiqun [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China); Wu, Yan [Department of Anatomy, Capital Medical University, 100069 Beijing (China); Wang, Tianlong, E-mail: litingliting258@163.com [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China)

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  11. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    International Nuclear Information System (INIS)

    Li, Yuting; Zhao, Lei; Fu, Huiqun; Wu, Yan; Wang, Tianlong

    2015-01-01

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence

  12. A critical role for astrocytes in hypercapnic vasodilation in brain

    DEFF Research Database (Denmark)

    Howarth, C; Sutherland, B A; Choi, H B

    2017-01-01

    increases in astrocyte calcium signaling which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator, PgE2, is critically dependent on brain levels of the antioxidant, glutathione. These data suggest a novel......Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3...... in brain slices with in vivo work in rats and C57Bl/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca(2+)]i...

  13. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    Science.gov (United States)

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  14. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Julia TCW

    2017-08-01

    Full Text Available Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs, via a neural progenitor cell (NPC intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals. Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium, and rapid (<30 days method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders.

  15. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis

    International Nuclear Information System (INIS)

    Massa, P.T.; ter Meulen, V.; Fontana, A.

    1987-01-01

    In search of a phenotypic marker determining genetically controlled susceptibility to delayed-type hypersensitivity (DTH) reactions in the brain-in particular, experimental autoimmune encephalomyelitis (EAE)- the authors have compared the γ-interferon (IFN-γ) induction of Ia molecules on astrocytes and macrophages from rat and mouse strains that are susceptible or resistant to this disease. They focused on Ia expression because DTH reactions to self or foreign antigens are largely mediated by lymphocytes restricted by class II (Ia) antigens of the major histocompatibility complex (MHC). The data demonstrate that Lewis (fully susceptible) and Brown Norway (BN) (fully resistant) rats are very different in that Lewis astrocytes express much higher levels of Ia than BN astrocytes. Similar data were obtained from an analysis of EAE-susceptible and -resistant mouse strains (SJL and BALB/c, respectively), which suggest that this phenomenon may be universal and not limited to only one mammalian species. At least one gene responsible for Ia hyperinduction is located outside the rat RT-1 or the mouse MHC locus. Animals congenic at the RT-1 or MHC locus of the resistant strain but with background genes of the susceptible strain exhibit intermediate levels of Ia compared to fully resistant and susceptible rodents, which fits well with the reduced EAE susceptibility of these congenic animals. Furthermore, hyperinduction of Ia is astrocyte specific, since peritoneal macrophages of susceptible and resistant strains exhibit identical profiles of Ia induction. Thus, astrocyte Ia hyperinducibility may be a major strain- and tissue-specific factor that contributes to Ia-restricted DTH reactions in the brain

  16. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  17. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J

    2017-08-08

    Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Phagocytic response of astrocytes to damaged neighboring cells.

    Directory of Open Access Journals (Sweden)

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  19. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H

    2017-06-06

    Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    Science.gov (United States)

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-07

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  1. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  2. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  3. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Science.gov (United States)

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  4. Astrocytes

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Samson, Andrew J.

    2017-01-01

    Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits.......Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits....

  5. Gene delivery into primary brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Lichota, Jacek

    model was established by co-culturing primary BCECs together with primary astrocytes, both of which were isolated from rats. This was done in order to study the possibility of using gene transfection in an environment closer to the in-vivo BBB situation. The in-vitro BBB barrier model showed trans......-endothelial electrical resistance above 200 ohm*cm2, indicating that the BCECs formed a tight polar monolayer with functional tight junctions. This was confirmed by immunostaining for the thigh junction protein ZO-1. Rat BCECs were transfected with a red fluorescence protein Hc-RED for 24 hours. Positive transfection...

  6. Intrathecal infusion of a Ca(2+)-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS.

    Science.gov (United States)

    Yin, Hong Z; Tang, Darryl T; Weiss, John H

    2007-10-01

    Elevated extracellular glutamate, resulting from a loss of astrocytic glutamate transport capacity, may contribute to excitotoxic motor neuron (MN) damage in ALS. Accounting for their high excitotoxic vulnerability, MNs possess large numbers of unusual Ca(2+)-permeable AMPA channels (Ca-AMPA channels), the activation of which triggers mitochondrial Ca(2+) overload and strong reactive oxygen species (ROS) generation. However, the causes of the astrocytic glutamate transport loss remain unexplained. To assess the role of Ca-AMPA channels on the evolution of pathology in vivo, we have examined effects of prolonged intrathecal infusion of the Ca-AMPA channel blocker, 1-naphthyl acetylspermine (NAS), in G93A transgenic rat models of ALS. In wild-type animals, immunoreactivity for the astrocytic glutamate transporter, GLT-1, was particularly strong around ventral horn MNs. However, a marked loss of ventral horn GLT-1 was observed, along with substantial MN damage, prior to onset of symptoms (90-100 days) in the G93A rats. Conversely, labeling with the oxidative marker, nitrotyrosine, was increased in the neuropil surrounding MNs in the transgenic animals. Compared to sham-treated G93A animals, 30-day NAS infusions (starting at 67+/-2 days of age) markedly diminished the loss of both MNs and of astrocytic GLT-1 labeling. These observations are compatible with the hypothesis that activation of Ca-AMPA channels on MNs contributes, likely in part through oxidative mechanisms, to loss of glutamate transporter in surrounding astrocytes.

  7. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  8. A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats.

    Science.gov (United States)

    Sun, Hong-Liu; Deng, Da-Ping; Pan, Xiao-Hong; Wang, Chao-Yun; Zhang, Xiu-Li; Chen, Xiang-Ming; Wang, Chun-Hua; Liu, Yu-Xia; Li, Shu-Cui; Bai, Xian-Yong; Zhu, Wei

    2016-03-02

    The prognosis of patients exposed to a sub-threshold dose of a proconvulsant is difficult to establish. In this study, we investigated the effect of a single sub-threshold dose of the proconvulsant pilocarpine (PILO) on the progression of seizures that were subsequently induced by daily electrical stimulation (kindling) of the amygdaloid formation. Male Sprague–Dawley rats were each implanted with an electrode in the right basolateral amygdala and an indwelling cannula in the right ventricle. The animals were randomized into groups and were administered one of the following treatments: saline, PILO, saline+L-α-aminoadipic acid (L-AAA; one dosage tested), PILO+L-AAA, or PILO+L-methionine sulfoximine (three dosages tested). Amygdaloid stimulation and electroencephalography were performed once daily. We performed immunohistochemistry and western blot for glial fibrillary acidic protein and glutamine synthetase (GS). We also assayed the enzymic activity of GS in discrete brain regions. An intraperitoneal injection of a sub-threshold PILO dose enhanced the progression of amygdaloid-kindling seizures and was accompanied by an increase in reactive-astrocyte and GS (content and activity) in the hippocampus and piriform cortex. L-AAA and L-methionine sulfoximine, inhibitors of astrocytic and GS function, respectively, abolished the effect of PILO on amygdaloid-kindling seizures. We conclude that one sub-threshold dose of a proconvulsant may enhance the progression of subsequent epilepsy and astrocytic GS may play a role in this phenomenon. Thus, a future therapy for epilepsy could be inhibition of astrocytes and/or GS.

  9. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    Science.gov (United States)

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  10. Astrocyte-neuronal interactions in epileptogenesis.

    Science.gov (United States)

    Hadera, Mussie Ghezu; Eloqayli, Haytham; Jaradat, Saied; Nehlig, Astrid; Sonnewald, Ursula

    2015-07-01

    Pentylenetetrazol, kainic acid, or pilocarpine can be used to induce seizures in animal models of epilepsy. The present Review describes disturbances in astrocyte-neuron interactions in the acute, latent, and chronic phases analyzed by magnetic resonance spectroscopy of brain tissue extracts from rats injected with [1-(13)C]glucose and [1,2-(13)C]acetate. The most consistent change after onset of seizures was the decrease in (13)C labeling of glutamate (GLU) from [1-(13) C]glucose regardless of brain area, severity, or duration of the period with seizures and toxin used. In most cases this decrease was accompanied by a reduction in glutamine (GLN) labeling from [1-(13)C]glucose, presumably as a direct consequence of the reduction in labeling of GLU and the GLU-GLN cycle. Amounts of GLN were never changed. Reduction in the content of N-acetyl aspartate (NAA) was first detectable some time after status epilepticus but before the occurrence of spontaneous seizures. This decrease can be an indication of neuronal death and/or mitochondrial impairment and might indicate beginning gliosis. It is known that gliosis occurs in the chronic phase of temporal lobe epilepsy in hippocampus, but astrocyte metabolism appears normal in this phase, indicating that the gliotic astrocytes have a somewhat reduced metabolism per volume. A decrease in (13)C labeling of GLU from [1-(13)C]glucose is a very sensitive measure for the onset of epileptogenesis, whereas reduction of NAA is first detectable later. In the chronic phases of the hippocampal formation, astrocyte metabolism is upregulated given that the number of neurons is reduced. © 2015 Wiley Periodicals, Inc.

  11. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes.

    Science.gov (United States)

    Xia, Xun; Ma, Yuan; Yang, Li-Bin; Cheng, Jing-Ming; Yang, Tao; Fan, Ke-Xia; Li, Yun-Ming; Liu, En-Yu; Cheng, Lin; Huang, Hai-Dong; Gu, Jian-Wen; Kuang, Yong-Qin

    2016-08-01

    Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

  12. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  13. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  14. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  15. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.

    Science.gov (United States)

    Brekke, Eva; Berger, Hester Rijkje; Widerøe, Marius; Sonnewald, Ursula; Morken, Tora Sund

    2017-01-01

    Neonatal hypoxia-ischemia (HI) and the delayed injury cascade that follows involve excitotoxicity, oxidative stress and mitochondrial failure. The susceptibility to excitotoxicity of the neonatal brain may be related to the capacity of astrocytes for glutamate uptake. Furthermore, the neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance for limiting this kind of injury. Also, in the neonatal brain, neurons depend upon de novo synthesis of neurotransmitters via pyruvate carboxylase in astrocytes to increase neurotransmitter pools during normal brain development. Several recent publications describing intermediary brain metabolism following neonatal HI have yielded interesting results: (1) Following HI there is a prolonged depression of mitochondrial metabolism in agreement with emerging evidence of mitochondria as vulnerable targets in the delayed injury cascade. (2) Astrocytes, like neurons, are metabolically impaired following HI, and the degree of astrocytic malfunction may be an indicator of the outcome following hypoxic and hypoxic-ischemic brain injury. (3) Glutamate transfer from neurons to astrocytes is not increased following neonatal HI, which may imply that astrocytes fail to upregulate glutamate uptake in response to the massive glutamate release during HI, thus contributing to excitotoxicity. (4) In the neonatal brain, the activity of the PPP is reduced following HI, which may add to the susceptibility of the neonatal brain to oxidative stress. The present review aims to discuss the metabolic temporal alterations observed in the neonatal brain following HI.

  16. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  17. Fatty acid-induced astrocyte ketone production and the control of food intake.

    Science.gov (United States)

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  18. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  19. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  20. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  1. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes

    Directory of Open Access Journals (Sweden)

    Sreemathi Logan

    2018-03-01

    Full Text Available Objective: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1 that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f. The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results: Our results indicate that a reduction in IGF-1 receptor (IGFR expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal

  2. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  3. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures.

    Science.gov (United States)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse K; Sørensen, Michael; Ott, Peter; Vilstrup, Hendrik; Schousboe, Arne; Keiding, Susanne; Waagepetersen, Helle S

    2013-08-01

    Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling and cerebral edema. However, ammonia may also be detoxified by the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT) leading to trapping of ammonia in alanine, which in vivo likely leaves the brain. Our aim was to investigate whether the GS inhibitor methionine sulfoximine (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO demonstrated a dose-dependent incorporation of (15)NH4 into alanine together with increased (15)N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO thereby reducing the glutamine level in brain. Thus, GS could be a potential drug target in the treatment of hyperammonemia in patients with hepatic encephalopathy.

  4. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  5. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  6. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Katz, D.M.; Kimelberg, H.K.

    1985-01-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [ 3 H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [ 3 H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [ 3 H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [ 3 H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [ 3 H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate [ 3 H]-5-HT up to 44-fold at an external [ 3 H]-5-HT concentration of 10(-7) M. Inhibition of [ 3 H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [ 3 H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [ 3 H]-5-HT uptake

  7. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    Science.gov (United States)

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  8. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    OpenAIRE

    Coiret Guyllaume; Ster Jeanne; Grewe Benjamin; Wendling Fabrice; Helmchen Fritjof; Gerber Urs; Benquet Pascal

    2012-01-01

    International audience; Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activ...

  10. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms.

    Science.gov (United States)

    Larsen, Brian Roland; MacAulay, Nanna

    2017-10-01

    During neuronal activity in the mammalian brain, the K + released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na + /K + /2Cl - cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K + ] o and [H + ] o /pH o during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K + and glutamate released into the extracellular space (the K + /Cl - cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na + / HCO3- cotransporter 1 (NBCe1), is activated by the K + -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K + transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K + transients. Isosmotic reduction of extracellular Cl - revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K + clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K + -induced astrocytic depolarization and the activity-dependent metabolism. © 2017 Wiley Periodicals, Inc.

  11. Micropit: a new cell culturing approach for characterization of solitary astrocytes and small networks of these glial cells

    Directory of Open Access Journals (Sweden)

    William Lee

    2008-12-01

    Full Text Available Astrocytes play an important role in cell-cell signaling in the mammalian central nervous system. The ability of astrocytes to communicate with surrounding cells through gap-junctional coupling or signaling via the release of transmitters makes characterization of these cells difficult in vitro and even more so in vivo. To simplify the complexity of common in vitro systems, introduced by intercellular communication between astrocytes, we developed a novel cell culturing method, in which purified rat visual cortical astrocytes were grown in spatially defined cell-adhesion wells which we termed micropits. We showed that astrocytes cultured in micropit regions were viable and exhibited similar characteristics of Ca2+ dynamics and astrocytic marker expression to those of cells cultured in non-micropit regions. Examination of intracellular Ca2+ oscillations in solitary astrocytes cultured in micropits revealed less variable oscillations than those of non-micropit grouped astrocytes, which were in contact with their neighbors. Solitary cells in micropit regions can undergo ATP-mediated astrocyte-microglia signaling, demonstrating that this culturing method can also be used to investigate glial-glial interactions in a spatially well-defined microenvironment.

  12. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  13. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  14. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    Directory of Open Access Journals (Sweden)

    Tatiana P. Morais

    2018-01-01

    Full Text Available In central nervous system, glycine receptor (GlyR is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM, a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM, as well as by nocodazole (1 μM, known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.

  15. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; de la Casa-Resino, Irene; Martinez-Ruiz, Antonio; Perez-Lopez, Marcos; Portilla, Juan C; Salido, Gines M; Gonzalez, Antonio

    2016-05-16

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    Science.gov (United States)

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection. © 2014 Wiley Periodicals, Inc.

  17. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Octavio Garcia

    2010-12-01

    Full Text Available Down's syndrome (DS is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology.Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1, an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes.These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.

  18. From in silico astrocyte cell models to neuron-astrocyte network models: A review.

    Science.gov (United States)

    Oschmann, Franziska; Berry, Hugues; Obermayer, Klaus; Lenk, Kerstin

    2018-01-01

    The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton

    International Nuclear Information System (INIS)

    Heimfarth, Luana; Silva Ferreira, Fernanda da; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; Batista Teixeira da Rocha, João; Pessoa-Pureur, Regina

    2017-01-01

    Highlights: • Diphenyl ditelluride is toxic to the cytoskeleton of neural cells in vitro. • Hypophosphorylation disrupts cytoskeletal homeostasis and causes cell dysfunction. • Calcium signaling underlies hypophosphorylation of intermediate filaments. • Actin disorganization causes altered astrocyte morphology. • Astrocyte cytoskeleton is more susceptible than neuronal cytoskeleton. - Abstract: Diphenylditelluride (PhTe) 2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe) 2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-D-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca 2+ influx downstream of NMDA receptors activated Ca 2+ -dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe) 2 , suggesting greater susceptibility of astrocytes than neurons to (PheTe) 2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca 2+ is one of the crucial signals that modulate the action of (PhTe) 2 in co-cultured astrocytes and neurons and highlights the cytoskeleton

  20. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-09-04

    Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  2. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Endocannabinoids mediate neuron-astrocyte communication.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  4. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  5. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  6. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-01-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca ++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10 -5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with ( 3 H)inositol, and basal ( 3 H) inositol phosphate (IP 1 ) accumulation was measured in the presence of Li + . Epinephrine > norepinephrine (NE) were the most active stimulants of IP 1 production. The α 1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP 1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP 1 below basal levels and when added together diminished IP 1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  7. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton.

    Science.gov (United States)

    Heimfarth, Luana; da Silva Ferreira, Fernanda; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; da Rocha, João Batista Teixeira; Pessoa-Pureur, Regina

    2017-03-15

    Diphenylditelluride (PhTe) 2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe) 2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca 2+ influx downstream of NMDA receptors activated Ca 2+ -dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe) 2 , suggesting greater susceptibility of astrocytes than neurons to (PheTe) 2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca 2+ is one of the crucial signals that modulate the action of (PhTe) 2 in co-cultured astrocytes and neurons and highlights the cytoskeleton as an end-point of the neurotoxicity of this compound. Cytoskeletal misregulation is associated with cell dysfunction, therefore, the understanding of the molecular mechanisms mediating the neurotoxicity of this compound is a matter of increasing interest since tellurium compounds are increasingly released in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Huperzine A, but not tacrine, stimulates S100B secretion in astrocyte cultures.

    Science.gov (United States)

    Lunardi, Paula; Nardin, Patrícia; Guerra, Maria Cristina; Abib, Renata; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2013-04-09

    The loss of cholinergic function in the central nervous system contributes significantly to the cognitive decline associated with advanced age and dementias. Huperzine A (HupA) is a selective inhibitor of acetylcholinesterase (AChE) and has been shown to significantly reduce cognitive impairment in animal models of dementia. Based on the importance of astrocytes in physiological and pathological brain activities, we investigated the effect of HupA and tacrine on S100B secretion in primary astrocyte cultures. S100B is an astrocyte-derived protein that has been proposed to be a marker of brain injury. Primary astrocyte cultures were exposed to HupA, tacrine, cholinergic agonists, and S100B secretion was measured by enzyme-linked immunosorbent assay (ELISA) at 1 and 24h. HupA, but not tacrine, at 100μM significantly increased S100B secretion in astrocyte cultures. Nicotine (at 100 and 1000μM) was able to stimulate S100B secretion in astrocyte cultures. Our data reinforce the idea that AChE inhibitors, particularly HupA, do not act exclusively on the acetylcholine balance. This effect of HupA could contribute to improve the cognitive deficit observed in patients, which are attributed to cholinergic dysfunction. In addition, for the first time, to our knowledge, these data indicate that S100B secretion can be modulated by nicotinic receptors, in addition to glutamate, dopamine and serotonin receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  10. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    International Nuclear Information System (INIS)

    Zhang Dan; Hu Xiaoming; Qian Li; Wilson, Belinda; Lee, Christopher; Flood, Patrick; Langenbach, Robert; Hong, J.-S.

    2009-01-01

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E 2 (PGE 2 ) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE 2 was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE 2 in enhanced astrocyte proliferation was suggested by the findings that PGE 2 production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE 2 antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE 2 to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE 2 plays an important role in astrocyte proliferation, identifying PGE 2 as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE 2 in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  11. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  12. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    Science.gov (United States)

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  13. Glucose metabolism and astrocyte-neuron interactions in the neonatal brain.

    Science.gov (United States)

    Brekke, Eva; Morken, Tora Sund; Sonnewald, Ursula

    2015-03-01

    Glucose is essentially the sole fuel for the adult brain and the mapping of its metabolism has been extensive in the adult but not in the neonatal brain, which is believed to rely mainly on ketone bodies for energy supply. However, glucose is absolutely indispensable for normal development and recent studies have shed light on glycolysis, the pentose phosphate pathway and metabolic interactions between astrocytes and neurons in the 7-day-old rat brain. Appropriately (13)C labeled glucose was used to distinguish between glycolysis and the pentose phosphate pathway during development. Experiments using (13)C labeled acetate provided insight into the GABA-glutamate-glutamine cycle between astrocytes and neurons. It could be shown that in the neonatal brain the part of this cycle that transfers glutamine from astrocytes to neurons is operating efficiently while, in contrast, little glutamate is shuttled from neurons to astrocytes. This lack of glutamate for glutamine synthesis is compensated for by anaplerosis via increased pyruvate carboxylation relative to that in the adult brain. Furthermore, compared to adults, relatively more glucose is prioritized to the pentose phosphate pathway than glycolysis and pyruvate dehydrogenase activity. The reported developmental differences in glucose metabolism and neurotransmitter synthesis may determine the ability of the brain at various ages to resist excitotoxic insults such as hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis.

    Science.gov (United States)

    Skorupa, Alexandra; Urbach, Serge; Vigy, Oana; King, Matthew A; Chaumont-Dubel, Séverine; Prehn, Jochen H M; Marin, Philippe

    2013-10-08

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting lower and upper motoneurons. Recent studies have shown that both motor neurons and non-neuronal neighbouring cells such as astrocytes and microglia contribute to disease pathology. Loss-of-function mutations in the angiogenin (ANG) gene have been identified in ALS patients. Angiogenin is enriched in motor neurons and exerts neuroprotective effects in vitro and in vivo. We have recently shown that motoneurons secrete angiogenin, and that secreted angiogenin is exclusively taken up by astrocytes, suggesting a paracrine mechanism of neuroprotection. To gain insights into astrocyte effectors of angiogenin-induced neuroprotection, we examined alterations in the astrocyte secretome induced by angiogenin treatment using quantitative proteomics based on Stable Isotope Labelling by Amino Acids in Cell Culture (SILAC). We identified 2128 proteins in conditioned media from primary cultured mouse astrocytes, including 1247 putative secreted proteins. Of these, 60 proteins showed significant regulation of secretion in response to angiogenin stimulation. Regulated proteins include chemokines and cytokines, proteases and protease inhibitors as well as proteins involved in reorganising the extracellular matrix. In conclusion, this proteomic analysis increases our knowledge of the astrocyte secretome and reveals potential molecular substrates underlying the paracrine, neuroprotective effects of angiogenin. This study provides the most extensive list of astrocyte-secreted proteins available and reveals novel potential molecular substrates of astrocyte-neuron communication. It also identifies a set of astrocyte-derived proteins that might slow down ALS disease progression. It should be relevant to a large readership of neuroscientists and clinicians, in particular those with an interest in the physiological and pathological roles of astrocytes and in the molecular and cellular mechanisms underlying

  15. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-08

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  16. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  17. Puerarin exhibits greater distribution and longer retention time in neurons than astrocytes in a co-cultured system

    Directory of Open Access Journals (Sweden)

    Shu-Yong Wei

    2015-01-01

    Full Text Available The phytoestrogen puerarin has been shown to protect neurons and astrocytes in the brain, and is therefore an attractive drug in the treatment of Alzheimer′s disease, Parkinson′s disease and cerebral ischemia. Whether puerarin exhibits the same biological processes in neurons and astrocytes in vitro has rarely been reported. In this study, cortical neurons and astrocytes of newborn Sprague-Dawley rats were separated, identified and co-cultured in a system based on Transwell membranes. The retention time and distribution of puerarin in each cell type was detected by fluorescence spectrophotometry and fluorescence microscope. The concentration of puerarin in both co-cultured and separately cultured neurons was greater than that of astrocytes. Puerarin concentration reached a maximum 20 minutes after it was added. At 60 minutes after its addition, a scant amount of drug was detected in astrocytes; however in both separately cultured and co-cultured neurons, the concentration of puerarin achieved a stable level of about 12.8 ng/mL. The results indicate that puerarin had a higher concentration and longer retention time in neurons than that observed in astrocytes.

  18. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes?

    Science.gov (United States)

    Rothman, Douglas L; De Feyter, Henk M; Maciejewski, Paul K; Behar, Kevin L

    2012-11-01

    The high in vivo flux of the glutamate/glutamine cycle puts a strong demand on the return of ammonia released by phosphate activated glutaminase from the neurons to the astrocytes in order to maintain nitrogen balance. In this paper we review several amino acid shuttles that have been proposed for balancing the nitrogen flows between neurons and astrocytes in the glutamate/glutamine cycle. All of these cycles depend on the directionality of glutamate dehydrogenase, catalyzing reductive glutamate synthesis (forward reaction) in the neuron in order to capture the ammonia released by phosphate activated glutaminase, while catalyzing oxidative deamination of glutamate (reverse reaction) in the astrocytes to release ammonia for glutamine synthesis. Reanalysis of results from in vivo experiments using (13)N and (15)N labeled ammonia and (15)N leucine in rats suggests that the maximum flux of the alanine/lactate or branched chain amino acid/branched chain amino acid transaminase shuttles between neurons and astrocytes are approximately 3-5 times lower than would be required to account for the ammonia transfer from neurons to astrocytes needed for glutamine synthesis (amide nitrogen) to sustain the glutamate/glutamine cycle. However, in the rat brain both the total ammonia fixation rate by glutamate dehydrogenase and the total branched chain amino acid transaminase activity are sufficient to support a branched chain amino acid/branched chain keto acid shuttle, as proposed by Hutson and coworkers, which would support the de novo synthesis of glutamine in the astrocyte to replace the ~20 % of neurotransmitter glutamate that is oxidized. A higher fraction of the nitrogen needs of total glutamate neurotransmitter cycling could be supported by hybrid cycles in which glutamate and tricarboxylic acid cycle intermediates act as a nitrogen shuttle. A limitation of all in vivo studies in animals conducted to date is that none have shown transfer of nitrogen for glutamine amide

  19. Primary Culture of Choroid Plexuses from Neonate Rats Containing Progenitor Cells Capable of Differentiation

    Directory of Open Access Journals (Sweden)

    Sheng-Li Huang

    2013-12-01

    Full Text Available Background: The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. Aims: To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. Study Design: Animal experimentation. Methods: The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. Results: Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. Conclusion: These experimental results indicate that the choroid plexus contains a specific cell population – progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.

  20. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  1. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.

    Science.gov (United States)

    Dienel, Gerald A

    2017-11-01

    Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways.

    Science.gov (United States)

    Fernandes, Adelaide; Barateiro, Andreia; Falcão, Ana Sofia; Silva, Sandra Leit-Ao; Vaz, Ana Rita; Brito, Maria Alexandra; Silva, Rui Fernando Marques; Brites, Dora

    2011-01-01

    Jaundice and sepsis are common neonatal conditions that can lead to neurodevelopment sequelae, namely if present at the same time. We have reported that tumor necrosis factor (TNF)-α and interleukin (IL)-1β are produced by cultured neurons and mainly by glial cells exposed to unconjugated bilirubin (UCB). The effects of these cytokines are mediated by cell surface receptors through a nuclear factor (NF)-κB-dependent pathway that we have showed to be activated by UCB. The present study was designed to evaluate the role of TNF-α and IL-1β signaling on astrocyte reactivity to UCB in rat cortical astrocytes. Exposure of astrocytes to UCB increased the expression of both TNF-α receptor (TNFR)1 and IL-1β receptor (IL-1R)1, but not TNFR2, as well as their activation, observed by augmented binding of receptors' molecular adaptors, TRAF2 and TRAF6, respectively. Silencing of TNFR1, using siRNA technology, or blockade of IL-1β cascade, using its endogenous antagonist, IL-1 receptor antagonist (IL-1ra), prevented UCB-induced cytokine release and NF-κB activation. Interestingly, lack of TNF-α signal transduction reduced UCB-induced cell death for short periods of incubation, although an increase was observed after extended exposure; in contrast, inhibition of IL-1β cascade produced a sustained blockade of astrocyte injury by UCB. Together, our data show that inflammatory pathways are activated during in vitro exposure of rat cortical astrocytes to UCB and that this activation is prolonged in time. This supports the concept that inflammatory pathways play a role in brain damage by UCB, and that they may represent important pharmacological targets. Copyright © 2010 Wiley-Liss, Inc.

  3. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Zahra eMoinfar

    2014-05-01

    Full Text Available Gap junctions (GJs are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, express different types of GJs that let them communicate with neurons, oligodendrocytes and endothelial cells of the blood brain barrier; however, the main GJ in astrocytes is connexin 43. There are different cerebral diseases in which astrocyte GJs might play a role. Several drugs have been reported to modulate gap junctional communication in the brain which can consequently have beneficial or detrimental effects on the course of treatment in certain diseases. However, the exact cellular mechanism behind those pharmaceutical efficacies on GJs is not well-understood. Accordingly, how specific drugs would affect GJs and what some consequent specific brain diseases would be are the interests of the authors of this chapter. We would focus on pharmaceutical effects on GJs on astrocytes in specific diseases where GJs could possibly play a role including: 1 migraine and a novel therapy for migraine with aura, 2 neuroautoimmune diseases and immunomodulatory drugs in the treatment of demyelinating diseases of the central nervous system such as multiple sclerosis, 3 glioma and antineoplastic and anti-inflammatory agents that are used in treating brain tumors and 4 epilepsy and anticonvulsants that are widely used for seizures therapy. All of the above-mentioned therapeutic categories can possibly affect GJs expression of astrocytes and the role is discussed in the upcoming chapter.

  4. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  5. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    Directory of Open Access Journals (Sweden)

    Carducci Claudia

    2012-04-01

    Full Text Available Abstract Background The discovery of the inherited disorders of creatine (Cr synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a D3-Creatine (D3Cr and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter, and b labelled precursors of Guanidinoacetate (GAA and Cr (Arginine, Arg; Glycine, Gly. Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1, L-arginine:glycine amidinotransferase (AGAT, and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes. In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells and 21% (astrocytes of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our

  6. Tricyclic antidepressant amitriptyline indirectly increases the proliferation of adult dentate gyrus-derived neural precursors: an involvement of astrocytes.

    Directory of Open Access Journals (Sweden)

    Shuken Boku

    Full Text Available Antidepressants increase the proliferation of neural precursors in adult dentate gyrus (DG, which is considered to be involved in the therapeutic action of antidepressants. However, the mechanism underlying it remains unclear. By using cultured adult rat DG-derived neural precursors (ADP, we have already shown that antidepressants have no direct effects on ADP. Therefore, antidepressants may increase the proliferation of neural precursors in adult DG via unknown indirect mechanism. We have also shown that amitriptyline (AMI, a tricyclic antidepressant, induces the expressions of GDNF, BDNF, FGF2 and VEGF, common neurogenic factors, in primary cultured astrocytes (PCA. These suggest that AMI-induced factors in astrocytes may increase the proliferation of neural precursors in adult DG. To test this hypothesis, we examined the effects of AMI-induced factors and conditioned medium (CM from PCA treated with AMI on ADP proliferation. The effects of CM and factors on ADP proliferation were examined with BrdU immunocytochemistry. AMI had no effect on ADP proliferation, but AMI-treated CM increased it. The receptors of GDNF, BDNF and FGF2, but not VEGF, were expressed in ADP. FGF2 significantly increased ADP proliferation, but not BDNF and GDNF. In addition, both of a specific inhibitor of FGF receptors and anti-FGF2 antibody significantly counteracted the increasing effect of CM on ADP proliferation. In addition, FGF2 in brain is mainly derived from astrocytes that are key components of the neurogenic niches in adult DG. These suggest that AMI may increase ADP proliferation indirectly via PCA and that FGF2 may a potential candidate to mediate such an indirect effect of AMI on ADP proliferation via astrocytes.

  7. Regulation of NF-κB activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    International Nuclear Information System (INIS)

    Spilsbury, Alison; Vauzour, David; Spencer, Jeremy P.E.; Rattray, Marcus

    2012-01-01

    Highlights: ► We tested the hypothesis that low concentrations of flavonoids inhibit NF-κB in astrocytes. ► Primary cultured astrocytes possess a functional κB-system, measured using luciferase assays. ► Seven flavonoids (100 nM–1 μM) failed to reduce NF-κB activity in astrocytes. ► Four flavonoids (100 nM–1 μM) failed to reduce TNFa-stimulated NF-κB activity in astrocytes. ► (−)-Epicatechin did not regulate nuclear translocation of the NF-κB subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Sustained activation of nuclear transcription factor κB (NF-κB) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-κB signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNFα, 150 ng/ml) increased NF-κB-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative IκBα construct. In addition, TNFα increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-κB activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((−)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1–1 μM) for 18 h. None of the flavonoids modulated constitutive or TNFα-induced NF-κB activity. Therefore, we conclude that NF-κB signalling in astrocytes is not a major target for flavonoids.

  8. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  9. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  10. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  11. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  12. Tachykinin NK₁ receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation.

    Science.gov (United States)

    Tumati, Suneeta; Largent-Milnes, Tally M; Keresztes, Attila I; Yamamoto, Takashi; Vanderah, Todd W; Roeske, William R; Hruby, Victor J; Varga, Eva V

    2012-06-05

    Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors. In the present work we investigated the role of glial Tachykinin NK₁ receptors in morphine withdrawal-mediated spinal microglia and astrocyte activation. Our data indicate that intrathecal co-administration (6 days, twice daily) of a selective Tachykinin NK₁ receptor antagonist (N-acetyl-L-tryptophan 3,5-bis(trifluoromethyl)benzylester (L-732,138; 20 μg/injection)) attenuates spinal microglia and astrocyte marker and pro-inflammatory mediator immunoreactivity as well as hyperalgesia in withdrawn rats. Furthermore, covalent linkage of the opioid agonist with a Tachykinin NK₁ antagonist pharmacophore yielded a bivalent compound that did not augment spinal microglia or astrocyte marker or pro-inflammatory mediator immunoreactivity and did not cause paradoxical pain sensitization upon drug withdrawal. Thus, bivalent opioid/Tachykinin NK₁ receptor antagonists may provide a novel paradigm for long-term pain management.

  13. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  14. NAD+-Carrying Mesoporous Silica Nanoparticles Can Prevent Oxidative Stress-Induced Energy Failures of Both Rodent Astrocytes and PC12 Cells

    Science.gov (United States)

    Chen, Heyu; Wang, Yao; Zhang, Jixi; Ma, Yingxin; Wang, Caixia; Zhou, Ying; Gu, Hongchen; Ying, Weihai

    2013-01-01

    Aim To test the hypothesis that NAD+-carrying mesoporous silica nanoparticles (M-MSNs@NAD+) can effectively deliver NAD+ into cells to produce cytoprotective effects. Methods & Materials NAD+ was incorporated into M-MSNs. Primary rat astrocyte cultures and PC12 cells were treated with H2O2, followed by post-treatment with M-MSNs@NAD+. After various durations of the post-treatment, intracellular NAD+ levels, intracellular ATP levels and lactate dehydrogenase (LDH) release were determined. Results & Discussion M-MSNs can be effectively loaded with NAD+. The M-MSNs@NAD+ can significantly attenuate H2O2-induced NAD+ and ATP decreases in both astrocyte cultures and PC12 cells. M-MSNs@NAD+ can also partially prevent the H2O2-induced LDH release from both astrocyte cultures and PC12 cells. In contrast, the NAD+ that is spontaneously released from the M-MSNs@NAD+ is insufficient to prevent the H2O2-induced damage. Conclusions Our study has suggested the first approach that can effectively deliver NAD+ into cells, which provides an important basis both for elucidating the roles of intracellular NAD+ in biological functions and for therapeutic applications of NAD+. Our study has also provided the first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP decreases. PMID:24040179

  15. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    International Nuclear Information System (INIS)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-01-01

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes

  16. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  17. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  18. Reactive astrocytes over express TSPO and are detected by TSPO Positron Emission Tomography Imaging

    International Nuclear Information System (INIS)

    Lavisse, Sonia; Guillermier, Martine; Herard, Anne-Sophie; Petit, Fanny; Delahaye, Marion; Van Camp, Nadja; Ben Haim, Lucile; Lebon, Vincent; Delzescaux, Thierry; Bonvento, Gilles; Hantraye, Philippe; Escartin, Carole; Remy, Philippe; Dolle, Frederic

    2012-01-01

    Astrocytes and micro-glia become reactive under most brain pathological conditions, making this neuro-inflammation process a surrogate marker of neuronal dysfunction. Neuro-inflammation is associated with increased levels of translocator protein 18kDa(TSPO) and binding sites for TSPO ligands. Positron emission tomography (PET) imaging of TSPO is thus commonly used to monitor neuro-inflammation in preclinical and clinical studies. It is widely considered that TSPO PET signal reveals reactive micro-glia, although a few studies suggested a potential contribution of reactive astrocytes. Because astrocytes and micro-glia play very different roles, it is crucial to determine whether reactive astrocytes can also over-express TSPO and yield to a detectable TSPO PET signal in vivo. We used a model of selective astrocyte activation through lentiviral gene transfer of the cytokine ciliary neuro-trophic factor (CNTF) into the rat striatum, in the absence of neuro-degeneration. CNTF induced an extensive activation of astrocytes, which over-expressed GFAP and become hypertrophic, whereas micro-glia displayed minimal increase in reactive markers.Two TSPO radioligands, [ 18 F]DPA-714[N,N-diethyl-2-(2-(4-(2-[ 18 F]fluoroethoxy)phenyl) - 5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide] and [ 11 C]SSR180575 (7-chloro-N,N-dimethyl-5-[ 11 C]methyl-4-oxo-3-phenyl - 3,5-dihydro-4H-pyridazino[4,5- b]indole-1-acetamide),showed a significant binding in the lenti-CNTF-injected striatum that was saturated and displaced by PK11195[N-methyl- N-(1-methylpropyl)-1-(2-chlorophenyl)-isoquinoline-3-carboxamide]. The volume of radioligand binding matched the GFAP immuno-positive volume. TSPO mRNA levels were significantly increased, and TSPO protein was over-expressed by CNTF-activated astrocytes. We show that reactive astrocytes over-express TSPO, yielding to a significant and selective binding of TSPO radioligands. Therefore, caution must be used when interpreting TSPO PET imaging in animals or

  19. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  20. Nerve Root Compression Increases Spinal Astrocytic Vimentin in Parallel With Sustained Pain and Endothelial Vimentin in Association With Spinal Vascular Reestablishment.

    Science.gov (United States)

    Smith, Jenell R; Lee, Jasmine; Winkelstein, Beth A

    2017-10-01

    Temporal immunohistochemistry analysis of spinal cord tissue from a rat model of cervical radiculopathy. The goal was to measure spinal endothelial and astrocytic vimentin expression after a painful nerve root compression to define spinal cellular expression of vimentin in the context of pain. The intermediate filament, vimentin, is expressed in a variety of cell types in the spinal cord and is modulated in response to neural pathologies. Early after nerve root compression spinal astrocytes become activated and blood-spinal cord barrier (BSCB) breakdown occurs in parallel with development of pain-related behaviors; these spinal responses remain activated as does the presence of pain. In addition to vimentin, glial fibrillary acidic protein (GFAP) expression is a hallmark of astrocyte activation. In contrast, vascular endothelial cells down-regulate vimentin expression in parallel with vascular breakdown. It is not known whether spinal astrocytes and endothelial cells modulate their expression of vimentin in response to a painful neural injury. Mechanical hyperalgesia was measured and spinal cord tissue was harvested at days 1 and 7 after a unilateral nerve root compression in rats. Vimentin was coimmunolabeled with GFAP to label astrocytes and von Willebrand factor (VWF) for endothelial cells in the spinal cord on the side of injury. Spinal astrocytic vimentin increases by day 7 after nerve root compression, corresponding to when mechanical hyperalgesia is maintained. Spinal endothelial vimentin increases as early as day 1 after a painful compression and is even more robust at day 7. The delayed elevation in spinal astrocytic vimentin corresponding to sustained mechanical hyperalgesia supports its having a relationship with pain maintenance. Further, since BSCB integrity has been shown to be reestablished by day 7 after a painful compression, endothelial expressed vimentin may help to fortify spinal vasculature contributing to BSCB stability. N/A.

  1. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  2. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  3. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  4. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  5. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  6. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  7. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  9. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly......Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  10. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  11. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Spilsbury, Alison [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom); Vauzour, David; Spencer, Jeremy P.E. [Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP (United Kingdom); Rattray, Marcus, E-mail: m.a.n.rattray@reading.ac.uk [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  12. Spatial organization of astrocytes in ferret visual cortex

    Science.gov (United States)

    López‐Hidalgo, Mónica; Hoover, Walter B.

    2016-01-01

    ABSTRACT Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27072916

  13. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  14. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading.

    Science.gov (United States)

    Loria, Frida; Vargas, Jessica Y; Bousset, Luc; Syan, Sylvie; Salles, Audrey; Melki, Ronald; Zurzolo, Chiara

    2017-11-01

    Recent evidence suggests that disease progression in Parkinson's disease (PD) could occur by the spreading of α-synuclein (α-syn) aggregates between neurons. Here we studied the role of astrocytes in the intercellular transfer and fate of α-syn fibrils, using in vitro and ex vivo models. α-Syn fibrils can be transferred to neighboring cells; however, the transfer efficiency changes depending on the cell types. We found that α-syn is efficiently transferred from astrocytes to astrocytes and from neurons to astrocytes, but less efficiently from astrocytes to neurons. Interestingly, α-syn puncta are mainly found inside the lysosomal compartments of the recipient cells. However, differently from neurons, astrocytes are able to efficiently degrade fibrillar α-syn, suggesting an active role for these cells in clearing α-syn deposits. Astrocytes co-cultured with organotypic brain slices are able to take up α-syn fibrils from the slices. Altogether our data support a role for astrocytes in trapping and clearing α-syn pathological deposits in PD.

  16. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.

    Science.gov (United States)

    Priego, Neibla; Zhu, Lucía; Monteiro, Cátia; Mulders, Manon; Wasilewski, David; Bindeman, Wendy; Doglio, Laura; Martínez, Liliana; Martínez-Saez, Elena; Cajal, Santiago Ramón Y; Megías, Diego; Hernández-Encinas, Elena; Blanco-Aparicio, Carmen; Martínez, Lola; Zarzuela, Eduardo; Muñoz, Javier; Fustero-Torres, Coral; Pineiro, Elena; Hernández-Laín, Aurelio; Bertero, Luca; Poli, Valeria; Sánchez-Martínez, Melchor; Menendez, Javier A; Soffietti, Riccardo; Bosch-Barrera, Joaquim; Valiente, Manuel

    2018-06-11

    The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.

  17. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  18. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Gu Bin

    2011-12-01

    Full Text Available Abstract Background Human herpesvirus 6 (HHV-6 is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs during productive HHV-6A infection and the underlying mechanisms. Results HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP, which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. Conclusion This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.

  19. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication.

    Science.gov (United States)

    Patrushev, Ilya; Gavrilov, Nikolay; Turlapov, Vadim; Semyanov, Alexey

    2013-11-01

    Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Astrocyte-neuron communication: functional consequences.

    Science.gov (United States)

    Ben Achour, Sarrah; Pascual, Olivier

    2012-11-01

    Astrocyte-neuron communication has recently been proposed as a potential mechanism participating to synaptic transmission. With the development of this concept and accumulating evidences in favor of a modulation of synaptic transmission by astrocytes, has emerged the term gliotransmission. It refers to the capacity of astrocytes to release various transmitters, such as ATP, glutamate, D-serine, and GABA in the vicinity of synapses. While the cellular mechanisms involved in gliotransmission still need to be better described and, for some, identified, the aim of more and more studies is to determine the role of astrocytes from a functional point of view. This review will summarize the principal studies that have investigated a potential role of astrocytes in the various functions regulated by the brain (sleep, breathing, perception, learning and memory…). This will allow us to highlight the similarities and discrepancies in the signaling pathways involved in the different areas of the brain related to these functions.

  1. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. © 2015 Wiley Periodicals, Inc.

  2. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  3. Involvement of astrocytes in neurovascular communication.

    Science.gov (United States)

    Nuriya, M; Hirase, H

    2016-01-01

    The vascular interface of the brain is distinct from that of the peripheral tissue in that astrocytes, the most numerous glial cell type in the gray matter, cover the vasculature with their endfeet. This morphological feature of the gliovascular junction has prompted neuroscientists to suggest possible functional roles of astrocytes including astrocytic modulation of the vasculature. Additionally, astrocytes develop an intricate morphology that intimately apposes neuronal synapses, making them an ideal cellular mediator of neurovascular coupling. In this article, we first introduce the classical anatomical and physiological findings that led to the proposal of various gliovascular interaction models. Next, we touch on the technological advances in the past few decades that enabled investigations and evaluations of neuro-glio-vascular interactions in situ. We then review recent experimental findings on the roles of astrocytes in neurovascular coupling from the viewpoints of intra- and intercellular signalings in astrocytes. © 2016 Elsevier B.V. All rights reserved.

  4. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  6. Computational Models for Calcium-Mediated Astrocyte Functions

    Directory of Open Access Journals (Sweden)

    Tiina Manninen

    2018-04-01

    Full Text Available The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop

  7. Computational Models for Calcium-Mediated Astrocyte Functions.

    Science.gov (United States)

    Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena

    2018-01-01

    The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro , but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus

  8. Large-scale recording of astrocyte activity

    Science.gov (United States)

    Nimmerjahn, Axel; Bergles, Dwight E.

    2015-01-01

    Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is critical for defining their roles in the healthy and diseased CNS. PMID:25665733

  9. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    Science.gov (United States)

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  10. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes.

    Science.gov (United States)

    Uemura, Akiyoshi; Kusuhara, Sentaro; Wiegand, Stanley J; Yu, Ruth T; Nishikawa, Shin-ichi

    2006-02-01

    In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.

  11. New tools for investigating astrocyte-to-neuron communication.

    Science.gov (United States)

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-10-29

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca(2+))-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca(2+) indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca(2+) indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca(2+) signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca(2+) signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.

  12. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  13. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  14. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal

  15. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    Science.gov (United States)

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2017-04-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  16. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  17. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  18. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    Science.gov (United States)

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors

  19. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    Science.gov (United States)

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-01

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β.

    Science.gov (United States)

    Brockett, Adam T; Kane, Gary A; Monari, Patrick K; Briones, Brandy A; Vigneron, Pierre-Antoine; Barber, Gabriela A; Bermudez, Andres; Dieffenbach, Uma; Kloth, Alexander D; Buschman, Timothy J; Gould, Elizabeth

    2018-01-01

    The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100β, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations. We further show that reduction of astrocyte number in the mPFC impairs cognitive flexibility and diminishes delta, alpha and gamma power. Conversely, chemogenetic activation of astrocytic intracellular Ca2+ signaling in the mPFC enhances cognitive flexibility, while inactivation of endogenous S100β among chemogenetically activated astrocytes in the mPFC prevents this improvement. Collectively, our work suggests that astrocytes make important contributions to cognitive flexibility and that they do so by releasing a Ca2+ binding protein which in turn enhances coordinated neuronal oscillations.

  1. Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa on Brain Astrocytes

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2013-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.

  2. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  3. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats.

    Directory of Open Access Journals (Sweden)

    Hui Qun Fu

    Full Text Available Inflammation is a hallmark of several disease states ranging from neurodegeneration to sepsis but is also implicated in physiological processes like ageing. Non-resolving inflammation and prolonged neuroinflammation are unclear processes implicated in several conditions, including ageing. In this study we studied the long-term effects of endotoxemia, as systemic lipopolysaccharide (LPS injection, focusing on the role of astrocyte activation and cytokine release in the brain of aged rats. A single dose of LPS (2 mg/kg or 0.9% saline was injected intraperitoneally in aged rats. Levels of pro-inflammatory cytokines (TNFα and IL-1β and NF-κB p65 activation were measured systemically and in hippocampal tissue. Astrocytes and cytokines release in the CNS were detected via double immunofluorescence staining at different time-points up to day 30. Serum levels of TNFα and IL-1β were significantly increased acutely after 30 minutes (p<0.001 and up to 6 hours (p<0.001 following LPS-injection. Centrally, LPS-treated rats showed up-regulated mRNA expression and protein levels of pro-inflammatory cytokines in the hippocampus. These changes associated with astrogliosis in the hippocampus dentate gyrus (DG, IL-1β immunoreactivity and elevated NF-κB p65 expression up to day 30 post LPS exposure. Overall, these data demonstrate that LPS induces prolonged neuroinflammation and astrocyte activation in the hippocampus of aged rats. Hippocampal NF-κB p65 and excessive astrocytes-derived IL-1β release may play a pivotal role in regulating long-lasting neuroinflammation.

  4. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  5. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  6. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...

  7. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes

    International Nuclear Information System (INIS)

    Chamaon, Kathrin; Kirches, Elmar; Kanakis, Dimitrios; Braeuninger, Stefan; Dietzmann, Knut; Mawrin, Christian

    2005-01-01

    The reasons for overexpression of the oncogene pituitary tumor transforming gene (PTTG) in tumors are still not fully understood. A possible influence of the insulin-like growth factor I (Igf-I) may be of interest, since enhanced Igf-I signalling was reported in various human tumors. We examined the influence of Igf-I and insulin on PTTG expression in human astrocytoma cells in comparison to proliferating non-neoplastic rat embryonal astrocytes. PTTG mRNA expression and protein levels were increased in malignant astrocytes treated with Igf-I or insulin, whereas in rat embryonic astrocytes PTTG expression and protein levels increased only when cells were exposed to Igf-I. Enhanced transcription did not occur after treatment with inhibitors of phosphoinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK), blocking the two basic signalling pathways of Igf-I and insulin. In addition to this transcriptional regulation, both kinases directly bind to PTTG, suggesting a second regulatory route by phosphorylation. However, the interaction of endogenous PTTG with MAPK and PI3K, as well as PTTG phosphorylation were independent from Igf-I or insulin. The latter results were also found in human testis, which contains high PTTG levels as well as in nonneoplastic astrocytes. This suggest, that PI3K and MAPK signalling is involved in PTTG regulation not only in malignant astrocytomas but also in non-tumorous cells

  8. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  9. A phase plane analysis of neuron-astrocyte interactions.

    Science.gov (United States)

    Amiri, Mahmood; Montaseri, Ghazal; Bahrami, Fariba

    2013-08-01

    Intensive experimental studies have shown that astrocytes are active partners in modulation of synaptic transmission. In the present research, we study neuron-astrocyte signaling using a biologically inspired model of one neuron synapsing one astrocyte. In this model, the firing dynamics of the neuron is described by the Morris-Lecar model and the Ca(2+) dynamics of a single astrocyte explained by a functional model introduced by Postnov and colleagues. Using the coupled neuron-astrocyte model and based on the results of the phase plane analyses, it is demonstrated that the astrocyte is able to activate the silent neuron or change the neuron spiking frequency through bidirectional communication. This suggests that astrocyte feedback signaling is capable of modulating spike transmission frequency by changing neuron spiking frequency. This effect is described by a saddle-node on invariant circle bifurcation in the coupled neuron-astrocyte model. In this way, our results suggest that the neuron-astrocyte crosstalk has a fundamental role in producing diverse neuronal activities and therefore enhances the information processing capabilities of the brain. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  11. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  12. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Shamaladevi, Nagarajarao; Abuzamel, Missa; Johnstone, Joshua; Gaidosh, Gabriel; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2014-11-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over

  13. The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation.

    Science.gov (United States)

    Szekiova, Eva; Slovinska, Lucia; Blasko, Juraj; Plsikova, Jana; Cizkova, Dasa

    2018-04-01

    Objectives In this study, a new approach was used with an in vitro model in which neural cells were exposed to conditioned media from the injured spinal cord (SCI-CM) mimicking a local inflammatory microenvironment . Subsequently, the neuroprotective effect of rat adipose tissue-derived msesenchymal stem cell-conditioned media (ATMSC-CM) was investigated through a cell-free based therapy, which was used to treat cortical neurons and astrocytes under inflammation. Methods Primary cell cultures isolated from postnatal day (P6) Wistar rat brain cortex were exposed to SCI-CM derived from the central lesion, rostral and caudal segments of injured spinal cord. After 48 h incubation, the SCI-CM was replaced and primary cultures were cultivated either in DMEM media alone or in ATMSC-CM for 72 h. The impact of ATMSC-CM on the viability of neurons and astrocytes was assessed using a CyQUANT® Direct Cell Proliferation Assay Kit as well as immunocytochemistry analysis. Results Immunocytochemical analysis revealed significant decrease in the number of MAP2 positive neurons exposed to SCI-CM compared to Control. Protection by ATMSC-CM was associated with increased survival of neurons compared to primary culture cultivated in DMEM media alone. The ATMSC-CM effect on astrocytes was more variable and without any significant impact. Conclusion The results demonstrate that SCI-CM mimicking inflammation can reduce cortical neuron survival, and subsequent exposure to ATMSC-CM can stabilize the neuronal population most likely via released neuroprotective and trophic factors. In addition, astrogliosis was not affected by ATMSC-CM.

  14. Amyloid beta(1-40-induced astrogliosis and the effect of genistein treatment in rat: a three-dimensional confocal morphometric and proteomic study.

    Directory of Open Access Journals (Sweden)

    Maryam Bagheri

    Full Text Available Astrocytes are highly involved in regulation and homeostasis of the extracellular environment in the healthy brain. In pathological conditions, these cells play a major role in the inflammatory response seen in CNS tissues, which is called reactive astrogliosis and includes hypertrophy and proliferation of astrocytes. Here, we performed 3D confocal microscopy to evaluate the morphological response of reactive astrocytes positive for glial fibrillary acidic protein (GFAP in rats, to the presence of Aβ(1-40 in the rat brain before and after treatment with genistein. In 50 astrocytes per animal, we measured the volume and surface area for the nucleus, cell body, the entire cell, the tissue covered by single astrocytes and quantified the number and length of branches, the density of the astrocytes and the intensity of GFAP immunoreactivity. Injecting Aβ(1-40 into the brain of rats caused astrogliosis indicated by increased values for all measured parameters. Mass spectrometric analysis of hippocampal tissue in Aβ(1-40-injected brain showed decreased amounts of tubulins, enolases and myelin basic protein, and increased amounts of dihydropyrimidinase-related protein 2. In Aβ(1-40-injected rats pretreated with genistein, GFAP intensity was decreased to the sham-operated group level, and Aβ(1-40-induced astrogliosis was significantly ameliorated.

  15. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  16. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes.

    Science.gov (United States)

    Diniz, Daniel Guerreiro; de Oliveira, Marcus Augusto; de Lima, Camila Mendes; Fôro, César Augusto Raiol; Sosthenes, Marcia Consentino Kronka; Bento-Torres, João; da Costa Vasconcelos, Pedro Fernando; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço

    2016-10-10

    Few studies have explored the glial response to a standard environment and how the response may be associated with age-related cognitive decline in learning and memory. Here we investigated aging and environmental influences on hippocampal-dependent tasks and on the morphology of an unbiased selected population of astrocytes from the molecular layer of dentate gyrus, which is the main target of perforant pathway. Six and twenty-month-old female, albino Swiss mice were housed, from weaning, in a standard or enriched environment, including running wheels for exercise and tested for object recognition and contextual memories. Young adult and aged subjects, independent of environment, were able to distinguish familiar from novel objects. All experimental groups, except aged mice from standard environment, distinguish stationary from displaced objects. Young adult but not aged mice, independent of environment, were able to distinguish older from recent objects. Only young mice from an enriched environment were able to distinguish novel from familiar contexts. Unbiased selected astrocytes from the molecular layer of the dentate gyrus were reconstructed in three-dimensions and classified using hierarchical cluster analysis of bimodal or multimodal morphological features. We found two morphological phenotypes of astrocytes and we designated type I the astrocytes that exhibited significantly higher values of morphological complexity as compared with type II. Complexity = [Sum of the terminal orders + Number of terminals] × [Total branch length/Number of primary branches]. On average, type I morphological complexity seems to be much more sensitive to age and environmental influences than that of type II. Indeed, aging and environmental impoverishment interact and reduce the morphological complexity of type I astrocytes at a point that they could not be distinguished anymore from type II. We suggest these two types of astrocytes may have different physiological roles

  17. Patterning of functional human astrocytes onto parylene-C/SiO2 substrates for the study of Ca2+ dynamics in astrocytic networks

    Science.gov (United States)

    Raos, B. J.; Simpson, M. C.; Doyle, C. S.; Murray, A. F.; Graham, E. S.; Unsworth, C. P.

    2018-06-01

    Objective. Recent literature suggests that astrocytes form organized functional networks and communicate through transient changes in cytosolic Ca2+. Traditional techniques to investigate network activity, such as pharmacological blocking or genetic knockout, are difficult to restrict to individual cells. The objective of this work is to develop cell-patterning techniques to physically manipulate astrocytic interactions to enable the study of Ca2+ in astrocytic networks. Approach. We investigate how an in vitro cell-patterning platform that utilizes geometric patterns of parylene-C on SiO2 can be used to physically isolate single astrocytes and small astrocytic networks. Main results. We report that single astrocytes are effectively isolated on 75  ×  75 µm square parylene nodes, whereas multi-cellular astrocytic networks are isolated on larger nodes, with the mean number of astrocytes per cluster increasing as a function of node size. Additionally, we report that astrocytes in small multi-cellular clusters exhibit spatio-temporal clustering of Ca2+ transients. Finally, we report that the frequency and regularity of Ca2+ transients was positively correlated with astrocyte connectivity. Significance. The significance of this work is to demonstrate how patterning hNT astrocytes replicates spatio-temporal clustering of Ca2+ signalling that is observed in vivo but not in dissociated in vitro cultures. We therefore highlight the importance of the structure of astrocytic networks in determining ensemble Ca2+ behaviour.

  18. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  19. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  20. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  1. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    Science.gov (United States)

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    glioprotective action of Pituitary adenylate cyclase-activating polypeptide (PACAP) against H2 O2 -induced astrocyte damages and cell apoptosis in cultured rat astrocytes. PACAP, through activation of its receptor, PAC1-R, and the protein kinase A (PKA), protein kinase C (PKC), and MAP-kinases signaling pathways, prevents accumulation of ROS and inhibition of SOD and catalase activities. This allows the preservation of mitochondrial membrane integrity and the reduction in caspase-3 activation induced by H2 O2 . These data may lead to the development of new strategies for cerebral injury treatment. Cat, catalase; Cyt. C, cytochrome C; SOD, superoxide dismutase. © 2016 International Society for Neurochemistry.

  2. Estradiol Uses Different Mechanisms in Astrocytes from the Hippocampus of Male and Female Rats to Protect against Damage Induced by Palmitic Acid

    Directory of Open Access Journals (Sweden)

    Laura M. Frago

    2017-10-01

    Full Text Available An excess of saturated fatty acids can be toxic for tissues, including the brain, and this has been associated with the progression of neurodegenerative diseases. Since palmitic acid (PA is a free fatty acid that is abundant in the diet and circulation and can be harmful, we have investigated the effects of this fatty acid on lipotoxicity in hippocampal astrocytes and the mechanism involved. Moreover, as males and females have different susceptibilities to some neurodegenerative diseases, we accessed the responses of astrocytes from both sexes, as well as the possible involvement of estrogens in the protection against fatty acid toxicity. PA increased endoplasmic reticulum stress leading to cell death in astrocytes from both males and females. Estradiol (E2 increased the levels of protective factors, such as Hsp70 and the anti-inflammatory cytokine interleukin-10, in astrocytes from both sexes. In male astrocytes, E2 decreased pJNK, TNFα, and caspase-3 activation. In contrast, in female astrocytes E2 did not affect the activation of JNK or TNFα levels, but decreased apoptotic cell death. Hence, although E2 exerted protective effects against the detrimental effects of PA, the mechanisms involved appear to be different between male and female astrocytes. This sexually dimorphic difference in the protective mechanisms induced by E2 could be involved in the different susceptibilities of males and females to some neurodegenerative processes.

  3. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  4. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  5. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  6. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  7. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    Science.gov (United States)

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  8. The multi-dimensional roles of astrocytes in ALS.

    Science.gov (United States)

    Yamanaka, Koji; Komine, Okiru

    2018-01-01

    Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Podocalyxin expression in malignant astrocytic tumors

    International Nuclear Information System (INIS)

    Hayatsu, Norihito; Kaneko, Mika Kato; Mishima, Kazuhiko; Nishikawa, Ryo; Matsutani, Masao; Price, Janet E.; Kato, Yukinari

    2008-01-01

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors

  10. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  11. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Directory of Open Access Journals (Sweden)

    Kim M Lee

    Full Text Available BACKGROUND: Self-injurious behavior (SIB is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. METHODS: We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP and Toll-like receptor 2 (TLR2. Morphologic features of astrocytes were determined using computer-assisted camera lucida. RESULTS: There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. CONCLUSIONS: These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  12. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy

    2011-01-12

    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.

  13. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    International Nuclear Information System (INIS)

    Stiene-Martin, A.; Hauser, K.F.

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 μM met-enkephalin, 1 μM met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined [ 3 H]-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in [ 3 H]-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture

  14. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  15. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.

    Science.gov (United States)

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H; Whittemore, Scott R; Cao, Qilin L

    2011-04-20

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

  16. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  17. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  18. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    Science.gov (United States)

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  19. A Novel Method for Assessing Sex-Specific and Genotype-Specific Response to Injury in Astrocyte Culture

    Science.gov (United States)

    Liu, Mingyue; Oyarzabal, Esteban; Yang, Rui; Murphy, Stephanie J; Hurn, Patricia D.

    2008-01-01

    Female astrocytes sustain less cell death from oxygen-glucose deprivation (OGD) than male astrocytes. Arimidex, an aromatase inhibitor, abolishes these sex differences. To verify sex-dependent differences in P450 aromatase function in astrocyte cell death following OGD, we developed a novel method that uses sex-specific and genotype-specific single pup primary astrocyte cultures from wild-type (WT) and aromatase-knockout (ArKO) mice. After determining sex by external and internal examination as well as PCR and genotype by PCR amplification of tail cDNA, we established cultures from 1−3 day-old male and female, WT and ArKO mice pups and grew them to confluence in estrogen-free media. Cell death was measured by lactate dehydrogenase (LDH) assay. Our study shows that, while WT female astrocytes are more resistant to OGD than WT male cells, sex differences disappear in ArKO cells. Cell death is significantly increased in ArKO compared to WT in female astrocytes but not male cells. Therefore, P450 aromatase appears to be essential in endogenous neuroprotection in females, and this finding may have clinical implications. This innovative technique may also be applied to other in vitro studies of sex-related functional differences. PMID:18436308

  20. The role of astrocytes in multiple sclerosis pathogenesis.

    Science.gov (United States)

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  2. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  3. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Kielian, Tammy

    2012-07-01

    Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.

  4. New tools for investigating astrocyte-to-neuron communication

    OpenAIRE

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-01-01

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+)-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) ...

  5. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  6. Disentangling the role of astrocytes in alcohol use disorder

    Science.gov (United States)

    Adermark, Louise; Bowers, M. Scott

    2016-01-01

    Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol exposure in both humans and animal models, as even brief ethanol exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of ethanol and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder, astrocytes might be an important target for the development of next generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long term ethanol exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of alcohol use disorder. PMID:27476876

  7. Human microglia and astrocytes express cGAS-STING viral sensing components.

    Science.gov (United States)

    Jeffries, Austin M; Marriott, Ian

    2017-09-29

    While microglia and astrocytes are known to produce key inflammatory and anti-viral mediators following infection with replicative DNA viruses, the mechanisms by which these cell types perceive such threats are poorly understood. Recently, cyclic GMP-AMP synthase (cGAS) has been identified as an important cytosolic sensor for DNA viruses and retroviruses in peripheral leukocytes. Here we confirm the ability of human microglial and astrocytic cell lines and primary human glia to respond to foreign intracellular double stranded DNA. Importantly, we provide the first demonstration that human microglia and astrocytes show robust levels of cGAS protein expression at rest and following activation. Furthermore, we show these cell types also constitutively express the critical downstream cGAS adaptor protein, stimulator of interferon genes (STING). The present finding that human glia express the principle components of the cGAS-STING pathway provides a foundation for future studies to investigate the relative importance of these molecules in clinically relevant viral CNS infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  9. Astrocytes expressing ALS‐linked mutant FUS induce motor neuron death through release of tumor necrosis factor‐alpha

    Science.gov (United States)

    Kia, Azadeh; McAvoy, Kevin; Krishnamurthy, Karthik; Trotti, Davide

    2018-01-01

    Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N‐terminally GFP tagged R521G mutant or wild‐type FUS (WTFUS) and show that mutFUS‐expressing astrocytes undergo astrogliosis, damage co‐cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor‐Alpha (TNFα) is secreted into ACM of mutFUS‐expressing astrocytes. Accordingly, mutFUS astrocyte‐mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR‐mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS‐ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS‐linked ALS. PMID:29380416

  10. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    Science.gov (United States)

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  12. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  13. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Abreu, Maria T; Norenberg, Michael D

    2014-03-01

    Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents. © 2013 International Society for Neurochemistry.

  14. Astrocyte mega-domain hypothesis of the autistic savantism.

    Science.gov (United States)

    Mitterauer, Bernhard J

    2013-01-01

    Individuals with autism who show high abilities are called savants. Whereas in their brains a disconnection in and between neural networks has been identified, savantism is yet poorly understood. Focusing on astrocyte domain organization, it is hypothesized that local astrocyte mega-organizations may be responsible for exerting high capabilities in brains of autistic savants. Astrocytes, the dominant glial cell type, modulate synaptic information transmission. Each astrocyte is organized in non-overlapping domains. Formally, each astrocyte contacting n-neurons with m-synapses via its processes generates dynamic domains of synaptic interactions based on qualitative computation criteria, and hereby it structures neuronal information processing. If the number of processes is genetically significantly increased, these astrocytes operate in a mega-domain with a higher complexitiy of computation. From this model savant abilities are deduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  16. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  18. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille

    2015-01-01

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  19. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; RASH, JOHN E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contain...

  20. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    Science.gov (United States)

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  1. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Rosager, Ann Mari; Sørensen, Mia D; Dahlrot, Rikke H

    2017-01-01

    Astrocytic brain tumors are the most frequent primary brain tumors. Treatment with radio- and chemotherapy has increased survival making prognostic biomarkers increasingly important. The aim of the present study was to investigate the expression and prognostic value of transferrin receptor-1 (TfR...

  2. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  3. Neuron-astrocyte signaling is preserved in the aging brain.

    Science.gov (United States)

    Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso

    2017-04-01

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley

  4. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge.

    Science.gov (United States)

    Wang, Yu-Feng; Sun, Min-Yu; Hou, Qiuling; Hamilton, Kathryn A

    2013-04-01

    The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes.

    Science.gov (United States)

    Noguchi, Yusuke; Shinozaki, Youichi; Fujishita, Kayoko; Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  6. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Science.gov (United States)

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  7. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Directory of Open Access Journals (Sweden)

    Carlos Barcia

    2008-08-01

    Full Text Available Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV

  8. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  9. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  10. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    Directory of Open Access Journals (Sweden)

    Andrea eGoudriaan

    2014-01-01

    Full Text Available Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova et al., 1997, and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.

  11. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs

    Directory of Open Access Journals (Sweden)

    Justin Cohen

    2017-08-01

    Full Text Available With the advent of highly active antiretroviral therapy (HAART survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD, we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs. Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.

  12. Recent molecular approaches to understanding astrocyte function in vivo

    Directory of Open Access Journals (Sweden)

    David eDavila

    2013-12-01

    Full Text Available Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

  13. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Science.gov (United States)

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  14. Elucidating the Role of Injury-Induced Electric Fields (EFs in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Matthew L Baer

    Full Text Available Injury to the vertebrate central nervous system (CNS induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  15. SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes.

    Science.gov (United States)

    Alves, Lisa; Khosravi, Mojtaba; Avila, Mislay; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Vandevelde, Marc; Plattet, Philippe

    2015-05-01

    Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that

  16. Neuroprotective and Ameliorating Impacts of Omega-3 Against Aspartame-induced Neuronal and Astrocytic Degeneration.

    Science.gov (United States)

    Ali, Eyad M T; Sonpol, Hany M A

    2017-07-01

    Aspartame (ASP) is one of the commonest artificial sweetener used all over the world and considered as an extremely risky compound and raises a lot of controversy. Therefore, this study was designed to investigate cellular damage of the anterior horn cells in the spinal cord of albino male rats and the possibility of hindering these changes by using omega-3 (OM3).Thirty seven adult male albino rats were divided into three groups: Control, ASP-treated and ASP + OM3-treated groups. Spinal cord sections were prepared and stained with Hx&E, caspase-3 and GFAP immunostaining. All data were morphometrically and statistically analyzed. In ASP-treated group, the cell body of some degenerated neurons was swollen and its cytoplasm was vacuolated. Their nuclei were eccentric and pyknotic. Moreover, other neurons were of a heterogeneous pattern in the form of cell body shrinkage, loss of Nissl substance, intensely stained eosinophilic cytoplasm and a small darkly stained nucleus that may eventually fragment. However, the cells were apparently normal in ASP+ OM3-treated group. Strong +ve caspase-3 stained neurons were detected in ASP-treated group. Furthermore, the immunoreaction was faint on treating the rats with both ASP and OM3. Few number of +ve GFAP- stained astrocytes were observed in ASP-treated rats. On the other hand, the immunoreactivity for GFAP was found to be intense in the ASP + OM3-treated group. Additionally, there was a significant decrease in the surface area percentage of the +ve GFAP-stained astrocytes of the ASP-treated group compared to the control and the ASP + OM3-treated groups. Anat Rec, 300:1290-1298, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  18. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  19. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  20. [Optogenetic activation of dorsal hippocampal astrocytic Rac1 blocks the learning of associative memory].

    Science.gov (United States)

    Guo, Xiao-Mu; Liao, Zhao-Hui; Tao, Ye-Zheng; Wang, Fei-Fei; Ma, Lan

    2017-06-25

    Rac1 belongs to the family of Rho GTPases, and plays important roles in the brain function. It affects the cell migration and axon guidance via regulating the cytoskeleton and cellular morphology. However, the effect of its dynamic activation in regulating physiological function remains unclear. Recently, a photoactivatable analogue of Rac1 (PA-Rac1) has been developed, allowing the activation of Rac1 by the specific wavelength of light in living cells. Thus, we constructed recombinant adeno-associated virus (AAV) of PA-Rac1 and its light-insensitive mutant PA-Rac1-C450A under the control of the mouse glial fibrillary acidic protein (mGFAP) promoter to manipulate Rac1 activity in astrocytes by optical stimulation. Primary culture of hippocampal astrocytes was infected with the recombinant AAV-PA-Rac1 or AAV-PA-Rac1-C450A. Real-time fluorescence imaging showed that the cell membrane of the astrocyte expressing PA-Rac1 protruded near the light spot, while the astrocyte expressing PA-Rac1-C450A did not. We injected AAV-PA-Rac1 and AAV-PA-Rac1-C450A into dorsal hippocampus to investigate the role of the activation of Rac1 in regulating the associative learning. With optical stimulation, the PA-Rac1 group, rather than the PA-Rac1-C450A group, showed slower learning curve during the fear conditioning compared with the control group, indicating that activating astrocytic Rac1 blocks the formation of contextual memory. Our data suggest that the activation of Rac1 in dorsal hippocampal astrocyte plays an important role in the associative learning.

  1. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies.

    Science.gov (United States)

    Li, Guanglei; Simon, Melissa J; Cancel, Limary M; Shi, Zhong-Dong; Ji, Xinying; Tarbell, John M; Morrison, Barclay; Fu, Bingmei M

    2010-08-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.

  2. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate.

    Science.gov (United States)

    Valdebenito, Rocío; Ruminot, Iván; Garrido-Gerter, Pamela; Fernández-Moncada, Ignacio; Forero-Quintero, Linda; Alegría, Karin; Becker, Holger M; Deitmer, Joachim W; Barros, L Felipe

    2016-10-01

    The effectiveness of ketogenic diets and intermittent fasting against neurological disorders has brought interest to the effects of ketone bodies on brain cells. These compounds are known to modify the metabolism of neurons, but little is known about their effect on astrocytes, cells that control the supply of glucose to neurons and also modulate neuronal excitability through the glycolytic production of lactate. Here we have used genetically-encoded Förster Resonance Energy Transfer nanosensors for glucose, pyruvate and ATP to characterize astrocytic energy metabolism at cellular resolution. Our results show that the ketone body beta-hydroxybutyrate strongly inhibited astrocytic glucose consumption in mouse astrocytes in mixed cultures, in organotypic hippocampal slices and in acute hippocampal slices prepared from ketotic mice, while blunting the stimulation of glycolysis by physiological and pathophysiological stimuli. The inhibition of glycolysis was paralleled by an increased ability of astrocytic mitochondria to metabolize pyruvate. These results support the emerging notion that astrocytes contribute to the neuroprotective effect of ketone bodies. © The Author(s) 2015.

  3. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    Directory of Open Access Journals (Sweden)

    Jillian L Stobart

    2013-04-01

    Full Text Available Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically-driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular

  4. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    Propofol exerts a cytotoxic influence over immature neurocytes. Our previous study revealed that clinically relevant doses of propofol accelerated apoptosis of primary cultured astrocytes of developing rodent brains via rno-miR-665 regulation. However, the role of rno-miR-665 during the growth spurt of neonatal rodent brains in vivo is still uncertain. Post-natal day 7 (P7) rats received a single injection of propofol 30 mg/kg intraperitoneally (i.p.), and neuroapoptosis of hippocampal astrocytes was analyzed by immunofluorescence and scanning electron microscopy. The differential expression of rno-miR-665, BCL2L1 (Bcl-xl), and cleaved caspase 3 (CC3) was surveyed by qRT-PCR and western blotting. In addition, the utility of A-1155463, a highly potent and BCL2L1-selective antagonist, was aimed to assess the contribution of BCL2L1 for neuroglial survival. Following the intraventricular injection of lentivirus rno-miR-665, neuroprotection was detected by 5-point scale measurement. The single dose of propofol 30 mg/kg triggered dose-dependent apoptosis of developing hippocampal astrocytes. Meanwhile, propofol triggered both rno-miR-665 and CC3, and depressed BCL2L1, which was predicted as one target gene of rno-miR-665. Combination treatment with A-1155463 and propofol induced lower mRNA and protein levels of BCL2L1 and more CC3 activation than propofol treatment alone in vivo. The lentivirus-mediated knockdown of rno-miR-665 elevated BCL2L1 and attenuated CC3 levels, whereas up-regulation of rno-miR-665 suppressed BCL2L1 and induced CC3 expression in vivo. More importantly, rno-miR-665 antagomir infusion improved neurological outcomes of pups receiving propofol during the brain growth spurt. Rno-miR-665, providing a potential target for alternative therapeutics for pediatric anesthesia, is susceptible to propofol by negatively targeting antiapoptotic BCL2L1. Relatively little is known about the association between exposure of astrocytes to brief propofol

  5. Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.

    Science.gov (United States)

    Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla

    2018-05-31

    Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  7. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord.

    Science.gov (United States)

    Moriarty, L J; Borgens, R B

    2001-01-01

    We have studied the cellular basis for recovery from acute spinal cord injury induced by applied electric fields. We have emphasized this recovery is due to the regeneration of spinal axons around and through the lesion, and have begun to evaluate the contribution of other cells to the recovery process. We have imposed a voltage gradient of about 320 microV/mm across puncture wounds to the adult rat spinal cord in order to study the accumulation and orientation of GFAP+ astrocytes within and adjacent to the lesion. This electric field was imposed by a miniaturized electronic implant designed to alternate the polarity of the field every 15 minutes. Astrocytes are known to undergo hyperplastic transformation within injured mammalian cords forming a major component of the scar that forms in response to injury. We have made three observations using a new computer based morphometry technique: First, we note a slight shift in the orientation of astrocytes parallel to the long axis of the spinal cord towards an imaginary reference perpendicular to this axis by approximately 10 degrees--but only in undamaged white matter near the lesion. Second, the relative number of astrocytes was markedly, and statistically significantly, reduced within electrically--treated spinal cords, particularly in the lesion. Third, the imposed voltage gradient statistically reduced the numbers of astrocytes possessing oriented cell processes within the injury site compared to adjacent undamaged regions of spinal cord.

  8. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  9. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats

    Directory of Open Access Journals (Sweden)

    Valiante S

    2015-03-01

    Full Text Available Salvatore Valiante,1,* Annarita Falanga,2,3,* Luisa Cigliano,1 Giuseppina Iachetta,1 Rosa Anna Busiello,1 Valeria La Marca,1 Massimiliano Galdiero,4 Assunta Lombardi,1 Stefania Galdiero1,2 1Department of Biology, 2Department of Pharmacy, 3DFM Scarl, University of Naples Federico II, 4Department of Experimental Medicine, II University of Naples, Naples, Italy *These authors contributed equally to this paper and are considered joint first authors Abstract: Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood–brain barrier (BBB. In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases. Keywords: drug delivery, neurons, astrocytes, blood–brain barrier, peptide

  10. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi

    Science.gov (United States)

    2013-01-01

    Background Ceramide accumulation is considered a contributing factor to neuronal dysfunction and damage. However, the underlying mechanisms that occur following ischemic insult are still unclear. Methods In the present study, we established cerebral ischemia models using four-vessel occlusion and oxygen-glucose deprivation methods. The hippocampus neural cells were subjected to immunohistochemistry and immunofluorescence staining for ceramide and neutral sphingomyelinase 2 (nSMase2) levels; immunoprecipitation and immunoblot analysis for nSMase2, receptor for activated C kinase 1 (RACK1), embryonic ectoderm development (EED), p38 mitogen-activated protein kinase (p38MAPK) and phosphorylated p38MAPK expression; SMase assay for nSMase and acid sphingomyelinase (aSMase) activity; real-time reverse transcription polymerase chain reaction for cytokine expression; and Nissl, microtubule-associated protein 2 and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining. Results We found considerable production of ceramide in astrocytes, but not in neurons, during early cerebral ischemia. This was accompanied by the induction of nSMase (but not aSMase) activity in the rat hippocampi. The inhibition of nSMase2 activity effectively reduced ceramide accumulation in astrocytes and alleviated neuronal damage to some extent. Meanwhile, the expression levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6, were found to be upregulated, which may have played an import role in neuronal damage mediated by the nSMase2/ceramide pathway. Although enhanced binding of nSMase2 with RACK1 and EED were also observed after cerebral ischemia, nSMase2 activity was not blocked by the TNF-α receptor inhibitor through RACK1/EED signaling. p38MAPK, but not protein kinase Cζ or protein phosphatase 2B, was able to induce nSMase2 activation after ischemia. p38MAPK can be induced by A2B adenosine

  11. Evidence for involvement of the astrocytic benzodiazepine receptor in the mechanism of action of convulsant and anticonvulsant drugs

    International Nuclear Information System (INIS)

    Bender, A.S.; Hertz, L.

    1988-01-01

    The anticonvulsant drugs carbamazepine, phenobarbital, trimethadione, valproic acid and ethosuximide at pharmacologically relevant concentrations inhibit [ 3 H]diazepam binding to astrocytes in primary cultures but have much less effect on a corresponding preparation of neurons. Phenytoin as well as pentobarbital (which is not used chronically as an anticonvulsant) are equipotent in the two cell types. The convulsants picrotoxinin and pentylenetetrazol, the convulsant benzodiazepine RO 5-3663 and the two convulsant barbiturates DMBB and CHEB similarly inhibit diazepam binding to astrocytes but have little effect on neurons. On the basis of these findings it is suggested that these convulsants and anticonvulsants owe at least part of their effect to an interaction with the astrocytic benzodiazepine receptor, perhaps by interference with a calcium channel

  12. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy

    OpenAIRE

    Zhang, Haijun; Yoon, Seo-Yeon; Zhang, Hongmei; Dougherty, Patrick M.

    2012-01-01

    Paclitaxel often induces persistent painful neuropathy as its most common treatment limiting side effect. Little is known concerning the underlying mechanisms. Given the prominent role of glial cells in many types of neuropathic pain, we investigated here the morphological and functional changes of spinal astrocytes and microglia in a rat model of paclitaxel-induced neuropathy. Immunohistochemistry, western blotting and real-time polymerase chain reaction (rt-PCR) were performed with samples ...

  13. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc; Magistretti, Pierre J.; Allaman, Igor

    2013-01-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  14. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  15. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are repo...... selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli....... Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors...

  16. Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks

    Science.gov (United States)

    Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko

    2016-01-01

    Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849

  17. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  18. (13)C heteronuclear NMR studies of the interaction of cultured neurons and astrocytes and aluminum blockade of the preferential release of citrate from astrocytes.

    Science.gov (United States)

    Meshitsuka, Shunsuke; Aremu, David A

    2008-02-01

    Citrate has been identified as a major tricarboxylic acid (TCA) cycle constituent preferentially released by astrocytes. We undertook the present study to examine further the nature of metabolic compartmentation in central nervous system tissues using (13)C-labeled glucose and to provide new information on the influence of aluminum on the metabolic interaction between neurons and astrocytes. Metabolites released into the culture medium from astrocytes and neuron-astrocyte coculture, as well as the perchloric acid extracts of the cells were analyzed using 2D (1)H and (13)C NMR spectroscopy. Astrocytes released citrate into the culture medium and the released citrate was consumed by neurons in coculture. Citrate release by astrocytes was blocked in the presence of aluminum, with progressive accumulation of citrate within the cells. We propose citrate supply is a more efficient energy source than lactate for neurons to produce ATP, especially in the hypoglycemic state on account of it being a direct component of the TCA cycle. Astrocytes may be the cellular compartment for aluminum accumulation as a citrate complex in the brain.

  19. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    Science.gov (United States)

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  20. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra.

    Science.gov (United States)

    Pengyue, Zhang; Tao, Guo; Hongyun, He; Liqiang, Yang; Yihao, Deng

    2017-06-01

    Breviscapine is a flavonoid derived from a traditional Chinese herb Erigerin breviscapus (Vant.) Hand-Mazz, and has been extensively used in clinical treatment for cerebral stroke in China, but the underlying pharmacological mechanisms are still unclear. In present study, we investigated whether breviscapine could confer a neuroprotection against cerebral ischemia injury by targeting autophagy mechanisms. A cerebral stroke model in Sprague-Dawley rats was prepared by middle cerebral artery occlusion (MCAO), rats were then randomly divided into 5 groups: MCAO+Bre group, rats were treated with breviscapine; MCAO+Tat-Beclin-1 group, animals were administrated with specific autophagy inducer Tat-Beclin-1; MCAO+Bre+Tat-Beclin-1 group, rats were treated with both breviscapine and Tat-Beclin-1, MCAO+saline group, rats received the same volume of physiological saline, and Sham surgery group. The autophagy levels in infarct penumbra were evaluated by western blotting, real-time PCR and immunofluorescence 7days after the insult. Meanwhile, infarct volume, brain water content and neurological deficit score were assessed. The results illustrated that the infarct volume, brain water content and neurofunctional deficiency were significantly reduced by 7days of breviscapine treatment in MCAO+Bre group, compared with those in MCAO+saline group. Meanwhile, the western blotting, quantitative PCR and immunofluorescence showed that the autophagy in both neurons and astrocytes at the penumbra were markedly attenuated by breviscapine admininstration. Moreover, these pharmacological effects of breviscapine could be counteracted by autophagy inducer Tat-Beclin-1. Our study suggests that breviscapine can provide a neuroprotection against transient focal cerebral ischemia, and this biological function is associated with attenuating autophagy in both neurons and astrocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Predicting Neuroinflammation in Morphine Tolerance for Tolerance Therapy from Immunostaining Images of Rat Spinal Cord.

    Directory of Open Access Journals (Sweden)

    Shinn-Long Lin

    Full Text Available Long-term morphine treatment leads to tolerance which attenuates analgesic effect and hampers clinical utilization. Recent studies have sought to reveal the mechanism of opioid receptors and neuroinflammation by observing morphological changes of cells in the rat spinal cord. This work proposes a high-content screening (HCS based computational method, HCS-Morph, for predicting neuroinflammation in morphine tolerance to facilitate the development of tolerance therapy using immunostaining images for astrocytes, microglia, and neurons in the spinal cord. HCS-Morph first extracts numerous HCS-based features of cellular phenotypes. Next, an inheritable bi-objective genetic algorithm is used to identify a minimal set of features by maximizing the prediction accuracy of neuroinflammation. Finally, a mathematic model using a support vector machine with the identified features is established to predict drug-treated images to assess the effects of tolerance therapy. The dataset consists of 15 saline controls (1 μl/h, 15 morphine-tolerant rats (15 μg/h, and 10 rats receiving a co-infusion of morphine (15 μg/h and gabapentin (15 μg/h, Sigma. The three individual models of astrocytes, microglia, and neurons for predicting neuroinflammation yielded respective Jackknife test accuracies of 96.67%, 90.00%, and 86.67% on the 30 rats, and respective independent test accuracies of 100%, 90%, and 60% on the 10 co-infused rats. The experimental results suggest that neuroinflammation activity expresses more predominantly in astrocytes and microglia than in neuron cells. The set of features for predicting neuroinflammation from images of astrocytes comprises mean cell intensity, total cell area, and second-order geometric moment (relating to cell distribution, relevant to cell communication, cell extension, and cell migration, respectively. The present investigation provides the first evidence for the role of gabapentin in the attenuation of morphine tolerance from

  2. Fisetin regulates astrocyte migration and proliferation in vitro

    OpenAIRE

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-01-01

    Fisetin (3,3?,4?,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte m...

  3. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity?

    Science.gov (United States)

    Henneberger, Christian

    2017-03-15

    The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long-term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long-term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte-neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte-neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte-neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca 2+ and Na + signalling, K + buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. A digital implementation of neuron-astrocyte interaction for neuromorphic applications.

    Science.gov (United States)

    Nazari, Soheila; Faez, Karim; Amiri, Mahmood; Karami, Ehsan

    2015-06-01

    Recent neurophysiologic findings have shown that astrocytes play important roles in information processing and modulation of neuronal activity. Motivated by these findings, in the present research, a digital neuromorphic circuit to study neuron-astrocyte interaction is proposed. In this digital circuit, the firing dynamics of the neuron is described by Izhikevich model and the calcium dynamics of a single astrocyte is explained by a functional model introduced by Postnov and colleagues. For digital implementation of the neuron-astrocyte signaling, Single Constant Multiply (SCM) technique and several linear approximations are used for efficient low-cost hardware implementation on digital platforms. Using the proposed neuron-astrocyte circuit and based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the proposed digital astrocyte is able to change the firing patterns of the neuron through bidirectional communication. Utilizing the proposed digital circuit, it will be illustrated that information processing in synaptic clefts is strongly regulated by astrocyte. Moreover, our results suggest that the digital circuit of neuron-astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-01-01

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  6. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  7. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    Science.gov (United States)

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  8. Astrocytes in physiological aging and Alzheimer's disease.

    Science.gov (United States)

    Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A

    2016-05-26

    Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  10. The Anti-Inflammatory Effects of Dimethyl Fumarate in Astrocytes Involve Glutathione and Haem Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Shao Xia Lin

    2011-03-01

    Full Text Available DMF (dimethyl fumarate exerts anti-inflammatory and prometabolic effects in a variety of cell types, and a formulation (BG-12 is being evaluated for monotherapy in multiple sclerosis patients. DMF modifies glutathione (GSH levels that can induce expression of the anti-inflammatory protein HO-1 (haem oxygenase-1. In primary astrocytes and C6 glioma cells, BG-12 dose-dependently suppressed nitrite production induced by either LI [LPS (lipopolysaccharide at 1 μg/ml plus IFNγ (interferon γ at 20 units/ml] or a mixture of proinflammatory cytokines, with greater efficacy in C6 cells. BG-12 reduced NOS2 (nitric oxide synthase 2 mRNA levels and activation of a NOS2 promoter, reduced nuclear levels of NF-κB (nuclear factor κB p65 subunit and attenuated loss of |κBα (inhibitory κBα in both cell types, although with greater effects in astrocytes. In astrocytes, LI decreased mRNA levels for GSHr (GSH reductase and GCL (c-glutamylcysteine synthetase, and slightly suppressed GSHs (GSH synthetase mRNAs. Co-treatment with BG-12 prevented those decreased and increased levels above control values. In contrast, LI reduced GSHp (GSH peroxidase and GCL in C6 cells, and BG-12 had no effect on those levels. BG-12 increased nuclear levels of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, an inducer of GSH-related enzymes, in astrocytes but not C6 cells. In astrocytes, GSH was decreased by BG-12 at 2 h and increased at 24 h. Prior depletion of GSH using buthionine-sulfoximine increased the ability of BG-12 to reduce nitrites. In astrocytes, BG-12 increased HO-1 mRNA levels and effects on nitrite levels were blocked by an HO-1 inhibitor. These results demonstrate that BG-12 suppresses inflammatory activation in astrocytes and C6 glioma cells, but with distinct mechanisms, different dependence on GSH and different effects on transcription factor activation.

  11. Gene expression and functional studies of the optic nerve head astrocyte transcriptome from normal African Americans and Caucasian Americans donors.

    Directory of Open Access Journals (Sweden)

    Haixi Miao

    2008-08-01

    Full Text Available To determine whether optic nerve head (ONH astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA donors compared to astrocytes from normal Caucasian American (CA donors.We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM. Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH assay detected levels of intracellular GSH.Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01. The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.

  12. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology.

    Science.gov (United States)

    Bindocci, Erika; Savtchouk, Iaroslav; Liaudet, Nicolas; Becker, Denise; Carriero, Giovanni; Volterra, Andrea

    2017-05-19

    Astrocyte communication is typically studied by two-dimensional calcium ion (Ca 2+ ) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca 2+ dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca 2+ activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca 2+ spots. Copyright © 2017, American Association for the Advancement of Science.

  13. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice.

    Science.gov (United States)

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J

    2013-10-01

    There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. 6-hour instrumental sleep deprivation (TSD). Animal sleep research laboratory. Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  14. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  15. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  16. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  17. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  18. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  19. Transglutaminase 2: Friend or foe? The discordant role in neurons and astrocytes.

    Science.gov (United States)

    Quinn, Breandan R; Yunes-Medina, Laura; Johnson, Gail V W

    2018-03-23

    Members of the transglutaminase family catalyze the formation of isopeptide bonds between a polypeptide-bound glutamine and a low molecular weight amine (e.g., spermidine) or the ɛ-amino group of a polypeptide-bound lysine. Transglutaminase 2 (TG2), a prominent member of this family, is unique because in addition to being a transamidating enzyme, it exhibits numerous other activities. As a result, TG2 plays a role in many physiological processes, and its function is highly cell type specific and relies upon a number of factors, including conformation, cellular compartment location, and local concentrations of Ca 2+ and guanine nucleotides. TG2 is the most abundant transglutaminase in the central nervous system (CNS) and plays a pivotal role in the CNS injury response. How TG2 affects the cell in response to an insult is strikingly different in astrocytes and neurons. In neurons, TG2 supports survival. Overexpression of TG2 in primary neurons protects against oxygen and glucose deprivation (OGD)-induced cell death and in vivo results in a reduction in infarct volume subsequent to a stroke. Knockdown of TG2 in primary neurons results in a loss of viability. In contrast, deletion of TG2 from astrocytes results in increased survival following OGD and improved ability to protect neurons from injury. Here, a brief overview of TG2 is provided, followed by a discussion of the role of TG2 in transcriptional regulation, cellular dynamics, and cell death. The differing roles TG2 plays in neurons and astrocytes are highlighted and compared to how TG2 functions in other cell types. © 2018 Wiley Periodicals, Inc.

  20. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    Science.gov (United States)

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  1. Endothelial-astrocytic interactions in acute liver failure.

    Science.gov (United States)

    Jayakumar, A R; Norenberg, M D

    2013-06-01

    Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.

  2. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats

    Science.gov (United States)

    Sun, Yi-Ning; Luo, Jin-Yan; Rao, Zhi-Ren; Lan, Li; Duan, Li

    2005-01-01

    AIM: To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them. METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS); control group (n = 16), saline was administered intra-luminally. After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP), Fos and GFAP/Fos immunohistochemistry. RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae I-II) of dorsal horn, intermediolateral nucleus (laminae V), posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae IX). Fos-IR (Fos-immunoreactive) neurons were mainly distributed in the deeper laminae of the spinal cord (laminae III-IV, V-VI). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8, 29.2±6.5, 24.1±5.6, P0.05). CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons. With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced. PMID:16097052

  3. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication.

    Science.gov (United States)

    Tapella, Laura; Cerruti, Matteo; Biocotino, Isabella; Stevano, Alessio; Rocchio, Francesca; Canonico, Pier Luigi; Grilli, Mariagrazia; Genazzani, Armando A; Lim, Dmitry

    2018-02-01

    Astrocytes participate in the development and resolution of neuroinflammation in numerous ways, including the release of cytokines and growth factors. Among many, astrocytes release transforming growth factors beta (TGF-β) TGF-β1, TGF-β2 and TGF-β3. TGF-β1 is the most studied isoform, while production and release of TGF-β2 and TGF-β3 by astrocytes have been poorly characterized. Here, we report that purified cultures of hippocampal astrocytes produce mainly TGF-β3 followed by TGF-β2 and TGF-β1. Furthermore, astrocytes release principally the active form of TGF-β3 over the other two. Changes in release of TGF-β were sensitive to the calcineurin (CaN) inhibitor FK506. Starvation had no effect on TGF-β1 and TGF-β3 while TGF-β2 mRNA was significantly up-regulated in a CaN-dependent manner. We further investigated production and release of astroglial TGF-β in Alzheimer's disease-related conditions. Oligomeric β-amyloid (Aβ) down-regulated TGF-β1, while up-regulating TGF-β2 and TGF-β3, in a CaN-dependent manner. In cultured hippocampal astrocytes from 3xTg-AD mice, TGF-β2 and TGF-β3, but not TGF-β1, were up-regulated, and this was CaN-independent. In hippocampal tissues from symptomatic 3xTg-AD mice, TGF-β2 was up-regulated with respect to control mice. Finally, treatment with recombinant TGF-βs showed that TGF-β2 and TGF-β3 significantly reduced PSD95 protein in cultured hippocampal neurons, and this effect was paralleled by conditioned media from Aβ-treated astrocytes or from astrocytes from 3xTg-AD mice. Taken together, our data suggest that TGF-β2 and TGF-β3 are produced by astrocytes in a CaN-dependent manner and should be investigated further in the context of astrocyte-mediated neurodegeneration. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  6. Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro

    NARCIS (Netherlands)

    Mulder, S.D.; Nielsen, H.M.; Blankenstein, M.A.; Eikelenboom, P.; Veerhuis, R.

    2014-01-01

    Defective clearance of the amyloid-β peptide (Aβ) from the brain is considered a strong promoter in Alzheimer's disease (AD) pathogenesis. Astrocytes and microglia are important mediators of Aβ clearance and Aβ aggregation state and the presence of amyloid associated proteins (AAPs), such as

  7. The effects of ebselen on cisplatin and diethyldithiocarbamate (DDC) cytotoxicity in rat hippocampal astrocytes.

    Science.gov (United States)

    Hardej, D; Trombetta, L D

    2002-05-28

    Ebselen is a seleno-organic compound with documented cytoprotective properties. Little work has been done, however, demonstrating ebselen's cytoprotective properties in neural cell lines. In order to examine the effects of this compound and its mechanism of action, astrocytes were exposed to two known neurotoxicants, cisplatin and diethyldithiocarbamate (DDC). Cells were pretreated with 30 microM ebselen and subsequently treated with either 150 microM DDC for 1 h or 250 and 500 microM cisplatin for 24 h. Results indicate significant increases in viability in cells pretreated with ebselen and exposed to cisplatin. Ebselen pretreatment did not significantly increase viability in cells exposed to DDC. Light and scanning electron microscopy studies confirm the viability studies. Gross morphological damage was seen in cells treated with cisplatin, however, cells pretreated with ebselen and then exposed to cisplatin, appeared similar to controls. No differences were noted in cells pretreated with ebselen and then exposed to DDC or cells treated with DDC alone. In order to examine the mechanism of protection of this compound, glutathione status was examined. Results show that ebselen does not significantly increase reduced or oxidized glutathione (GSH, GSSG). All cell groups treated with cisplatin showed an increase in GSH levels. Ebselen showed protection in glutathione depleted cells at the 250 microM cisplatin dose. DDC treatment showed no significant increase in either reduced or oxidized glutathione. We conclude that ebselen significantly protects against cisplatin, but not DDC toxicity. We further conclude that this protection is not related to changes in glutathione status in the rat hippocampal cell line as has been reported in other cell types.

  8. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Wong, Peter T H; Herr, Deron R; Lai, Mitchell K P

    2016-09-23

    Andrographolide is the major labdane diterpenoid originally isolated from Andrographis paniculata and has been shown to have anti-inflammatory and antioxidative effects. However, there is a dearth of studies on the potential therapeutic utility of andrographolide in neuroinflammatory conditions. Here, we aimed to investigate the mechanisms underlying andrographolide's effect on the expression of anti-inflammatory and antioxidant heme oxygenase-1 (HO-1) in primary astrocytes. Measurements of the effects of andrograholide on antioxidant HO-1 and its transcription factor, Nrf2, include gene expression, protein turnover, and activation of putative signaling regulators. Andrographolide potently activated Nrf2 and also upregulated HO-1 expression in primary astrocytes. Andrographolide's effects on Nrf2 seemed to be biphasic, with acute (within 1 h) reductions in Nrf2 ubiquitination efficiency and turnover rate, followed by upregulation of Nrf2 mRNA between 8 and 24 h. The acute regulation of Nrf2 by andrographolide seemed to be independent of Keap1 and partly mediated by p38 MAPK and ERK signaling. These data provide further insights into the mechanisms underlying andrographolide's effects on astrocyte-mediated antioxidant, and anti-inflammatory responses and support the further assessment of andrographolide as a potential therapeutic for neurological conditions in which oxidative stress and neuroinflammation are implicated.

  9. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mä chler, Philipp; Wyss, Matthias  T.; Elsayed, Maha; Stobart, Jillian; Gutierrez, Robin; von  Faber-Castell, Alexandra; Kaelin, Vincens; Zuend, Marc; San  Martí n, Alejandro; Romero-Gó mez, Ignacio; Baeza-Lehnert, Felipe; Lengacher, Sylvain; Schneider, Bernard  L.; Aebischer, Patrick; Magistretti, Pierre J.; Barros, L.  Felipe; Weber, Bruno

    2015-01-01

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  10. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  11. Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.

    Science.gov (United States)

    Bell, J E; Hume, R; Busuttil, A; Burchell, A

    1993-10-01

    Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.

  12. Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus.

    Directory of Open Access Journals (Sweden)

    Antje Grosche

    Full Text Available BACKGROUND: Besides their neuronal support functions, astrocytes are active partners in neuronal information processing. The typical territorial structure of astrocytes (the volume of neuropil occupied by a single astrocyte is pivotal for many aspects of glia-neuron interactions. METHODS: Individual astrocyte territorial volumes are measured by Golgi impregnation, and astrocyte densities are determined by S100β immunolabeling. These data are compared with results from conventionally applied methods such as dye filling and determination of the density of astrocyte networks by biocytin loading. Finally, we implemented our new approach to investigate age-related changes in astrocyte territories in the cortex and hippocampus of 5- and 21-month-old mice. RESULTS: The data obtained by our simplified approach based on Golgi impregnation were compared to previously published dye filling experiments, and yielded remarkably comparable results regarding astrocyte territorial volumes. Moreover, we found that almost all coupled astrocytes (as indicated by biocytin loading were immunopositive for S100β. A first application of this new experimental approach gives insight in age-dependent changes in astrocyte territorial volumes. They increased with age, while cell densities remained stable. In 5-month-old mice, the overlap factor was close to 1, revealing little or no interdigitation of astrocyte territories. However, in 21-month-old mice, the overlap factor was more than 2, suggesting that processes of adjacent astrocytes interdigitate. CONCLUSION: Here we verified the usability of a simple, versatile method for assessing astrocyte territories and the overlap factor between adjacent territories. Second, we found that there is an age-related increase in territorial volumes of astrocytes that leads to loss of the strict organization in non-overlapping territories. Future studies should elucidate the physiological relevance of this adaptive reaction of

  13. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  14. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    OpenAIRE

    Andrea eGoudriaan; Nutabi eCamargo; Karen eCarney; Karen eCarney; Karen eCarney; Stéphane H.R. Oliet; Stéphane H.R. Oliet; August B. Smit; Mark H.G. Verheijen

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neuron...

  15. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD Concentration in Human Primary Astrocytes

    Directory of Open Access Journals (Sweden)

    Ross Grant

    2010-01-01

    Full Text Available Efficient synthesis of NAD + is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s by which cells of the central nervous system produce NAD + . The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP and de novo NAD + synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD + levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD + levels after 24 hrs. This decrease in NAD + was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide.

  16. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD+ Concentration in Human Primary Astrocytes

    Science.gov (United States)

    Grant, Ross; Nguyen, Susan; Guillemin, Gilles

    2010-01-01

    Efficient synthesis of NAD+ is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD+. The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD+ synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD+ levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD+ levels after 24 hrs. This decrease in NAD+ was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide. PMID:22084595

  17. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  18. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease

    DEFF Research Database (Denmark)

    Khakh, Baljit S.; Beaumont, Vahri; Cachope, Roger

    2017-01-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter...

  19. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    Science.gov (United States)

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  20. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    International Nuclear Information System (INIS)

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-01-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  1. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@faculty.chiba-u.jp; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.

  2. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  3. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Directory of Open Access Journals (Sweden)

    Solenna Blanchard

    Full Text Available Developing a clear understanding of the relationship between cerebral blood flow (CBF response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler… recordings. However, the important number of intermediate (non-observable variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in

  4. Calcium imaging of living astrocytes in the mouse spinal cord following sensory stimulation.

    Science.gov (United States)

    Cirillo, Giovanni; De Luca, Daniele; Papa, Michele

    2012-01-01

    Astrocytic Ca(2+) dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca(2+) signaling in living central nervous system. Ca(2+) waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101) and imaged astrocytic Ca(2+) levels with Oregon-Green BAPTA-1 (OGB). Then, we studied astrocytic Ca(2+) levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca(2+) levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  5. Eph receptors and ephrins in neuron-astrocyte communication at synapses.

    Science.gov (United States)

    Murai, Keith K; Pasquale, Elena B

    2011-11-01

    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  6. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  7. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  8. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism.

    Science.gov (United States)

    Haghiri, Saeed; Ahmadi, Arash; Saif, Mehrdad

    2017-02-01

    Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.

  9. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  10. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  11. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  12. ASTROCYTES IN THE NEUROPROTECTION AFTER BRAIN STROKE

    Directory of Open Access Journals (Sweden)

    Gloria Patricia Cardona Gomez

    2015-03-01

    Full Text Available Astrocytes are specialized glial cells of the nervous system, which have multiple homeostatic functions for the survival and maintenance of the neurovascular unit. It has been shown that astrocytes have critical role in the dynamics pro survival conferring neuroprotective, angiogenic, immunomodulatory, neurogenic, antioxidants and regulatory synapse functions (Shen et al 2012; Gimsa et al 2013; Proschel et al 2014; making them excellent candidates as the source of neuroprotection and neurorestauration of tissue affected by events ischemia and / or reperfusion. However, these cells also may be involved in negative responses such as reactive astrocytes and glial scar under chronic excitotoxic responses generated by these events. To know what are the key points in the pro and anti-survival responses of astrocytes, would allow use them as targets in cellular therapies. This review has aim to study the mechanisms for neuroprotection in these cells (Posada-Duque et al submitted, which would make them targets of cell therapy, through of inducing regeneration, such as vehicle for corrective molecular systems and trigger endogenous cellular events that can recover the tissue homeostasis, which is lost after progressive damage.

  13. Connexin-based intercellular communication and astrocyte heterogeneity.

    Science.gov (United States)

    Theis, Martin; Giaume, Christian

    2012-12-03

    This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  15. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances

    Science.gov (United States)

    Naoshin, Zinnia; Defren, Sabrina; Schmaelzle, Jana; Weber, Tobias; Schneider, Hans‐Peter

    2017-01-01

    Key points The present study suggests that the electrogenic sodium–bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes.A decrease in extracellular [HCO3 −] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3 −] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1‐knockout astrocytes.Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1‐ and CAII‐expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes.We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3 −]‐dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3 −] in brain tissue. Abstract Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium–bicarbonate cotransporter, NBCe1, is a high‐affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in

  17. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. © 2016. Published by The Company of Biologists Ltd.

  18. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    Science.gov (United States)

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  20. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  1. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes.

    Science.gov (United States)

    Luarte, Alejandro; Cisternas, Pablo; Caviedes, Ariel; Batiz, Luis Federico; Lafourcade, Carlos; Wyneken, Ursula; Henzi, Roberto

    2017-01-01

    Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.

  2. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2017-01-01

    Full Text Available Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs may play a fundamental role in such phenomenon.

  3. Bi-directional astrocytic regulation of neuronal activity within a network

    Directory of Open Access Journals (Sweden)

    Susan Yu Gordleeva

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.

  4. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  5. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    OpenAIRE

    Goudriaan, Andrea; Camargo, Nutabi; Carney, Karen E.; Oliet, Stéphane H. R.; Smit, August B.; Verheijen, Mark H. G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neuro...

  6. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  7. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4 0 C, in an effort to establish the best conditions for the preservation. Survival rate at 4 0 C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4 0 C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4 0 C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  8. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  9. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  10. Computational model of neuron-astrocyte interactions during focal seizure generation

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2012-10-01

    Full Text Available Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and

  11. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors

    Directory of Open Access Journals (Sweden)

    Clara Quintas

    2018-05-01

    Full Text Available Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia. The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM and of the selective P2Y12 antagonist AR-C66096 (0.1 μM, suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in

  12. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  13. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    Science.gov (United States)

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.

  14. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  15. Astrocyte lipid metabolism is critical for synapse development and function in vivo.

    Science.gov (United States)

    van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G

    2017-04-01

    The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682. © 2017 Wiley Periodicals, Inc.

  16. Astrocyte Ca2+ signalling: an unexpected complexity

    OpenAIRE

    Volterra, Andrea; Liaudet, Nicolas; Savtchouk, Iaroslav

    2014-01-01

    Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that enable the study of astrocyte physiology at higher spatial-temporal resolution in intact brain preparations are beginning to reveal an unexpec...

  17. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    Science.gov (United States)

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  18. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux.

    Directory of Open Access Journals (Sweden)

    Clare M Florence

    Full Text Available Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+](o and pH homeostasis. Pathological brain states that result in [K(+](o and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+](o (3 mM. Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3- ions as swelling was significantly decreased when the influx of HCO(3- was reduced. We found: 1 in HCO(3- free extracellular solution astrocytes swelled by 5.4±0.7%, 2 when the activity of the sodium-bicarbonate cotransporter (NBC was blocked the astrocytes swelled by 8.3±0.7%, and 3 in the presence of an extracellular carbonic anhydrase (CA inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3- efflux is known to occur through the γ-amino-butyric acid (GABA channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3- mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A channel agonist muscimol. Astrocyte shrinkage from GABA(A channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ. These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.

  19. RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation

    Directory of Open Access Journals (Sweden)

    Kareen Bartsch

    2018-03-01

    Full Text Available Aicardi–Goutières syndrome (AGS is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2. All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2ΔGFAP mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2ΔGFAP mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs represents the most reliable AGS biomarker. Importantly, primary RNase H2ΔGFAP astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in vivo in brains of RNase H2ΔGFAP mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.

  20. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  1. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    NARCIS (Netherlands)

    Goudriaan, A.; Camargo, N.K.; Carney, K.E.; Oliet, S.H.R.; Smit, A.B.; Verheijen, M.H.G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a

  2. Neuronal-glial interactions in rats fed a ketogenic diet.

    Science.gov (United States)

    Melø, Torun Margareta; Nehlig, Astrid; Sonnewald, Ursula

    2006-01-01

    Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism. Rats were kept on a standard or ketogenic diet. After 21 days all animals received an injection of [1-(13)C]glucose plus [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex and plasma were analyzed by (13)C and (1)H nuclear magnetic resonance spectroscopy and HPLC. Increased amounts of valine, leucine and isoleucine and a decreased amount of glutamate were found in the brains of rats receiving the ketogenic diet. Glycolysis was decreased in ketotic rats compared with controls, evidenced by the reduced amounts of [3-(13)C]alanine and [3-(13)C]lactate. Additionally, neuronal oxidative metabolism of [1-(13)C]glucose was decreased in ketotic rats compared with controls, since amounts of [4-(13)C]glutamate and [4-(13)C]glutamine were lower than those of controls. Although the amount of glutamate from [1-(13)C]glucose was decreased, this was not the case for GABA, indicating that relatively more [4-(13)C]glutamate is converted to GABA. Astrocytic metabolism was increased in response to ketosis, shown by increased amounts of [4,5-(13)C]glutamine, [4,5-(13)C]glutamate, [1,2-(13)C]GABA and [3,4-(13)C]-/[1,2-(13)C]aspartate derived from [1,2-(13)C]acetate. The pyruvate carboxylation over dehydrogenation ratio for glutamine was increased in the ketotic animals compared to controls, giving further indication of increased astrocytic metabolism. Interestingly, pyruvate recycling was higher in glutamine than in glutamate in both groups of animals. An increase in this pathway was detected in glutamate in response to ketosis. The decreased glycolysis and oxidative

  3. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.

    Science.gov (United States)

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-12-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.

  4. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-01-01

    Highlights: • Astrocytes exhibit characteristic changes in [Ca 2+ ] i under OGD. • Astrocytic [Ca 2+ ] i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca 2+ ] i ) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca 2+ ] i oscillations followed by larger and sustained [Ca 2+ ] i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca 2+ ] i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca 2+ ] i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca 2+ ] i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  5. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie; Magistretti, Pierre J.

    2015-01-01

    The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  6. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  7. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  8. The effects of chronic corticosterone on hippocampal astrocyte numbers: A comparison of male and female Wistar rats

    Czech Academy of Sciences Publication Activity Database

    Bridges, N.; Šlais, Karel; Syková, Eva

    2008-01-01

    Roč. 68, č. 2 (2008), s. 131-138 ISSN 0065-1400 R&D Projects: GA MŠk 1M0538 Grant - others:GA ČR(CZ) GA309/04/0753 Institutional research plan: CEZ:AV0Z50390512 Keywords : Hippocampus * Astrocyte * Corticosterone Subject RIV: FH - Neurology Impact factor: 1.091, year: 2008

  9. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  10. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  11. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  12. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    Science.gov (United States)

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  13. Dual patch voltage clamp study of low membrane resistance astrocytes in situ.

    Science.gov (United States)

    Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min

    2014-03-17

    Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.

  14. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  15. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex.

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-03-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking' neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex.

  16. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  17. Identification of diverse astrocyte populations and their malignant analogs.

    Science.gov (United States)

    John Lin, Chia-Ching; Yu, Kwanha; Hatcher, Asante; Huang, Teng-Wei; Lee, Hyun Kyoung; Carlson, Jeffrey; Weston, Matthew C; Chen, Fengju; Zhang, Yiqun; Zhu, Wenyi; Mohila, Carrie A; Ahmed, Nabil; Patel, Akash J; Arenkiel, Benjamin R; Noebels, Jeffrey L; Creighton, Chad J; Deneen, Benjamin

    2017-03-01

    Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting-based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.

  18. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    Science.gov (United States)

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  19. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  20. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.