WorldWideScience

Sample records for rat peripheral nerve

  1. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  2. Functional evaluation of peripheral nerve regeneration in the rat : walking track analysis

    NARCIS (Netherlands)

    Varejao, ASP; Meek, MF; Patricio, JAB; Cabrita, AMS

    2001-01-01

    The experimental model of choice for many peripheral nerve investigators is the rat. Walking track analysis is a useful tool in the evaluation of functional peripheral nerve recovery in the rat. This quantitative method of analyzing hind limbs performance by examining footprints, known as the

  3. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    Science.gov (United States)

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-05-29

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    Science.gov (United States)

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Localization of lead in rat peripheral nerve by electron microscopy

    International Nuclear Information System (INIS)

    Windebank, A.J.; Dyck, P.J.

    1985-01-01

    Lead intoxication in rats reliably produces segmental demyelination. Following a single intravenous injection of radioactive lead, localization of tracer was observed sequentially by quantitative electron microscopical autoradiography. The animals injected had been on a lead-containing diet for 70 days; as a result, the blood-nerve barrier was broken down and demyelination was proceeding. Six hours after a single dose, the lead was localized to the endoneurial space of the peroneal nerve, and 72 hours later, to the myelin membrane. Lead may exert a direct effect on the membrane and alter its stability both by altering the lipid content of the membrane and by directly interfering with the lamellar structure

  7. Use of paper for treatment of a peripheral nerve trauma in the rat.

    Science.gov (United States)

    Kauppila, T; Jyväsjärvi, E; Murtomäki, S; Mansikka, H; Pertovaara, A; Virtanen, I; Liesi, P

    1997-09-29

    Reinnervation of the muscles and skin in the rat hindpaw was studied after transection and attempted repair of the sciatic nerve. Reconnecting the transected nerve with lens cleaning paper was at least as effective in rejoining the transected nerves as traditional microsurgical neurorraphy. Paper induced a slightly bigger fibrous scar around the site of transection than neurorraphy, but this scar did not cause impairment of functional recovery or excessive signs of neuropathic pain. We conclude that a paper graft can be used in restorative surgery of severed peripheral nerves.

  8. Effects of intraneural and perineural injection and concentration of Ropivacaine on nerve injury during peripheral nerve block in Wistar rats

    Directory of Open Access Journals (Sweden)

    Ilvana Hasanbegovic

    2013-12-01

    Full Text Available Introduction: Injury during peripheral nerve blocks is relatively uncommon, but potentially devastating complication. Recent studies emphasized that location of needle insertion in relationship to the fascicles may be the predominant factor that determines the risk for neurologic complications. However, it is wellestablished that concentration of local anesthetic is also associated with the risk for injury. In this study, we examined the effect of location of injection and concentration of Ropivacaine on risk for neurologic complications. Our hypothesis is that location of the injection is more prognostic for occurrence of nerve injury than the concentration of Ropivacaine.Methods: In experimental design of the study fi fty Wistar rats were used and sciatic nerves were randomized to receive: Ropivacaine or 0.9% NaCl, either intraneurally or perineurally. Pressure data during application was acquired by using a manometer and was analyzed using software package BioBench. Neurologic examination was performed thought the following seven days, there after the rats were sacrificed while sciatic nerves were extracted for histological examination.Results: Independently of tested solution intraneural injections in most of cases resulted with high injection pressure, followed by obvious neurologic defi cit and microscopic destruction of peripheral nerves. Also, low injection pressure, applied either in perineural or intraneural extrafascicular area, resulted with transitory neurologic defi cit and without destruction of the nerve normal histological structure.Conclusions: The main mechanism which leads to neurologic injury combined with peripheral nerve blockade is intrafascicular injection. Higher concentrations of Ropivacaine during intrafascicular applications magnify nerve injury.

  9. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.

    Science.gov (United States)

    Stracke, H; Hammes, H P; Werkmann, D; Mavrakis, K; Bitsch, I; Netzel, M; Geyer, J; Köpcke, W; Sauerland, C; Bretzel, R G; Federlin, K F

    2001-01-01

    In rats with streptozotocin (STZ) induced diabetes the effect of (watersoluble) thiamine nitrate and of (lipidsoluble) benfotiamine on peripheral nerve function (motor nerve conduction velocity) as well as on the formation of advanced glycation end-products in peripheral nerve tissue was studied. In one group of animals drug administration was started immediately after diabetes induction (prevention study) and in another group two months after diabetes induction (treatment study). Motor nerve conduction velocity (NCV) dropped by 10.5% in diabetic animals, carboxymethyl-lysine (CML) rose to a 3.5fold concentration, deoxyglucosone (3DG)-type AGE formation was increased 5.1fold compared with controls. After three months preventive administration of both vitamin B(1) preparations NCV had increased substantially compared with results in diabetic controls. It was nearly normal after six months with benfotiamine, while the administration of thiamine nitrate resulted in no further amelioration. NCV was nearly normalized after six months of benfotiamine application but not with thiamine. Furthermore, benfotiamine induced a major inhibition of neural imidazole-type AGE formation and completely prevented diabetes induced glycoxidation products (CML). Treatment with thiamine did not significantly affect AGE or cmL levels. Unlike treatment with water-soluble thiamine nitrate timely administration of liposoluble prodrug benfotiamine was effective in the prevention of functional damage and of AGE and cmL formation in nerves of diabetic rats.

  11. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    Science.gov (United States)

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    International Nuclear Information System (INIS)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh

    2017-01-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  13. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh, E-mail: ashutosh.niperhyd@gov.in

    2017-05-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  14. Distribution of elements and water in peripheral nerve of streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lowery, J.M.; Eichberg, J.; Saubermann, A.J.; LoPachin, R.M. Jr.

    1990-01-01

    Accumulating evidence suggests that alterations in Na, Ca, K, and other biologically relevant elements play a role in the mechanism of cell injury. The pathogenesis of experimental diabetic neuropathy is unknown but might include changes in the distribution of these elements in morphological compartments. In this study, this possibility was examined via electron-probe X-ray microanalysis to measure both concentrations of elements (millimoles of element per kilogram dry or wet weight) and cell water content (percent water) in frozen, unfixed, unstained sections of peripheral nerve from control and streptozocin-induced diabetic rats. Our results indicate that after 20 wk of experimental diabetes, mitochondria and axoplasm from myelinated axons of proximal sciatic nerve displayed diminished K and Cl content, whereas in tibial nerve, the intraaxonal levels of these elements increased. In distal sciatic nerve, mitochondrial and axoplasmic levels of Ca were increased, whereas other elemental alterations were not observed. These regional changes resulted in a reversal of the decreasing proximodistal concentration gradients for K and Cl, which exist in nondiabetic rat sciatic nerve. Our results cannot be explained on the basis of altered water. Highly distinctive changes in elemental distribution observed might be a critical component of the neurotoxic mechanism underlying diabetic neuropathy

  15. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  16. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries.

    Science.gov (United States)

    Gordon, Tessa; Borschel, Gregory H

    2017-01-01

    Rat models of complete and partial injuries are the most frequently used models for analysis of the cellular and molecular processes of nerve regeneration and axon sprouting. Studies of nerve regeneration and axon sprouting after complete and partial nerve injuries, respectively, are reviewed. Special consideration is made of the peripheral nerves chosen for the studies and the outcome measures that were utilized in the studies. The studies have made important contributions to our knowledge of the degenerative and regenerative processes that occur after the peripheral nerve injuries, why functional recovery is frequently compromised after delayed surgery, the positive effects of neurotrophic factors on nerve regeneration after delayed nerve repair or after insertion of autografts between transected nerve, and how axon regeneration may be accelerated by brief periods of electrical stimulation and/or by administration of androgens. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  18. PGC-1α Mediated Peripheral Nerve Protection of Tongxinluo in STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiaopei Cui

    2016-01-01

    Full Text Available Aim. To investigate the effect of Tongxinluo (Txl, a Chinese herbal compound, on diabetic peripheral neuropathy (DPN. Methods and Results. Diabetic rat model was established by peritoneal injection of streptozotocin (STZ. Txl ultrafine powder treatment for 16 weeks from the baseline significantly reversed the impairment of motor nerve conductive velocity (MNCV, mechanical hyperalgesia, and nerve structure. We further proved that Tongxinluo upregulates PGC-1α and its downstream factors including COX IV and SOD, which were involved in mitochondrial biogenesis. Conclusion. Our study indicates that the protective effect of Txl in diabetic neuropathy may be attributed to the induction of PGC-1α and its downstream targets. This finding may further illustrate the pleiotropic effect of the medicine.

  19. Tumors of peripheral nerves

    International Nuclear Information System (INIS)

    Ho, Michael; Lutz, Amelie M.

    2017-01-01

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [de

  20. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy

    OpenAIRE

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J.

    2011-01-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicati...

  1. A novel experimental rat model of peripheral nerve scarring that reliably mimics post-surgical complications and recurring adhesions

    Directory of Open Access Journals (Sweden)

    Angela Lemke

    2017-08-01

    Full Text Available Inflammation, fibrosis and perineural adhesions with the surrounding tissue are common pathological processes following nerve injury and surgical interventions on peripheral nerves in human patients. These features can reoccur following external neurolysis, currently the most common surgical treatment for peripheral nerve scarring, thus leading to renewed nerve function impairment and chronic pain. To enable a successful evaluation of new therapeutic approaches, it is crucial to use a reproducible animal model that mimics the main clinical symptoms occurring in human patients. However, a clinically relevant model combining both histological and functional alterations has not been published to date. We therefore developed a reliable rat model that exhibits the essential pathological processes of peripheral nerve scarring. In our study, we present a novel method for the induction of nerve scarring by applying glutaraldehyde-containing glue that is known to cause nerve injury in humans. After a 3-week contact period with the sciatic nerve in female Sprague Dawley rats, we could demonstrate severe intra- and perineural scarring that resulted in grade 3 adhesions and major impairments in the electrophysiological peak amplitude compared with sham control (P=0.0478. Immunohistochemical analysis of the nerve structure revealed vigorous nerve inflammation and recruitment of T cells and macrophages. Also, distinct nerve degeneration was determined by immunostaining. These pathological alterations were further reflected in significant functional deficiencies, as determined by the analysis of relevant gait parameters as well as the quantification of the sciatic functional index starting at week 1 post-operation (P<0.01. Moreover, with this model we could, for the first time, demonstrate not only the primary formation, but also the recurrence, of severe adhesions 1 week after glue removal, imitating a major clinical challenge. As a comparison, we tested a

  2. Neuroprotective effects of agmatine in experimental peripheral nerve injury in rats: a prospective randomized and placebo-controlled trial.

    Science.gov (United States)

    Sezer, Aykut; Guclu, Bulent; Kazanci, Burak; Cakir, Murteza; Coban, Mustafa Kemal

    2014-01-01

    The purpose of this study was to demonstrate the activity of agmatine, an inducible nitric oxide synthase (iNOS) inhibitor and selective N-methyl-D-aspartate receptor (NMDAR) antagonist, on reducing tissue damage in distal part of traumatic nerve in an experimental rat peripheral nerve injury model. Sciatic nerves of 30 Sprague Dawley male rats were used. Rats were divided into 5 groups; group 1 (n=6), control group; group 2 (n=6), axonotmesis + placebo group; group 3 (n=6), axonotmesis + 50 mg/kg agmatine treatment group; group 4 (n=6), neurotmesis + placebo group; group 5 (n=6), neurotmesis + 50 mg/kg agmatine treatment group. Axonolysis, axon degeneration, edema, hemorrhage, and inflammation were evaluated in histopathologic examinations of all the groups. When group 2 was compared with group 3 in histopathologic sections, axonolysis was less in group 3 (p=0.007), as was axon degeneration (p=0.022) and edema (p=0.018). When group 4 was compared with group 5, axonolysis was less in group 5 (p=0.009), as was axon degeneration (p=0.006) and edema (p=0.021). This study demonstrated agmatine to have antioxidant and antineurotoxic effects in an experimental rat peripheral nerve injury model.

  3. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides.

    Science.gov (United States)

    Stenberg, Lena; Stößel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mårtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B; Haastert-Talini, Kirsten

    2017-07-18

    Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45 days delayed reconstruction of critical length 15 mm rat sciatic nerve defects in either healthy Wistar rats or diabetic Goto-Kakizaki rats; the latter resembling type 2 diabetes. In short and long-term investigations, we comprehensively analyzed the performance of one-chambered hollow CNGs (hCNGs) and two-chambered CNGs (CFeCNGs) in which a chitosan film has been longitudinally introduced. Additionally, we investigated in vitro the immunomodulatory effect provided by the chitosan film. Both types of nerve guides, i.e. hCNGs and CFeCNGs, enabled moderate morphological and functional nerve regeneration after reconstruction that was delayed for 45 days. These positive findings were detectable in generally healthy as well as in diabetic Goto-Kakizaki rats (for the latter only in short-term studies). The regenerative outcome did not reach the degree as recently demonstrated after immediate reconstruction using hCNGs and CFeCNGs. CFeCNG-treatment, however, enabled tissue regrowth in all animals (hCNGs: only in 80% of animals). CFeCNGs did further support with an increased vascularization of the regenerated tissue and an enhanced regrowth of motor axons. One mechanism by which the CFeCNGs potentially support successful regeneration is an immunomodulatory effect induced by the chitosan film itself. Our in vitro results suggest that the pro-regenerative effect of chitosan is related to the differentiation of chitosan-adherent monocytes into pro-healing M2 macrophages. No considerable differences appear for the delayed nerve regeneration

  4. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats.

    Science.gov (United States)

    Li, Rui; Li, Yiyang; Wu, Yanqing; Zhao, Yingzheng; Chen, Huanwen; Yuan, Yuan; Xu, Ke; Zhang, Hongyu; Lu, Yingfeng; Wang, Jian; Li, Xiaokun; Jia, Xiaofeng; Xiao, Jian

    2018-06-01

    Peripheral nerve injury (PNI) is a major burden to society with limited therapeutic options, and novel biomaterials have great potential for shifting the current paradigm of treatment. With a rising prevalence of chronic illnesses such as diabetes mellitus (DM), treatment of PNI is further complicated, and only few studies have proposed therapies suitable for peripheral nerve regeneration in DM. To provide a supportive environment to restore structure and/or function of nerves in DM, we developed a novel thermo-sensitive heparin-poloxamer (HP) hydrogel co-delivered with basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) in diabetic rats with sciatic nerve crush injury. The delivery vehicle not only had a good affinity for large amounts of growth factors (GFs), but also controlled their release in a steady fashion, preventing degradation in vitro. In vivo, compared with HP hydrogel alone or direct GFs administration, GFs-HP hydrogel treatment is more effective at facilitating Schwann cell (SC) proliferation, leading to an increased expression of nerve associated structural proteins, enhanced axonal regeneration and remyelination, and improved recovery of motor function (all p nerve regeneration in patients with DM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

    Directory of Open Access Journals (Sweden)

    Hirofumi Yurie

    Full Text Available Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit.We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6 and silicone tube (silicone group, n = 6. Several assessments were conducted to examine nerve regeneration eight weeks post-surgery.Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01. Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01. Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01.We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.

  6. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  7. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex.

    OpenAIRE

    Donoghue, J P; Sanes, J N

    1987-01-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stim...

  8. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides

    OpenAIRE

    Stenberg, Lena; Stã¶ãŸel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mã¥rtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B.; Haastert-Talini, Kirsten

    2017-01-01

    Background Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45?days delayed reconstruction of critical length 1...

  9. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats.

    Science.gov (United States)

    Shen, Chiung-Chyi; Yang, Yi-Chin; Liu, Bai-Shuan

    2011-08-01

    This study used a biodegradable composite containing genipin-cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT), developed in a previous study, as a nerve guide conduit. The aim of this study was to analyse the influence of a large-area irradiated aluminium-gallium-indium phosphide (AlGaInP) diode laser (660 nm) on the neural regeneration of the transected sciatic nerve after bridging the GGT nerve guide conduit in rats. The animals were divided into two groups: group 1 comprised sham-irradiated controls and group 2 rats underwent low-level laser (LLL) therapy. A compact multi-cluster laser system with 20 AlGaInP laser diodes (output power, 50mW) was applied transcutaneously to the injured peripheral nerve immediately after closing the wound, which was repeated daily for 5 min for 21 consecutive days. Eight weeks after implantation, walking track analysis showed a significantly higher sciatic function index (SFI) score (Pguide conduit in rats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats.

    Science.gov (United States)

    Willand, Michael P; Rosa, Elyse; Michalski, Bernadeta; Zhang, Jennifer J; Gordon, Tessa; Fahnestock, Margaret; Borschel, Gregory H

    2016-10-15

    Despite advances in surgery, patients with nerve injuries frequently have functional deficits. We previously demonstrated in a rat model that daily electrical muscle stimulation (EMS) following peripheral nerve injury and repair enhances reinnervation, detectable as early as two weeks post-injury. In this study, we explain the enhanced early reinnervation observed with electrical stimulation. In two groups of rats, the tibial nerve was transected and immediately repaired. Gastrocnemius muscles were implanted with intramuscular electrodes for sham or muscle stimulation. Muscles were stimulated daily, eliciting 600 contractions for one hour/day, repeated five days per week. Sixteen days following nerve injury, muscles were assessed for functional reinnervation by motor unit number estimation methods using electromyographic recording. In a separate cohort of rats, surgical and electrical stimulation procedures were identical but muscles and distal nerve stumps were harvested for molecular analysis. We observed that stimulated muscles had significantly higher motor unit number counts. Intramuscular levels of brain-derived and glial cell line-derived neurotrophic factor (BDNF and GDNF) mRNA were significantly upregulated in muscles that underwent daily electrical stimulation compared to those without stimulation. The corresponding levels of trophic factor mRNA within the distal stump were not different from one another, indicating that the intramuscular electrical stimulus does not modulate Schwann cell-derived trophic factor transcription. Stimulation over a three-month period maintained elevated muscle-derived GDNF but not BDNF mRNA. In conclusion, EMS elevates intramuscular trophic factor mRNA levels which may explain how EMS enhances neural regeneration following nerve injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. (--Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Tseng Chi-Yu

    2011-06-01

    Full Text Available Abstract Background Oxidative stress and large amounts of nitric oxide (NO have been implicated in the pathophysiology of neuronal injury and neurodegenerative disease. Recent studies have shown that (--epigallocatechin gallate (EGCG, one of the green tea polyphenols, has potent antioxidant effects against free radical-mediated lipid peroxidation in ischemia-induced neuronal damage. The purpose of this study was to examine whether EGCG would attenuate neuronal expression of NADPH-d/nNOS in the motor neurons of the lower brainstem following peripheral nerve crush. Thus, young adult rats were treated with EGCG (10, 25, or 50 mg/kg, i.p. 30 min prior to crushing their hypoglossal and vagus nerves for 30 seconds (left side, at the cervical level. The treatment (pre-crush doses of EGCG was continued from day 1 to day 6, and the animals were sacrificed on days 3, 7, 14 and 28. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS immunohistochemistry were used to assess neuronal NADPH-d/nNOS expression in the hypoglossal nucleus and dorsal motor nucleus of the vagus. Results In rats treated with high dosages of EGCG (25 or 50 mg/kg, NADPH-d/nNOS reactivity and cell death of the motor neurons were significantly decreased. Conclusions The present evidence indicated that EGCG can reduce NADPH-d/nNOS reactivity and thus may enhance motor neuron survival time following peripheral nerve injury.

  12. Distribution of elements in rat peripheral axons and nerve cell bodies determined by x-ray microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    LoPachin, R.M. Jr.; Lowery, J.; Eichberg, J.; Kirkpatrick, J.B.; Cartwright, J. Jr.; Saubermann, A.J.

    1988-09-01

    X-ray microprobe analysis was used to determine concentrations (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in cellular compartments of frozen, unfixed sections of rat sciatic and tibial nerves and dorsal root ganglion (DRG). Five compartments were examined in peripheral nerve (axoplasm, mitochondria, myelin, extraaxonal space, and Schwann cell cytoplasm), and four were analyzed in DRG nerve cell bodies (cytoplasm, mitochondria, nucleus, and nucleolus). Each morphological compartment exhibited characteristic concentrations of elements. The extraaxonal space contained high concentrations of Na, Cl, and Ca, whereas intraaxonal compartments exhibited lower concentrations of these elements but relatively high K contents. Nerve axoplasm and axonal mitochondria had similar elemental profiles, and both compartments displayed proximodistal gradients of decreasing levels of K, Cl, and, to some extent, Na. Myelin had a selectively high P concentration with low levels of other elements. The elemental concentrations of Schwann cell cytoplasm and DRG were similar, but both were different from that of axoplasm, in that K and Cl were markedly lower whereas P was higher. DRG cell nuclei contained substantially higher K levels than cytoplasm. The subcellular distribution of elements was clearly shown by color-coded images generated by computer-directed digital x-ray imaging. The results of this study demonstrate characteristic elemental distributions for each anatomical compartment, which doubtless reflect nerve cell structure and function.

  13. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  14. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    Science.gov (United States)

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  15. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats.

    Science.gov (United States)

    Huang, W; Begum, R; Barber, T; Ibba, V; Tee, N C H; Hussain, M; Arastoo, M; Yang, Q; Robson, L G; Lesage, S; Gheysens, T; Skaer, Nicholas J V; Knight, D P; Priestley, J V

    2012-01-01

    Various attempts have been made to develop artificial conduits for nerve repair, but with limited success. We describe here conduits made from Bombyx mori regenerated silk protein, and containing luminal fibres of Spidrex(®), a silk-based biomaterial with properties similar to those of spider silk. Assessment in vitro demonstrated that Spidrex(®) fibres support neurite outgrowth. For evaluation in vivo, silk conduits 10 mm in length and containing 0, 100, 200 or 300 luminal Spidrex(®) fibres, were implanted to bridge an 8 mm gap in the rat sciatic nerve. At 4 weeks, conduits containing 200 luminal Spidrex(®) fibres (PN200) supported 62% and 59% as much axon growth as autologous nerve graft controls at mid-conduit and distal nerve respectively. Furthermore, Spidrex(®) conduits displayed similar Schwann cell support and macrophage response to controls. At 12 weeks, animals implanted with PN200 conduits showed similar numbers of myelinated axons (81%) to controls, similar gastrocnemius muscle innervation, and similar hindpaw stance assessed by Catwalk footprint analysis. Plantar skin innervation was 73% of that of controls. PN200 Spidrex(®) conduits were also effective at bridging longer (11 and 13 mm) gaps. Our results show that Spidrex(®) conduits promote excellent axonal regeneration and function recovery, and may have potential for clinical application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cytidine 5’-diphosphocholine administration prevents peripheral neuropathic pain after sciatic nerve crush injury in rats

    Directory of Open Access Journals (Sweden)

    Emril DR

    2016-05-01

    Full Text Available Dessy R Emril,1 Samekto Wibowo,2 Lucas Meliala,2 Rina Susilowati3 1Department of Neurology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, 2Department of Neurology, 3Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, IndonesiaBackground: Cytidine 5’-diphosphocholine (citicoline has been shown to have beneficial effects in central nervous system injury as well as in motoric functional recovery after peripheral nerve injury. This study aimed to examine the effect of citicoline on prevention of neuropathic pain in a rat model of sciatic nerve crush injury.Methods: Forty experimental rats were divided into four groups. In three groups, the right sciatic nerves were crushed in the mid-thigh region, and a gelatin sponge moistened with 0.4 or 0.8 mL of 100 µmol/L citicoline, or saline 0.4 mL in the control group, was applied. The fourth group of rats was sham-operated, ie the sciatic nerve was exposed with no crush. Functional assessments were performed 4 weeks after crush injury. von Frey filaments (100 g threshold were used to assess neuropathic pain. In addition, the sciatic functional index and extensor postural thrust (EPT tests were used to assess motoric function.Results: The crush/citicoline 0.4 mL group had a lower percentage of pain (23.53%, n=17 compared with the crush/saline group (53.33%, n=15, P<0.005. The crush/citicoline 0.4 mL group also showed better motoric recovery, as seen in stronger EPT results (P<0.001. However, the sciatic functional index analysis did not show significant differences between groups (P=0.35. The crush/citicoline 0.8 mL group showed a higher percentage of pain (66.67%, n=18 and less EPT recovery. These results may be explained by more severe nerve injury due to compression with a larger administered volume.Conclusion: In situ administration of 0.4 mL of 100 μmol/L citicoline prevents the occurrence of neuropathic pain and induces motoric recovery

  17. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    International Nuclear Information System (INIS)

    Easterling, K.J.; Trumble, T.E.

    1990-01-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal

  18. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, K.J.; Trumble, T.E. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal.

  19. Peripheral nerve conduits: technology update

    Science.gov (United States)

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  20. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Directory of Open Access Journals (Sweden)

    Brook Gary A

    2003-05-01

    Full Text Available Abstract Background It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. Results To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (~15% have been demonstrated to be differentially expressed. Conclusions The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.

  1. Peripheral nerve regeneration through P(DLLA-epsilon-CL) nerve guides

    NARCIS (Netherlands)

    Den Dunnen, WFA; Meek, MF; Robinson, PH; Schakernraad, JM

    1998-01-01

    P(DLLA-epsilon-CL) nerve guides can be used perfectly for short nerve gaps in rats, and are even better than short autologous nerve grafts. The tube dimensions, such as the internal diameter and wall thickness, are very important for the final outcome of peripheral nerve regeneration, as well as the

  2. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  3. Stabilization, Rolling, and Addition of Other Extracellular Matrix Proteins to Collagen Hydrogels Improve Regeneration in Chitosan Guides for Long Peripheral Nerve Gaps in Rats.

    Science.gov (United States)

    Gonzalez-Perez, Francisco; Cobianchi, Stefano; Heimann, Claudia; Phillips, James B; Udina, Esther; Navarro, Xavier

    2017-03-01

    Autograft is still the gold standard technique for the repair of long peripheral nerve injuries. The addition of biologically active scaffolds into the lumen of conduits to mimic the endoneurium of peripheral nerves may increase the final outcome of artificial nerve devices. Furthermore, the control of the orientation of the collagen fibers may provide some longitudinal guidance architecture providing a higher level of mesoscale tissue structure. To evaluate the regenerative capabilities of chitosan conduits enriched with extracellular matrix-based scaffolds to bridge a critical gap of 15 mm in the rat sciatic nerve. The right sciatic nerve of female Wistar Hannover rats was repaired with chitosan tubes functionalized with extracellular matrix-based scaffolds fully hydrated or stabilized and rolled to bridge a 15 mm nerve gap. Recovery was evaluated by means of electrophysiology and algesimetry tests and histological analysis 4 months after injury. Stabilized constructs enhanced the success of regeneration compared with fully hydrated scaffolds. Moreover, fibronectin-enriched scaffolds increased muscle reinnervation and number of myelinated fibers compared with laminin-enriched constructs. A mixed combination of collagen and fibronectin may be a promising internal filler for neural conduits for the repair of peripheral nerve injuries, and their stabilization may increase the quality of regeneration over long gaps. Copyright © 2017 by the Congress of Neurological Surgeons

  4. Specific paucity of unmyelinated C-fibers in cutaneous peripheral nerves of the African naked-mole rat: comparative analysis using six species of Bathyergidae.

    Science.gov (United States)

    St John Smith, Ewan; Purfürst, Bettina; Grigoryan, Tamara; Park, Thomas J; Bennett, Nigel C; Lewin, Gary R

    2012-08-15

    In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  5. The potential of electrical stimulation to promote functional recovery after peripheral nerve injury--comparisons between rats and humans.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Amirjani, N; Chan, K M

    2007-01-01

    The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6-8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

  6. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots.

    Science.gov (United States)

    Lees, G.

    1996-01-01

    1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551

  7. Peripheral nerve conduits: technology update

    Directory of Open Access Journals (Sweden)

    Arslantunali D

    2014-12-01

    Full Text Available D Arslantunali,1–3,* T Dursun,1,2,* D Yucel,1,4,5 N Hasirci,1,2,6 V Hasirci,1,2,7 1BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU, Ankara, Turkey; 2Department of Biotechnology, METU, Ankara, Turkey; 3Department of Bioengineering, Gumushane University, Gumushane, Turkey; 4Faculty of Engineering, Department of Medical Engineering, Acibadem University, Istanbul, Turkey; 5School of Medicine, Department of Histology and Embryology, Acibadem University, Istanbul, Turkey; 6Department of Chemistry, Faculty of Arts and Sciences, METU, Ankara, Turkey; 7Department of Biological Sciences, Faculty of Arts and Sciences, METU, Ankara, Turkey *These authors have contributed equally to this work Abstract: Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers and designs (tubular, fibrous, and matrix type are being presented. Keywords: peripheral nerve injury, natural biomaterials, synthetic biomaterials

  8. Side Effects: Nerve Problems (Peripheral Neuropathy)

    Science.gov (United States)

    Nerve problems, such as peripheral neuropathy, can be caused by cancer treatment. Learn about signs and symptoms of nerve changes. Find out how to prevent or manage nerve problems during cancer treatment.

  9. Best time window for the use of calcium-modulating agents to improve functional recovery in injured peripheral nerves-An experiment in rats.

    Science.gov (United States)

    Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng

    2017-09-01

    Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    Science.gov (United States)

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  11. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    1 Award Number: W81XWH-11-2-0047 TITLE: Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration PRINCIPAL INVESTIGATOR: Ahmet Höke...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0047 Nanofiber nerve guide for peripheral nerve repair and regeneration 5b. GRANT NUMBER...goal of this collaborative research project was to develop next generation engineered nerve guide conduits (NGCs) with aligned nanofibers and

  13. Analgesic effect of piracetam on peripheral neuropathic pain induced by chronic constriction injury of sciatic nerve in rats.

    Science.gov (United States)

    Mehta, Ashish K; Bhati, Yogendra; Tripathi, Chakra D; Sharma, Krishna K

    2014-08-01

    Despite immense advances in the treatment strategies, management of neuropathic pain remains unsatisfactory. Piracetam is a prototype of nootropic drugs, used to improve cognitive impairment. The present study was designed to investigate the effect of piracetam on peripheral neuropathic pain in rats. Neuropathic pain was induced by the chronic constriction injury of the sciatic nerve. Following this, piracetam was intraperitoneally administered for 2 weeks in doses of 50, 100 and 200 mg/kg, and pain was assessed by employing the behavioural tests for thermal hyperalgesia (hot plate and tail flick tests) and cold allodynia (acetone test). After the induction of neuropathic pain, significant development of thermal hyperalgesia and cold allodynia was observed. The administration of piracetam (50 mg/kg) did not have any significant effect on all the behavioural tests. Further, piracetam (100 mg/kg) also had no effect on the hot plate and tail flick tests; however it significantly decreased the paw withdrawal duration in the acetone test. Piracetam in a dose of 200 mg/kg significantly modulated neuropathic pain as observed from the increased hot plate and tail flick latencies, and decreased paw withdrawal duration (in acetone test). Therefore, the present study suggests the potential use of piracetam in the treatment of neuropathic pain, which merits further clinical investigation.

  14. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    LM, de Crombrugghe B. Some recent advances in the chemistry and biology of trans- forming growth factor-beta. J Cell Biol 1987;105:1039e45. 12. Hao Y...SUPPLEMENTARY NOTES 14. ABSTRACT In current war trauma, 20-30% of all extremity injuries and >80% of penetrating injuries being associated with peripheral nerve...through both axonal advance and in revascularization of the graft following placement. We are confident that this technology may allow us to

  15. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...... excitability studies are relatively novel but are acquiring an increasingly important role in the study of peripheral nerves. RECENT FINDINGS: By measuring responses in nerve that are related to nodal function (strength-duration time constant, rheobase and recovery cycle) and internodal function (threshold...

  16. Peripheral Nerve Regeneration Following Crush Injury to Rat Peroneal Nerve by Aqueous Extract of Medicinal Mushroom Hericium erinaceus (Bull.: Fr Pers. (Aphyllophoromycetideae

    Directory of Open Access Journals (Sweden)

    Kah-Hui Wong

    2011-01-01

    Full Text Available Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery.

  17. Peripheral Nerve Regeneration Following Crush Injury to Rat Peroneal Nerve by Aqueous Extract of Medicinal Mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae)

    Science.gov (United States)

    Wong, Kah-Hui; Naidu, Murali; David, Pamela; Abdulla, Mahmood Ameen; Abdullah, Noorlidah; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary

    2011-01-01

    Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI) was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control) group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery. PMID:21941586

  18. Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: increased turnover of phosphatidylinositol-4,5-bisphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M E; Peterson, R G; Eichberg, J

    1982-07-01

    The effect of chronic streptozotocin-induced diabetes on phospholipid metabolism in rat sciatic nerve in vitro was investigated. In normal nerve incubated for 2 h in Krebs-Ringer-bicarbonate buffer containing (/sup 32/P)orthophosphate, radioactivity was primarily incorporated into phosphatidylinositol-4,5-bisphosphate and phosphatidylcholine. Smaller amounts were present in phosphatidylinositol-4-phosphate, phosphatidylinositol, and phosphatidic acid. As compared to controls, phosphatidylinositol-4,5-bisphosphate in nerves from animals made diabetic 2, 10, and 20 weeks earlier accounted for 30-46% more of the isotope, expressed as a percentage, incorporated into all phospholipids. In contrast, the proportion of radioactivity in phosphatidylcholine decreased by 10-25%. When the results were expressed as the quantity of phosphorus incorporated into phospholipid, only phosphatidylinositol-4,5-bisphosphate displayed a change. The amount of isotope which entered this lipid increased 60% and 67% for 2- and 10-week diabetic animals, respectively. Increased phosphatidylinositol-4,5-bisphosphate labeling was observed when epineurial-free preparations were used or when the composition of the incubation medium was varied. Sciatic and caudal nerve conduction velocities were decreased after 10 and 20 weeks but were unchanged after 2 weeks. Researchers conclude that an increase in the turnover of phosphatidylinositol-4,5-bisphosphate in sciatic nerve from streptozotocin-diabetic rats appears relatively early and persists throughout the course of the disease. This metabolic alteration may be related to a primary defect responsible for the accompanying deficient peripheral nerve function.

  19. Malignant peripheral nerve sheath tumor of the oculomotor nerve

    DEFF Research Database (Denmark)

    Kozic, D; Nagulic, M; Ostojic, J

    2006-01-01

    We present the short-term follow-up magnetic resonance (MR) studies and 1H-MR spectroscopy in a child with malignant peripheral nerve sheath tumor of the oculomotor nerve associated with other less aggressive cranial nerve schwannomas. The tumor revealed perineural extension and diffuse nerve...

  20. Optical stimulation of peripheral nerves in vivo

    Science.gov (United States)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  1. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  2. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  3. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  4. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves......, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological...

  5. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  6. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration

    Science.gov (United States)

    Kawamura, David H.; Johnson, Philip J.; Moore, Amy M.; Magill, Christina K.; Hunter, Daniel A.; Ray, Wilson Z.; Tung, Thomas HH.; Mackinnon, Susan E.

    2010-01-01

    The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery. This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts. PMID:20122927

  7. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction

    OpenAIRE

    Flatters, Sarah J.L.; Bennett, Gary J.

    2006-01-01

    Paclitaxel chemotherapy frequently induces neuropathic pain during and often persisting after therapy. The mechanisms responsible for this pain are unknown. Using a rat model of paclitaxel-induced painful peripheral neuropathy, we have performed studies to search for peripheral nerve pathology. Paclitaxel-induced mechano-allodynia and mechano-hyperalgesia were evident after a short delay, peaked at day 27 and finally resolved on day 155. Paclitaxel- and vehicle-treated rats were perfused on d...

  8. Peripheral Nerve Repair and Prevention of Neuroma Formation

    Science.gov (United States)

    2014-09-01

    bone disease in Neurofibromatosis type I. Molecular genetics and metabolism . 2008;94(1):105-11. doi: 10.1016/j.ymgme.2007.12.004. PubMed PMID...isolated from dog, and continue to develop them in a canine model of peripheral nerve extension- repair as well as characterize their contribution...Task 1: To test the functional contribution of the mouse/human cells (athymic rats) and their canine counterpart ( canine ) in critical size nerve

  9. Peripheral nerve involvement in Bell's palsy

    Directory of Open Access Journals (Sweden)

    J. A. Bueri

    1984-12-01

    Full Text Available A group of patients with Bell's palsy were studied in order to disclose the presence of subclinical peripheral nerve involvement. 20 patients, 8 male and 12 female, with recent Bell's palsy as their unique disease were examined, in all cases other causes of polyneuropathy were ruled out. Patients were investigated with CSF examination, facial nerve latencies in the affected and in the sound sides, and maximal motor nerve conduction velocities, as well as motor terminal latencies from the right median and peroneal nerves. CSF laboratory examination was normal in all cases. Facial nerve latencies were abnormal in all patients in the affected side, and they differed significantly from those of control group in the clinically sound side. Half of the patients showed abnormal values in the maximal motor nerve conduction velocities and motor terminal latencies of the right median and peroneal nerves. These results agree with previous reports which have pointed out that other cranial nerves may be affected in Bell's palsy. However, we have found a higher frequency of peripheral nerve involvement in this entity. These findings, support the hypothesis that in some patients Bell's palsy is the component of a more widespread disease, affecting other cranial and peripheral nerves.

  10. Effect of Platelet-Rich Fibrin on Peripheral Nerve Regeneration.

    Science.gov (United States)

    Şenses, Fatma; Önder, Mustafa E; Koçyiğit, Ismail D; Kul, Oğuz; Aydin, Gülümser; Inal, Elem; Atil, Fethi; Tekin, Umut

    2016-10-01

    This study aimed to evaluate the effect of platelet-rich fibrin (PRF) on peripheral nerve regeneration on the sciatic nerve of rats by using functional, histopathologic, and electrophysiologic analyses. Thirty female Wistar rats were divided randomly into 3 experimental groups. In group 1 (G1), which was the control group, the sciatic nerve was transected and sutured (n = 10). In group 2 (G2), the sciatic nerve was transected, sutured, and then covered with PRF as a membrane (n = 10). In group 3 (G3), the sciatic nerve was transected, sutured by leaving a 5-mm gap, and then covered by PRF as a nerve guide (n = 10). Functional, histopathologic, and electrophysiologic analyses were performed. The total histopathologic semiquantitative score was significantly higher in G1 compared to G2 and G3 (P < 0.05). Myelin thickness and capillaries were significantly lower in G3 compared to G1 (P < 0.05). There was no statistically significant difference between the groups with regard to the functional and electrophysiologic results. The study results suggest that PRF decreases functional recovery in sciatic nerve injury. Further studies are required to determine the efficacy of PRF on peripheral nerve regeneration.

  11. Magnetoneurographic evaluation of peripheral nerve regeneration

    NARCIS (Netherlands)

    P.D.L. Kuypers (Paul)

    1998-01-01

    textabstractWhen a peripheral nerve is reconstructed after it has been damaged. it is important to assess, in an early stage, whether the nerve is regenerating across the lesion. However, at present for this purpose an adequate method is not available. In this study short term changes in the

  12. Case report of a patient with peripheral facial nerve palsy

    OpenAIRE

    Rysová, Jana

    2013-01-01

    Title of bachelor's thesis: Case report of a patient with peripheral facial nerve palsy Summary: Teoretical part of bachelor's thesis contains theoretical foundation of peripheral facial nerve palsy. Practical part of bachelor's thesis contains physiotherapeutic case report of patient with peripheral facial nerve palsy. Key words: peripheral facial nerve palsy, casuistry, rehabilitation

  13. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    Science.gov (United States)

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  14. Peripheral facial nerve dysfunction: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Disbro, M.A.; Harnsberger, H.R.; Osborn, A.G.

    1985-06-01

    Peripheral facial nerve dysfunction may have a clinically apparent or occult cause. The authors reviewed the clinical and radiographic records of 36 patients with peripheral facial nerve dysfunction to obtain information on the location of the suspected lesion and the number, sequence, and type of radiographic evaluations performed. Inadequate clinical evaluations before computed tomography (CT) was done and unnecessary CT examinations were also noted. They have suggested a practical clinical and radiographic scheme to evaluate progressive peripheral facial dysfunction with no apparent cause. If this scheme is applied, unnecessary radiologic tests and delays in diagnosis and treatment may be avoided.

  15. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  16. Scaffolds for peripheral nerve repair and reconstruction.

    Science.gov (United States)

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Complex stimulation of peripheral nerve regeneration after deferred neurorrhaphy

    Directory of Open Access Journals (Sweden)

    Ivanov A.N.

    2017-09-01

    Full Text Available The aim is to study the complex stimulation effect including skin autotransplantation and electrical stimulation of the sciatic nerve on microcircular, electrophysiological and morphological changes after deferred neurorrhaphy in rats. Material and methods. The experiment was performed in 50 albino rats divided into control, comparative and experimental groups. In the experimental group, on the background of deferred neurorrhaphy, skin autotransplantation and electrical stimulation of the sciatic nerve had been carried out. In the comparative group only deferred neurorrhaphy was performed. Research methods included laser doppler flowmetry, electroneuromyography and morphological analysis of the operated nerve. Results. Complex stimulation including skin autotransplantation and direct action of electrical pulses on the sciatic nerve after its deferred neurorrhaphy causes restoration of bloodstream in the operated limb, promotes intensification of restoration of nerve fibers. Conclusion. Intensification of sciatic nerve regeneration after deferred neurorrhaphy in rats under the influence of complex stimulation including full-thickness skin graft autotransplantation and direct action of electrical pulses substantiates experimentally appropriateness of clinical testing of the given method for treatment of patients with peripheral nerve injuries.

  18. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho

    2018-01-01

    In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.

  19. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    These antimicrobial peptides are implicated in the resistance of epithelial surfaces to microbial colonisation and have been shown to be upregulated...be equivalent to standard autograft repair in rodent models. Outcomes have now been validated in a large animal (swine) model with 5 cm ulnar nerve...Goals of the Project Task 1– Determine mechanical properties, seal strength and resistance to biodegradation of candidate photochemical nerve wrap

  20. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.

  1. The Effects of Electrocautery on Peripheral Nerve: An Experimental Study.

    Science.gov (United States)

    Karalezli, Nazim; Koktekir, Ender; Yildirim, Serhat; Toy, Hatice; Oz, Mehmet; Yuceturk, Aydin

    2016-05-01

    BACKGROUND The aim of this study was to assess the usability of an electrocautery device as nerve stimulator and to investigate histopathologically the adverse effects of electrocautery at low power on rat sciatic nerves. METHODS A total of 36 female Sprague-Dawley albino rats were divided into six groups according to the power applied to their sciatic nerves (1, 2, 3, 4, 5 and 6 W, respectively). Pathologic changes were studied by microscopic examination and scored (no change = 0, mild = 1, moderate = 2, severe = 3). Multiple comparisons were provided for all groups by the Bonferroni test (one-way analysis of variance). A p value  0.05) Variable motor responses and foot deformities were observed at the different power levels. CONCLUSION Although electrocautery devices provoke motor responses if getting in contact with peripheral nerves as do nerve stimulators, their use induces histopathologically adverse effects even at the lowest power. Their use around peripheral nerves should be avoided. Georg Thieme Verlag KG Stuttgart · New York.

  2. Management of peripheral facial nerve palsy

    OpenAIRE

    Finsterer, Josef

    2008-01-01

    Peripheral facial nerve palsy (FNP) may (secondary FNP) or may not have a detectable cause (Bell?s palsy). Three quarters of peripheral FNP are primary and one quarter secondary. The most prevalent causes of secondary FNP are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immunological disorders, or drugs. The diagnosis of FNP relies upon the presence of typical symptoms and signs, blood chemical investigations, cerebro-spinal-fluid-investigations, X-ray of the...

  3. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    this (Figure 14). Task 2g . Decision on wrap/fixation method for AvanceΤΜ nerve graft studies in rodent model. (Month 16, All PI’s) This decision...completed 3g . Preparation of manuscript based on Task 3 studies and evaluation for recommendation for human studies. This final task will be...significantly reduced mean hospital stay, dressings changes, mean time to epithelialisation, reduced pain, increased mobility . Patient and surgeon 666 N

  4. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-06-01

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  5. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  6. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    Science.gov (United States)

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  7. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair.

    Science.gov (United States)

    Zhang, Li; Zhao, Weijia; Niu, Changmei; Zhou, Yujie; Shi, Haiyan; Wang, Yalin; Yang, Yumin; Tang, Xin

    2018-07-01

    Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.

  8. Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.

    Science.gov (United States)

    Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong

    2017-09-21

    Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons

  9. Changes in the structural properties of peripheral nerves after transection.

    Science.gov (United States)

    Toby, E B; Meyer, B M; Schwappach, J; Alvine, G

    1996-11-01

    Changes in peripheral nerve structural properties after transection were measured weekly for 5 weeks in the distal stump of the sciatic nerve in 50 Sprague-Dawley rats. Each week after transection, the distal stump of the transected nerve showed increased stiffness when compared to intact nerves. Linear elastic stiffness reached a maximum at weeks 1 and 2 after transection, when the transected nerves were 15% stiffer than the contralateral control sides. Toughness was also increased and reached a maximum at week 4 with a 50% difference between values for experimental and control sides. Overall failure load was between 21% and 27% greater, peaking at week 3. An increase in stiffness of the distal stump would result in increased tension at the suture line, as the nerve gap is overcome when performing a delayed neurorraphy. These data suggest, with respect to structural properties, that an end-to-end repair should be carried out at the time of injury; after only 1 week, significant stiffness in the distal segment of the nerve developed, which should result in an increase in tension at the repair site.

  10. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  11. Radiation injury to peripheral and cranial nerves

    International Nuclear Information System (INIS)

    Giese, W.L.; Kinsella, T.J.

    1991-01-01

    In this paper, the results of laboratory and clinical investigations regarding the radiosensitivity of peripheral nerve are presented. Before outlining this research the authors briefly review peripheral neuroanatomy and physiology and then discuss variables associated with injury. It is important to remember that radiation injury is multifactorial in nature, and that the relative importance of individual factors is not well understood. Reports up through the middle of this century were fraught with rudimentary dosimetry, primitive investigative methods, and arbitrary endpoints that resulted in widely conflicting conclusions that continue to date

  12. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    Science.gov (United States)

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  13. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  14. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  15. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2.

    Science.gov (United States)

    Telleman, Johan A; Stellingwerff, Menno D; Brekelmans, Geert J; Visser, Leo H

    2018-02-01

    Neurofibromatosis type 2 (NF2) is mainly associated with central nervous system (CNS) tumors. Peripheral nerve involvement is described in symptomatic patients, but evidence of subclinical peripheral nerve involvement is scarce. We conducted a cross-sectional pilot study in 2 asymptomatic and 3 minimally symptomatic patients with NF2 to detect subclinical peripheral nerve involvement. Patients underwent clinical examination, nerve conduction studies (NCS), and high-resolution ultrasonography (HRUS). A total of 30 schwannomas were found, divided over 20 nerve segments (33.9% of all investigated nerve segments). All patients had at least 1 schwannoma. Schwannomas were identified with HRUS in 37% of clinically unaffected nerve segments and 50% of nerve segments with normal NCS findings. HRUS shows frequent subclinical peripheral nerve involvement in NF2. Clinicians should consider peripheral nerve involvement as a cause of weakness and sensory loss in the extremities in patients with this disease. Muscle Nerve 57: 312-316, 2018. © 2017 Wiley Periodicals, Inc.

  16. Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Stella M. Matthes

    2013-01-01

    Full Text Available Peripheral nerve injury is a common and devastating complication after trauma and can cause irreversible impairment or even complete functional loss of the affected limb. While peripheral nerve repair results in some axonal regeneration and functional recovery, the clinical outcome is not optimal and research continues to optimize functional recovery after nerve repair. Cell transplantation approaches are being used experimentally to enhance regeneration. Intravenous infusion of mesenchymal stromal cells (MSCs into spinal cord injury and stroke was shown to improve functional outcome. However, the repair potential of intravenously transplanted MSCs in peripheral nerve injury has not been addressed yet. Here we describe the impact of intravenously infused MSCs on functional outcome in a peripheral nerve injury model. Rat sciatic nerves were transected followed, by intravenous MSCs transplantation. Footprint analysis was carried out and 21 days after transplantation, the nerves were removed for histology. Labelled MSCs were found in the sciatic nerve lesion site after intravenous injection and regeneration was improved. Intravenously infused MSCs after acute peripheral nerve target the lesion site and survive within the nerve and the MSC treated group showed greater functional improvement. The results of study suggest that nerve repair with cell transplantation could lead to greater functional outcome.

  17. Complement inhibition accelerates regeneration in a model of peripheral nerve injury

    NARCIS (Netherlands)

    Ramaglia, Valeria; Tannemaat, Martijn Rudolf; de Kok, Maryla; Wolterman, Ruud; Vigar, Miriam Ann; King, Rosalind Helen Mary; Morgan, Bryan Paul; Baas, Frank

    2009-01-01

    Complement (C) activation is a crucial event in peripheral nerve degeneration but its effect on the subsequent regeneration is unknown. Here we show that genetic deficiency of the sixth C component, C6, accelerates axonal regeneration and recovery in a rat model of sciatic nerve injury. Foot-flick

  18. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    Science.gov (United States)

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  19. The challenges and beauty of peripheral nerve regrowth.

    Science.gov (United States)

    Zochodne, Douglas W

    2012-03-01

    This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery. © 2012 Peripheral Nerve Society.

  20. Role of Demyelination Efficiency within Acellular Nerve Scaffolds during Nerve Regeneration across Peripheral Defects

    Directory of Open Access Journals (Sweden)

    Meiqin Cai

    2017-01-01

    Full Text Available Hudson’s optimized chemical processing method is the most commonly used chemical method to prepare acellular nerve scaffolds for the reconstruction of large peripheral nerve defects. However, residual myelin attached to the basal laminar tube has been observed in acellular nerve scaffolds prepared using Hudson’s method. Here, we describe a novel method of producing acellular nerve scaffolds that eliminates residual myelin more effectively than Hudson’s method through the use of various detergent combinations of sulfobetaine-10, sulfobetaine-16, Triton X-200, sodium deoxycholate, and peracetic acid. In addition, the efficacy of this new scaffold in repairing a 1.5 cm defect in the sciatic nerve of rats was examined. The modified method produced a higher degree of demyelination than Hudson’s method, resulting in a minor host immune response in vivo and providing an improved environment for nerve regeneration and, consequently, better functional recovery. A morphological study showed that the number of regenerated axons in the modified group and Hudson group did not differ. However, the autograft and modified groups were more similar in myelin sheath regeneration than the autograft and Hudson groups. These results suggest that the modified method for producing a demyelinated acellular scaffold may aid functional recovery in general after nerve defects.

  1. Transection of peripheral nerves, bridging strategies and effect evaluation

    NARCIS (Netherlands)

    IJkema-Paassen, J; Jansen, K; Gramsbergen, A; Meek, MF

    Disruption of peripheral nerves due to trauma is a frequently Occurring clinical problem. Gaps in the nerve are bridged by guiding the regenerating nerves along autologous grafts or artificial guides. This review gives an overview oil the different methods of nerve repair techniques. Conventional

  2. Tenascin-C in peripheral nerve morphogenesis.

    Science.gov (United States)

    Chiquet, M; Wehrle-Haller, B

    1994-01-01

    The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Peripheral nerve blocks in pediatric anesthesia

    Directory of Open Access Journals (Sweden)

    Novaković Dejan

    2009-01-01

    Full Text Available Introduction Most children undergoing surgery can benefit from regional anesthetic techniques, either as the sole anesthetic regimen or, as usual in pediatric practice, in combination with general anesthesia. The use of peripheral nerve blocks (PNBs in pediatric anesthesia is an effective way to decrease the side-effects and complications associated with central blocks. In spite of their many advantages, including easy performance end efficacy, peripheral nerve blocks are still underused. Objective This article discusses a general approach to PNBs in children and provides data concerning the practice of this regional technique in different age groups. Methods Data from 1,650 procedures were prospectively collected during the period from March 1, 2007 to February 29, 2008. The type of PNB, if any, as well as the patient age were noted. Our patients were divided into four groups: 0-3 years, 4-7 years, 8-12 years and 13-18 years. Results During the investigated period, PNBs as a sole technique or in anesthetized children were performed in 7.45% of cases. Ilioingunal/iliohypogastric nerve block and penile block were the most common (70% of all PNBs distributed mainly among the children between 4-7 years of age (p<0.05. In older children, extremity PNBs predominate in regard to other types of blocks. PNBs are most frequently performed under general anesthesia (85%, so the perineural approach requires a safe technique to avoid nerve damage. Conclusion The observed differences in PNB usage seem to be related to patient age and correlate with common pathology and also with technical availability of PNB performance.

  4. Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration

    Directory of Open Access Journals (Sweden)

    Guang-bin Zha

    2016-01-01

    Full Text Available Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, whether tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in peripheral nerve repair and regeneration.

  5. Omental pedicle transposition and suture repair of peripheral nerve ...

    African Journals Online (AJOL)

    Abu wael

    This study aimed to compare the effectiveness of omental pedicle transposition and ... Assessment of the nerve regeneration was based on functional (motor and sensory), ..... peripheral nerve fibers regenerating after crush, multiple crush, and.

  6. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    Science.gov (United States)

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  7. Peripheral Neuropathy and Nerve Compression Syndromes in Burns.

    Science.gov (United States)

    Strong, Amy L; Agarwal, Shailesh; Cederna, Paul S; Levi, Benjamin

    2017-10-01

    Peripheral neuropathy and nerve compression syndromes lead to substantial morbidity following burn injury. Patients present with pain, paresthesias, or weakness along a specific nerve distribution or experience generalized peripheral neuropathy. The symptoms manifest at various times from within one week of hospitalization to many months after wound closure. Peripheral neuropathy may be caused by vascular occlusion of vasa nervorum, inflammation, neurotoxin production leading to apoptosis, and direct destruction of nerves from the burn injury. This article discusses the natural history, diagnosis, current treatments, and future directions for potential interventions for peripheral neuropathy and nerve compression syndromes related to burn injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Peripheral nerve regeneration with conduits: use of vein tubes

    OpenAIRE

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; dos Santos, Jo?o Baptista Gomes

    2015-01-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent los...

  9. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the “elevator technique”. All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the “Journal of Ultrasonography”.

  10. 3D printing strategies for peripheral nerve regeneration.

    Science.gov (United States)

    Petcu, Eugen B; Midha, Rajiv; McColl, Erin; Popa-Wagner, Aurel; Chirila, Traian V; Dalton, Paul D

    2018-03-23

    After many decades of biomaterials research for peripheral nerve regeneration, a clinical product (the nerve guide), is emerging as a proven alternative for relatively short injury gaps. This review identifies aspects where 3D printing can assist in improving long-distance nerve guide regeneration strategies. These include (1) 3D printing of the customizable nerve guides, (2) fabrication of scaffolds that fill nerve guides, (3) 3D bioprinting of cells within a matrix/bioink into the nerve guide lumen and the (4) establishment of growth factor gradients along the length a nerve guide. The improving resolution of 3D printing technologies will be an important factor for peripheral nerve regeneration, as fascicular-like guiding structures provide one path to improved nerve guidance. The capability of 3D printing to manufacture complex structures from patient data based on existing medical imaging technologies is an exciting aspect that could eventually be applied to treating peripheral nerve injury. Ultimately, the goal of 3D printing in peripheral nerve regeneration is the automated fabrication, potentially customized for the patient, of structures within the nerve guide that significantly outperform the nerve autograft over large gap injuries.

  11. Delayed peripheral nerve repair: methods, including surgical ?cross-bridging? to promote nerve regeneration

    OpenAIRE

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H.

    2015-01-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour per...

  12. Synovial sarcoma mimicking benign peripheral nerve sheath tumor

    Energy Technology Data Exchange (ETDEWEB)

    Larque, Ana B.; Nielsen, G.P.; Chebib, Ivan [Massachusetts General Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2017-11-15

    To assess the radiographic and clinicopathologic features of synovial sarcoma of the nerve that were clinically or radiologically interpreted as benign peripheral nerve sheath tumor. Five patients with synovial sarcoma arising from the peripheral nerve and interpreted clinically and radiologically as peripheral nerve sheath tumors were identified. Clinicopathologic and imaging features were evaluated. There were three females and two males, ranging in age from 28 to 50 (mean 35.8) years. Most patients (4/5) complained of a mass, discomfort or pain. MR images demonstrated a heterogeneous, enhancing, soft tissue mass contiguous with the neurovascular bundle. On histologic examination, most tumors were monophasic synovial sarcoma (4/5). At the time of surgery, all tumors were noted to arise along or within a peripheral nerve. All patients were alive with no evidence of disease with median follow-up of 44 (range 32-237) months. For comparison, approximately 775 benign peripheral nerve sheath tumors of the extremities were identified during the same time period. Primary synovial sarcoma of the nerve can mimic peripheral nerve sheath tumors clinically and on imaging and should be included in the differential diagnosis for tumors arising from peripheral nerves. (orig.)

  13. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro.

    1995-01-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author)

  14. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Katsuhiko [Aikoh Orthopaedic Hospital, Nagoya (Japan); Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro

    1995-11-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author).

  15. Label-free photoacoustic microscopy of peripheral nerves

    Science.gov (United States)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  16. The successful use of peripheral nerve blocks for femoral amputation

    DEFF Research Database (Denmark)

    Bech, Birgitte Louise; Melchiors, J; Børglum, J

    2009-01-01

    We present a case report of four patients with severe cardiac insufficiency where peripheral nerve blocks guided by either nerve stimulation or ultrasonography were the sole anaesthetic for above-knee amputation. The patients were breathing spontaneously and remained haemodynamically stable during...... surgery. Thus, use of peripheral nerve blocks for femoral amputation in high-risk patients seems to be the technique of choice that can lower perioperative risk....

  17. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  18. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  19. Sciatic nerve regeneration in rats subjected to ketogenic diet.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz; Właszczuk, Adam; Gendosz, Daria; Larysz-Brysz, Magdalena; Kapustka, Bartosz; Łączyński, Mariusz; Lewin-Kowalik, Joanna; Jędrzejowska-Szypułka, Halina

    2016-01-01

    Ketogenic diet (KD) is a high-fat-content diet with insufficiency of carbohydrates that induces ketogenesis. Besides its anticonvulsant properties, many studies have shown its neuroprotective effect in central nervous system, but its influence on peripheral nervous system has not been studied yet. We examined the influence of KD on regeneration of peripheral nerves in adult rats. Fifty one rats were divided into three experimental (n = 15) and one control (n = 6) groups. Right sciatic nerve was crushed and animals were kept on standard (ST group) or ketogenic diet, the latter was introduced 3 weeks before (KDB group) or on the day of surgery (KDA group). Functional (CatWalk) tests were performed once a week, and morphometric (fiber density, axon diameter, and myelin thickness) analysis of the nerves was made after 6 weeks. Body weight and blood ketone bodies level were estimated at the beginning and the end of experiment. Functional analysis showed no differences between groups. Morphometric evaluation showed most similarities to the healthy (uncrushed) nerves in KDB group. Nerves in ST group differed mostly from all other groups. Ketone bodies were elevated in both KD groups, while post-surgery animals' body weight was lower as compared to ST group. Regeneration of sciatic nerves was improved in KD - preconditioned rats. These results suggest a neuroprotective effect of KD on peripheral nerves.

  20. Neural stem cells enhance nerve regeneration after sciatic nerve injury in rats.

    Science.gov (United States)

    Xu, Lin; Zhou, Shuai; Feng, Guo-Ying; Zhang, Lu-Ping; Zhao, Dong-Mei; Sun, Yi; Liu, Qian; Huang, Fei

    2012-10-01

    With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5 × 10(5) NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.

  1. End-to-side nerve suture – a technique to repair peripheral nerve ...

    African Journals Online (AJOL)

    Lateral sprouting from an intact nerve into an attached nerve does occur, and functional recovery (sensory and motor) has been demonstrated. We have demonstrated conclusively that ETSNS in the human is a viable option in treating peripheral nerve injuries, including injuries to the brachial plexus. Among the many ...

  2. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  3. Normal and sonographic anatomy of selected peripheral nerves. Part II: Peripheral nerves of the upper limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is frequently used for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. Part I of this article series described in detail the characteristic USG picture of peripheral nerves and the proper examination technique, following the example of the median nerve. This nerve is among the most often examined peripheral nerves of the upper limb. This part presents describes the normal anatomy and ultrasound picture of the remaining large nerve branches in the upper extremity and neck – the spinal accessory nerve, the brachial plexus, the suprascapular, axillary, musculocutaneous, radial and ulnar nerves. Their normal anatomy and ultrasonographic appearance have been described, including the division into individual branches. For each of them, specific reference points have been presented, to facilitate the location of the set trunk and its further monitoring. Sites for the application of the ultrasonographic probe at each reference point have been indicated. In the case of the ulnar nerve, the dynamic component of the examination was emphasized. The text is illustrated with images of probe positioning, diagrams of the normal course of the nerves as well as a series of ultrasonographic pictures of normal nerves of the upper limb. This article aims to serve as a guide in the ultrasound examination of the peripheral nerves of the upper extremity. It should be remembered that a thorough knowledge of the area’s topographic anatomy is required for this type of examination.

  4. Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.

    Science.gov (United States)

    Wong, Kah-Hui; Kanagasabapathy, Gowri; Naidu, Murali; David, Pamela; Sabaratnam, Vikineswary

    2016-10-01

    To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats. Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method. Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05). H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

  5. a technique to repair peripheral nerve injury

    African Journals Online (AJOL)

    attached nerve does occi.rr, and functional recovery (sensory and motor) has been demonstrated. ..... Brachial plexus. Upper trunk to lower. 19 Nov 1998 ... Fractured. 13 Mar 1998 Mid shaft hiunerus Radial nerve to. 14 Mar 1999 humerus cut.

  6. Malignant Peripheral Nerve Sheath Tumour of the Maxilla

    Directory of Open Access Journals (Sweden)

    Puja Sahai

    2014-01-01

    Full Text Available A 38-year-old man was diagnosed with malignant peripheral nerve sheath tumour of the maxilla. He was treated with total maxillectomy. Histopathological examination of the resected specimen revealed a close resection margin. The tumour was of high grade with an MIB-1 labelling index of almost 60%. At six weeks following the surgery, he developed local tumour relapse. The patient succumbed to the disease at five months from the time of diagnosis. The present report underlines the locally aggressive nature of malignant peripheral nerve sheath tumour of the maxilla which necessitates an early therapeutic intervention. A complete resection with clear margins is the most important prognostic factor for malignant peripheral nerve sheath tumour in the head and neck region. Adjuvant radiotherapy may be considered to improve the local control. Future research may demarcate the role of targeted therapy for patients with malignant peripheral nerve sheath tumour.

  7. Prevention of Paclitaxel-induced allodynia by Minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats

    Directory of Open Access Journals (Sweden)

    Xin Wen-Jun

    2010-11-01

    Full Text Available Abstract Background Although paclitaxel is a frontline antineoplastic agent for treatment of solid tumors, the paclitaxel-evoked pain syndrome is a serious problem for patients. There is currently no valid drug to prevent or treat the paclitaxel-induced allodynia, partly due to lack of understanding regarding the cellular mechanism. Studies have shown that minocycline, an inhibitor of microglia/macrophage, prevented neuropathic pain and promoted neuronal survival in animal models of neurodegenerative disease. Recently, Cata et al also reported that minocycline inhibited allodynia induced by low-dose paclitaxel (2 mg/kg in rats, but the mechanism is still unclear. Results Here, we investigate by immunohistochemistry the change of intraepidermal nerve fiber (IENF in the hind paw glabrous skin, expression of macrophage and activating transcription factor 3 (ATF3 in DRG at different time points after moderate-dose paclitaxel treatment (cumulative dose 24 mg/kg; 3 × 8 mg/kg in rats. Moreover, we observe the effect of minocycline on the IENF, macrophages and ATF3. The results showed that moderate-dose paclitaxel induced a persisted, gradual mechanical allodynia, which was accompanied by the loss of IENF in the hind paw glabrous skin and up-regulation of macrophages and ATF3 in DRG in rats. The expressions of ATF3 mainly focus on the NF200-positive cells. More importantly, we observed that pretreatment of minocycline at dose of 30 mg/kg or 50 mg/kg, but not 5 mg/kg, prevented paclitaxel-evoked allodynia. The evidence from immunohistochemistry showed that 30 mg/kg minocycline rescued the degeneration of IENF, attenuated infiltration of macrophages and up-regulation of ATF3 induced by paclitaxel treatment in rats. Conclusions Minocycline prevents paclitaxel-evoked allodynia, likely due to its inhibition on loss of IENF, infiltration of macrophages and up-regulation of ATF3 in rats. The finding might provide potential target for preventing paclitaxel

  8. NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity.

    Science.gov (United States)

    Norcini, Monica; Sideris, Alexandra; Adler, Samantha M; Hernandez, Lourdes A M; Zhang, Jin; Blanck, Thomas J J; Recio-Pinto, Esperanza

    2016-01-01

    Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma's plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23

  9. Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2018-01-01

    Full Text Available Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve physical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the control and poly (D, L-lactic acid groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration.

  10. Role of metallothioneins in peripheral nerve function and regeneration

    DEFF Research Database (Denmark)

    Ceballos, D; Lago, N; Verdú, E

    2003-01-01

    The physiological role of the metallothionein (MT) family of proteins during peripheral nerve injury and regeneration was examined in Mt1+ 2 and Mt3 knockout (KO) mice. To this end, the right sciatic nerve was crushed, and the regeneration distance was evaluated by the pinch test 2-7 days....... The improved regeneration observed with the Mt3 KO mice was confirmed by compound nerve action potentials that were recorded from digital nerves at 14 dpl only in this group. We conclude that Mt3 normally inhibits peripheral nerve regeneration........ Moreover, the number of regenerating axons in the distal tibial nerve was significantly higher in Mt3KO mice than in the other two strains at 14 dpl. Immunoreactive profiles to protein gene product 9.5 were present in the epidermis and the sweat glands of the plantar skin of the hindpaw of the Mt3 KO group...

  11. The role of exosomes in peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Rosanna C Ching

    2015-01-01

    Full Text Available Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.

  12. Ultrasound-guided peripheral nerve blocks: what are the benefits?

    DEFF Research Database (Denmark)

    Nielsen, Zbigniew Jerzy Koscielniak

    2008-01-01

    with the MESH terms 'nerve block' and 'ultrasonography'. The following limits were applied: studies with abstracts, only in humans, published in core clinical journals. Trial type: meta-analysis, randomized-controlled trial and clinical trial. RESULTS: When peripheral nerves are adequately imaged by ultrasound...

  13. Genetic analysis of peripheral nerve conduction velocity in twins

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Boomsma, D.I.; Vernon, P.A.

    1995-01-01

    We studied variation in peripheral nerve conduction velocity (PNCV) and intelligence in a group of 16-year-old Dutch twins. It has been suggested that both brain nerve conduction velocity and PNCV are positively correlated with intelligence (Reed, 1984) and that heritable differences in NCV may

  14. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    Science.gov (United States)

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  15. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain...

  16. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D

    2002-01-01

    median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...... muscle action potentials in the abductor pollicis brevis muscle, (2) the number and size of motor units in reinnervated muscle, and (3) compound sensory action potentials from digital nerve. A statistical model was used to assess the influence of three variables (repair type, nerve gap distance, and time...... to earliest muscle reinnervation) on the final recovery of the outcome measures. Nerve gap distance and the repair type, individually and concertedly, strongly influenced the time to earliest muscle reinnervation, and only time to reinnervation was significant when all three variables were included as outcome...

  17. Progress of nerve bridges in the treatment of peripheral nerve disruptions

    OpenAIRE

    Ao,Qiang

    2016-01-01

    Qiang Ao Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, Peoples’ Republic of China Abstract: Clinical repair of a nerve defect is one of the most challenging surgical problems. Autologous nerve grafting remains the gold standard treatment in addressing peripheral nerve injuries that cannot be bridged by direct epineural suturing. However, the autologous nerve graft is not readily available, and the process of harvesting...

  18. Early cyclosporin A treatment retards axonal degeneration in an experimental peripheral nerve injection injury model

    Directory of Open Access Journals (Sweden)

    Ibrahim Erkutlu

    2015-01-01

    Full Text Available Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potassium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can retard Wallerian degeneration after peripheral nerve crush injury. However, few studies are reported on the effects of cyclosporin A on peripheral nerve drug injection injury. This study aimed to assess the time-dependent efficacy of cyclosporine-A as an immunosuppressant therapy in an experimental rat nerve injection injury model established by penicillin G potassium injection. The rats were randomly divided into three groups based on the length of time after nerve injury induced by penicillin G potassium administration (30 minutes, 8 or 24 hours. The compound muscle action potentials were recorded pre-injury, early post-injury (within 1 hour and 4 weeks after injury and compared statistically. Tissue samples were taken from each animal for histological analysis. Compared to the control group, a significant improvement of the compound muscle action potential amplitude value was observed only when cyclosporine-A was administered within 30 minutes of the injection injury (P < 0.05; at 8 or 24 hours after cyclosporine-A administration, compound muscle action potential amplitude was not changed compared with the control group. Thus, early immunosuppressant drug therapy may be a good alternative neuroprotective therapy option in experimental nerve injection injury induced by penicillin G potassium injection.

  19. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  20. Evidence for a systemic regulation of neurotrophin synthesis in response to peripheral nerve injury.

    Science.gov (United States)

    Shakhbazau, Antos; Martinez, Jose A; Xu, Qing-Gui; Kawasoe, Jean; van Minnen, Jan; Midha, Rajiv

    2012-08-01

    Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2 weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2 weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  1. Major Peripheral Nerve Injuries After Elbow Arthroscopy.

    Science.gov (United States)

    Desai, Mihir J; Mithani, Suhail K; Lodha, Sameer J; Richard, Marc J; Leversedge, Fraser J; Ruch, David S

    2016-06-01

    To survey the American Society for Surgery of the Hand membership to determine the nature and distribution of nerve injuries treated after elbow arthroscopy. An online survey was sent to all members of the American Society for Surgery of the Hand under an institutional review board-approved protocol. Collected data included the number of nerve injuries observed over a 5-year period, the nature of treatment required for the injuries, and the outcomes observed after any intervention. Responses were anonymous, and results were securely compiled. We obtained 372 responses. A total of 222 nerve injuries were reported. The most injured nerves reported were ulnar, radial, and posterior interosseous (38%, 22%, and 19%, respectively). Nearly half of all patients with injuries required operative intervention, including nerve graft, tendon transfer, nerve repair, or nerve transfer. Of the patients who sustained major injuries, those requiring intervention, 77% had partial or no motor recovery. All minor injuries resolved completely. Our results suggest that major nerve injuries after elbow arthroscopy are not rare occurrences and the risk of these injuries is likely under-reported in the literature. Furthermore, patients should be counseled on this risk because most nerve injuries show only partial or no functional recovery. With the more widespread practice of elbow arthroscopy, understanding the nature and sequelae of significant complications is critically important in ensuring patient safety and improving outcomes. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    Science.gov (United States)

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Evaluation of Morphological and Functional Nerve Recovery of Rat Sciatic Nerve with a Hyaff11-Based Nerve Guide

    Directory of Open Access Journals (Sweden)

    K. Jansen

    2006-01-01

    Full Text Available Application of a Hyaff11-based nerve guide was studied in rats. Functional tests were performed to study motor nerve recovery. A withdrawal reflex test was performed to test sensory recovery. Morphology was studied by means of histology on explanted tissue samples. Motor nerve recovery was established within 7 weeks. Hereafter, some behavioral parameters like alternating steps showed an increase in occurence, while others remained stable. Sensory function was observed within the 7 weeks time frame. Nerve tissue had bridged the 10-mm gap within 7 weeks. The average nerve fiber surface area increased significantly in time. In situ degradation of the nerve conduit was fully going on at week 7 and tubes had collapsed by then. At weeks 15 and 21, the knitted tube wall structure was completely surrounded by macrophages and giant cells, and matrix was penetrating the tube wall. We conclude that a Hyaff11-based nerve guide can be used to bridge short peripheral nerve defects in rat. However, adaptations need to be made.

  4. Spinal myoclonus following a peripheral nerve injury: a case report

    Directory of Open Access Journals (Sweden)

    Erkol Gokhan

    2008-08-01

    Full Text Available Abstract Spinal myoclonus is a rare disorder characterized by myoclonic movements in muscles that originate from several segments of the spinal cord and usually associated with laminectomy, spinal cord injury, post-operative, lumbosacral radiculopathy, spinal extradural block, myelopathy due to demyelination, cervical spondylosis and many other diseases. On rare occasions, it can originate from the peripheral nerve lesions and be mistaken for peripheral myoclonus. Careful history taking and electrophysiological evaluation is important in differential diagnosis. The aim of this report is to evaluate the clinical and electrophysiological characteristics and treatment results of a case with spinal myoclonus following a peripheral nerve injury without any structural lesion.

  5. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

    Science.gov (United States)

    Gordon, Tessa; Chan, K Ming; Sulaiman, Olawale A R; Udina, Esther; Amirjani, Nasim; Brushart, Thomas M

    2009-10-01

    Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.

  6. US and MR imaging of peripheral nerves in leprosy

    International Nuclear Information System (INIS)

    Martinoli, C.; Derchi, L.E.; Gandolfo, N.; Bertolotto, M.; Bianchi, S.; Fiallo, P.; Nunzi, E.

    2000-01-01

    Objective. To analyze peripheral nerves with ultrasonography (US) and magnetic resonance imaging (MR) in leprosy and assess the role of imaging in leprosy patients. Results. Leprosy nerves were classified into three groups based on imaging appearance: group I consisted of 17 normal-appearing nerves; group II, of 30 enlarged nerves with fascicular abnormalities; group III, of 11 nerves with absent fascicular structure. Group II nerves were from patients subjected to reversal reactions; 75% of patients with group III nerves had a history of erythema nodosum leprosum. Nerve compression in osteofibrous tunnels was identified in 33% of group II and 18% of group III nerves. Doppler US and MR imaging were 74% and 92% sensitive in identifying active reactions, based on detection of endoneural color flow signals, long T2 and Gd enhancement. In 64% of cases, follow-up studies showed decreased color flow and Gd uptake after steroids and decompressive surgery.Conclusions. US and MR imaging are able to detect nerves abnormalities in leprosy. Active reversal reactions are indicated by endoneural color flow signals as well as by an increased T2 signal and Gd enhancement. These signs would suggest rapid progression of nerve damage and a poor prognosis unless antireactional treatment is started. (orig.)

  7. US and MR imaging of peripheral nerves in leprosy

    Energy Technology Data Exchange (ETDEWEB)

    Martinoli, C. [Department of Radiology ' ' R' ' , DICMI, University of Genoa, Genoa (Italy); Cattedra di Radiologia ' ' R' ' , Universita di Genova, Largo Rosanna Benzi, 8, I-16132 Genoa (Italy); Derchi, L.E.; Gandolfo, N. [Department of Radiology ' ' R' ' , DICMI, University of Genoa, Genoa (Italy); Bertolotto, M. [Department of Radiology, University of Trieste, Strada di Fiume, I-34149 Trieste (Italy); Bianchi, S. [Division de Radiodiagnostic. Hopital Cantonal Huniversitaire, Rue Micheli du Crest, Geneva (Switzerland); Fiallo, P.; Nunzi, E. [Department of Tropical Medicine, University of Genoa, Largo Rosanna Benzi 8, I-16132 Genoa (Italy)

    2000-03-30

    Objective. To analyze peripheral nerves with ultrasonography (US) and magnetic resonance imaging (MR) in leprosy and assess the role of imaging in leprosy patients. Results. Leprosy nerves were classified into three groups based on imaging appearance: group I consisted of 17 normal-appearing nerves; group II, of 30 enlarged nerves with fascicular abnormalities; group III, of 11 nerves with absent fascicular structure. Group II nerves were from patients subjected to reversal reactions; 75% of patients with group III nerves had a history of erythema nodosum leprosum. Nerve compression in osteofibrous tunnels was identified in 33% of group II and 18% of group III nerves. Doppler US and MR imaging were 74% and 92% sensitive in identifying active reactions, based on detection of endoneural color flow signals, long T2 and Gd enhancement. In 64% of cases, follow-up studies showed decreased color flow and Gd uptake after steroids and decompressive surgery.Conclusions. US and MR imaging are able to detect nerves abnormalities in leprosy. Active reversal reactions are indicated by endoneural color flow signals as well as by an increased T2 signal and Gd enhancement. These signs would suggest rapid progression of nerve damage and a poor prognosis unless antireactional treatment is started. (orig.)

  8. [Postoperative rehabilitation in patients with peripheral nerve lesions].

    Science.gov (United States)

    Petronić, I; Marsavelski, A; Nikolić, G; Cirović, D

    2003-01-01

    Injuries of extremities can be followed by various neuromuscular complications. Injury of peripheral nerves directly depended on the topographic localization of injury (fractures, cuts, contusions). The neuromuscular complications were diagnosed and under follow-up, based on clinical, x-ray, neurologic and neurophysiological findings. The timing of physical treatment and assessment of the necessary neurosurgical intervention depended on the obtained findings. After surgeries, we continued to apply physical treatment and rehabilitation. The aim of the paper was to assess the significance of proper timing for surgery and adequate postoperative rehabilitation, as well as treatment results, depending on the extent of peripheral nerve injury. Based on the study condocted in the period from 2000-2002, most surgeries were done on the ulnar nerve (4 pts), median nerve (4 pts), radial nerve (3 pts), peroneal nerve (2 pts) and plexus brachialis (3 pts). Paresis and peripheral nerve paralysis, associated with sensibility disorders, predominated in clinical features. In most patients surgery was done during the first 3-6 months after injury. In early postoperative Postoperative rehabilitation in patients with peripherial treatment positioning of extremities with electrotherapy were most often used in early postoperative treatment, Bioptron and dosed kinesitherapy. Depending on the neurophysiological findings, in later treatment stage we included electrostimulation, thermotherapy, kinesitherapy and working therapy, with the necessary application of static and dynamic orthroses. Study results showed that the success of treatment depended on the extent of injury, i.e. whether suture of liberalization of the nerve had been done, on the adequate timing of surgery, as well as on the adequate timing and application of physical therapy and rehabilitation. More rapid and complete functional recovery was achieved if the interval between injury and surgery was shorter, as well as

  9. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats.

    Science.gov (United States)

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2016-01-01

    Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  12. Sonographic identification of peripheral nerves in the forearm

    Directory of Open Access Journals (Sweden)

    Saundra A Jackson

    2016-01-01

    Full Text Available Background: With the growing utilization of ultrasonography in emergency medicine combined with the concern over adequate pain management in the emergency department (ED, ultrasound guidance for peripheral nerve blockade in ED is an area of increasing interest. The medical literature has multiple reports supporting the use of ultrasound guidance in peripheral nerve blocks. However, to perform a peripheral nerve block, one must first be able to reliably identify the specific nerve before the procedure. Objective: The primary purpose of this study is to describe the number of supervised peripheral nerve examinations that are necessary for an emergency medicine physician to gain proficiency in accurately locating and identifying the median, radial, and ulnar nerves of the forearm via ultrasound. Methods: The proficiency outcome was defined as the number of attempts before a resident is able to correctly locate and identify the nerves on ten consecutive examinations. Didactic education was provided via a 1 h lecture on forearm anatomy, sonographic technique, and identification of the nerves. Participants also received two supervised hands-on examinations for each nerve. Count data are summarized using percentages or medians and range. Random effects negative binomial regression was used for modeling panel count data. Results: Complete data for the number of attempts, gender, and postgraduate year (PGY training year were available for 38 residents. Nineteen males and 19 females performed examinations. The median PGY year in practice was 3 (range 1-3, with 10 (27% in year 1, 8 (22% in year 2, and 19 (51% in year 3 or beyond. The median number (range of required supervised attempts for radial, median, and ulnar nerves was 1 (0-12, 0 (0-10, and 0 (0-17, respectively. Conclusion: We can conclude that the maximum number of supervised attempts to achieve accurate nerve identification was 17 (ulnar, 12 (radial, and 10 (median in our study. The only

  13. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair.

    Science.gov (United States)

    Soucy, Jonathan R; Shirzaei Sani, Ehsan; Portillo Lara, Roberto; Diaz, David; Dias, Felipe; Weiss, Anthony S; Koppes, Abigail N; Koppes, Ryan A; Annabi, Nasim

    2018-05-09

    Suturing peripheral nerve transections is the predominant therapeutic strategy for nerve repair. However, the use of sutures leads to scar tissue formation, hinders nerve regeneration, and prevents functional recovery. Fibrin-based adhesives have been widely used for nerve reconstruction, but their limited adhesive and mechanical strength and inability to promote nerve regeneration hamper their utility as a stand-alone intervention. To overcome these challenges, we engineered composite hydrogels that are neurosupportive and possess strong tissue adhesion. These composites were synthesized by photocrosslinking two naturally derived polymers, gelatin-methacryloyl (GelMA) and methacryloyl-substituted tropoelastin (MeTro). The engineered materials exhibited tunable mechanical properties by varying the GelMA/MeTro ratio. In addition, GelMA/MeTro hydrogels exhibited 15-fold higher adhesive strength to nerve tissue ex vivo compared to fibrin control. Furthermore, the composites were shown to support Schwann cell (SC) viability and proliferation, as well as neurite extension and glial cell participation in vitro, which are essential cellular components for nerve regeneration. Finally, subcutaneously implanted GelMA/MeTro hydrogels exhibited slower degradation in vivo compared with pure GelMA, indicating its potential to support the growth of slowly regenerating nerves. Thus, GelMA/MeTro composites may be used as clinically relevant biomaterials to regenerate nerves and reduce the need for microsurgical suturing during nerve reconstruction.

  14. Motor-commands decoding using peripheral nerve signals: a review

    Science.gov (United States)

    Hong, Keum-Shik; Aziz, Nida; Ghafoor, Usman

    2018-06-01

    During the last few decades, substantial scientific and technological efforts have been focused on the development of neuroprostheses. The major emphasis has been on techniques for connecting the human nervous system with a robotic prosthesis via natural-feeling interfaces. The peripheral nerves provide access to highly processed and segregated neural command signals from the brain that can in principle be used to determine user intent and control muscles. If these signals could be used, they might allow near-natural and intuitive control of prosthetic limbs with multiple degrees of freedom. This review summarizes the history of neuroprosthetic interfaces and their ability to record from and stimulate peripheral nerves. We also discuss the types of interfaces available and their applications, the kinds of peripheral nerve signals that are used, and the algorithms used to decode them. Finally, we explore the prospects for future development in this area.

  15. Use of superficial peroneal nerve graft for treating peripheral nerve injuries

    Directory of Open Access Journals (Sweden)

    Samuel Ribak

    2016-02-01

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the clinical results from treating chronic peripheral nerve injuries using the superficial peroneal nerve as a graft donor source. METHODS: This was a study on eleven patients with peripheral nerve injuries in the upper limbs that were treated with grafts from the sensitive branch of the superficial peroneal nerve. The mean time interval between the dates of the injury and surgery was 93 days. The ulnar nerve was injured in eight cases and the median nerve in six. There were three cases of injury to both nerves. In the surgery, a longitudinal incision was made on the anterolateral face of the ankle, thus viewing the superficial peroneal nerve, which was located anteriorly to the extensor digitorum longus muscle. Proximally, the deep fascia between the extensor digitorum longus and the peroneal longus muscles was dissected. Next, the motor branch of the short peroneal muscle (one of the branches of the superficial peroneal nerve was identified. The proximal limit of the sensitive branch was found at this point. RESULTS: The average space between the nerve stumps was 3.8 cm. The average length of the grafts was 16.44 cm. The number of segments used was two to four cables. In evaluating the recovery of sensitivity, 27.2% evolved to S2+, 54.5% to S3 and 18.1% to S3+. Regarding motor recovery, 72.7% presented grade 4 and 27.2% grade 3. There was no motor deficit in the donor area. A sensitive deficit in the lateral dorsal region of the ankle and the dorsal region of the foot was observed. None of the patients presented complaints in relation to walking. CONCLUSIONS: Use of the superficial peroneal nerve as a graft source for treating peripheral nerve injuries is safe and provides good clinical results similar to those from other nerve graft sources.

  16. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  17. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  18. Emerging issues in peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    Stefano Geuna; Pierluigi Tos; Bruno Battiston

    2012-01-01

    It is today widely acknowledged that nerve repair is now more than a matter of perfect microsurgical reconstruction only and that,to further improve clinical outcome,the involvement of different scientific disciplines is required.This evolving reconstructive/regenerative approach is based on the interdisciplinary and integrated pillars of tissue engineering such as reconstructive microsurgery,transplantation and biomaterials.In this paper,some of the most promising innovations for the tissue engineering of nerves,emerging from basic science investigation,are critically overviewed with special focus on those approaches that appear today to be more suitable for clinical translation.

  19. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    enhancement in dorsal root ganglion ( DRG ) cells with the released drug. In the first year of this 18 month project we have completed device fabrication of...the nerve guide conduit and drug delivery reservoir. We were able to release NGF at a concentration that enhancing DRG nerve growth in vitro. We next...KrF excimer laser system (Optec) and with diameters larger than 100μm using the VLS3.60 CO2 system (Universal Laser Systems )) (Figure 3). The laser

  20. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    Science.gov (United States)

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  1. Design of barrier coatings on kink-resistant peripheral nerve conduits

    Directory of Open Access Journals (Sweden)

    Basak Acan Clements

    2016-02-01

    Full Text Available Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1 electrospinning a layer of polymer fibers onto the surface of the conduit and (2 coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

  2. The beneficial effect of genetically engineered Schwann cells with enhanced motility in peripheral nerve regeneration: review.

    Science.gov (United States)

    Gravvanis, A I; Lavdas, A A; Papalois, A; Tsoutsos, D A; Matsas, R

    2007-01-01

    The importance of Schwann cells in promoting nerve regeneration across a conduit has been extensively reported in the literature, and Schwann cell motility has been acknowledged as a prerequisite for myelination of the peripheral nervous system during regeneration after injury. Review of recent literature and retrospective analysis of our studies with genetically modified Schwann Cells with increased motility in order to identify the underlying mechanism of action and outline the future trends in peripheral nerve repair. Schwann cell transduction with the pREV-retrovirus, for expression of Sialyl-Transferase-X, resulting in conferring Polysialyl-residues (PSA) on NCAM, increases their motility in-vitro and ensures nerve regeneration through silicone tubes after end-to-side neurorraphy in the rat sciatic nerve model, thus significantly promoting fiber maturation and functional outcome. An artificial nerve graft consisting of a type I collagen tube lined with the genetically modified Schwann cells with increased motility, used to bridge a defect in end-to-end fashion in the rat sciatic nerve model, was shown to promote nerve regeneration to a level equal to that of a nerve autograft. The use of genetically engineered Schwann cells with enhanced motility for grafting endoneural tubes promotes axonal regeneration, by virtue of the interaction of the transplanted cells with regenerating axonal growth cones as well as via the recruitment of endogenous Schwann cells. It is envisaged that mixed populations of Schwann cells, expressing PSA and one or more trophic factors, might further enhance the regenerating and remyelinating potential of the lesioned nerves.

  3. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

    OpenAIRE

    Sanes, J N; Suner, S; Lando, J F; Donoghue, J P

    1988-01-01

    The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. R...

  4. Peripheral nerve regeneration with conduits: use of vein tubes.

    Science.gov (United States)

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; Dos Santos, João Baptista Gomes

    2015-04-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  5. Peripheral nerve regeneration with conduits: use of vein tubes

    Directory of Open Access Journals (Sweden)

    Rodrigo Guerra Sabongi

    2015-01-01

    Full Text Available Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  6. Injectable systems and implantable conduits for peripheral nerve repair

    International Nuclear Information System (INIS)

    Lin, Yen-Chih; Marra, Kacey G

    2012-01-01

    Acute sensory problems following peripheral nerve injury include pain and loss of sensation. Approximately 360 000 people in the United States suffer from upper extremity paralytic syndromes every year. Restoration of sufficient functional recovery after long-gap peripheral nerve damage remains a clinical challenge. Potential nerve repair therapies have increased in the past decade as the field of tissue engineering expands. The following review describes the use of biomaterials in nerve tissue engineering. Namely, the use of both synthetic and natural biomaterials, including non-degradable and degradable nerve grafts, is addressed. The enhancement of axonal regeneration can be achieved by further modification of the nerve guides. These approaches include injectable hydrogel fillers, controlled drug delivery systems, and cell incorporation. Hydrogels are a class of liquid–gel biomaterials with high water content. Injectable and gelling hydrogels can serve as growth factor delivery vehicles and cell carriers for tissue engineering applications. While natural hydrogels and polymers are suitable for short gap nerve repair, the use of polymers for relatively long gaps remains a clinical challenge. (paper)

  7. Fabrication of nerve guidance conduit with luminal filler as scaffold for peripheral nerve repair

    International Nuclear Information System (INIS)

    Aranilla, Charito T.; Wach, Rodoslaw; Ulanski, Piotr

    2015-01-01

    Peripheral nerve injury is a serious health concern for society, affecting trauma patients, many of whom acquire life-long disability. The gold standard of treatment for peripheral nerve injury is the use of nerve grafts, wherein nerve autograft or allograft is used to bridge the gap in the damaged nerve. Nerve guidance conduits (NGCs) are an attractive alternative to nerve autografts for aiding in the regeneration of peripheral nerve tissue. NGCs are small cylinders or tubes composed of either natural or synthetic biomaterials that are used to axon regeneration. The ends of the damaged nerve are inserted into either end of the cylinder and the NGC acts both as a connecting bridge for the severed nerve ends as well as a protective shelter for the regenerating nerve. This study aims at fabricating nerve guidance conduits with luminal structure based on synthetic biodegradable and biocompatible polymers such as poly (trimethylene carbonate ) (PTMC), poly (lactic acid) (PLA) and poly (caprolactone) (PCL). Initial base materials for fabrication were PLA acid tubes compared to PCL tubes when prepared by spray and dip-coating methods. The morphology of the tubes where examined by SEM and results showed better porosity of PLA acid tubes compared to PCL tubes when prepared by spraying technique. Poly(lactic acid) was then blended with poly(trimethylene carbonate) at a ratio of 1:4 (5% total polymer content) for further fabrication. Electron beam radiation (25 and 50 kGy) was employed for sterilization and the changes in properties induced by irradiation in comprising polymers were evaluated. The wettability, mechanical thermal properties were not significantly changed by irradiation.In a separate experiment, synthesis of carboxymethyl chitosan hydrogel crosslinked by electron beam radiation was studied to create a luminal filler for PTMC-PLA tubes. Based on proper viscosity of solution before crosslinking, sufficient gel fraction and swelling, 10% w/v concentration of

  8. Axotomy induces MHC class I antigen expression on rat nerve cells

    DEFF Research Database (Denmark)

    Maehlen, J; Schröder, H D; Klareskog, L

    1988-01-01

    Immunomorphological staining demonstrates that class I major histocompatibility complex (MHC)-coded antigen expression can be selectively induced on otherwise class I-negative rat nerve cells by peripheral axotomy. Induction of class I as well as class II antigen expression was simultaneously seen...... on non-neural cells in the immediate vicinity of the injured nerve cells. As nerve regeneration after axotomy includes growth of new nerve cell processes and formation of new nerve cell contacts, the present findings raise the question of a role for MHC-coded molecules in cell-cell interactions during...... nerve cell growth....

  9. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  10. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    Science.gov (United States)

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients.

  11. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    Science.gov (United States)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  12. MRI of pathology-proven peripheral nerve amyloidosis

    International Nuclear Information System (INIS)

    McKenzie, Gavin A.; Broski, Stephen M.; Howe, Benjamin M.; Spinner, Robert J.; Amrami, Kimberly K.; Dispenzieri, Angela; Ringler, Michael D.

    2017-01-01

    To highlight the MRI characteristics of pathologically proven amyloidosis involving the peripheral nervous system (PNS) and determine the utility of MRI in directing targeted biopsy for aiding diagnosis. A retrospective study was performed for patients with pathologically proven PNS amyloidosis who also underwent MRI of the biopsied or excised nerve. MRI signal characteristics, nerve morphology, associated muscular denervation changes, and the presence of multifocal involvement were detailed. Pathology reports were reviewed to determine subtypes of amyloid. Charts were reviewed to gather patient demographics, neurological symptoms and radiologist interpretation. Four men and three women with a mean age of 62 ± 11 years (range 46-76) were identified. All patients had abnormal findings on EMG with mixed sensorimotor neuropathy. All lesions demonstrated diffuse multifocal neural involvement with T1 hypointensity, T2 hyperintensity, and variable enhancement on MRI. One lesion exhibited superimposed T2 hypointensity. Six of seven patients demonstrated associated muscular denervation changes. Peripheral nerve amyloidosis is rare, and the diagnosis is difficult because of insidious symptom onset, mixed sensorimotor neurologic deficits, and the potential for a wide variety of nerves affected. On MRI, peripheral nerve involvement is most commonly characterized by T1 hypointensity, T2 hyperintensity, variable enhancement, maintenance of the fascicular architecture with fusiform enlargement, multifocal involvement and muscular denervation changes. While this appearance mimics other inflammatory neuropathies, MRI can readily detect neural changes and direct-targeted biopsy, thus facilitating early diagnosis and appropriate management. (orig.)

  13. MRI of pathology-proven peripheral nerve amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Gavin A.; Broski, Stephen M.; Howe, Benjamin M.; Spinner, Robert J.; Amrami, Kimberly K.; Dispenzieri, Angela; Ringler, Michael D. [Mayo Clinic, Department of Musculoskeletal Radiology, Rochester, MN (United States)

    2017-01-15

    To highlight the MRI characteristics of pathologically proven amyloidosis involving the peripheral nervous system (PNS) and determine the utility of MRI in directing targeted biopsy for aiding diagnosis. A retrospective study was performed for patients with pathologically proven PNS amyloidosis who also underwent MRI of the biopsied or excised nerve. MRI signal characteristics, nerve morphology, associated muscular denervation changes, and the presence of multifocal involvement were detailed. Pathology reports were reviewed to determine subtypes of amyloid. Charts were reviewed to gather patient demographics, neurological symptoms and radiologist interpretation. Four men and three women with a mean age of 62 ± 11 years (range 46-76) were identified. All patients had abnormal findings on EMG with mixed sensorimotor neuropathy. All lesions demonstrated diffuse multifocal neural involvement with T1 hypointensity, T2 hyperintensity, and variable enhancement on MRI. One lesion exhibited superimposed T2 hypointensity. Six of seven patients demonstrated associated muscular denervation changes. Peripheral nerve amyloidosis is rare, and the diagnosis is difficult because of insidious symptom onset, mixed sensorimotor neurologic deficits, and the potential for a wide variety of nerves affected. On MRI, peripheral nerve involvement is most commonly characterized by T1 hypointensity, T2 hyperintensity, variable enhancement, maintenance of the fascicular architecture with fusiform enlargement, multifocal involvement and muscular denervation changes. While this appearance mimics other inflammatory neuropathies, MRI can readily detect neural changes and direct-targeted biopsy, thus facilitating early diagnosis and appropriate management. (orig.)

  14. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  15. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  16. Peripheral nerve stimulator-induced electrostimulation at the P6 ...

    African Journals Online (AJOL)

    2012-12-03

    Dec 3, 2012 ... Original Research: Peripheral nerve stimulator-induced electrostimulation. 216. 2013;19(4). South Afr J Anaesth Analg. Introduction. Spinal anaesthesia is often associated with hypotension and bradycardia.1 Strategies to manage post-spinal hypotension include the use of vasopressors or fluids, or a ...

  17. Multi-microelectrode devices for intrafascicular use in peripheral nerve

    NARCIS (Netherlands)

    Rutten, Wim

    1996-01-01

    This minisymposium paper gives an overview of experimental, modeling, design and microfabrication steps which lead towards the University of Twente three-dimensional 128-fold silicon microelectrode device. The device is meant for implantation in peripheral nerve for neuromuscular control purposes

  18. Tumors of peripheral nerves; Tumoren der peripheren Nerven

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Michael [Universitaetsklinikum Zuerich, Institut fuer Diagnostische Radiologie, Zuerich (Switzerland); Lutz, Amelie M. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2017-03-15

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [German] Die Unterscheidung zwischen malignen und benignen Tumoren der peripheren Nerven ist im initialen Stadium schwierig. Die Frueherkennung der malignen Tumoren ist aufgrund ihrer unguenstigen Prognose jedoch wichtig. Moeglichkeiten der MR-Neurographie zur Detektion, Artdiagnostik und klinischem Management von Tumoren der peripheren Nerven anhand bildmorphologischer Charakteristika. Zusammenschau der Studienlage mittels PubMed- bzw. MEDLINE-Recherche. Zusaetzlich Darlegung teils unveroeffentlichter Erkenntnisse aus der eigenen klinischen Beobachtung. Wenn auch nicht pathognomonisch, existieren verschiedene Bildgebungszeichen zur moeglichen Unterscheidung verschiedener Tumoren der peripheren Nerven. Die MR-Neurographie ist ein geeignetes bildgebendes Verfahren zur Detektion und ersten Differenzialdiagnose von Tumoren der peripheren Nerven. Zudem kommt ihr besondere Bedeutung bei der Verlaufskontrolle, der gezielten Biopsie und der operativen Planung zu. (orig.)

  19. Malignant Peripheral Nerve Sheath Tumor: MRI and CT Findings

    Directory of Open Access Journals (Sweden)

    K. O. Kragha

    2015-01-01

    important in its diagnosis. A rare case of MPNST that produced urinary retention and bowel incontinence is presented that may aid clinicians in the diagnosis of this rare clinical entity. Motor weakness, central enhancement, and immunohistochemistry may assist in the diagnosis of MPNST and differentiation between benign peripheral nerve sheath tumor (BPNST and MPNST.

  20. Peripheral Nerve Function and Lower Extremity Muscle Power in Older Men

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, Paolo; Faulkner, Kimberly

    2014-01-01

    To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men.......To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men....

  1. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography

    NARCIS (Netherlands)

    Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.

    2012-01-01

    We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,

  2. 20.7 Peripheral nerve disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930394 A1—10 year follow—up study of 82cases of methamidophos induced delayedpolyneuropathy.Z1HENG Rongyuan (郑荣远),etal.Neurol Dept,Wenzhou Med Coll.325000.Chin J Industr Hyg & Occupat Dis 1992;10(6):344—347.A1—10 year follow—up study of 82 cases ofmethamidophos induced delayed polyneuropathywas reported.82 cases were classified into threetypes:motor (36.6%),sensory—motor (61%)and Guillain-Barre syndrome (2.4%).As awhole,the sensory disturbances disappearedwithin 2—3 months;the autonomic nerve func-tional disorder vanished within 3—6 months;

  3. Normal tissue tolerance to external beam radiation therapy: Peripheral nerves

    International Nuclear Information System (INIS)

    Henriques de Figueiredo, B.; Dejean, C.; Sargos, P.; Kantor, G.; Huchet, A.; Mamou, N.; Loiseau, H.

    2010-01-01

    Plexopathies and peripheral neuropathies appear progressively and with several years delay after radiotherapy. These lesions are observed principally after three clinical situations: supraclavicular and axillar irradiations for breast cancer, pelvic irradiations for various pathologies and limb irradiations for soft tissue sarcomas. Peripheral nerves and plexus (brachial and lumbosacral) are described as serial structures and are supposed to receive less than a given maximum dose linked to the occurrence of late injury. Literature data, mostly ancient, define the maximum tolerable dose to a threshold of 60 Gy and highlight also a great influence of fractionation and high fraction doses. For peripheral nerves, most frequent late effects are pain with significant differences of occurrence between 50 and 60 Gy. At last, associated pathologies (diabetes, vascular pathology, neuropathy) and associated treatments have probably to be taken into account as additional factors, which may increase the risk of these late radiation complications. (authors)

  4. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. New sonographic measures of peripheral nerves: a tool for the diagnosis of peripheral nerve involvement in leprosy

    Directory of Open Access Journals (Sweden)

    Marco Andrey Cipriani Frade

    2013-05-01

    Full Text Available To evaluate ultrasonographic (US cross-sectional areas (CSAs of peripheral nerves, indexes of the differences between CSAs at the same point (∆CSAs and between tunnel (T and pre-tunnel (PT ulnar CSAs (∆TPTs in leprosy patients (LPs and healthy volunteers (HVs. Seventy-seven LPs and 49 HVs underwent bilateral US at PT and T ulnar points, as well as along the median (M and common fibular (CF nerves, to calculate the CSAs, ∆CSAs and ∆TPTs. The CSA values in HVs were lower than those in LPs (p 80% and ∆TPT had the highest specificity (> 90%. New sonographic peripheral nerve measurements (∆CSAs and ∆TPT provide an important methodological improvement in the detection of leprosy neuropathy.

  6. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells

    Science.gov (United States)

    Dombrowski, Mary A.; Sasaki, Masanori; Lankford, Karen L.; Kocsis, Jeffery D.; Radtke, Christine

    2009-01-01

    Transplantation of olfactory ensheathing cells (OECs) into injured spinal cord results in improved functional outcome. Mechanisms suggested to account for this functional improvement include axonal regeneration, remyelination and neuroprotection. OECs transplanted into transected peripheral nerve have been shown to modify peripheral axonal regeneration and functional outcome. However, little is known of the detailed integration of OECs at the transplantation site in peripheral nerve. To address this issue cells populations enriched in OECs were isolated from the olfactory bulbs of adult green fluorescent protein (GFP)-expressing transgenic rats and transplanted into a sciatic nerve crush lesion which transects all axons. Five weeks to six months after transplantation the nerves were studied histologically. GFP-expressing OECs survived in the lesion and distributed longitudinally across the lesion zone. The internodal regions of individual teased fibers distal to the transection site were characterized by GFP expression in the cytoplasmic and nuclear compartments of cells surrounding the axons. Immuno-electron microscopy for GFP indicated that the transplanted OECs formed peripheral type myelin. Immunostaining for sodium channel and Caspr revealed a high density of Nav1.6 at the newly formed nodes of Ranvier which were flanked by paranodal Caspr staining. These results indicate that transplanted OECs extensively integrate into transected peripheral nerve and form myelin on regenerated peripheral nerve fibers, and that nodes of Ranvier of these axons display proper sodium channel organization. PMID:17112480

  7. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  8. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity.

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    Full Text Available A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05 while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001. Major histocompatibility complex I (MHC I molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold

  9. Dilong: Role in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Yung-Ming Chang

    2011-01-01

    Full Text Available Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i migration signaling, MAPKs (mitogen-activated protein kinases, mediated PAs and MMP2/9 pathway; (ii survival and proliferative signaling, IGF-I (insulin-like growth factor-I-mediated PI3K/Akt pathways and (iii cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators and MMPs (matrix metalloproteinases in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580, and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.

  10. Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Farjah

    2013-08-01

    Full Text Available Objective(s:  The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g were randomized into (1 ESM conduit, (2 autograft, and (3 sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pieces, rotated over the teflon mandrel and dried at   37°C. The left sciatic nerve was surgically cut. A 10-mm nerve segment was cut and removed. In the ESM group, the proximal and distal cut ends of the sciatic nerve were telescoped into the nerve guides. In the autograft group, the 10 mm nerve segment was reversed and used as an autologous nerve graft. All animals were evaluated by sciatic functional index (SFI and electrophysiology testing.  Results:The improvement in SFI from the first to the last evalution in ESM and autograft groups were evaluated. On days 49 and 60 post-operation, the mean SFI of ESM group was significantly greater than the autograft group (P 0.05. Conclusion:These findings demonstrate that ESM effectively enhances nerve regeneration and promotes functional recovery in injured sciatic nerve of rat.

  11. Laser-activated protein bands for peripheral nerve repair

    Science.gov (United States)

    Lauto, Antonio; Trickett, Rodney I.; Malik, Richard; Dawes, Judith M.; Owen, Earl R.

    1996-01-01

    A 100 micrometer core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the protein based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 plus or minus 5 min. (n equals 24) compared to 23 plus or minus 9 min (n equals 13) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 plus or minus 5 g, while microsutured nerves had a tensile strength of 40 plus or minus 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study, with a total of fifty-seven adult male wistar rats, compared laser solder repaired tibial nerves to conventional microsuture repair. Twenty-four laser soldered nerves and thirteen sutured nerves were characterized at three months and showed successful regeneration with average compound muscle action potentials (CMAP) of 2.4 plus or minus 0.7 mV and 2.7 plus or minus 0.8 mV respectively. Histopathology of the in vivo study, confirmed the comparable regeneration of axons in laser and suture operated nerves. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  12. Late radiation injury to muscle and peripheral nerves

    International Nuclear Information System (INIS)

    Gillette, E. L.; Mahler, P. A.; Powers, B. E.; Gillette, S. M.; Vujaskovic, Z.

    1995-01-01

    Late radiation injury to muscles and peripheral nerves is infrequently observed. However, the success of radiation oncology has led to longer patient survival, providing a greater opportunity for late effects to develop, increase in severity and, possibly, impact the quality of life of the patient. In addition, when radiation therapy is combined with surgery and/or chemotherapy, the risk of late complications is likely to increase. It is clear that the incidence of complications involving muscles and nerves increases with time following radiation. The influence of volume has yet to be determined; however, an increased volume is likely to increase the risk of injury to muscles and nerves. Experimental and clinical studies have indicated that the (α(β)) ratio for muscle is approximately 4 Gy and, possibly, 2 Gy for peripheral nerve, indicating the great influence of fractionation on response of these tissues. This is of concern for intraoperative radiation therapy, and for high dose rate brachytherapy. This review of clinical and experimental data discusses the response of muscle and nerves late after radiation therapy. A grading system has been proposed and endpoints suggested

  13. Sensorimotor peripheral nerve function and physical activity in older men

    DEFF Research Database (Denmark)

    Lange-Maia, B. S.; Cauley, J A; Newman, Anne B

    2016-01-01

    We determined whether sensorimotor peripheral nerve (PN) function was associated with physical activity (PA) in older men. The Osteoporotic Fractures in Men Study Pittsburgh, PA, site (n = 328, age 78.8 ± 4.7 years) conducted PN testing, including: peroneal motor and sural sensory nerve conduction...... (latencies, amplitudes: CMAP and SNAP for motor and sensory amplitude, respectively), 1.4g/10g monoflament (dorsum of the great toe), and neuropathy symptoms. ANOVA and multivariate linear regression modeled PN associations with PA (Physical Activity Scale for the Elderly [PASE] and SenseWear Armband). After...

  14. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    DEFF Research Database (Denmark)

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.

    2011-01-01

    not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions: These data show...... that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signalling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control....

  15. Regenerative Capacity and Histomorphometric Changes in Rat Sciatic Nerve Following Experimental Neurotmesis

    OpenAIRE

    Lós, Deniele Bezerra; Novaes, Karyne Albino; de Miranda, Filipe Barbosa Cunha; Lira, Kamilla Dinah Santos de; Andrade, Rodrigo Fragoso de; Moraes, Sílvia Regina Arruda de

    2015-01-01

    Through a wide range of cellular and molecular events, the peripheral nervous system is endowed with great regenerative capacity, responding immediately to injuries that occur along the length of the nerve. The aim of this study was to histomorphometrically assess the degree of maturity of the nervous tissue and possible microscopic changes in newly formed nerve segments 60 days after experimental neurotmesis of the sciatic nerve in rats. Control Group (CG) and an Injury Group (IG) were used....

  16. Long term clinical outcome of peripheral nerve stimulation in patients with chronic peripheral neuropathic pain

    DEFF Research Database (Denmark)

    Calenbergh, F. Van; Gybels, J.; Laere, K. Van

    2009-01-01

    BACKGROUND: Chronic neuropathic pain after injury to a peripheral nerve is known to be resistant to treatment. Peripheral nerve stimulation is one of the possible treatment options, which is, however, not performed frequently. In recent years we have witnessed a renewed interest for PNS. The aim...... of the present study was to evaluate the long-term clinical efficacy of PNS in a group of patients with peripheral neuropathic pain treated with PNS since the 1980s. METHODS: Of an original series of 11 patients, 5 patients could be invited for clinical examination, detailed assessment of clinical pain and QST...... functioning) also showed positive effects. Quantitative Sensory Testing results did not show significant differences in cold pain and heat pain thresholds between the "ON" and "OFF" conditions. CONCLUSION: In selected patients with peripheral neuropathic pain PNS remains effective even after more than 20...

  17. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.

    Science.gov (United States)

    Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2011-03-01

    To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  18. Immune cell distribution and immunoglobulin levels change following sciatic nerve injury in a rat model

    Directory of Open Access Journals (Sweden)

    Wei Yuan

    2016-07-01

    Full Text Available Objective(s: To investigate the systemic and local immune status of two surgical rat models of sciatic nerve injury, a crushed sciatic nerve, and a sciatic nerve transection Materials and Methods:Twenty-four adult male Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group, sciatic nerve crush, and sciatic nerve transaction. Sciatic nerve surgery was performed. The percentage of CD4+ cells and the CD4+/CD8+ratio were determined by flow cytometry. Serum IgM and IgG levels were analyzed by ELISA. T-cells (CD3 and macrophages (CD68 in sciatic nerve tissue sections were identified through immunohistochemistry. Results: Compared to sham-operated controls, in rats that underwent nerve injury, the percentage of CD4+ cells and the CD4+/CD8+ ratio in the peripheral blood were significantly  decreased 7 days after surgery, serum IgM levels were increased 14 days after surgery, and serum IgG levels were increased 21 days after surgery. There were a large number of CD3+ cells and a small number of CD68+ cells in sciatic nerve tissue sections 21 days after surgery, indicating T-cell and macrophage activation and infiltration. Local IgG deposition was also detected at the nerve injury site 21 days after surgery. Conclusion: Rat humoral and cellular immune status changed following sciatic nerve injury, particularly with regard to the cellular immune response at the nerve injury site.

  19. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    Science.gov (United States)

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  20. Evidence of peripheral nerve blocks for cancer-related pain

    DEFF Research Database (Denmark)

    Klepstad, P; Kurita, G P; Mercadante, S

    2015-01-01

    The European Association for Palliative Care has initiated a comprehensive program to achieve an over-all review of the evidence of multiple cancer pain management strategies in order to extend the current guideline for treatment of cancer pain. The present systematic review analyzed the existing...... evidence of analgesic efficacy for peripheral nerve blocks in adult patients with cancer. A search strategy was elaborated with words related to cancer, pain, peripheral nerve and block. The search was performed in PubMed, EMBASE, and Cochrane for the period until February 2014. The number of abstracts...... retrieved was 155. No controlled studies were identified. Sixteen papers presented a total of 79 cases. The blocks applied were paravertebral blocks (10 cases), blocks in the head region (2 cases), plexus blocks (13 cases), intercostal blocks (43 cases) and others (11 cases). In general, most cases reported...

  1. Evaluation of the chitosan/glycerol-β-phosphate disodium salt hydrogel application in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Zheng Lu; Zhang Xiufang; Gong Yandao; Ao Qiang; Han Hongyan

    2010-01-01

    Research efforts have been devoted to evaluating the application of the chitosan (CS)/glycerol-β-phosphate (GP) disodium salt hydrogel in peripheral nerve regeneration. The gelation time was determined to be 770 s using ultraviolet spectrophotometry. A standard 10 mm long rat sciatic nerve defect model was employed, followed by bridging the proximal and distal stumps with chitosan conduits injected with the Schwann cell-containing hydrogel. Injections of the blank hydrogel, Schwann cell suspension and culture medium were used as controls. Two months later, electrophysiological assessment and fluorogold retrograde tracing showed that compound muscle action potentials (CMAPs) and fluorogold-labeled neurons were only detected in the Schwann cell suspension group and culture medium group. The rats were then killed, and implanted conduits were removed for examination. There were no regenerated nerves found in groups injected with the blank hydrogel or Schwann cell-containing hydrogel, while the other two groups clearly displayed regenerated nerves across the gaps. In the subsequent histological assessment, immunohistochemistry, toluidine blue staining and transmission electron microscopy were performed to evaluate the regenerated nerves. The relative wet weight ratio, Masson trichrome staining and acetylcholinesterase staining were employed for the examination of gastrocnemius muscles in all four groups. The Schwann cell suspension group showed the best results for all these indexes; the culture medium group ranked second and the two hydrogel-injected groups showed the least optimal results. In conclusion, our data revealed that the implanted CS/GP hydrogel actually impeded nerve regeneration, which is inconsistent with former in vitro reports and general supposition. We believe that the application of the CS/GP hydrogel in nerve regeneration requires a further study before a satisfactory result is obtained. In addition, the present study also confirmed that Schwann

  2. Effect of PACAP in Central and Peripheral Nerve Injuries

    Directory of Open Access Journals (Sweden)

    Andras Buki

    2012-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.

  3. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound.

    Science.gov (United States)

    Kim, Hyungmin; Taghados, Seyed Javid; Fischer, Krisztina; Maeng, Lee-So; Park, Shinsuk; Yoo, Seung-Schik

    2012-09-01

    Nonpharmacologic and nonsurgical transcranial modulation of the nerve function may provide new opportunities in evaluation and treatment of cranial nerve diseases. This study investigates the possibility of using low-intensity transcranial focused ultrasound (FUS) to selectively stimulate the rat abducens nerve located above the base of the skull. FUS (frequencies of 350 kHz and 650 kHz) operating in a pulsed mode was applied to the abducens nerve of Sprague-Dawley rats under stereotactic guidance. The abductive eyeball movement ipsilateral to the side of sonication was observed at 350 kHz, using the 0.36-msec tone burst duration (TBD), 1.5-kHz pulse repetition frequency (PRF), and the overall sonication duration of 200 msec. Histologic and behavioral monitoring showed no signs of disruption in the blood brain barrier (BBB), as well as no damage to the nerves and adjacent brain tissue resulting from the sonication. As a novel functional neuro-modulatory modality, the pulsed application of FUS has potential for diagnostic and therapeutic applications in diseases of the peripheral nervous system. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  5. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  6. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr. Pers. through its neuroregenerative action

    Directory of Open Access Journals (Sweden)

    Kah-Hui WONG

    2015-01-01

    Full Text Available Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.

  7. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-01-01

    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  8. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  9. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    Science.gov (United States)

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Malignant peripheral nerve sheath tumour of the bladder associated with neurofibromatosis I.

    LENUS (Irish Health Repository)

    O'Brien, Julie

    2008-12-01

    Neurofibromatosis is a hamartomatous disorder of autonomic peripheral nerve sheaths associated with peripheral nerve sheath tumours. Most tumours are neurofibromas; however, the genitourinary system is rarely involved. We present a rare case of a nerve sheath tumour of the bladder in a young patient, which was discovered to be malignant.

  11. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration.

    Science.gov (United States)

    Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin

    2017-09-01

    Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  13. Reduced Renshaw Recurrent Inhibition after Neonatal Sciatic Nerve Crush in Rats

    Directory of Open Access Journals (Sweden)

    Liang Shu

    2014-01-01

    Full Text Available Renshaw recurrent inhibition (RI plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S and medial gastrocnemius (MG motor pools was assessed by conditioning monosynaptic reflexes (MSR elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.

  14. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  15. Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome.

    Science.gov (United States)

    Bauché, Stéphanie; Boerio, Delphine; Davoine, Claire-Sophie; Bernard, Véronique; Stum, Morgane; Bureau, Cécile; Fardeau, Michel; Romero, Norma Beatriz; Fontaine, Bertrand; Koenig, Jeanine; Hantaï, Daniel; Gueguen, Antoine; Fournier, Emmanuel; Eymard, Bruno; Nicole, Sophie

    2013-12-01

    Schwartz-Jampel syndrome (SJS) is a recessive disorder with muscle hyperactivity that results from hypomorphic mutations in the perlecan gene, a basement membrane proteoglycan. Analyses done on a mouse model have suggested that SJS is a congenital form of distal peripheral nerve hyperexcitability resulting from synaptic acetylcholinesterase deficiency, nerve terminal instability with preterminal amyelination, and subtle peripheral nerve changes. We investigated one adult patient with SJS to study this statement in humans. Perlecan deficiency due to hypomorphic mutations was observed in the patient biological samples. Electroneuromyography showed normal nerve conduction, neuromuscular transmission, and compound nerve action potentials while multiple measures of peripheral nerve excitability along the nerve trunk did not detect changes. Needle electromyography detected complex repetitive discharges without any evidence for neuromuscular transmission failure. The study of muscle biopsies containing neuromuscular junctions showed well-formed post-synaptic element, synaptic acetylcholinesterase deficiency, denervation of synaptic gutters with reinnervation by terminal sprouting, and long nonmyelinated preterminal nerve segments. These data support the notion of peripheral nerve hyperexcitability in SJS, which would originate distally from synergistic actions of peripheral nerve and neuromuscular junction changes as a result of perlecan deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Primary malignant peripheral nerve sheath tumor at unusual location

    Directory of Open Access Journals (Sweden)

    Souvagya Panigrahi

    2013-01-01

    Full Text Available Malignant peripheral nerve sheath tumor (MPNST is a rare soft tissue sarcoma. Most arise in association with major nerve trunks. Their most common anatomical sites are the proximal portions of the upper and lower extremities and the trunk. MPNSTs have rarely been reported in literature to occur in other unusual body parts. We review all such cases reported till now in terms of site of origin, surgical treatment, adjuvant therapy and outcome and shortly describe our experience with two of these cases. Both of our case presented with lump at unusual sites resembling neurofibroma, one at orbitotemporal area and other in the paraspinal region with characteristic feature of neurofibroma with the exception that both had very short history of progression. They underwent gross total removal of the tumor with adjuvant radiotherapy postoperatively. At 6-month follow-up both are doing well with no evidence of recurrence.

  17. Retroperitoneal Malignant Peripheral Nerve Sheath Tumour: A Rare Case Report.

    Science.gov (United States)

    Deger, Ayse Nur; Bayar, Mehmet Akif; Caydere, Muzaffer; Deger, Hakki; Tayfur, Mahir

    2015-09-01

    Malignant nerve sheath tumours (MPNST) are rare neoplasias and retroperitoneal cases are fairly rare and clinically difficult to be detected, but they are very agressive neoplasias. MPNST are frequently seen in head, neck and upper extremities. In patients with NF1; MPNST, a poor-prognostic lesion, may result from a malignant degeneration of a former plexiform neurofibroma. It is necessary to be aware of a potential malignancy in patients diagnosed with plexiform neurofibroma. We present a 21-year-old female with a diagnosis of MPNST. The patient was admited to the hospital because of a tumour in the subcutaneous region on her left buttock. The surgeon's clinical diagnosis was lipoma. After the pathological examination of biopsy specimen, the lesion was identified as "plexiform neurofibroma" and then the patient was diagnosed with Neurofibromatosis Type 1 (NF1). Simultaneously, another mass on the retroperitoneal region was identified as malignant peripheral nerve sheath tumour (MPNST).

  18. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  19. [Treatment of idiopathic peripheral facial nerve paralysis (Bell's palsy)].

    Science.gov (United States)

    Meyer, Martin Willy; Hahn, Christoffer Holst

    2013-01-28

    Bell's palsy is defined as an idiopathic peripheral facial nerve paralysis of sudden onset. It affects 11-40 persons per 100,000 per annum. Many patients recover without intervention; however, up to 30% have poor recovery of facial muscle control and experience facial disfigurement. The aim of this study was to make an overview of which pharmacological treatments have been used to improve outcomes. The available evidence from randomized controlled trials shows significant benefit from treating Bell's palsy with corticosteroids but shows no benefit from antivirals.

  20. Nerve excitability in the rat forelimb

    DEFF Research Database (Denmark)

    Arnold, Ria; Moldovan, Mihai; Rosberg, Mette Romer

    2017-01-01

    Background Nerve excitability testing by threshold-tracking is the only available method to study axonal ion channel function and membrane potential in the clinical setting. The measures are, however, indirect and the interpretation of neuropathic changes remains challenging. The same multiple...... measures of axonal excitability were adapted to further explore the pathophysiological changes in rodent disease models under pharmacologic and genetic manipulations. These studies are typically limited to the investigation of the “long nerves” such as the tail or the tibial nerves. New method We introduce...... a novel setup to explore the ulnar nerve excitability in rodents. We provide normative ulnar data in 11 adult female Long Evans rats under anaesthesia by comparison with tibial and caudal nerves. Additionally, these measures were repeated weekly on 3 occasions to determine the repeatability of these tests...

  1. Case study of physiotherapeutic treatment of patient with diagnosis facial nerve peripheral palsy

    OpenAIRE

    Zahrádková, Tereza

    2015-01-01

    Title of Bachelorʼs thesis: Case study of physiotherapeutic treatment of patient with diagnosis facial nerve peripheral palsy. Aim of thesis: Summary of theoretical findings of patientʼs diagnosis, study metodology of physiotherapeutic care, treatment design, monitoring of treatment, and evaluate the effect of patient with diagnosis facial nerve peripheral palsy. Summary: This thesis comprehensively summarizes the findings of of peripheral facial nerve palsy and it's treatment with physiotera...

  2. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-09-10

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  3. Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang, Dongye; Zhang, Xiang; Lu, Liejing; Li, Haojiang; Zhang, Fang; Chen, Yueyao; Shen, Jun

    2015-01-01

    To determine the role of magnetic resonance (MR) imaging and quantitative T2 value measurements in the assessment of diabetic peripheral neuropathy (DPN). Sequential MR imaging, T2 measurement, and quantitative sensory testing of sciatic nerves were performed in streptozotocin-induced diabetic rats (n = 6) and normal control rats (n = 6) over a 7-week follow-up period. Histological assessment was obtained from 48 diabetic rats and 48 control rats once weekly for 7 weeks (n = 6 for each group at each time point). Nerve signal abnormalities were observed, and the T2 values, mechanical withdrawal threshold (MWT), and histological changes were measured and compared between diabetic and control animals. Sciatic nerves in the diabetic rats showed a gradual increase in T2 values beginning at 2 weeks after the induction (P = 0.014), while a decrease in MWT started at 3 weeks after the induction (P = 0.001). Nerve T2 values had a similar time course to sensory functional deficit in diabetic rats. Histologically, sciatic nerves of diabetic rats demonstrated obvious endoneural oedema from 2 to 3 weeks after the induction, followed by progressive axonal degeneration, Schwann cell proliferation, and coexistent disarranged nerve regeneration. Nerve T2 measurement is potentially useful in detecting and monitoring diabetic neuropathy. (orig.)

  4. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    National Research Council Canada - National Science Library

    Sherman, Larry

    2003-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an increased incidence compared to the general population...

  5. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    National Research Council Canada - National Science Library

    Sherman, Larry

    2001-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an increased incidence compared to the general population...

  6. alpha-MSH and Org.2766 in peripheral nerve regeneration: different routes of delivery.

    Science.gov (United States)

    Van der Zee, C E; Brakkee, J H; Gispen, W H

    1988-03-15

    The efficacy of melanocortins (alpha-MSH and an ACTH-(4-9) analog, Org.2766) in accelerating functional recovery from sciatic nerve damage following various types of subcutaneous and oral administration was assessed in the rat. Furthermore, the effectiveness of the local delivery of melanocortins to the site of injury was examined. An accelerated recovery was evident following subcutaneous constant delivery of Org.2766 from an osmotic mini-pump and from biodegradable polymere microspheres, and was as effective as repeated subcutaneous injections of alpha-MSH or Org.2766. Oral administration of Org.2766 was ineffective. Local application of Org.2766, achieved by wrapping a peptide-impregnated biodegradable gelatine foam matrix around the site of injury, facilitated recovery as well. The biodegradable microspheres and gelatine foam matrix may be of importance in eventual clinical use as effective vehicles for administration of melanocortins in the treatment of peripheral nerve damage.

  7. Experimental strategies to promote functional recovery after peripheral nerve injuries.

    Science.gov (United States)

    Gordon, Tessa; Sulaiman, Olawale; Boyd, J Gordon

    2003-12-01

    The capacity of Schwann cells (SCs) in the peripheral nervous system to support axonal regeneration, in contrast to the oligodendrocytes in the central nervous system, has led to the misconception that peripheral nerve regeneration always restores function. Here, we consider how prolonged periods of time that injured neurons remain without targets during axonal regeneration (chronic axotomy) and that SCs in the distal nerve stumps remain chronically denervated (chronic denervation) progressively reduce the number of motoneurons that regenerate their axons. We demonstrate the effectiveness of low-dose, brain-derived neurotrophic and glial-derived neurotrophic factors to counteract the effects of chronic axotomy in promoting axonal regeneration. High-dose brain-derived neurotrophic factor (BDNF) on the other hand, acting through the p75 receptor, inhibits axonal regeneration and may be a factor in stopping regenerating axons from forming neuromuscular connections in skeletal muscle. The immunophilin, FK506, is also effective in promoting axonal regeneration after chronic axotomy. Chronic denervation of SCs (>1 month) severely deters axonal regeneration, although the few motor axons that do regenerate to reinnervate muscles become myelinated and form enlarged motor units in the reinnervated muscles. We found that in vitro incubation of chronically denervated SCs with transforming growth factor-beta re-established their growth-supportive phenotype in vivo, consistent with the idea that the interaction between invading macrophages and denervated SCs during Wallerian degeneration is essential to sustain axonal regeneration by promoting the growth-supportive SC phenotype. Finally, we consider the effectiveness of a brief period of 20 Hz electrical stimulation in promoting the regeneration of axons across the surgical gap after nerve repair.

  8. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair.

    Science.gov (United States)

    Shakhbazau, Antos; Kawasoe, Jean; Hoyng, Stefan A; Kumar, Ranjan; van Minnen, Jan; Verhaagen, Joost; Midha, Rajiv

    2012-05-01

    Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a lentiviral vector encoding NGF (NGF-SCs). Transplantation of NGF-SCs in a rat sciatic nerve transection/repair model led to significant increase of NGF levels 2weeks after injury and correspondingly to substantial improvement in axonal regeneration. Numbers of NF200, ChAT and CGRP-positive axon profiles, as well as the gastrocnemius muscle weights, were significantly higher in the NGF-Schwann cell group compared to the animals that received control SCs transduced with a lentiviral vector encoding GFP (GFP-SCs). Comparison with other models of NGF application signifies the important role of this neurotrophin during the early stages of regeneration, and supports the importance of developing combined gene and cell therapy for peripheral nerve repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  10. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    Science.gov (United States)

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The application of viral vectors to enhance regeneration after peripheral nerve repair

    NARCIS (Netherlands)

    Tannemaat, Martijn R; Verhaagen, J.; Malessy, Martijn J A

    2008-01-01

    OBJECTIVE: Despite great advancements in surgical repair techniques, a considerable degree of functional impairment remains in the majority of patients after peripheral nerve reconstruction. New concepts to promote regeneration of the peripheral nerve are needed since it is generally held that

  12. Establishment of Peripheral Nerve Injury Data Repository to Monitor and Support Population Health Decisions

    Science.gov (United States)

    2017-07-01

    Military Medical Center (WRNMMC) for Peripheral Nerve Injury (PNI) treatment. A database , the Peripheral Nerve Injury Database (PNIDB), will be established...to catalog and describe the characteristics, mechanisms, management, and outcomes of PNIs using both retrospective chart review and prospective...decisions for patients with PNIs. These outcomes could be used in future study to further characterize PNIs and delineate which management

  13. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  14. Peripheral nerve repair: a hot spot analysis on treatment methods from 2010 to 2014

    Directory of Open Access Journals (Sweden)

    Guang-yao Liu

    2015-01-01

    Full Text Available Therapeutic strategies for neurological deficits and for promoting nerve regeneration after peripheral nerve injuries have received much focus in clinical research. Advances in basic research in recent years have increased our understanding of the anatomy of peripheral nerves and the importance of the microenvironment. Various new intervention methods have been developed, but with varying effectiveness. In the present study, we selected 911 papers on different repair methods for peripheral nerve injury from the Web of Science and indexed in the Science Citation Index from 2010 to 2014. We quantitatively examine new repair methods and strategies using bibliometrics, and we discuss the present state of knowledge and the problems and prospects of various repair methods, including nerve transfer, neural transplantation, tissue engineering and genetic engineering. Our findings should help in the study and development of repair methods for peripheral nerve injury.

  15. Neuro-otological and peripheral nerve involvement in Fabry disease

    Directory of Open Access Journals (Sweden)

    Sergio Carmona

    2017-07-01

    Full Text Available Fabry disease (FD is an X-linked lysosomal storage disease, with multisystemic glycosphingolipids deposits. Neuro-otological involvement leading to hearing loss and vestibular dysfunctions has been described, but there is limited information about the frequency, site of lesion, or the relationship with peripheral neuropathy. The aim was to evaluate the presence of auditory and vestibular symptoms, and assess neurophysiological involvement of the VIII cranial nerve, correlating these findings with clinical and neurophysiological features of peripheral neuropathy. We studied 36 patients with FD with a complete neurological and neuro-otological evaluation including nerve conduction studies, quantitative sensory testing (to evaluate small fiber by warm and cold threshold detection and cold and heat pain, vestibular evoked myogenic potentials, videonistagmography, audiometry and brainstem auditory evoked potentials. Neuro-otologic symptoms included hearing loss (22.2%, vertigo (27.8% or both (25%. An involvement of either cochlear or vestibular function was identified in most patients (75%. In 70% of our patients the involvement of both cochlear and vestibular function could not be explained by a neural or vascular mechanism. Small fiber neuropathy was identified in 77.7%. There were no significant associations between neurootological and QST abnormalities. Neuro-otologic involvement is frequent and most likely under-recognized in patients with FD. It lacks a specific neural or vascular pattern, suggesting multi-systemic, end organ damage. Small fiber neuropathy is an earlier manifestation of FD, but there is no correlation between the development of neuropathy and neuro-otological abnormalities.

  16. Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit

    Directory of Open Access Journals (Sweden)

    Pei-xun Zhang

    2015-01-01

    Full Text Available The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks, the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.

  17. Comparative Evaluation of Chitosan Nerve Guides with Regular or Increased Bendability for Acute and Delayed Peripheral Nerve Repair: A Comprehensive Comparison with Autologous Nerve Grafts and Muscle-in-Vein Grafts.

    Science.gov (United States)

    Stößel, Maria; Wildhagen, Vivien M; Helmecke, Olaf; Metzen, Jennifer; Pfund, Charlotte B; Freier, Thomas; Haastert-Talini, Kirsten

    2018-05-08

    Reconstruction of joint-crossing digital nerves requires the application of nerve guides with a much higher flexibility than used for peripheral nerve repair along larger bones. Nevertheless, collapse-resistance should be preserved to avoid secondary damage to the regrowing nerve tissue. In recent years, we presented chitosan nerve guides (CNGs) to be highly supportive for the regeneration of critical gap length peripheral nerve defects in the rat. Now, we evidently increased the bendability of regular CNGs (regCNGs) by developing a wavy wall structure, that is, corrugated CNGs (corrCNGs). In a comprehensive in vivo study, we compared both types of CNGs with clinical gold standard autologous nerve grafts (ANGs) and muscle-in-vein grafts (MVGs) that have recently been highlighted in the literature as a suitable alternative to ANGs. We reconstructed rat sciatic nerves over a critical gap length of 15 mm either immediately upon transection or after a delay period of 45 days. Electrodiagnostic measurements were applied to monitor functional motor recovery at 60, 90, 120, and 150 (only delayed repair) days postreconstruction. Upon explanation, tube properties were analyzed. Furthermore, distal nerve ends were evaluated using histomorphometry, while connective tissue specimens were subjected to immunohistological stainings. After 120 days (acute repair) or 150 days (delayed repair), respectively, compression-stability of regCNGs was slightly increased while it remained stable in corrCNGs. In both substudies, regCNGs and corrCNGs supported functional recovery of distal plantar muscles in a similar way and to a greater extent when compared with MVGs, while ANGs demonstrated the best support of regeneration. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. A survey of emergency medicine and orthopaedic physicians’ knowledge, attitude, and practice towards the use of peripheral nerve blocks

    Directory of Open Access Journals (Sweden)

    Ayalew Zewdie

    2017-06-01

    Discussion: This study indicates peripheral nerve blocks are likely underutilised due to lack of training. There was a positive attitude towards peripheral nerve blocks but gaps on knowledge and practice.

  19. CASE SERIES: Malignant Peripheral Nerve Sheath Tumor in the Course of the Mandibular Nerve.

    Science.gov (United States)

    Monika, Probst; Steffen, Koerdt; Maximilian, Ritschl Lucas; Oliver, Bissinger; Friederike, Liesche; Jens, Gempt; Bernhard, Meyer; Egon, Burian; Nina, Lummel; Andreas, Kolk

    2018-06-05

    Malignant peripheral nerve sheath tumors (MPNST) are infiltrating, aggressive tumors belonging to the group of soft tissue sarcomas. This report refers to three patients with a tumorous swelling in the entire inferior alveolar nerve (IAN) with similar disease courses suspect for a MPNST, which is particularly rare in the trigeminal nerve. Diagnostic tools, surgical proceedings and reconstructive procedures were highlighted. Three male patients (58-68 years), who suffered from numbness, pain and mild swelling in the sensation area served by the mental nerve presented at the department of oral and maxillofacial surgery and underwent diagnostic workup including CT, MRI, F18-PET-CT, as well as a biopsy of the clinical visible tumor mass with histopathological and molecular pathological analysis. MR imaging revealed the full extent of the tumor comprising the course of the entire mandibular nerve (one case bilateral) starting in the trigeminal ganglion through the IAN and ending in the mental foramen. Hence, both a neurosurgical and maxillofacial intervention with jaw replacement were necessary. Adjuvant radiation of the intracranial closed resection margins, and in one case of parts of the mandible was required. In order to reveal the full extent of tumor spread of MPNSTs sufficient preoperative imaging is crucial as it is an important step in therapy planning. MRI and PET-CT are the imaging modalities with the best prospect of success in depicting the whole extent of the disease. Radical surgical management is the treatment of choice whereas radiochemotherapy shows an ancillary part. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Functional nerve recovery after bridging a 15 mm gap in rat sciatic nerve with a biodegradable nerve guide

    NARCIS (Netherlands)

    Meek, MF; Klok, F; Robinson, PH; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    2003-01-01

    Recovery of nerve function was evaluated after bridging a 15 mm sciatic nerve gap in 51 rats with a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide. Recovery of function was investigated by analysing the footprints, by analysing video recordings of gait, by electrically eliciting the

  1. Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics

    Directory of Open Access Journals (Sweden)

    Emil H. Rijnbeek

    2018-05-01

    Full Text Available In this paper various types of electrodes for stimulation and recording activity of peripheral nerves for the control of neuroprosthetic limbs are reviewed. First, an overview of interface devices for (feedback- controlled movement of a prosthetic device is given, after which the focus is on peripheral nervous system (PNS electrodes. Important electrode properties, i.e., longevity and spatial resolution, are defined based upon the usability for neuroprostheses. The cuff electrode, longitudinal intrafascicular electrodes (LIFE, transverse intrafascicular multichannel electrode (TIME, Utah slanted electrode array (USEA, and the regenerative electrode are discussed and assessed on their longevity and spatial resolution. The cuff electrode seems to be a promising electrode for the control of neuroprostheses in the near future, because it shows the best longevity and good spatial resolution and it has been used on human subjects in multiple studies. The other electrodes may be promising in the future, but further research on their longevity and spatial resolution is needed. A more quantitatively uniform study protocol used for all electrodes would allow for a proper comparison of recording and stimulation performance. For example, the discussed electrodes could be compared in a large in vivo study, using one uniform comparison protocol.

  2. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

    Directory of Open Access Journals (Sweden)

    Ino Mitsuhiro

    2005-05-01

    Full Text Available Abstract Background ADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22's sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice. Results ADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed. Conclusion The results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.

  3. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rahul Pandey

    Full Text Available During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC. We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.

  4. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila.

    Science.gov (United States)

    Pandey, Rahul; Blanco, Jorge; Udolph, Gerald

    2011-01-01

    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.

  5. An autologously generated platelet-rich plasma suturable membrane may enhance peripheral nerve regeneration after neurorraphy in an acute injury model of sciatic nerve neurotmesis.

    Science.gov (United States)

    Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita

    2014-11-01

    The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Nerve Regeneration Should Be Highly Valued in the Treatment of Diabetic Peripheral Neuropathy

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-chun

    2008-01-01

    @@ Diabetic peripheral neuropathy (DPN) is the most common chronic complication of the long-term complications of diabetes, affecting up to 90% of patients during the progress of the disease. Many parts of the nerve system, including the sensory nerves, motor nerves and autonomic nerves, can be affected, leading to various clinical features. DPN leads not only to a great degree of mutilation and death but also to the occurrence and development of other long-term complications in diabetics.

  7. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents.

    Science.gov (United States)

    Gui, Wen-Shan; Wei, Xiao; Mai, Chun-Lin; Murugan, Madhuvika; Wu, Long-Jun; Xin, Wen-Jun; Zhou, Li-Jun; Liu, Xian-Guo

    2016-01-01

    Chronic pain is often accompanied by short-term memory deficit and depression. Currently, it is believed that short-term memory deficit and depression are consequences of chronic pain. Here, we test the hypothesis that the symptoms might be caused by overproduction of interleukin-1beta (IL-1β) in the injured nerve independent of neuropathic pain following spared nerve injury in rats and mice. Mechanical allodynia, a behavioral sign of neuropathic pain, was not correlated with short-term memory deficit and depressive behavior in spared nerve injury rats. Spared nerve injury upregulated IL-1β in the injured sciatic nerve, plasma, and the regions in central nervous system closely associated with pain, memory and emotion, including spinal dorsal horn, hippocampus, prefrontal cortex, nucleus accumbens, and amygdala. Importantly, the spared nerve injury-induced memory deficits, depressive, and pain behaviors were substantially prevented by peri-sciatic administration of IL-1β neutralizing antibody in rats or deletion of IL-1 receptor type 1 in mice. Furthermore, the behavioral abnormalities induced by spared nerve injury were mimicked in naïve rats by repetitive intravenous injection of re combinant rat IL-1β (rrIL-1β) at a pathological concentration as determined from spared nerve injury rats. In addition, microglia were activated by both spared nerve injury and intravenous injection of rrIL-1β and the effect of spared nerve injury was substantially reversed by peri-sciatic administration of anti-IL-1β. Neuropathic pain was not necessary for the development of cognitive and emotional disorders, while the overproduction of IL-1β in the injured sciatic nerve following peripheral nerve injury may be a common mechanism underlying the generation of neuropathic pain, memory deficit, and depression. © The Author(s) 2016.

  8. Injection Pressure as a Marker of Intraneural Injection in Procedures of Peripheral Nerves Blockade

    Directory of Open Access Journals (Sweden)

    Ilvana Vučković

    2006-11-01

    Full Text Available The blockade of peripheral nerves carries a certain risk of unwanted complications, which can follow after unintentional intraneural injection of a local anesthetic. Up till today, the research of measuring injection pressure has been based on animal models, even though the histological structure of periphery nerve is different for animal and human population, so the application pressure which presages intraneural injection in human population is still unknown. As material in performing this study there have been used 12 Wistar rats and 12 delivered stillborns. After bilateral access to the median nerve, we applied 3 ml of 2% lidocaine with epinephrine, with the help of automatic syringe charger. The needle was at first placed perineural on one side, and then intraneural on the other side of both examination groups. During every application the pressure values were monitored using the manometer, and then they were analyzed by special software program BioBench. All perineural injections resulted with the pressure < or = 27.92 kPa, while the majority of intraneural injections were combined with the injectionpressure > or = 69.8 kPa. The difference between intraneural and perineural injection pressures for the two different examination groups (rats and delivered stillborns was not statistically significant (P>0.05. As prevention from intraneural injections today are in use two methods: the method of causing paresthesia or the method of using the peripheral nerve stimulator. However the nerve injury can still occur, independent from the technique used. If our results are used in clinical practice on human population, than the high injection pressure could be the markerof intraneural lodging of a needle.

  9. Laser-activated solid protein bands for peripheral nerve repair: an vivo study.

    Science.gov (United States)

    Lauto, A; Trickett, R; Malik, R; Dawes, J M; Owen, E R

    1997-01-01

    Severed tibial nerves in rats were repaired using a novel technique, utilizing a semiconductor diode-laser-activated protein solder applied longitudinally across the join. Welding was produced by selective laser denaturation of solid solder bands containing the dye indocyanine green. An in vivo study, using 48 adult male Wistar rats, compared conventional microsuture-repaired tibial nerves with laser solder-repaired nerves. Nerve repairs were characterised immediately after surgery and after 3 months. Successful regeneration with average compound muscle action potentials of 2.5 +/- 0.5 mV and 2.7 +/- 0.3 mV (mean and standard deviation) was demonstrated for the laser-soldered nerves and the sutured nerves, respectively. Histopathology confirmed comparable regeneration of axons in laser- and suture-operated nerves. The laser-based nerve repair technique was easier and faster than microsuture repair, minimising manipulation damage to the nerve.

  10. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Madiai Francesca

    2006-01-01

    Full Text Available Abstract Background NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. Results Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. Conclusion ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of

  11. [RESEARCH PROGRESS OF PERIPHERAL NERVE SURGERY ASSISTED BY Da Vinci ROBOTIC SYSTEM].

    Science.gov (United States)

    Shen, Jie; Song, Diyu; Wang, Xiaoyu; Wang, Changjiang; Zhang, Shuming

    2016-02-01

    To summarize the research progress of peripheral nerve surgery assisted by Da Vinci robotic system. The recent domestic and international articles about peripheral nerve surgery assisted by Da Vinci robotic system were reviewed and summarized. Compared with conventional microsurgery, peripheral nerve surgery assisted by Da Vinci robotic system has distinctive advantages, such as elimination of physiological tremors and three-dimensional high-resolution vision. It is possible to perform robot assisted limb nerve surgery using either the traditional brachial plexus approach or the mini-invasive approach. The development of Da Vinci robotic system has revealed new perspectives in peripheral nerve surgery. But it has still been at the initial stage, more basic and clinical researches are still needed.

  12. Mobility-Related Consequences of Reduced Lower-Extremity Peripheral Nerve Function with Age

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, P.; Cauley, Jane A

    2016-01-01

    -dwelling and institutionalized residents, 1 from a range of residential locations, and 1 of patients with peripheral arterial disease. Mean ages ranged from 71-82 years. Nerve function was assessed by vibration threshold (n=2); sensory measures and clinical signs and symptoms of neuropathy (n=2); motor nerve conduction (n=1......The objective of this study is to systematically review the relationship between lower-extremity peripheral nerve function and mobility in older adults. The National Library of Medicine (PubMed) was searched on March 23, 2015 with no limits on publication dates. One reviewer selected original...... research studies of older adults (>= 65 years) that assessed the relationship between lower-extremity peripheral nerve function and mobility-related outcomes. Participants, study design and methods of assessing peripheral nerve impairment were evaluated and results were reported and synthesized. Eight...

  13. The percentage of macrophage numbers in rat model of sciatic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Satrio Wicaksono

    2016-02-01

    Full Text Available ABSTRACT Excessive accumulation of macrophages in sciatic nerve fascicles inhibits regeneration of peripheral nerves. The aim of this study is to determine the percentage of the macrophages inside and outside of the fascicles at the proximal, at the site of injury and at the distal segment of rat model of sciatic nerve crush injury. Thirty male 3 months age Wistar rats of 200-230 g were divided into sham-operation group and crush injury group. Termination was performed on day 3, 7, and 14 after crush injury. Immunohistochemical examination was done using anti CD68 antibody. Counting of immunopositive and immunonegative cells was done on three representative fields for extrafascicular and intrafascicular area of proximal, injury and distal segments. The data was presented as percentage of immunopositive cells. The percentage of the macrophages was significantly increased in crush injury group compared to the sham-operated group in all segments of the peripheral nerves. While the percentage of macrophages outside fascicle in all segments of sciatic nerve and within the fascicle in the proximal segment reached its peak on day 3, the percentage of macrophages within the fascicles at the site of injury and distal segments reached the peak later at day 7. In conclusions, accumulation of macrophages outside the nerve fascicles occurs at the beginning of the injury, and then followed later by the accumulation of macrophages within nerve fascicles

  14. Measurement of wavefront aberrations in cortex and peripheral nerve using a two-photon excitation guidestar

    Science.gov (United States)

    Futia, Gregory L.; Fontaine, Arjun; McCullough, Connor; Ozbay, Baris N.; George, Nickolas M.; Caldwell, John; Restrepo, Diego; Weir, Richard; Gibson, Emily A.

    2018-02-01

    Neural-machine interfaces using optogenetics are of interest due to their minimal invasiveness and potential for parallel read in and read out of activity. One possible biological target for such an interface is the peripheral nerve, where axonlevel imaging or stimulation could greatly improve interfacing with artificial limbs or enable neuron/fascicle level neuromodulation in the vagus nerve. Two-photon imaging has been successful in imaging brain activity using genetically encoded calcium or voltage indicators, but in the peripheral nerve, this is severely limited by scattering and aberrations from myelin. We employ a Shack-Hartman wavefront sensor and two-photon excitation guidestar to quantify optical scattering and aberrations in peripheral nerves and cortex. The sciatic and vagus nerves, and cortex from a ChAT-Cre ChR-eYFP transgenic mouse were excised and imaged directly. In peripheral nerves, defocus was the strongest aberration followed by astigmatism and coma. Peripheral nerve had orders of magnitude higher aberration compared with cortex. These results point to the potential of adaptive optics for increasing the depth of two-photon access into peripheral nerves.

  15. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    Science.gov (United States)

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  16. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  17. Usefulness of muscle denervation as an MRI sign of peripheral nerve pathology

    International Nuclear Information System (INIS)

    Lisle, D. A.; Johnstone, S. A.

    2007-01-01

    Full text: Peripheral nerve disorders may be classified into compressive or entrapment neuropathies and non-compressive neuropathies. Muscle denervation recognized on MRI may be a useful sign in the diagnosis of peripheral nerve disorders. Acute or subacute denervation results in prolonged T 2 relaxation time, producing increased signal in skeletal muscle on short tau inversion-recovery and fat-suppressed T 2 -weighted images. Chronic denervation produces fatty atrophy of skeletal muscles, resulting in increased muscle signal on T 1 -weighted images. This review will outline and illustrate the various ways that muscle denervation as seen on MRI may assist in the diagnosis and localization of peripheral nerve disorders

  18. Changes of medium-latency SEP-components following peripheral nerve lesion

    Directory of Open Access Journals (Sweden)

    Straschill Max

    2006-10-01

    Full Text Available Abstract Background Animal studies have demonstrated complex cortical reorganization following peripheral nerve lesion. Central projection fields of intact nerves supplying skin areas which border denervated skin, extended into the deafferentiated cortical representation area. As a consequence of nerve lesions and subsequent reorganization an increase of the somatosensory evoked potentials (SEPs was observed in cats when intact neighbouring nerves were stimulated. An increase of SEP-components of patients with nerve lesions may indicate a similar process of posttraumatic plastic cortical reorganization. Methods To test if a similar process of post-traumatic plastic cortical reorganization does occur in humans, the SEP of intact neighbouring hand nerves were recorded in 29 patients with hand nerve lesions. To hypothetically explain the observed changes of SEP-components, SEP recording following paired stimulation of the median nerve was performed in 12 healthy subjects. Results Surprisingly 16 of the 29 patients (55.2% showed a reduction or elimination of N35, P45 and N60. Patients with lesions of two nerves showed more SEP-changes than patients with a single nerve lesion (85.7%; 6/7 nerves; vs. 34.2%; 13/38 nerves; Fisher's exact test, p Conclusion The results of the present investigation do not provide evidence of collateral innervation of peripherally denervated cortical neurons by neurons of adjacent cortical representation areas. They rather suggest that secondary components of the excitatory response to nerve stimulation are lost in cortical areas, which surround the denervated region.

  19. Transfer of obturator nerve for femoral nerve injury: an experiment study in rats.

    Science.gov (United States)

    Meng, Depeng; Zhou, Jun; Lin, Yaofa; Xie, Zheng; Chen, Huihao; Yu, Ronghua; Lin, Haodong; Hou, Chunlin

    2018-07-01

    Quadriceps palsy is mainly caused by proximal lesions in the femoral nerve. The obturator nerve has been previously used to repair the femoral nerve, although only a few reports have described the procedure, and the outcomes have varied. In the present study, we aimed to confirm the feasibility and effectiveness of this treatment in a rodent model using the randomized control method. Sixty Sprague-Dawley rats were randomized into two groups: the experimental group, wherein rats underwent femoral neurectomy and obturator nerve transfer to the femoral nerve motor branch; and the control group, wherein rats underwent femoral neurectomy without nerve transfer. Functional outcomes were measured using the BBB score, muscle mass, and histological assessment. At 12 and 16 weeks postoperatively, the rats in the experimental group exhibited recovery to a stronger stretch force of the knee and higher BBB score, as compared to the control group (p nerve with myelinated and unmyelinated fibers was observed in the experimental group. No significant differences were observed between groups at 8 weeks postoperatively (p > 0.05). Obturator nerve transfer for repairing femoral nerve injury was feasible and effective in a rat model, and can hence be considered as an option for the treatment of femoral nerve injury.

  20. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    Science.gov (United States)

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  1. MR imaging of benign peripheral nerve sheath tumors

    International Nuclear Information System (INIS)

    Soederlund, V.; Goeranson, H.; Bauer, H.C.F.

    1994-01-01

    In a retrospective, nonblind review of MR imaging of 15 benign peripheral nerve neoplasms in 13 patients, the signal pattern of the tumors (including contrast-enhanced images) and stage were assessed. One lesion was subcutaneous, 9 intramuscular, 2 intermuscular and 3 extracompartmental. One lesion was located to the trunk, 5 to the upper extremity and 9 to the lower. The signal on T1-weighted spin-echo images was homogeneous isointense compared to adjacent muscle in 11 lesions and in 2 slightly hyper- and in 2 slightly hypointense. T2-weighted spin-echo images, acquired in all but one examination, showed a hyperintense signal, homogeneous in 8 and centrally inhomogeneous in 6 lesions. Postcontrast T1-weighted images of 11 lesions, showed a strong signal, with an inhomogeneous enhancement in the center of the lesion similar to that obtained in T2-weighted images. In 2 cases there were signal characteristics indicating bleeding in the tumor. In one lesion both the nonenhanced and contrast-enhanced T1-weighted images showed a hypointense signal in the tumor center suggestive of intramuscular myxoma. All lesions were well delineated without reactive edema. In all cases, anatomic tumor location was correctly assessed. Although the findings were not pathognomonic for neurinoma, MR imaging provided valuable information confirming the clinical and cytologic assessments. (orig.)

  2. Malignant peripheral nerve sheath tumours in inherited disease

    Directory of Open Access Journals (Sweden)

    Evans D

    2012-10-01

    Full Text Available Abstract Background Malignant peripheral nerve sheath tumours (MPNST are rare tumours known to occur at high frequency in neurofibromatosis 1 (NF1, but may also occur in other cancer prone syndromes. Methods The North West Regional Genetic Register covers a population of 4.1 million and was interrogated for incidence of MPNST in 12 cancer prone syndromes. Age, incidence and survival curves were generated for NF1. Results Fifty two of 1254 NF1 patients developed MPNST, with MPNST also occurring in 2/181 cases of schwannomatosis and 2/895 NF2 patients. Three cases were also noted in TP53 mutation carriers. However, there were no cases amongst 5727BRCA1/2 carriers and first degree relatives, 2029 members from Lynch syndrome families, nor amongst 447 Familial Adenomatous Polyposis, 202 Gorlin syndrome, nor 87 vHL cases. Conclusion MPNST is associated with schwannomatosis and TP53 mutations and is confirmed at high frequency in NF1. It appears to be only increased in NF2 amongst those that have been irradiated. The lifetime risk of MPNST in NF1 is between 9–13%.

  3. In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering

    OpenAIRE

    Wrobel, Sandra; Serra, Sofia Cristina; Samy, S. M.; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Salgado, A. J.; Talini, Kirsten Haastert

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSC...

  4. Overview of pediatric peripheral facial nerve paralysis: analysis of 40 patients.

    Science.gov (United States)

    Özkale, Yasemin; Erol, İlknur; Saygı, Semra; Yılmaz, İsmail

    2015-02-01

    Peripheral facial nerve paralysis in children might be an alarming sign of serious disease such as malignancy, systemic disease, congenital anomalies, trauma, infection, middle ear surgery, and hypertension. The cases of 40 consecutive children and adolescents who were diagnosed with peripheral facial nerve paralysis at Baskent University Adana Hospital Pediatrics and Pediatric Neurology Unit between January 2010 and January 2013 were retrospectively evaluated. We determined that the most common cause was Bell palsy, followed by infection, tumor lesion, and suspected chemotherapy toxicity. We noted that younger patients had generally poorer outcome than older patients regardless of disease etiology. Peripheral facial nerve paralysis has been reported in many countries in America and Europe; however, knowledge about its clinical features, microbiology, neuroimaging, and treatment in Turkey is incomplete. The present study demonstrated that Bell palsy and infection were the most common etiologies of peripheral facial nerve paralysis. © The Author(s) 2014.

  5. Benign Peripheral Nerve Sheath Tumor in a Wild Toco Toucan ( Ramphastos toco ).

    Science.gov (United States)

    Carvalho, Marcelo P N; Fernandes, Natalia C C A; Nemer, Viviane C; Neto, Ramiro N Dias; Teixeira, Rodrigo H F; Miranda, Bruna S; Mamprim, Maria J; Catão-Dias, José L; Réssio, Rodrigo A

    2016-09-01

    Peripheral nerve sheath tumors are a heterogeneous group of neoplasms that comprise neurofibromas, schwannomas, neurilemmomas, and perineuromas. In animals, peripheral nerve sheath neoplasms are most commonly diagnosed in dogs and cattle, followed by horses, goats, and cats, but their occurrence is uncommon in birds. An adult, free-living, male toco (common) toucan ( Ramphastos toco ) was admitted to the zoo animal clinic with weight loss, dehydration, and presence of a soft nodule adhered to the medial portion of the left pectoral muscle. Clinical, cytologic, and computed tomography scan results were indicative of a neoplasm. The toucan died during surgical resection of the mass. Necropsy, histopathologic, and immunohistochemical findings confirmed the diagnosis of benign peripheral nerve sheath tumor. To our knowledge, benign peripheral nerve sheath tumor has not previously been reported in a toucan or any other species in the order Piciformes.

  6. Celecoxib accelerates functional recovery after sciatic nerve crush in the rat

    Directory of Open Access Journals (Sweden)

    Fernández-Garza Nancy E

    2008-11-01

    Full Text Available Abstract The inflammatory response appears to be essential in the modulation of the degeneration and regeneration process after peripheral nerve injury. In injured nerves, cyclooxygenase-2 (COX-2 is strongly upregulated around the injury site, possibly playing a role in the regulation of the inflammatory response. In this study we investigated the effect of celecoxib, a COX-2 inhibitor, on functional recovery after sciatic nerve crush in rats. Unilateral sciatic nerve crush injury was performed on 10 male Wistar rats. Animals on the experimental group (n = 5 received celecoxib (10 mg/kg ip immediately before the crush injury and daily for 7 days after the injury. Control group (n = 5 received normal saline at equal regimen. A sham group (n = 5, where sciatic nerve was exposed but not crushed, was also evaluated. Functional recovery was then assessed by calculating the sciatic functional index (SFI on days 0,1,7,14 and 21 in all groups, and registering the day of motor and walking onset. In comparison with control group, celecoxib treatment (experimental group had significant beneficial effects on SFI, with a significantly better score on day 7. Anti-inflammatory drug celecoxib should be considered in the treatment of peripheral nerve injuries, but further studies are needed to explain the mechanism of its neuroprotective effects.

  7. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothsteinb, Jeffrey D.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  8. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  9. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    Science.gov (United States)

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  10. Spontaneous temporal changes and variability of peripheral nerve conduction analyzed using a random effects model

    DEFF Research Database (Denmark)

    Krøigård, Thomas; Gaist, David; Otto, Marit

    2014-01-01

    SUMMARY: The reproducibility of variables commonly included in studies of peripheral nerve conduction in healthy individuals has not previously been analyzed using a random effects regression model. We examined the temporal changes and variability of standard nerve conduction measures in the leg...... reexamined after 2 and 26 weeks. There was no change in the variables except for a minor decrease in sural nerve sensory action potential amplitude and a minor increase in tibial nerve minimal F-wave latency. Reproducibility was best for peroneal nerve distal motor latency and motor conduction velocity......, sural nerve sensory conduction velocity, and tibial nerve minimal F-wave latency. Between-subject variability was greater than within-subject variability. Sample sizes ranging from 21 to 128 would be required to show changes twice the magnitude of the spontaneous changes observed in this study. Nerve...

  11. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  12. A novel suture method to place and adjust peripheral nerve catheters

    DEFF Research Database (Denmark)

    Rothe, C.; Steen-Hansen, C.; Madsen, M. H.

    2015-01-01

    We have developed a peripheral nerve catheter, attached to a needle, which works like an adjustable suture. We used in-plane ultrasound guidance to place 45 catheters close to the femoral, saphenous, sciatic and distal tibial nerves in cadaver legs. We displaced catheters after their initial...

  13. Tumor targeted delivery of doxorubicin in malignant peripheral nerve sheath tumors.

    Directory of Open Access Journals (Sweden)

    A B Madhankumar

    Full Text Available Peripheral nerve sheath tumors are benign tumors that have the potential to transform into malignant peripheral nerve sheath tumors (MPNSTs. Interleukin-13 receptor alpha 2 (IL13Rα2 is a cancer associated receptor expressed in glioblastoma and other invasive cancers. We analyzed IL13Rα2 expression in several MPNST cell lines including the STS26T cell line, as well as in several peripheral nerve sheath tumors to utilize the IL13Rα2 receptor as a target for therapy. In our studies, we demonstrated the selective expression of IL13Rα2 in several peripheral nerve sheath tumors by immunohistochemistry (IHC and immunoblots. We established a sciatic nerve MPNST mouse model in NIH III nude mice using a luciferase transfected STS26T MPNST cell line. Similarly, analysis of the mouse sciatic nerves after tumor induction revealed significant expression of IL13Rα2 by IHC when compared to a normal sciatic nerve. IL13 conjugated liposomal doxorubicin was formulated and shown to bind and internalized in the MPNST cell culture model demonstrating cytotoxic effect. Our subsequent in vivo investigation in the STS26T MPNST sciatic nerve tumor model indicated that IL13 conjugated liposomal doxorubicin (IL13LIPDXR was more effective in inhibiting tumor progression compared to unconjugated liposomal doxorubicin (LIPDXR. This further supports that IL13 receptor targeted nanoliposomes is a potential approach for treating MPNSTs.

  14. Magnetic resonance imaging of peripheral nerve tumours in the upper extremity

    DEFF Research Database (Denmark)

    Nilsson, Jessica; Sandberg, Kristina; Søe Nielsen, Niels

    2009-01-01

    Clinical assessment and various diagnostic tools, particularly magnetic resonance imaging (MRI), of tumours of peripheral nerves are used to get an accurate diagnosis and to plan surgical intervention. Our purpose was to examine the usefulness of MRI in assessing nerve tumours in the upper...

  15. Regulation of semaphorin III/collapsin-1 gene expression during peripheral nerve regeneration

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Giger, Roman J; Verhaagen, J

    1998-01-01

    The competence of neurons to regenerate depends on their ability to initiate a program of gene expression supporting growth and on the growth-permissive properties of glial cells in the distal stump of the injured nerve. Most studies on intrinsic molecular mechanisms governing peripheral nerve

  16. MRI of peripheral nerve lesions of the lower limbs

    Energy Technology Data Exchange (ETDEWEB)

    Lacour-Petit, M.C.; Ducreux, D. [Dept. of Neuroradiology, Hopital Bicetre, Kremlin-Bicetre (France); Lozeron, P. [Dept. of Neurology, Hopital Bicetre, Kremlin-Bicetre (France)

    2003-03-01

    Our aim is to illustrate the contribution of MRI to diagnosis of lesions of the lower-limb nerve trunks. We report six patients who had clinical and electrophysiological examination for a peroneal or tibial nerve palsy. MRI of the knee showed in three cases a nonenhancing cystic lesion of the peroneal nerve suggesting an intraneural ganglion cyst, confirmed by histological study in one case. One patient with known neurofibromatosis had an enhancing nodular lesion of the peroneal nerve compatible with a neurofibroma. Two patients had diffuse hypertrophy with high signal on T2-weighted images, without contrast enhancement of the sciatic nerve or its branches. These lesions were compatible with localised hypertrophic neuropathy. In one case, biopsy of the superficial branch of the peroneal nerve showed insignificant axonal degeneration. MRI can provide information about the size and site of the abnormal segment of a nerve before treatment and can be used to distinguish different patterns of focal lesion. (orig.)

  17. Reversible conduction block in peripheral nerve using electrical waveforms.

    Science.gov (United States)

    Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L

    2018-01-01

    Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.

  18. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    Directory of Open Access Journals (Sweden)

    Usman Ghafoor

    2017-10-01

    Full Text Available For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive, direct-to-peripheral-nerve (invasive, and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques.

  19. A Standardized Method for 4D Ultrasound-Guided Peripheral Nerve Blockade and Catheter Placement

    Directory of Open Access Journals (Sweden)

    N. J. Clendenen

    2014-01-01

    Full Text Available We present a standardized method for using four-dimensional ultrasound (4D US guidance for peripheral nerve blocks. 4D US allows for needle tracking in multiple planes simultaneously and accurate measurement of the local anesthetic volume surrounding the nerve following injection. Additionally, the morphology and proximity of local anesthetic spread around the target nerve is clearly seen with the described technique. This method provides additional spatial information in real time compared to standard two-dimensional ultrasound.

  20. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    Science.gov (United States)

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  1. [Damage to cranial and peripheral nerves following patency restoration of the internal carotid artery].

    Science.gov (United States)

    Myrcha, P; Ciostek, P; Szopiński, P; Noszczyk, W

    2001-01-01

    The aim of the study was an assessment of the incidence of injury to cranial and peripheral nerves as complication of patency restoration of the internal carotid artery, and analysis of the effect of peripheral nerve injury on the results of carotid patency restoration. From Oct 1987 to Sept 1999 543 procedures were carried out for restoration of patency of the internal carotid artery. After the operation hypoglossus nerve injury was found in 7 cases (1.4%), vagus injury in 9 (1.8%). Signs of exclusively recurrent laryngeal nerve damage were found in 6 cases (1.2%). Glossopharyngeus nerve was damaged in 2 cases (0.4%), transient phrenic nerve palsy as a result of conduction anaesthesia was noted in 2 cases (0.4%). Damage to the transverse cervical nerve was found in 96 cases (60%). In 2 patients (1.2%) lower position of mouth angle was due to section of the mandibular ramus of the facial nerve. In another 2 cases skin sensation disturbances were a consequence of lesion of the auricularis magnus nerve and always they coexisted with signs of transverse cervical nerve damage. damage to the cranial nerves during operation for carotid patency restoration are frequent but mostly they are not connected with any health risks and often they regress spontaneously.

  2. THREE YEARS STUDY OF SCHWANNOMAS OF PERIPHERAL NERVES

    Directory of Open Access Journals (Sweden)

    Subha Dhua

    2017-02-01

    Full Text Available BACKGROUND In this paper authors present three cases of schwannomas including a case of multiple schwannomas without the features of neurofibromatosis (NF. There was no family history of neurofibromatosis. All the patients underwent surgical excision and improved from the symptomatic lesions. Histopathology confirmed these lesions as schwannomas. The authors recommend surgery for symptomatic lesions. Asymptomatic tumours can be monitored. Regular follow up is essential as they may develop fresh lesions at any time. The relevant literature is discussed. • Malignant transformation of the schwannomas is rare and has poor prognosis. It should be considered in the differential diagnosis of schwannomas. • We should distinguish between “ancient schwannoma” and malignant transformation of schwannoma since treatment and prognosis vary. • Imaging is not entirely reliable in differentiating benign from malignant peripheral nerve tumours. MATERIALS AND METHODS All the patients underwent surgical excision and improved from the symptomatic lesions. Histopathology confirmed these lesions as schwannomas. The authors recommend surgery for symptomatic lesions. RESULTS The histopathological studies confirmed the lesion as Flexi Schwannoma and surgery was considered to be the best option. CONCLUSION Schwannomas and meningiomas are usually benign tumours curable by complete removal. They occur either as single sporadic tumors in otherwise healthy individuals in the fourth to sixth decades of life or as multiple tumours at an early age as part of the autosomal dominant genetic disorder neurofibromatosis 2 (NF2. The hallmark feature of NF2 is bilateral vestibular schwannomas. Multiplicity, a lobular growth pattern, and invasiveness are typical features of NF2 schwannomas. The diagnosis of NF2 is difficult in a group of heterogeneous and poorly defined patients who do not have BVSs but present with other features suggestive of NF2, namely (1 multiple

  3. Ultrasonographic evaluation of the iatrogenic peripheral nerve injuries in upper extremity

    International Nuclear Information System (INIS)

    Karabay, Nuri; Toros, Tulgar; Ademoglu, Yalcin; Ada, Sait

    2010-01-01

    The aim of our study is to assess the efficiency of the ultrasonography (US) in the diagnosis of peripheral nerve injury. This study includes nine patients (six radial, one median and two posterior interosseous (PIO) nerves) with peripheral nerve injury diagnosed by clinical and electrophysiological methods in the last 3 years. Preoperatively, an ultrasonographic examination was performed and correlated with physical exam and surgical findings. Five patients, who were diagnosed as peripheral nerve transection by US, underwent surgery. The ultrasonographic findings were concordant with the intraoperative findings. Axonal swelling alone was found in the remaining three patients, who were treated conservatively because of preserved nerve continuity without display of nerve compression. In one patient, we were unable to visualize the nerve due to obesity and soft tissue edema. High-resolution US provide morphological information about the exact location, intensity and extent of the nerve injuries, facilitating the preoperative diagnosis. Thus, US may be a useful method for planning optimal treatment strategy in especially iatrogenic nerve injuries.

  4. Ultrasonographic evaluation of the iatrogenic peripheral nerve injuries in upper extremity

    Energy Technology Data Exchange (ETDEWEB)

    Karabay, Nuri [Department of Radiology, Hand and Microsurgery and Orthopaedics and Traumatology (EMOT) Hospital, 1418 Sok. No: 14 Kahramanlar, 35230 Izmir (Turkey)], E-mail: nurikarabay@gmail.com; Toros, Tulgar [Department of Orthopaedics and Traumatology, Hand and Microsurgery and Orthopaedics and Traumatology (EMOT) Hospital, 1418 Sok. No: 14 Kahramanlar, 35230 Izmir (Turkey)], E-mail: tulgartoros@yahoo.com; Ademoglu, Yalcin [Department of Orthopaedics and Traumatology, Hand and Microsurgery and Orthopaedics and Traumatology (EMOT) Hospital, 1418 Sok. No: 14 Kahramanlar, 35230 Izmir (Turkey)], E-mail: yalcinademoglu@yahoo.com; Ada, Sait [Department of Orthopaedics and Traumatology, Hand and Microsurgery and Orthopaedics and Traumatology (EMOT) Hospital, 1418 Sok. No: 14 Kahramanlar, 35230 Izmir (Turkey)], E-mail: sait_ada@yahoo.com

    2010-02-15

    The aim of our study is to assess the efficiency of the ultrasonography (US) in the diagnosis of peripheral nerve injury. This study includes nine patients (six radial, one median and two posterior interosseous (PIO) nerves) with peripheral nerve injury diagnosed by clinical and electrophysiological methods in the last 3 years. Preoperatively, an ultrasonographic examination was performed and correlated with physical exam and surgical findings. Five patients, who were diagnosed as peripheral nerve transection by US, underwent surgery. The ultrasonographic findings were concordant with the intraoperative findings. Axonal swelling alone was found in the remaining three patients, who were treated conservatively because of preserved nerve continuity without display of nerve compression. In one patient, we were unable to visualize the nerve due to obesity and soft tissue edema. High-resolution US provide morphological information about the exact location, intensity and extent of the nerve injuries, facilitating the preoperative diagnosis. Thus, US may be a useful method for planning optimal treatment strategy in especially iatrogenic nerve injuries.

  5. State-of-the-Art Techniques in Treating Peripheral Nerve Injury.

    Science.gov (United States)

    Kubiak, Carrie A; Kung, Theodore A; Brown, David L; Cederna, Paul S; Kemp, Stephen W P

    2018-03-01

    Peripheral nerve injuries remain a major clinical concern, as they often lead to chronic disability and significant health care expenditures. Despite advancements in microsurgical techniques to enhance nerve repair, biological approaches are needed to augment nerve regeneration and improve functional outcomes after injury. Presented herein is a review of the current literature on state-of-the-art techniques to enhance functional recovery for patients with nerve injury. Four categories are considered: (1) electroceuticals, (2) nerve guidance conduits, (3) fat grafting, and (4) optogenetics. Significant study results are highlighted, focusing on histologic and functional outcome measures. This review documents the current state of the literature. Advancements in neuronal stimulation, tissue engineering, and cell-based therapies demonstrate promise with regard to augmenting nerve regeneration and appropriate rehabilitation. The future of treating peripheral nerve injury will include multimodality use of electroconductive conduits, fat grafting, neuronal stimulation, and optogenetics. Further clinical investigation is needed to confirm the efficacy of these technologies on peripheral nerve recovery in humans, and how best to implement this treatment for a diverse population of nerve-injured patients.

  6. Parkinson disease affects peripheral sensory nerves in the pharynx.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2013-07-01

    Dysphagia is very common in patients with Parkinson disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Current therapies are largely ineffective for dysphagia. Because pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD patients for Lewy pathology.Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined the glossopharyngeal nerve (cranial nerve IX), the pharyngeal sensory branch of the vagus nerve (PSB-X), and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was greater in PD patients with dysphagia versus those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in cranial nerve IX and PSB-X. These findings suggest that pharyngeal sensory nerves are directly affected by pathologic processes in PD. These abnormalities may decrease pharyngeal sensation, thereby impairing swallowing and airway protective reflexes and contributing to dysphagia and aspiration.

  7. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.

    Science.gov (United States)

    Pfister, Bryan J; Gordon, Tessa; Loverde, Joseph R; Kochar, Arshneel S; Mackinnon, Susan E; Cullen, D Kacy

    2011-01-01

    Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result, wait-and-see surgical decisions can lead to undesirable and less successful "delayed" repair procedures. In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.

  8. An improved experimental model for peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Q.M. Dias

    2013-03-01

    Full Text Available A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively, but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively. The modified method required less surgical skill than the spinal nerve ligation model.

  9. An improved experimental model for peripheral neuropathy in rats

    International Nuclear Information System (INIS)

    Dias, Q.M.; Rossaneis, A.C.; Fais, R.S.; Prado, W.A.

    2013-01-01

    A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model

  10. An improved experimental model for peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Q.M. Dias

    Full Text Available A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively, but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively. The modified method required less surgical skill than the spinal nerve ligation model.

  11. An improved experimental model for peripheral neuropathy in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Q.M.; Rossaneis, A.C.; Fais, R.S.; Prado, W.A. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-03-15

    A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model.

  12. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.

  13. Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.

    Science.gov (United States)

    Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M

    2018-05-10

    Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.

  14. Role of Schwann cells in the regeneration of penile and peripheral nerves

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2015-01-01

    Full Text Available Schwann cells (SCs are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED. Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1 the origin and development of SCs in the peripheral and penile nerve system; (2 Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3 how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4 and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.

  15. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  16. A 63-year-old man with peripheral facial nerve paralysis and a pulmonary lesion.

    Science.gov (United States)

    Yserbyt, J; Wilms, G; Lievens, Y; Nackaerts, K

    2009-01-01

    Occasionally, malignant neoplasms may cause peripheral facial nerve paralysis as a presenting symptom. A 63-year-old man was referred to the Emergency Department because of a peripheral facial nerve paralysis, lasting for 10 days. Initial diagnostic examinations revealed no apparent cause for this facial nerve paralysis. Chest X-ray, however, showed a suspicious tumoural mass, located in the right hilar region, as confirmed by CAT scan. The diagnosis of an advanced stage lung adenocarcinoma was finally confirmed by bronchial biopsy. MRI scanning showed diffuse brain metastases and revealed a pontine lesion as the most probable underlying cause of this case of peripheral facial nerve paralysis. Platin-based palliative chemotherapy was given, after an initial pancranial irradiation. According to the MRI findings, the pontine lesion was responsible for the peripheral facial nerve paralysis, as an initial presenting symptom in this case of lung adenocarcinoma. This clinical case of a peripheral facial nerve paralysis was caused by a pontine brain metastasis and illustrates a rather rare presenting symptom of metastatic lung cancer.

  17. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  18. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair

    Directory of Open Access Journals (Sweden)

    Mikel Sánchez

    2017-01-01

    Full Text Available Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI, focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery.

  19. Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses

    Energy Technology Data Exchange (ETDEWEB)

    Gupte, Kimaya [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Biomedical Engineering; Tolosa, Vanessa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Micro- and Nanotechnology

    2016-08-10

    Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensation by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project

  20. Arterial and venous plasma levels of bupivacaine following peripheral nerve blocks.

    Science.gov (United States)

    Moore, D C; Mather, L E; Bridenbaugh, L D; Balfour, R I; Lysons, D F; Horton, W G

    1976-01-01

    Mean arterial plasma (MAP) and peripheral mean venous plasma (MVP) levels of bupivacaine were ascertained in 3 groups of 10 patients each for: (1) intercostal nerve block, 400 mg; (2) block of the sciatic, femoral, and lateral femoral cutaneous nerves, with or without block of the obturator nerve, 400 mg; and (3) supraclavicular brachial plexus block, 300 mg. MAP levels were consistently higher than simultaneously sampled MVP levels, the highest levels occurring from bilateral intercostal nerve block. No evidence of systemic toxicity was observed. The results suggest that bupivacaine has a much wider margin of safety in humans than is now stated.

  1. Attempt of peripheral nerve reconstruction during lung cancer surgery.

    Science.gov (United States)

    Li, Hanyue; Hu, Yingjie; Huang, Jia; Yang, Yunhai; Xing, Kaichen; Luo, Qingquan

    2018-05-01

    Vagus nerve and recurrent laryngeal nerve (RLN) injury are not rare complications of lung cancer surgery and can cause lethal consequences. Until now, no optimal method other than paying greater attention during surgery has been available. Four patients underwent lung surgery that involved RLN or vagus nerve injury. The left RLN or vagus nerve was cut off and then reconstructed immediately during surgery. Two patients underwent direct anastomosis, while the remaining two underwent phrenic nerve replacing tension-relieving anastomosis. All patients were able to speak immediately after recovery. No or minimal glottal gap was observed during laryngoscopy conducted on the second day after surgery. Most patients achieved full recovery of voice quality. Immediate reconstruction of RLN is technically feasible and can be carried out with satisfying short-term and long-term outcomes. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  3. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  4. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Science.gov (United States)

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  5. Accuracy and complications of CT-guided core needle biopsy of peripheral nerve sheath tumours

    International Nuclear Information System (INIS)

    Pianta, Marcus; Chock, Eric; Schlicht, Stephen; McCombe, David

    2015-01-01

    This single-centre study retrospectively reviews the complications in patients that have occurred following peripheral nerve sheath tumour biopsy, and assesses whether there is an association with biopsy technique or underlying lesion characteristics. 41 consecutive core needle biopsies of proven peripheral nerve sheath tumours over a 2-year period in a tertiary teaching hospital were reviewed. Patient demographics and symptoms, tumour characteristics and radiological appearances were recorded. Biopsy and surgical histology were correlated, and post-biopsy and surgical complications analyzed. 41 biopsies were performed in 38 patients. 68 % schwannomas, 24 % neurofibromas and 7 % malignant peripheral nerve sheath tumours. Biopsy histology correlated with surgery in all cases. 71 % of lesions were surgically excised. 60 % of patients reported pain related to their lesion. Following the biopsy, 12 % reported increased pain, which resolved in all cases. Pain exacerbation was noted in tumours smaller in size, more superficial and in closer proximity of the biopsy needle tip to the traversing nerve. Number of biopsy needle passes was not associated with an increased incidence of procedure-related pain. Core biopsy of a suspected peripheral nerve sheath tumour may be performed safely before excisional surgery to confirm lesion histology and assist prognosis. There is excellent correlation between core biopsy and excised surgical specimen histology. The most common complication of pain exacerbation is seen in a minority and is temporary, and more likely with smaller, more superficial lesions and a closer needle-tip to traversing nerve distance during biopsy. (orig.)

  6. Accuracy and complications of CT-guided core needle biopsy of peripheral nerve sheath tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pianta, Marcus; Chock, Eric; Schlicht, Stephen [St Vincent' s Hospital, Fitzroy, VIC (Australia); McCombe, David [St Vincent' s Hospital and Victorian Hand Surgery Associates, Victoria (Australia)

    2015-09-15

    This single-centre study retrospectively reviews the complications in patients that have occurred following peripheral nerve sheath tumour biopsy, and assesses whether there is an association with biopsy technique or underlying lesion characteristics. 41 consecutive core needle biopsies of proven peripheral nerve sheath tumours over a 2-year period in a tertiary teaching hospital were reviewed. Patient demographics and symptoms, tumour characteristics and radiological appearances were recorded. Biopsy and surgical histology were correlated, and post-biopsy and surgical complications analyzed. 41 biopsies were performed in 38 patients. 68 % schwannomas, 24 % neurofibromas and 7 % malignant peripheral nerve sheath tumours. Biopsy histology correlated with surgery in all cases. 71 % of lesions were surgically excised. 60 % of patients reported pain related to their lesion. Following the biopsy, 12 % reported increased pain, which resolved in all cases. Pain exacerbation was noted in tumours smaller in size, more superficial and in closer proximity of the biopsy needle tip to the traversing nerve. Number of biopsy needle passes was not associated with an increased incidence of procedure-related pain. Core biopsy of a suspected peripheral nerve sheath tumour may be performed safely before excisional surgery to confirm lesion histology and assist prognosis. There is excellent correlation between core biopsy and excised surgical specimen histology. The most common complication of pain exacerbation is seen in a minority and is temporary, and more likely with smaller, more superficial lesions and a closer needle-tip to traversing nerve distance during biopsy. (orig.)

  7. Omega-3 polyunsaturated fatty acid supplementation for improving peripheral nerve health: protocol for a systematic review.

    Science.gov (United States)

    Zhang, Alexis Ceecee; MacIsaac, Richard J; Roberts, Leslie; Kamel, Jordan; Craig, Jennifer P; Busija, Lucy; Downie, Laura E

    2018-03-25

    Damage to peripheral nerves occurs in a variety of health conditions. Preserving nerve integrity, to prevent progressive nerve damage, remains a clinical challenge. Omega-3 polyunsaturated fatty acids (PUFAs) are implicated in the development and maintenance of healthy nerves and may be beneficial for promoting peripheral nerve health. The aim of this systematic review is to assess the effects of oral omega-3 PUFA supplementation on peripheral nerve integrity, including both subjective and objective measures of peripheral nerve structure and/or function. A systematic review of randomised controlled trials that have evaluated the effects of omega-3 PUFA supplementation on peripheral nerve assessments will be conducted. Comprehensive electronic database searches will be performed in Ovid MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), US National Institutes of Health Clinical Trials Registry and the WHO International Clinical Trials Registry Platform. The title, abstract and keywords of identified articles will be assessed for eligibility by two reviewers. Full-text articles will be obtained for all studies judged as eligible or potentially eligible; these studies will be independently assessed by two reviewers to determine eligibility. Disagreements will be resolved by consensus. Risk of bias assessment will be performed using the Cochrane Collaboration risk of bias tool to appraise the quality of included studies. If clinically meaningful, and there are a sufficient number of eligible studies, a meta-analysis will be conducted and a summary of findings table will be provided. This is a systematic review that will involve the analysis of previously published data, and therefore ethics approval is not required. A manuscript reporting the results of this systematic review will be published in a peer-reviewed journal and may also be presented at relevant scientific conferences. CRD42018086297. © Article author(s) (or their employer

  8. Ultrasound assessment of selected peripheral nerve pathologies. Part III: Injuries and postoperative evaluation

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2013-03-01

    Full Text Available The previous articles of the series devoted to ultrasound diagnostics of peripheral nerves concerned the most common nerve pathologies, i.e. entrapment neuropathies. The aim of the last part of the series is to present ultrasound possibilities in the postoperative control of the peripheral nerves as well as in the diagnostics of the second most common neuropathies of peripheral nerves, i.e. posttraumatic lesions. Early diagnostics of posttraumatic changes is of fundamental importance for the course of treatment and its long-term effects. It aids surgeons in making treatment decisions (whether surgical or conservative. When surgical treatment is necessary, the surgeon, based on US findings, is able to plan a given type of operative method. In certain cases, may even abandon the corrective or reconstructive surgery of the nerve trunk (when there are extensive defects of the nerve trunks and instead, proceed with muscle transfers. Medical literature proposes a range of divisions of the kinds of peripheral nerve injuries depending on, among others, the mechanism or degree of damage. However, the most important issue in the surgeon-diagnostician communication is a detailed description of stumps of the nerve trunks, their distance and location. In the postoperative period, ultrasound is used for monitoring the operative or conservative treatment effects including the determination of the causes of a persistent or recurrent neuropathy. It facilitates decision-making concerning a repeated surgical procedure or assuming a wait-and-see attitude. It is a difficult task for a diagnostician and it requires experience, close cooperation with a clinician and knowledge concerning surgical techniques. Apart from a static assessment, a dynamic assessment of possible adhesions constitutes a crucial element of postoperative examination. This feature distinguishes ultrasound scanning from other methods used in the diagnostics of peripheral neuropathies.

  9. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Cristiana R.; López-Cebral, Rita; Silva-Correia, Joana; Silva, Joana M.; Mano, João F.; Silva, Tiago H. [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal); Freier, Thomas [MEDOVENT GmbH, Friedrich-Koenig-Str. 3, D-55129 Mainz (Germany); Reis, Rui L. [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal); Oliveira, Joaquim M., E-mail: miguel.oliveira@dep.uminho.pt [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal)

    2017-02-01

    Peripheral nerve injuries have produced major concerns in regenerative medicine for several years, as the recovery of normal nerve function continues to be a significant clinical challenge. Chitosan (CHT), because of its good biocompatibility, biodegradability and physicochemical properties, has been widely used as a biomaterial in tissue engineering scaffolding. In this study, CHT membranes were produced with three different Degrees of Acetylation (DA), envisioning its application in peripheral nerve regeneration. The three CHT membranes (DA I: 1%, DA II: 2%, DA III: 5%) were extensively characterized and were found to have a smooth and flat surface, with DA III membrane having slightly higher roughness and surface energy. All the membranes presented suitable mechanical properties and did not show any signs of calcification after SBF test. Biodegradability was similar for all samples, and adequate to physically support neurite outgrowth. The in vitro cell culture results indicate selective cell adhesion. The CHT membranes favoured Schwann cells invasion and proliferation, with a display of appropriate cytoskeletal morphology. At the same time they presented low fibroblast infiltration. This fact may be greatly beneficial for the prevention of fibrotic tissue formation, a common phenomenon impairing peripheral nerve regeneration. The great deal of results obtained during this work permitted to select the formulation with the greatest potential for further biological tests. - Highlights: • Three chitosan membranes were produced with very specific degrees of acetylation (DA I: 1%, DA II: 2%, DA III: 5%). • Physicochemical characterization of the membranes showed their suitability for peripheral nerve regeneration purposes. • In vitro cellular tests confirmed the potential of the membranes as peripheral nerve regeneration systems. • The results indicated that DA III membrane should be the one considered for further peripheral nerve regeneration studies.

  10. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Carvalho, Cristiana R.; López-Cebral, Rita; Silva-Correia, Joana; Silva, Joana M.; Mano, João F.; Silva, Tiago H.; Freier, Thomas; Reis, Rui L.; Oliveira, Joaquim M.

    2017-01-01

    Peripheral nerve injuries have produced major concerns in regenerative medicine for several years, as the recovery of normal nerve function continues to be a significant clinical challenge. Chitosan (CHT), because of its good biocompatibility, biodegradability and physicochemical properties, has been widely used as a biomaterial in tissue engineering scaffolding. In this study, CHT membranes were produced with three different Degrees of Acetylation (DA), envisioning its application in peripheral nerve regeneration. The three CHT membranes (DA I: 1%, DA II: 2%, DA III: 5%) were extensively characterized and were found to have a smooth and flat surface, with DA III membrane having slightly higher roughness and surface energy. All the membranes presented suitable mechanical properties and did not show any signs of calcification after SBF test. Biodegradability was similar for all samples, and adequate to physically support neurite outgrowth. The in vitro cell culture results indicate selective cell adhesion. The CHT membranes favoured Schwann cells invasion and proliferation, with a display of appropriate cytoskeletal morphology. At the same time they presented low fibroblast infiltration. This fact may be greatly beneficial for the prevention of fibrotic tissue formation, a common phenomenon impairing peripheral nerve regeneration. The great deal of results obtained during this work permitted to select the formulation with the greatest potential for further biological tests. - Highlights: • Three chitosan membranes were produced with very specific degrees of acetylation (DA I: 1%, DA II: 2%, DA III: 5%). • Physicochemical characterization of the membranes showed their suitability for peripheral nerve regeneration purposes. • In vitro cellular tests confirmed the potential of the membranes as peripheral nerve regeneration systems. • The results indicated that DA III membrane should be the one considered for further peripheral nerve regeneration studies.

  11. The role of dexamethasone in peripheral and neuraxial nerve blocks ...

    African Journals Online (AJOL)

    pain and prolongs analgesia in the postoperative period when combined with ... management of acute pain and that focused on dexamethasone's ability to prolong ... of dexamethasone to brachial plexus nerve blocks and Akram and Hassani ...

  12. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  13. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  14. Baseline effects of lysophosphatidylcholine and nerve growth factor in a rat model of sciatic nerve regeneration after crush injury

    Directory of Open Access Journals (Sweden)

    Ryan L Wood

    2018-01-01

    Full Text Available Schwann cells play a major role in helping heal injured nerves. They help clear debris, produce neurotrophins, upregulate neurotrophin receptors, and form bands of Büngner to guide the healing nerve. But nerves do not always produce enough neurotrophins and neurotrophin receptors to repair themselves. Nerve growth factor (NGF is an important neurotrophin for promoting nerve healing and lysophosphatidylcholine (LPC has been shown to stimulate NGF receptors (NGFR. This study tested the administration of a single intraneural injection of LPC (1 mg/mL for single LPC injection and 10 mg/mL for multiple LPC injections at day 0 and one (day 7, two (days 5 and 7, or three (days 5, 7, and 9 injections of NGF (160 ng/mL for single injections and 80 ng/mL for multiple injections to determine baseline effects on crushed sciatic nerves in rats. The rats were randomly divided into four groups: control, crush, crush-NGF, and crush-LPC-NGF. The healing of the nerves was measured weekly by monitoring gait; electrophysiological parameters: compound muscle action potential (CMAP amplitudes; and morphological parameters: total fascicle areas, myelinated fiber counts, fiber densities, fiber packing, and mean g-ratio values at weeks 3 and 6. The crush, crush-NGF, and crush-LPC-NGF groups statistically differed from the control group for all six weeks for the electrophysiological parameters but only differed from the control group at week 3 for the morphological parameters. The crush, crush-NGF, and crush-LPC-NGF groups did not differ from each other over the course of the study. Single injections of LPC and NGF one week apart or multiple treatments of NGF at 5, 7 and 9 days post-injury did not alter the healing rate of the sciatic nerves during weeks 1-6 of the study. These findings are important to define the baseline effects of NGF and LPC injections, as part of a larger effort to determine the minimal dose regimen of NGF to regenerate peripheral nerves.

  15. Mitchell's influence on European studies of peripheral nerve injuries during World War I.

    Science.gov (United States)

    Koehler, Peter J; Lanska, Douglas J

    2004-12-01

    Describe the influence of S. Weir Mitchell's (1829-1914) work, and in particular his ideas on causalgia, on European physicians who treated peripheral nerve injuries during World War I (WWI). During the American Civil War (1861-1865), Mitchell studied peripheral nerve injuries with colleagues George Read Morehouse and William Williams Keen. Three monographs resulted from this work. All were important landmarks in the evolution of knowledge of peripheral nerve injuries. A subsequent occasion to improve knowledge came in WWI. The most important European monographs or series on peripheral nerve injuries from WWI were studied with special interest in references to causalgia and Mitchell's works on peripheral nerve injuries. We included works by Tinel, Athanassio-Benisty, Purves-Stewart & Evans and Carter, Foerster and Oppenheim. Tinel and Athanassio-Benisty provided the most detailed information on peripheral nerve injuries and causalgia and often referred to Mitchell. Both mentioned a possible sympathetic origin. Athanassio-Benisty described tremor and other movement disorders in relation to causalgia. Purves-Stewart and Evans mentioned Mitchell and causalgia in the second edition of their book. They advocated the term "thermalgia." Carter, who had access to data of many cases, concentrated his work on causalgia, referring to Mitchell. Foerster provided data of a great number of peripheral nerve injuries, but did not refer to Mitchell. However, he described the symptoms of causalgia cursorily, applying the term Reflexschmerz (reflexpain). Oppenheim was particularly interested in muscle innervation and referred to Mitchell with respect to hypertrichosis and glossy skin. Oppenheim did not use the term causalgia, although he described the syndrome in some of his patients. It wasn't until around 1920 that German physicians devoted significant attention to causalgia and began using the term. Knowledge of peripheral nerve injuries was greatly advanced during and after WWI

  16. MR findings of facial nerve on oblique sagittal MRI using TMJ surface coil: normal vs peripheral facial nerve palsy

    International Nuclear Information System (INIS)

    Park, Yong Ok; Lee, Myeong Jun; Lee, Chang Joon; Yoo, Jeong Hyun

    2000-01-01

    To evaluate the findings of normal facial nerve, as seen on oblique sagittal MRI using a TMJ (temporomandibular joint) surface coil, and then to evaluate abnormal findings of peripheral facial nerve palsy. We retrospectively reviewed the MR findings of 20 patients with peripheral facial palsy and 50 normal facial nerves of 36 patients without facial palsy. All underwent oblique sagittal MRI using a T MJ surface coil. We analyzed the course, signal intensity, thickness, location, and degree of enhancement of the facial nerve. According to the angle made by the proximal parotid segment on the axis of the mastoid segment, course was classified as anterior angulation (obtuse and acute, or buckling), straight and posterior angulation. Among 50 normal facial nerves, 24 (48%) were straight, and 23 (46%) demonstrated anterior angulation; 34 (68%) showed iso signal intensity on T1W1. In the group of patients, course on the affected side was either straight (40%) or showed anterior angulation (55%), and signal intensity in 80% of cases was isointense. These findings were similar to those in the normal group, but in patients with post-traumatic or post-operative facial palsy, buckling, of course, appeared. In 12 of 18 facial palsy cases (66.6%) in which contrast materials were administered, a normal facial nerve of the opposite facial canal showed mild enhancement on more than one segment, but on the affected side the facial nerve showed diffuse enhancement in all 14 patients with acute facial palsy. Eleven of these (79%) showed fair or marked enhancement on more than one segment, and in 12 (86%), mild enhancement of the proximal parotid segment was noted. Four of six chronic facial palsy cases (66.6%) showed atrophy of the facial nerve. When oblique sagittal MR images are obtained using a TMJ surface coil, enhancement of the proximal parotid segment of the facial nerve and fair or marked enhancement of at least one segment within the facial canal always suggests pathology of

  17. Effect of dietary oils on peripheral neuropathy-related endpoints in dietary obese rats

    Directory of Open Access Journals (Sweden)

    Coppey L

    2018-04-01

    Full Text Available Lawrence Coppey,1 Eric Davidson,1 Hanna Shevalye,1 Michael E Torres,1 Mark A Yorek1–4 1Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; 2Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, USA; 3Department of Veterans Affairs, Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA; 4Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA Purpose: This study aimed to determine the effect of dietary oils (olive, safflower, evening primrose, flaxseed, or menhaden enriched in different mono unsaturated fatty acids or polyunsaturated fatty acids on peripheral neuropathies in diet-induced obese Sprague-Dawley rats.Materials and methods: Rats at 12 weeks of age were fed a high-fat diet (45% kcal for 16 weeks. Afterward, the rats were fed diets with 50% of the kilocalories of fat derived from lard replaced by the different dietary oils. In addition, a control group fed a standard diet (4% kcal fat and a high fat fed group (45% kcal were maintained. The treatment period was 32 weeks. The endpoints evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and vascular relaxation by epineurial arterioles.Results: Menhaden oil provided the greatest benefit for improving peripheral nerve damage caused by dietary obesity. Similar results were obtained when we examined acetylcholine-mediated vascular relaxation of epineurial arterioles of the sciatic nerve. Enriching the diets with fatty acids derived from the other oils provided minimal to partial improvements.Conclusion: These studies suggest that omega-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for neural and vascular complications associated with obesity. Keywords: peripheral neuropathy, fish oil, omega-3 polyunsaturated fatty acids, omega-6 polyunsaturated fatty

  18. Influence of suture on peripheral nerve regeneration and collagen production at the site of neurorrhaphy: an experimental study.

    Science.gov (United States)

    Martins, Roberto Sergio; Teodoro, Walcy Rosolio; Simplicio, Hougelle; Capellozi, Vera Luiza; Siqueira, Mario Gilberto; Yoshinari, Natalino Hajime; Pereira, José Pindaro; Teixeira, Manoel Jacobsen

    2011-03-01

    Restoration of nerve continuity and effective maintenance of coaptation are considered fundamental principles of end-to-end peripheral nerve repair. To evaluate the influence of the number of stitches on axonal regeneration and collagen production after neurorrhaphy. Thirty male Wistar rats were equally divided into 3 groups and were all operated on with the right sciatic nerve exposed. In 2 groups, the nerve was sectioned and repaired by means of 3 (group B) or 6 (group C) epineurium sutures with 10-0 monofilament nylon. One group (group A) was used as a control. Each animal from groups B and C underwent electrophysiological evaluation with motor action potential recordings before nerve section and again at an 8-week interval after neurorrhaphy. Nerve biopsy specimens were used for histomorphometric assessment of axonal regeneration and quantification of collagen at the repair site. Animals from group C had significantly lower motor action potential conduction velocities compared with control animals (P=.02), and no significant difference was seen between groups B and C. Parameters obtained from morphometric evaluation were not significantly different between these 2 groups. Type I collagen and III collagen in the epineurium were significantly higher in group C than in either the control group (P=.001 and P=.003) or group B (P=.01 and P=.02). No differences were identified for collagen I and III in the endoneurium. Using 6 sutures for nerve repair is associated with worse electrophysiological outcomes and higher amounts of type I and III collagen in the epineurium compared with control. Neurorraphy with 6 stitches is also related to a significant increase in epineurium collagen I and III compared with 3-stitch neurorraphy. Copyright (C) by the Congress of Neurological Surgeons

  19. Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells.

    Science.gov (United States)

    Múnera, A; Cuestas, D M; Troncoso, J

    2012-10-25

    Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    Science.gov (United States)

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  1. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  2. A novel concept for continuous peripheral nerve blocks. Presentation of a new ultrasound-guided device

    DEFF Research Database (Denmark)

    Rothe, C; Steen-Hansen, C; Madsen, M H

    2015-01-01

    positioning as well as during later in-plane readjustment of the catheter. We tested the system in the popliteal region of two fresh cadavers in a preliminary proof of concept study. RESULTS: Both initial placement and secondary readjustment were precise, judged by the catheter orifices placed close......BACKGROUND: Existing techniques for placing and maintaining the position of peripheral nerve catheters are associated with variable success rates and frequent secondary failures. These factors may affect the clinical efficacy and usefulness of peripheral nerve catheters. METHODS: We developed a new...... concept and prototype for ultrasound-guided in-plane positioning and readjustment of peripheral nerve catheters (patent pending). The integrated catheter-needle prototype comprises three parts: a curved needle, a catheter with clear echogenic markings attached to the needle tail and a detachable hub...

  3. Peripheral nerve field stimulation for pruritus relief in a patient with notalgia paraesthetica.

    LENUS (Irish Health Repository)

    Ricciardo, Bernadette

    2012-02-01

    This case study is presented to exemplify the application of peripheral nerve field stimulation in the treatment of recalcitrant notalgia paraesthetica. The patient was a 60-year-old woman with severe and disabling notalgia paraesthetica. The itch persisted despite the use of several medications - topical and oral. Following a successful trial of peripheral nerve field stimulation with a temporary electrode, two subcutaneous electrodes were inserted into the affected area with a battery implanted subcutaneously in her right buttock. The patient was reviewed at 5 months post implantation. She reported a greater than 85% improvement in her itch. She also reported a major improvement in her quality of life, with particular improvement in her ability to sleep through the night. This case illustrates the possible utilization of peripheral nerve field stimulation in the treatment of notalgia paraesthetica, which is a common yet poorly understood and treated condition. Replication and controlled studies are required to determine the general applicability of this approach.

  4. A Case Study Of Dietary Deficiency On Peripheral Nerve Functions In Chronic Alcoholic Patient

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2015-08-01

    Full Text Available Abstract Alcoholic neuropathy is most likely result of dietary deficiency rather than direct neurotoxic effect of alcohol. A male alcoholic patient aged 34- years old with clear clinical sign of peripheral neuropathy was examined after his habit of six years chronic alcoholic drinking. Conduction velocities latencies and nerve action potential amplitudes was measured from median radial common peroneal and sural nerves on respective upper and lower limb and the results showed that there was decrease in conduction velocity of common peroneal and posterior tibial in lower limbs. However sensory nerve conduction SNCV of sural nerve right and left was normal in lower limb. Based on the results observed in our study we conclude that the combination of vitamin B12 uridine and cytidine can be safe and effective in the treatment of patients presenting alcoholic polyneuropathy. So the prognosis of alcoholic peripheral neuropathy is good and independent of age provided that intake of alcohol is withdrawn completely.

  5. [Age-related changes of sensory peripheral nerve system in healthy subjects.

    Science.gov (United States)

    Voitenkov, V B; Ekusheva, E V; Komancev, V N; Skripchenko, N V; Grigoryev, S G; Klimkin, A V; Aksenova, A I

    2017-01-01

    Our aim was to present and evaluate age-related changes of peripheral nerves of limbs on a huge population of healthy subjects of different ages. In 2009-2016 subjects aged from 1months to 90 years were studied by nerve conduction velocity studies (NCV). Data of those confirmed healthy was included in our study. In total there were 372 healthy subjects. NCV for nn. Medianus et Ulnaris was registered, with NCV and amplitude of compound sensory action potential (CSAP) being analyzed. There were significant differences on both these parameters between different age groups. Since the childhood the improvement of conduction (which was reflected in rising of CSAP amplitudes and NCV quickening) was registered; from 40-50 years steady decline of both these parameters were observed in both nerves. Conduction studies of peripheral nerves may be implemented in gerontology for early detection of neurophysiology patterns reflecting physiological aging. Also our results may be implemented for accelerated aging detection.

  6. Dietary supplement with fermented soybeans, natto, improved the neurobehavioral deficits after sciatic nerve injury in rats.

    Science.gov (United States)

    Pan, Hung-Chuan; Cheng, Fu-Chou; Chen, Chun-Jung; Lai, Shu-Zhen; Liu, Mu-Jung; Chang, Ming-Hong; Wang, Yeou-Chih; Yang, Dar-Yu; Ho, Shu-Peng

    2009-06-01

    Clearance of fibrin and associated inflammatory cytokines by tissue-type plasminogen activator (t-PA) is related to improved regeneration in neurological disorder. The biological activity of fermented soybean (natto) is very similar to that of t-PA. We investigated the effect of the dietary supplement of natto on peripheral nerve regeneration. The peripheral nerve injury was produced by crushing the left sciatic nerve with a vessel clamp in Sprague-Dawley rats. The injured animals were fed orally either with saline or natto (16 mg/day) for seven consecutive days after injury. Increased functional outcome such as sciatic nerve functional index, angle of ankle, compound muscle action potential and conduction latency were observed in natto-treated group. Histological examination demonstrated that natto treatment improved injury-induced vacuole formation, S-100 and vessel immunoreactivities and axon loss. Oral intake of natto prolonged prothrombin time and reduced fibrinogen but did not change activated partial thromboplastin time and bleeding time. Furthermore, natto decreased injury-induced fibrin deposition, indicating a tolerant fibrinolytic activity. The treatment of natto significantly improved injury-induced disruption of blood-nerve barrier and loss of matrix component such as laminin and fibronectin. Sciatic nerve crush injury induced elevation of tumor necrosis factor alpha (TNF-alpha) production and caused apoptosis. The increased production of TNF-alpha and apoptosis were attenuated by natto treatment. These findings indicate that oral intake of natto has the potential to augment regeneration in peripheral nerve injury, possibly mediated by the clearance of fibrin and decreased production of TNF-alpha.

  7. Adrenergic nerve fibres and mast cells: correlation in rat thymus.

    Science.gov (United States)

    Artico, Marco; Cavallotti, Carlo; Cavallotti, Daniela

    2002-10-21

    The interactions between adrenergic nerve fibres and mast cells (MCs) were studied in the thymus of adult and old rats by morphological methods and by quantitative analysis of images (QAIs). The whole thymus was drawn in adult (12 months old) rats: normal, sympathectomized or electrostimulated. Thymuses from the above-mentioned animals were weighed, measured and dissected. Thymic slices were stained with eosin orange for detection of microanatomical details and with Bodian's method for identification of the whole nerve fibres. Thymic MCs were stained with Astrablau. Histofluorescence microscopy was used for staining of adrenergic nerve fibres. Finally, all morphological results were submitted to the QAIs and statistical analysis of data. Our results suggest that after surgical sympathectomy, the greater part of adrenergic nerve fibres disappear while related MCs appear to show less evident fluorescence and few granules. On the contrary, electrostimulation of the cervical superior ganglion induced an increase in the fluorescence of adrenergic nerve fibres and of related MCs.

  8. Activation of peripheral leukocytes in rat pregnancy and experimental preeclampsia

    NARCIS (Netherlands)

    Faas, MM; Schuiling, GA; Linton, EA; Sargent, IL; Redman, CWG

    OBJECTIVE: The aim of this study was to search for activation markers of peripheral leukocytes in experimental preeclampsia in the rat. STUDY DESIGN: Experimental preeclampsia was induced in 14-day-pregnant rats by infusion of endotoxin (1.0 mu g/kg body weight). For comparison, rats with normal

  9. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    Science.gov (United States)

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans

    OpenAIRE

    Gordon, Tessa

    2016-01-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regene...

  11. Changes in peripheral nervous system activity produced in rats by prenatal exposure to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, M.R. (Inst. of Pharmacology, Bari Univ. (Italy)); Renna, G. (Inst. of Pharmacology, Bari Univ. (Italy)); Giustino, A. (Inst. of Pharmacology, Bari Univ. (Italy)); De Salvia, M.A. (Inst. of Pharmacology, Bari Univ. (Italy)); Cuomo, V. (Inst. of Pharmacology, Bari Univ. (Italy))

    1993-06-01

    The present experiments were designed to investigate whether alterations of peripheral nervous system activity may be produced in male Wistar rats by prenatal exposure (from day 0 to day 20 of pregnancy) to relatively low levels of CO (75 and 150 ppm). The voltage clamp analysis of ionic currents recorded from sciatic nerve fibres showed that prenatal exposure to CO produced modifications of sodium current properties. In particular, in 40-day-old rats exposed to CO (75 and 150 ppm) during gestation, the inactivation kinetics of transient sodium current were significantly slowed. Analysis of the potential dependence of steady-state Na inactivation, h[sub [infinity

  12. Regeneration of peripheral nerve fibres following Haloxon-induced degeneration

    Directory of Open Access Journals (Sweden)

    Maria Veronica de Souza

    1996-12-01

    Full Text Available Delayed neurotoxicity has been associated with organophosphorus poisoning for years. In order to study such condition in sheep, 11 animals were given either one or two high doses of Haloxon. Exposed sheep were observed daily and between 16 and 25 days after administration neurological signs as incoordination and ataxia were detected in six of them. Biopsies of tibial and laryngeal nerves were performed as soon as neurotoxicity was diagnosed, and after death fragments of selected nerves were collected together with CNS tissues for light and electron microscopy and teased fiber studies. Laryngeal, tibial and sciatic nerves showed the most pronouced changes, consisting chiefly of wallerian degeneration that was seen either as a single fiber or as a complete fascicle feature. Exams performed after death clearly showed regenerating fascicles with axonal sprouts growing within a Schwann cell old basal lamina, and some thinly myelinated axonal sprouts.

  13. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    Directory of Open Access Journals (Sweden)

    Zhao J

    2017-12-01

    Full Text Available Jingbo Zhao,1 Jian Yang,1 Donghua Liao,1 Hans Gregersen2 1Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong Background: Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective: We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design: Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR, and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results: Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05. The stress relaxed less in the diabetic intestinal segment (P<0.05. Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion: Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. Keywords: afferents, spike rate, stress–strain, creep

  14. Meeting report on the first Iranian congress of electrodiagnosis in peripheral nerve lesions

    Directory of Open Access Journals (Sweden)

    Bahrami Hasan M

    2007-04-01

    Full Text Available Abstract The Department of Physical Medicine, Rehabilitation and Electrodiagnosis of Shaheed Beheshti Medical University in collaboration with the Iranian Society of Physical Medicine and Rehabilitation (ISPMR held the 1st Congress of Electrodiagnostic Medicine in Peripheral Nerve Lesions on December 21–22, 2006. Electrodiagnostic medicine is a specific branch of medicine used by specialist physicians in the field of physical medicine and rehabilitation and/or neurology to diagnose, prognosticate and plan treatment options of peripheral nerve lesions. This meeting was hold to discuss multidisciplinary approaches to this common and important topic in the medical field.

  15. Sensory and Motor Peripheral Nerve Function and Longitudinal Changes in Quadriceps Strength

    DEFF Research Database (Denmark)

    Ward, R. E.; Boudreau, R. M.; Caserotti, P.

    2015-01-01

    Background. Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. Methods. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age...... was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Results. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower...

  16. Chronic implantation of cuff electrodes on the pelvic nerve in rats is well tolerated and does not compromise afferent or efferent fibre functionality

    Science.gov (United States)

    Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.

    2018-04-01

    Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in rats and high frequency

  17. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao

    2014-12-01

    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  18. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold

    Directory of Open Access Journals (Sweden)

    Wei GJ

    2013-08-01

    Full Text Available Guo-Jun Wei,1 Meng Yao,1 Yan-Song Wang,1 Chang-Wei Zhou,1 De-Yu Wan,1 Peng-Zhen Lei,1 Jian Wen,1 Hong-Wei Lei,2 Da-Ming Dong1 1Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; 2Department of Rheumatology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China Background: Peripheral nerve injury is a common trauma, but presents a significant challenge to the clinic. Silk-based materials have recently become an important biomaterial for tissue engineering applications due to silk’s biocompatibility and impressive mechanical and degradative properties. In the present study, a silk fibroin peptide (SF16 was designed and used as a component of the hydrogel scaffold for the repair of peripheral nerve injury. Methods: The SF16 peptide’s structure was characterized using spectrophotometry and atomic force microscopy, and the SF16 hydrogel was analyzed using scanning electron microscopy. The effects of the SF16 hydrogel on the viability and growth of live cells was first assessed in vitro, on PC12 cells. The in vivo test model involved the repair of a nerve gap with tubular nerve guides, through which it was possible to identify if the SF16 hydrogel would have the potential to enhance nerve regeneration. In this model physiological saline was set as the negative control, and collagen as the positive control. Walking track analysis and electrophysiological methods were used to evaluate the functional recovery of the nerve at 4 and 8 weeks after surgery. Results: Analysis of the SF16 peptide’s characteristics indicated that it consisted of a well-defined secondary structure and exhibited self-assembly. Results of scanning electron microscopy showed that the peptide based hydrogel may represent a porous scaffold that is viable for repair of peripheral nerve injury. Analysis of cell culture also supported that the hydrogel was an effective

  19. Adult Stem Cell-Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2017-10-01

    acceptable donor nerves are often not available for this purpose, particularly in patients suffering multiple extremity injuries or faced with traumatic...amputations. Alternatives include the use of a blood vessel graft or a synthetic nerve guide, although these devices are only effective over distances less...of combat-related orthopaedic trauma. Given the severity of the orthopaedic injuries sustained during battlefield trauma, an acceptable donor nerve is

  20. Sensory and Motor Peripheral Nerve Function and Incident Mobility Disability

    DEFF Research Database (Denmark)

    Ward, R. E.; Boudreau, R. M.; Caserotti, P.

    2014-01-01

    ObjectivesTo assess the relationship between sensorimotor nerve function and incident mobility disability over 10years. DesignProspective cohort study with longitudinal analysis. SettingTwo U.S. clinical sites. ParticipantsPopulation-based sample of community-dwelling older adults with no mobility...

  1. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization

    International Nuclear Information System (INIS)

    Monaco, Graziana; Cholas, Rahmatullah; Salvatore, Luca; Madaghiele, Marta; Sannino, Alessandro

    2017-01-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10 days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtO < DHS < β), together with an enhanced resistance to denaturation of the EtO treated scaffolds and a significantly accelerated enzymatic degradation of the β sterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. - Highlights: • Production of longitudinally oriented collagen scaffolds for nerve regeneration • Control of pore structure and crosslinking • Impact of terminal sterilization on the scaffold properties • Proliferation and infiltration of Schwann cells within the sterilized scaffolds

  2. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, Graziana [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Dhitech Scarl – Distretto Tecnologico High Tech, Via per Monteroni, 73100 Lecce (Italy); Cholas, Rahmatullah; Salvatore, Luca [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Madaghiele, Marta, E-mail: marta.madaghiele@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Sannino, Alessandro [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2017-02-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10 days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtO < DHS < β), together with an enhanced resistance to denaturation of the EtO treated scaffolds and a significantly accelerated enzymatic degradation of the β sterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. - Highlights: • Production of longitudinally oriented collagen scaffolds for nerve regeneration • Control of pore structure and crosslinking • Impact of terminal sterilization on the scaffold properties • Proliferation and infiltration of Schwann cells within the sterilized scaffolds.

  3. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    Science.gov (United States)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  4. Integration of the Residual Limb with Prostheses via Direct Skin-Bone-Peripheral Nerve Interface

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0791 TITLE: Integration of the Residual Limb with Prostheses via Direct Skin- Bone-Peripheral Nerve Interface...ABOVE ADDRESS. 1. REPORT DATE October 2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Integration of the...translational study to develop Skin and Bone Integrated Pylon with Peripheral Neural Interface (SBIP-PNI) directly attached to the residuum and the

  5. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies.

    Science.gov (United States)

    Wieringa, Paul A; Gonçalves de Pinho, Ana Rita; Micera, Silvestro; van Wezel, Richard J A; Moroni, Lorenzo

    2018-04-01

    Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In vivo USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Ghanouni Pejman

    2012-06-01

    Full Text Available Abstract Background Minocycline has proven anti-nociceptive effects, but the mechanism by which minocycline delays the development of allodynia and hyperalgesia after peripheral nerve injury remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury in vivo and, in turn, results in altered pain thresholds. Results Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague–Dawley rats. Animals with SNI and uninjured animals were then injected with/without USPIOs (300 μmol/kg IV and with/without minocycline (50 mg/kg IP. Bilateral sciatic nerves were scanned with a volume coil in a 7 T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p  Conclusion Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline to retards the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective in

  7. In vivo electrophysiological measurement of the rat ulnar nerve with axonal excitability testing

    DEFF Research Database (Denmark)

    Wild, Brandon M.; Morris, Renée; Moldovan, Mihai

    2018-01-01

    Electrophysiology enables the objective assessment of peripheral nerve function in vivo. Traditional nerve conduction measures such as amplitude and latency detect chronic axon loss and demyelination, respectively. Axonal excitability techniques "by threshold tracking" expand upon these measures...... by providing information regarding the activity of ion channels, pumps and exchangers that relate to acute function and may precede degenerative events. As such, the use of axonal excitability in animal models of neurological disorders may provide a useful in vivo measure to assess novel therapeutic...... interventions. Here we describe an experimental setup for multiple measures of motor axonal excitability techniques in the rat ulnar nerve. The animals are anesthetized with isoflurane and carefully monitored to ensure constant and adequate depth of anesthesia. Body temperature, respiration rate, heart rate...

  8. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    Science.gov (United States)

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    Science.gov (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  10. APP overexpression prevents neuropathic pain and motoneuron death after peripheral nerve injury in mice.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Lewin-Kowalik, Joanna; Paly, Evelyn; London, Jacqueline

    2010-03-16

    Despite general capacity of peripheral nervous system to regenerate, peripheral nerve injury is often followed by incomplete recovery of function and sometimes burdened by neuropathic pain. Amyloid precursor protein (APP) was suggested to play a role in neuronal growth, however, its role in peripheral nerve repair was not studied. The aim of this study was to examine the role of APP overexpression in peripheral nerve regeneration and neuropathic pain-related behavior in mice. Sciatic nerves of APP overexpressing and FVB/N wild-type mice were transected and immediately resutured. Evaluation of motor and sensory function and autotomy was carried out during 4-week follow up. We found no autotomy behavior as well as less significant atrophy of denervated muscles in APP overexpressing animals when compared to wild-type ones. Sciatic nerve function index outcome did not differ between groups. Histological evaluation revealed that the intensity of regeneration features, including GAP-43-positive growth cones and Schwann cells number in the distal stump of the transected nerve, was also similar in both groups. However, the regenerating fibers were organized more chaotically in wild-type mice and neuromas were much more often seen in this group. The number of macrophages infiltrating the injury site was significantly higher in control group. The number of surviving motoneurons was higher in transgenic mice than in control animals. Taken together, our findings suggest that APP overexpression is beneficial for nerve regeneration processes due to better organization of regenerating fibers, increased survival of motoneurons after autotomy and prevention of neuropathic pain. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Use of tripolar electrodes for minimization of current spread in uncut peripheral nerve stimulation.

    Science.gov (United States)

    Ohsawa, Ichiro; Inui, Koji

    2009-05-01

    The electrical stimulation of an uncut peripheral nerve requires a countermeasure to avoid the spread of current through a loop pathway formed outside the electrode array. Here the use of tripolar electrodes (TE) is proposed. By binding the two end poles, current spread through the loop pathway can theoretically be eliminated since both end poles are held equipotential. Experimentally, we tested the validity of this approach. In chloralose-urethane anesthetized rats, the left cervical vagus (LCV) was placed on TE which could function as such or as bipolar electrodes (BE) by the use of a selector switch. The spread of current to the adjacent tissues (rectus capitis muscle underlying the LCV, and the right cervical vagus (RCV) incised and translocated beside the target, LCV) was compared between TE and BE. When the stimulus intensity was increased, contraction occurred in the capitis muscle with BE, but not TE. Compound spike potentials of A fiber origin were evoked in the non-target RCV on high-intensity stimulation with BE, but not TE. Constant voltage stimulation of the LCV with TE produced bradycardia of the same magnitude as that with BE. In conclusion, constant voltage stimulation using TE can minimize current spread without changing the stimulus's effects.

  12. Peripheral Nerve Blocks for the Treatment of Headache in Older Adults: A Retrospective Study.

    Science.gov (United States)

    Hascalovici, Jacob R; Robbins, Matthew S

    2017-01-01

    The objective of this study is to provide demographical and clinical descriptions of patients age 65 years old and older who were treated with peripheral nerve blocks (PNBs) at our institution and evaluate the safety and efficacy of this treatment. Headache disorders are common, disabling chronic neurological diseases that often persist with advancing age. Geriatric headache management poses unique therapeutic challenges because of considerations of comorbidity, drug interactions, and adverse effects. Peripheral nerve blocks are commonly used for acute and short-term prophylactic treatment for headache disorders and may be a safer alternative to standard pharmacotherapy in this demographic. We performed a single center, retrospective chart review of patients at least 65 years of age who received peripheral nerve blocks for headache management over a 6 year period. Sixty-four patients were mostly female (78%) with an average age of 71 years (range 65-94). Representative headache diagnoses were chronic migraine 50%, episodic migraine 12.5%, trigeminal autonomic cephalalgia 9.4%, and occipital neuralgia 7.8%. Average number of headache days/month was 23. Common comorbidities were hypertension 48%, hyperlipidemia 42%, arthritis 27%, depression 47%, and anxiety 33%. Eighty-nine percent were prescribed at least 1 medication fulfilling the Beers criteria. The average number of peripheral nerve blocks per patient was 4. Peripheral nerve blocks were felt to be effective in 73% for all headaches, 81% for chronic migraine, 75% for episodic migraine, 67% for chronic tension type headache, 67% for new daily persistent headache, and 60% for occipital neuralgia. There were no adverse events related to PNBs reported. PNBs might be a safe and effective alternative headache management strategy for older adults. Medical and psychiatric comorbidities, medication overuse, and Beers list medication rates were extraordinarily high, giving credence to the use of peripherally administered

  13. Recovery of colonic transit following extrinsic nerve damage in rats.

    Science.gov (United States)

    Ridolfi, Timothy J; Tong, Wei Dong; Kosinski, Lauren; Takahashi, Toku; Ludwig, Kirk A

    2011-06-01

    Injury to pelvic sympathetic and parasympathetic nerves from surgical and obstetrical trauma has long been cited as a cause for abnormal colorectal motility in humans. Using a rat model, acute transaction of these extrinsic nerves has been shown to effect colorectal motility. The aim of this study is to determine in a rat model how transection of these extrinsic nerves affects colonic transit over time. Eighty-two Sprague-Dawley rats underwent placement of a tunneled catheter into the proximal colon. Bilateral hypogastric, pelvic nerves (HGN and PN) or both were transected in 66 rats. The remaining 16 rats received a sham operation. Colonic transit was evaluated at postoperative days (PODs) 1, 3, and 7 by injecting and calculating the geometric center (GC) of the distribution of (51)Cr after 3 h of propagation. At POD 1, transection of PNs significantly delayed colonic transit (GC = 4.9, p < 0.05), while transection of HGNs (GC = 8.5, p < 0.05) or transection of both nerves (GC = 7.8, p < 0.05) significantly accelerated colonic transit, when compared with sham operation (GC = 6.0). A significant trend toward recovery was noted in both the HGN and PN transection groups at POD 7. Damage to the extrinsic sympathetic and/or parasympathetic PNs affects colonic transit acutely. These changes in large bowel motor function normalize over time implicating a compensatory mechanism within the bowel itself.

  14. Peripheral neuropathy

    Science.gov (United States)

    ... peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy; Chronic pain - peripheral neuropathy ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  15. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  16. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-12-01

    ship rat carcasses to inviCRO for autoradiography analysis. The last animal was euthanized today at time point Day 30.  April 6, 2015: Sectioning...of rat carcasses by inviCRO to start later in the week. The animals had no abnormalities detected by clinical observation throughout the duration of...Approximately 0.08 ml of the labeled hydrogel was implanted intramuscularly in the quadriceps muscle. The animal care and use protocol developed at

  17. Peripheral nerve blocks as the sole anesthetic technique in a patient with severe Duchenne muscular dystrophy.

    Science.gov (United States)

    Bang, Seung Uk; Kim, Yee Suk; Kwon, Woo Jin; Lee, Sang Mook; Kim, Soo Hyang

    2016-04-01

    General anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are associated with high risks of complications, including rhabdomyolysis, malignant hyperthermia, hemodynamic instability, and postoperative mechanical ventilation. Here, we describe peripheral nerve blocks as a safe approach to anesthesia in a patient with severe Duchenne muscular dystrophy who was scheduled to undergo surgery. A 22-year-old male patient was scheduled to undergo reduction and internal fixation of a left distal femur fracture. He had been diagnosed with Duchenne muscular dystrophy at 5 years of age, and had no locomotive capability except for that of the finger flexors and toe extensors. He had developed symptoms associated with dyspnea 5 years before and required intermittent ventilation. We blocked the femoral nerve, lateral femoral cutaneous nerve, and parasacral plexus under ultrasound on the left leg. The patient underwent a successful operation using peripheral nerve blocks with no complications. In conclusion general anesthesia and central neuraxial blockades in patients with severe Duchenne muscular dystrophy are unsafe approaches to anesthesia because of hemodynamic instability and respiratory depression. Peripheral nerve blocks are the best way to reduce the risks of critical complications, and are a safe and feasible approach to anesthesia in patients with severe Duchenne muscular dystrophy.

  18. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    International Nuclear Information System (INIS)

    Tsoumakidou, Georgia; Garnon, Julien; Ramamurthy, Nitin; Buy, Xavier; Gangi, Afshin

    2013-01-01

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO 2 insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve

  19. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Ramamurthy, Nitin, E-mail: nitin_ramamurthy@hotmail.com; Buy, Xavier, E-mail: xbuy@ymail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [University Hospital of Strasbourg (France)

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  20. Involvement of peripheral III nerve in multiple sclerosis patient: Report of a new case and discussion of the underlying mechanism.

    Science.gov (United States)

    Shor, Natalia; Amador, Maria Del Mar; Dormont, Didier; Lubetzki, Catherine; Bertrand, Anne

    2017-04-01

    Multiple sclerosis (MS) is a chronic disorder that affects the central nervous system myelin. However, a few radiological cases have documented an involvement of peripheral cranial nerves, within the subarachnoid space, in MS patients. We report the case of a 36-year-old female with a history of relapsing-remitting (RR) MS who consulted for a subacute complete paralysis of the right III nerve. Magnetic resonance imaging (MRI) examination showed enhancement and thickening of the cisternal right III nerve, in continuity with a linear, mesencephalic, acute demyelinating lesion. Radiological involvement of the cisternal part of III nerve has been reported only once in MS patients. Radiological involvement of the cisternal part of V nerve occurs more frequently, in almost 3% of MS patients. In both situations, the presence of a central demyelinating lesion, in continuity with the enhancement of the peripheral nerve, suggests that peripheral nerve damage is a secondary process, rather than a primary target of demyelination.

  1. Recurring intracranial malignant peripheral nerve sheath tumor: case report and systematic review of the literature

    NARCIS (Netherlands)

    van den Munckhof, Pepijn; Germans, Menno R.; Schouten-van Meeteren, Antoinette Y. N.; Oldenburger, Foppe; Troost, Dirk; Vandertop, W. Peter

    2011-01-01

    To report the clinical presentation and management of an intracranial frontoparietal malignant peripheral nerve sheath tumor (MPNST) and its recurrence in a 6-year-old girl, along with a systematic review of the literature. A previously healthy 6-year-old girl presented with severe signs of

  2. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    Science.gov (United States)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  3. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair

    NARCIS (Netherlands)

    Shakhbazau, A.; Kawasoe, J.; Hoyng, S.A.; Kumar, R.; van Minnen, J.; Verhaagen, J.; Midha, R.

    2012-01-01

    Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a

  4. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-09-01

    Full Text Available The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres...

  5. Risk of Peripheral Nerve Disease in Military Working Dogs Deployed in Operations Desert Shield/Storm

    Science.gov (United States)

    2003-01-01

    two cohorts where not discussed except for deaths caused by hostile action, gastric dilation volvulus , heat stroke, and death due to other reasons......4. TITLE AND SUBTITLE Risk of Peripheral Nerve Disease in Military Working Dogs Deployed in Operations Desert Shield/Storm 5a. CONTRACT NUMBER 5b

  6. In vitro electrophoresis and in vivo electrophysiology of peripheral nerve using DC field stimulation

    DEFF Research Database (Denmark)

    Madison, Roger D.; Robinson, Grant A.; Krarup, Christian

    2014-01-01

    BACKGROUND: Given the movement of molecules within tissue that occurs naturally by endogenous electric fields, we examined the possibility of using a low-voltage DC field to move charged substances in rodent peripheral nerve in vitro. NEW METHOD: Labeled sugar- and protein-based markers were appl...

  7. A Study of Tapping by the Unaffected Finger of Patients Presenting with Central and Peripheral Nerve Damage

    OpenAIRE

    Zhang, Lingli; Han, Xiuying; Li, Peihong; Liu, Yang; Zhu, Yulian; Zou, Jun; Yu, Zhusheng

    2015-01-01

    Aim Whether the unaffected function of the hand of patients presenting with nerve injury is affected remains inconclusive. We aimed to evaluate whether there are differences in finger tapping following central or peripheral nerve injury compared with the unaffected hand and the ipsilateral hand of a healthy subject. Methods Thirty right brain stroke patients with hemiplegia, 30 left arm peripheral nerve injury cases, and 60 healthy people were selected. We tested finger tapping of ...

  8. A Study of Tapping by the Unaffected Finger of Patients Presenting with Central and Peripheral Nerve Damage

    OpenAIRE

    Lingli eZhang; Xiuying eHan; peihong eli; yang eliu; yulian ezhu; zhusheng eyu

    2015-01-01

    Aim: Whether the unaffected function of the hand of patients presenting with nerve injury is affected remains inconclusive. We aimed to evaluate whether there are differences in finger tapping following central or peripheral nerve injury compared with the unaffected hand and the ipsilateral hand of a healthy subject.Methods: 30 right brain stroke patients with hemiplegia, 30 left arm peripheral nerve injury cases and 60 healthy people were selected. We tested finger tapping of the right hands...

  9. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    Science.gov (United States)

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  10. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Science.gov (United States)

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  11. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    Science.gov (United States)

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  12. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap

    International Nuclear Information System (INIS)

    Ni, Hsiao-Chiang; Tseng, Ting-Chen; Hsu, Shan-hui; Chen, Jeng-Rung; Chiu, Ing-Ming

    2013-01-01

    Nerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro. Different conduits were tested for their ability to bridge a 15 mm critical gap defect in a rat sciatic nerve injury model. Axon regeneration and functional recovery were evaluated by histology, walking track analysis and electrophysiology. Among different conduits, PLA conduits grafted with chitosan–nano Au and the FGF1 after plasma activation had the greatest regeneration capacity and functional recovery in the experimental animals. When the above conduit was seeded with aligned neural stem cells, the efficacy was further enhanced and it approached that of the autograft group. This work suggested that microporous/micropatterned nerve conduits containing bioactive growth factors may be successfully fabricated by micropatterning techniques, open plasma activation, and immobilization, which, combined with aligned stem cells, may synergistically contribute to the regeneration of the severely damaged peripheral nerve. (paper)

  13. Peripheral nerve block in patients with Ehlers-Danlos syndrome, hypermobility type: a case series.

    Science.gov (United States)

    Neice, Andrew E; Stubblefield, Eryn E; Woodworth, Glenn E; Aziz, Michael F

    2016-09-01

    Ehlers-Danlos syndrome (EDS) is an inherited disease characterized by defects in various collagens or their post translational modification, with an incidence estimated at 1 in 5000. Performance of peripheral nerve block in patients with EDS is controversial, due to easy bruising and hematoma formation after injections as well as reports of reduced block efficacy. The objective of this study was to review the charts of EDS patients who had received peripheral nerve block for any evidence of complications or reduced efficacy. Case series, chart review. Academic medical center. Patients with a confirmed or probable diagnosis of EDS who had received a peripheral nerve block in the last 3 years were identified by searching our institutions electronic medical record system. The patients were classified by their subtype of EDS. Patients with no diagnosed subtype were given a probable subtype based on a chart review of the patient's symptoms. Patient charts were reviewed for any evidence of complications or reduced block efficacy. A total of 21 regional anesthetics, on 16 unique patients were identified, 10 of which had a EDS subtype diagnosis. The majority of these patients had a diagnosis of hypermobility-type EDS. No block complications were noted in any patients. Two block failures requiring repeat block were noted, and four patients reported uncontrolled pain on postoperative day one despite successful placement of a peripheral nerve catheter. Additionally, blocks were performed without incident in patients with classical-type and vascular-type EDS although the number was so small that no conclusions can be drawn about relative safety of regional anesthesia in these groups. This series fails to show an increased risk of complications of peripheral nerve blockade in patients with hypermobility-type EDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fabrication and Optimization of Gelatin/ Nano Bioglass Conduits for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    M. Foroutan Koudehi

    2014-07-01

    Full Text Available Introduction & Objective: Peripheral nerve injury is common in trauma patients and 4.5% of all soft-tissue injuries are accompanied by defects of peripheral nerve. Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Designed conduits com-prised of natural and synthetic materials are now widely used in the construction of damaged tissues. The aim of this project was to prepare nanocomposite conduits from gelatin and bioglass for damaged peripheral nerve reconstruction. Materials & Methods: In this experimental study,compound water solution of gelatin and nano bioglass synthesized through sol gel method, was made. After preparing the solution, special mandrels were dipped in solution several times and freeze dried in order to be emptied of wa-ter via sublimation. The conduits had the following dimensions: internal diameter: 1.6 mm, outside diameter: 2.2 mm and length about 12 mm. In order to evaluate the biocompatibility of conduits we used cytotoxicity test by Chinese ovary cells and MTT assay by Miapaca-2 (pancreatic cancer cell line. Results: The prepared nano bioglass and conduits were characterized using transmission elec-tron microscopy, scanning electron microscopy, fourier transformed infrared spectroscopy and X-ray diffraction. Results of biocompatibility test showed no sign of cytotoxicity and cells were found to be attached to the pore walls offered by the conduits. Conclusion: According to the results, nano bioglass conduits could be a good candidate for peripheral nerve regeneration. (Sci J Hamadan Univ Med Sci 2014; 21 (2:152-160

  15. Tumefactive appearance of peripheral nerve involvement in hematologic malignancies: a new imaging association

    Energy Technology Data Exchange (ETDEWEB)

    Capek, Stepan [Mayo Clinic, Department of Neurosurgery, Rochester, Minnesota (United States); St. Anne' s University Hospital Brno, International Clinical Research Center, Brno (Czech Republic); Hebert-Blouin, Marie-Noelle [McGill University, Department of Neurologic Surgery, Montreal, Quebec (Canada); Puffer, Ross C.; Spinner, Robert J. [Mayo Clinic, Department of Neurosurgery, Rochester, Minnesota (United States); Martinoli, Carlo [Universita degli Studi di Genova, Department of Radiology, Genova (Italy); Frick, Matthew A.; Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2015-04-29

    In neurolymphomatosis (NL), the affected nerves are typically described to be enlarged and hyperintense on T2W MR sequences and to avidly enhance on gadolinium-enhanced T1WI. This pattern is highly non-specific. We recently became aware of a ''tumefactive pattern'' of NL, neuroleukemiosis (NLK) and neuroplasmacytoma (NPLC), which we believe is exclusive to hematologic diseases affecting peripheral nerves. We defined a ''tumefactive'' appearance as complex, fusiform, hyperintense on T2WI, circumferential tumor masses encasing the involved peripheral nerves. The nerves appear to be infiltrated by the tumor. Both structures show varying levels of homogenous enhancement. We reviewed our series of 52 cases of NL in search of this pattern; two extra outside cases of NL, three cases of NLK, and one case of NPLC were added to the series. We identified 20 tumefactive lesions in 18 patients (14 NL, three NLK, one NPLC). The brachial plexus (n = 7) was most commonly affected, followed by the sciatic nerve (n = 6) and lumbosacral plexus (n = 3). Four patients had involvement of other nerves. All were proven by biopsy: the diagnosis was high-grade lymphoma (n = 12), low-grade lymphoma (n = 3), acute leukemia (n = 2), and plasmacytoma (n = 1). We present a new imaging pattern of ''tumefactive'' neurolymphomatosis, neuroleukemiosis, or neuroplasmacytoma in a series of 18 cases. We believe this pattern is associated with hematologic diseases directly involving the peripheral nerves. Knowledge of this association can provide a clue to clinicians in establishing the correct diagnosis. Bearing in mind that tumefactive NL, NLK, and NPLC is a newly introduced imaging pattern, we still recommend to biopsy patients with suspicion of a malignancy. (orig.)

  16. Gallic acid and exercise training improve motor function, nerve conduction velocity but not pain sense reflex after experimental sciatic nerve crush in male rats.

    Science.gov (United States)

    Hajimoradi, Maryam; Fazilati, Mohammad; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza

    2015-01-01

    The aim of present study was to evaluate the effects of oral administration of gallic acid (GA) for 21 days alone and in combination with exercise on nerve conduction velocity and sensory and motor functions in rats with sciatic nerve crush. Seventy adult male Wistar rats (250-300 g) were divided randomly into 7 groups with 10 in each: 1) Control (Cont), 2) Crushed + Vehicle (Cr +Veh), 3-5) Crushed + gallic acid (Cr+GA) (50, 100, and 200 mg/kg/2 mL, orally), 6) Crushed + exercise (Cr+Exe), and 7) Crushed + exercise + effective dose of gallic acid (Cr+Exe +GA200) for 21 days. In order to establish an animal model of sciatic nerve crush, equivalent to 7 kg of force pressed on 2-3 mm of sciatic nerve for 30 s, three times with 30 s intervals. Pain sense reflex in hot plate, motor coordination in rotarod, and sciatic nerve conduction velocity (SNCV) in all groups were tested. Data were analyzed using one-way ANOVA followed by Tukey's post hoc test and preflex latency was not changed in treated groups. Motor coordination and SNCV were improved in groups Cr+GA200 and Cr+Exe + GA200 (p<0.05, p<0.01 vs. Cr+Veh). GA, dose-dependently, may have therapeutic potential to improve the peripheral nerve degeneration, which is most likely related, at least in part, to its antioxidant and therapeutic properties.

  17. Peripheral nerve recruitment curve using near-infrared stimulation

    Science.gov (United States)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  18. Peripheral nerve function during hyperglycemic clamping in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Sindrup, S H; Ejlertsen, B; Gjessing, H

    1989-01-01

    The influence of hyperglycemia on peripheral nerve function was studied in 9 patients with long-term insulin-dependent diabetes. Blood glucose concentration was raised 13.5 +/- 0.5 mmol/l (mean +/- SEM) within 15 min and kept approximately 15 mmol/l over basal level for 120 min by intravenous...... glucose infusion. Hyperglycemia was accompanied by increased plasma osmolality. Sensory and motor nerve conduction and distal motor latency in the ulnar nerve were determined before, immediately after induction of hyperglycemia, and again after 120 min hyperglycemia. Distal (5th finger - wrist......) and proximal (wrist - elbow) sensory nerve conduction showed an insignificant increase as hyperglycemia was induced. During hyperglycemia mean distal sensory conduction decreased from 53.1 m/s to 50.4 m/s (P less than 0.05) and mean proximal sensory conduction decreased from 56.0 m/s to 54.2 m/s (P less than 0...

  19. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.

    Science.gov (United States)

    Elzinga, Kate; Tyreman, Neil; Ladak, Adil; Savaryn, Bohdan; Olson, Jaret; Gordon, Tessa

    2015-07-01

    Functional recovery after peripheral nerve injury and surgical repair declines with time and distance because the injured neurons without target contacts (chronic axotomy) progressively lose their regenerative capacity and chronically denervated Schwann cells (SCs) atrophy and fail to support axon regeneration. Findings that brief low frequency electrical stimulation (ES) accelerates axon outgrowth and muscle reinnervation after immediate nerve surgery in rats and human patients suggest that ES might improve regeneration after delayed nerve repair. To test this hypothesis, common peroneal (CP) neurons were chronically axotomized and/or tibial (TIB) SCs and ankle extensor muscles were chronically denervated by transection and ligation in rats. The CP and TIB nerves were cross-sutured after three months and subjected to either sham or one hour 20Hz ES. Using retrograde tracing, we found that ES significantly increased the numbers of both motor and sensory neurons that regenerated their axons after a three month period of chronic CP axotomy and/or chronic TIB SC denervation. Muscle and motor unit forces recorded to determine the numbers of neurons that reinnervated gastrocnemius muscle demonstrated that ES significantly increased the numbers of motoneurons that reinnervated chronically denervated muscles. We conclude that electrical stimulation of chronically axotomized motor and sensory neurons is effective in accelerating axon outgrowth into chronically denervated nerve stumps and improving target reinnervation after delayed nerve repair. Possible mechanisms for the efficacy of ES in promoting axon regeneration and target reinnervation after delayed nerve repair include the upregulation of neurotrophic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Experimental research on end-to-side anastomosis of peripheral nerves and effect of FK506 on end-to-side anastomosis.

    Science.gov (United States)

    Yang, L M; Wu, Y X; Zhang, X P; Li, X H

    2014-01-01

    To study the effects of end-to-side anastomosis of initially-denatured nerves at different times. 60 male Wistar albino rats were used to fabricate animal models for the experiment on end-to-side anastomosis of peripheral nerves and 50 female Wistar albino rats were used to fabricate animal models for the experiment on the effect of FK506 on end-to-side anastomosis. Bilateral common peroneal nerve, tibialis anterior muscle electrophysiological and histological examinations, tibialis anterior muscle wet muscle weight determination, and motor end plate examination were performed 3 months after operation. All recovery rates of action potential, single muscle contraction force and tetanic contraction force of the FK506 experimental group are significantly higher than those of the control group and the sectional area of muscle fiber is also higher than that of the control group of normal saline. The best time for end-to-side anastomosis of nerves should be controlled within 2 weeks and the effect of end-to-side anastomosis of nerves will gradually become unsatisfactory. FK506 plays a role in promoting functional rehabilitation following nerve end-to-side anastomosis (Tab. 7, Fig. 4, Ref. 31).

  1. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury.

    Science.gov (United States)

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (pfacial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally.

  2. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.

    Science.gov (United States)

    Zhang, Rui; Rosen, Joseph M

    2018-05-01

    Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell (uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.

  3. Thermometric diagnosis of peripheral nerve injuries. Assessment of the diagnostic accuracy of a new practical technique.

    Science.gov (United States)

    Ya'ish, F M M; Cooper, J P; Craigen, M A C

    2007-07-01

    The diagnosis of nerve injury using thermotropic liquid crystal temperature strips was compared blindly and prospectively against operative findings in 36 patients requiring surgical exploration for unilateral upper limb lacerations with suspected nerve injury. Thermotropic liquid crystal strips were applied to affected and non-affected segments in both hands in all subjects. A pilot study showed that a simple unilateral laceration without nerve injury results in a cutaneous temperature difference between limbs, but not within each limb. Thus, for detection of a nerve injury, comparison was made against the unaffected nerve distribution in the same hand. Receiver operating characteristic curve analysis showed that an absolute temperature difference > or = 1.0 degrees C was diagnostic of a nerve injury (area under the curve = 0.985, sensitivity = 100%, specificity = 93.8%). Thermotropic liquid crystal strip assessment is a new, reliable and objective method for the diagnosis of traumatic peripheral nerve injuries. If implemented in the acute setting, it could improve the reliability of clinical assessment and reduce the number of negative surgical explorations.

  4. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology.

    Science.gov (United States)

    Grässel, Susanne; Muschter, Dominique

    2017-04-28

    The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.

  5. Calcium regulation in frog peripheral nerve by the blood-nerve barrier

    International Nuclear Information System (INIS)

    Wadhwani, K.C.

    1986-01-01

    The objectives of this research were: (a) to investigate the characteristics of calcium transport across the perineurium and the endoneurial capillaries, and (b) to gain a better understanding of the extent of calcium homeostasis in the endoneurial space. To study the nature of calcium transport across the perineurium, the flux of radiotracer 45 Ca was measured through the perineurial cylinder, isolated from the frog sciatic nerve, and through the perineurium into the nerve in situ. To study the nature of calcium transport across the endoneurial capillaries, the permeability-surface area product (PA) of 45 Ca was determined as a function of the calcium concentration in the blood. To study calcium homeostasis, the calcium content of the frog sciatic nerve was determined as a function of chronic changes in plasma [Ca

  6. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  7. Role of connexin 32 hemichannels in the release of ATP from peripheral nerves.

    Science.gov (United States)

    Nualart-Marti, Anna; del Molino, Ezequiel Mas; Grandes, Xènia; Bahima, Laia; Martin-Satué, Mireia; Puchal, Rafel; Fasciani, Ilaria; González-Nieto, Daniel; Ziganshin, Bulat; Llobet, Artur; Barrio, Luis C; Solsona, Carles

    2013-12-01

    Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. Copyright © 2013 Wiley Periodicals, Inc.

  8. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Yu-Sheng [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Sadhasivam, S. [Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China)

    2014-05-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration.

  9. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Hsueh, Yu-Sheng; Savitha, S.; Sadhasivam, S.; Lin, Feng-Huei; Shieh, Ming-Jium

    2014-01-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration

  10. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves

    DEFF Research Database (Denmark)

    Barghash, Ziad; Larsen, Jytte Overgaard; Al-Bishri, Awad

    2013-01-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod...... for 30 s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both...... in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed...

  11. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    Science.gov (United States)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  12. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  13. Identification of the effects of peripheral nerves injury on the muscle control - A review

    Science.gov (United States)

    Cabaj, Anna; Zmyslowski, Wojciech

    2011-01-01

    Impairment of motor function following peripheral nerve injury is a serious clinical problem. Generally nerve injury leads to erroneous control of muscle activity that results in gait and voluntary movement abnormalities followed by muscle atrophy. This article presents a review of studies on the effects of peripheral nerve injury on the motor system performed on animal models. We focused our attention on the results that are fundamental for better understanding of the degenerative and regenerative processes induced by nerve injury as well as of the mechanisms of structural changes in neuronal networks controlling movement. Quoted results are also important for clinical applications because they allow to develop new diagnostic and therapeutic techniques that can be used after nerve injury inducing motor deficits. However, till now no efficient therapy inducing satisfactory recovery was found. There is still a need to continue an advanced basic research directed to develop effective therapies. Thus the aim of this review is to compare the results of recent studies performed on various animal models in order to propose new methods for identification of mechanisms responsible for muscle deficits and propose targets for new pharmacological therapies.

  14. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury.

    Science.gov (United States)

    Radtke, Christine; Wewetzer, Konstantin; Reimers, Kerstin; Vogt, Peter M

    2011-01-01

    Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies. © 2011 Cognizant Comm. Corp.

  15. Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats

    Science.gov (United States)

    Todorovic, Slobodan M; Rastogi, A J; Jevtovic-Todorovic, Vesna

    2003-01-01

    Anticonvulsant agents are commonly used to treat neuropathic pain conditions because of their effects on voltage- and ligand-gated channels in central pain pathways. However, their interaction with ion channels in peripheral pain pathways is poorly understood. Therefore, we studied the potential analgesic effects of commonly used anticonvulsant agents in peripheral nociception. We injected anticonvulsants intradermally into peripheral receptive fields of sensory neurons in the hindpaws of adult rats, and studied pain perception using the model of acute thermal nociception. Commonly used anticonvulsants such as voltage-gated Na+ channel blockers, phenytoin and carbamazepine, and voltage-gated Ca2+ channel blockers, gabapentin and ethosuximide, induced dose-dependent analgesia in the injected paw, with ED50 values of 0.30, 0.32 and 8, 410 μg per 100 μl, respectively. Thermal nociceptive responses were not affected in the contralateral, noninjected paws, indicating a lack of systemic effects with doses of anticonvulsants that elicited local analgesia. Hill slope coefficients for the tested anticonvulsants indicate that the dose–response curve was less steep for gabapentin than for phenytoin, carbamazepine and ethosuximide. Our data strongly suggest that cellular targets like voltage-gated Na+ and Ca2+ channels, similar to those that mediate the effects of anticonvulsant agents in the CNS, may exist in the peripheral nerve endings of rat sensory neurons. Thus, peripherally applied anticonvulsants that block voltage-gated Na+ and Ca2+ channels may be useful analgesics. PMID:12970103

  16. Estimation of ultrasound reference values for the lower limb peripheral nerves in adults: A cross-sectional study.

    Science.gov (United States)

    Bedewi, Mohamed Abdelmohsen; Abodonya, Ahmed; Kotb, Mamdouh; Kamal, Sanaa; Mahmoud, Gehan; Aldossari, Khaled; Alqabbani, Abdullah; Swify, Sherine

    2018-03-01

    The objective of this study is to estimate the reference values for the lower limb peripheral nerves in adults.The demographics and physical characteristics of 69 adult healthy volunteers were evaluated and recorded. The estimated reference values and their correlations with the age, weight, height, body mass index (BMI) were evaluated.The cross sectional area reference values were obtained at 5 predetermined sites for 3 important lower limb peripheral nerves. Our CSA values correlated significantly with age, weight, and BMI. The normal reference values for each nerve were as follows: Tibial nerve at the popliteal fossa 19 mm ± 6.9, tibial nerve at the level of the medial malleolus 12.7 mm ± 4.5, common peroneal nerve at the popliteal fossa 9.5 mm ± 4, common peroneal nerve fibular head 8.9 mm ± 3.2, sural nerve 3.5 mm ± 1.4.The reference values for the lower limb peripheral nerves were identified. These values could be used for future management of peripheral nerve disorders.

  17. NERVE REGENERATION THROUGH A 2-PLY BIODEGRADABLE NERVE GUIDE IN THE RAT AND THE INFLUENCE OF ACTH4-9 NERVE GROWTH-FACTOR

    NARCIS (Netherlands)

    ROBINSON, PH; VANDERLEI, B; HOPPEN, HJ; LEENSLAG, JW; PENNINGS, AJ; NIEUWENHUIS, P

    1991-01-01

    Biodegradable polyurethane-based (PU) nerve guides, instilled with or without ACTH4-9 analog (a melanocortin) were used for bridging an 8 mm gap in the rat sciatic nerve and were evaluated for function and histological appearance after 16 weeks of implantation. Autologous nerve grafts functioned as

  18. Enhancing Peripheral Nerve Regeneration with a Novel Drug-Delivering Nerve Conduit

    Science.gov (United States)

    2015-10-01

    our novel nerve conduit. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...growth in dorsal root ganglion ( DRG ) cell culture Tasks/Subtasks: 1. In Vitro NGF/GNDF release kinetics experiments.......................... (Gale...Axonal growth of DRGs ................................................................ (Terry, Shea) (11-18months) Progress: We have started these

  19. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization.

    Science.gov (United States)

    Zhao, Zhiwei; Li, Xiaoling; Li, Qing

    2017-08-01

    Schwann cells (SCs) play an indispensable role in the repair and regeneration of injured peripheral nerve. Curcumin can reduce SCs apoptosis, and promote the regeneration and functional recovery of injured peripheral nerves. However, the corresponding mechanisms are not clear. The article was aimed to explore the effect and corresponding mechanisms of curcumin on the repair of sciatic nerve injury in rats. After surgery induced sciatic nerve injury, the model rats were divided into three groups and treated with curcumin, curcumin+PD98059 and curcumin+IGF-1 respectively for 4days. The phosphorylation of Erk1/2 and Akt, and the expression of LC3-II, Beclin 1 and p62 were measured using western blotting. After treatment for 60days, myelination of the injured sciatic nerve was evaluated by MBP immunohistochemical staining and the expression of PMP22, Fibrin and S100 were determined using qRT-PCR and western blotting. In vitro, RSC96 cells were starved for 12h to induce autophagy, and received DMSO, curcumin, PD98059+curcumin, IGF-1+curcumin and BFA1 respectively. The phosphorylation of Erk1/2、Akt and the expression of LC3-II, Beclin 1, p62, PMP22, Fibrin and S100 were measured using western blotting, and the cell apoptosis was detected by flow cytometry. Curcumin could promote injury-induced cell autophagy, remyelination and axon regeneration in sciatic nerve of rats. In vitro, curcumin could accelerate cell autophagy through regulating autophagy related Erk1/2 and Akt pathway, prevent cell apoptosis and promote expression of PMP22 and S100, and reduced deposition of Fibrin in cultured RSC96 SCs. Curcumin could accelerate injured sciatic nerve repair in rats through reducing SCs apoptosis and promoting myelinization. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Peripheral nervous system maturation in preterm infants: longitudinal motor and sensory nerve conduction studies.

    Science.gov (United States)

    Lori, S; Bertini, Giovanna; Bastianelli, M; Gabbanini, S; Gualandi, D; Molesti, E; Dani, C

    2018-04-10

    To study the evolution of sensory-motor nerves in the upper and lower limbs in neurologically healthy preterm infants and to use sensory-motor studies to compare the rate of maturation in preterm infants at term age and full-term healthy neonates. The study comprised 26 neurologically normal preterm infants born at 23-33 weeks of gestational age, who underwent sensory nerve conduction and motor nerve conduction studies from plantar medial and median nerves and from tibial and ulnar nerves, respectively. We repeated the same neurophysiological studies in 19 of the preterm infants every 2 weeks until postnatal term age. The data from the preterm infants at term was matched with a group of ten full-term babies a few days after birth. The motor nerve conduction velocity of the tibial and ulnar nerves showed progressive increases in values in relation to gestational age, but there was a decrease of values in distal latencies and F wave latencies. Similarly, there was a gradual increase of sensory nerve conduction velocity values of the medial plantar and median nerves and decreases in latencies in relation to gestational age. At term age, the preterm infants showed significantly lower values of conduction velocities and distal latencies than the full-term neonates. These results were probably because the preterm infants had significantly lower weights, total length and, in particular, distal segments of the limbs at term age. The sensory-motor conduction parameters were clearly related to gestational age, but extrauterine life did not affect the maturation of the peripheral nervous system in the very preterm babies who were neurologically healthy.

  1. Unilateral hypoglossal nerve atrophy as a late complication of radiation therapy of head and neck carcinoma: a report of four cases and a review of the literature on peripheral and cranial nerve damages after radiation therapy

    International Nuclear Information System (INIS)

    Cheng, V.S.T.; Schulz, M.D.

    1975-01-01

    The case histories of four patients who developed hemiatrophy of the tongue from 3 to 9 years after a course of curative radiation therapy for carcinomas of the head and neck are presented. These patients were subsequently followed from 1 1 / 2 to 6 years without local recurrence of the tumor, distant metastasis, or involvement of other cranial nerves, indicative of only a unilateral hypoglossal nerve atrophy. A review of the literature showed that peripheral and cranial nerve damages after radiation therapy have been reported for the optic nerve, hypoglossal nerve, oculomotor nerve, abducens nerve, recurrent laryngeal nerve, brachial plexus nerves, and peripheral nerves of the extremities. Review of clinical and experimental data indicated that in most cases, the damages were probably caused by extensive connective tissue fibrosis around and infiltrating the nerve trunks. Three possible types of peripheral and cranial nerve damages after radiation therapy are identified. (U.S.)

  2. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  3. Some questions of the treatment of injuries of extremities peripheral nerves

    Directory of Open Access Journals (Sweden)

    Виктор Александрович Вишневский

    2015-11-01

    Full Text Available Trauma of extremities peripheral nerves is on the one of first places on disability and results in stable invalidism in 28–75 % of cases.Mistakes in nerves surgery lead not only to unsatisfactory results and repeated operations but also cause the numerous complications.Indications and contraindications to surgery and conservative treatment, surgical tactics and methods of operations on peripheral nerves depend on trauma prescription, injury character and previous surgical interventions, tissue scarring degree and also level of injury.Aim of research: to carry out an analysis of nerve trunk injuries at traumas of upper and lower extremities, to ground the differentiated approach to treatment depending on traumatization degree and time elapsed since the moment of trauma.Materials and methods: Author carried out retrospective analysis of medical histories of 70 patients with injury of extremities peripheral nerves and the choice of treating tactics and methods. Research was carried out on the base of traumatology department of Dnepropetrovsk clinical hospital № 16 from 2010 to 2013 year.Injuries were divided on cause in primary (65,7 % and secondary (iatrogenic (34,3 %, and also on the degree of conductivity disorder in: neurotmesis (60,0 %, axonotmesis (27,1 % and neuropraxia (12,9 %.Diagnosis of the nerve trunks trauma in clinic was set on the base of clinically-neurological examination using paraclinical methods of research: electroneuromyography, thermal tomography, intramuscular electromyography, bones and joints radiography.Results: According to the results of clinically-neurological and paraclinical methods of research the choice of surgical or conservative treatment depends on dynamics of nerve trunk conductivity disorders: the loss of motor function, sensory impairments and vegetative-trophic impairments in innervation area.The most often were injuries of radial nerve on the level of the shoulder middle one-third – 29 cases (41

  4. Central and peripheral des-acyl ghrelin regulates body temperature in rats.

    Science.gov (United States)

    Inoue, Yoshiyuki; Nakahara, Keiko; Maruyama, Keisuke; Suzuki, Yoshiharu; Hayashi, Yujiro; Kangawa, Kenji; Murakami, Noboru

    2013-01-04

    In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood-brain barrier, whereas it exerts a direct action on the peripheral vascular system. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Use of antioxidants for the prophylaxis of cold-induced peripheral nerve injury.

    Science.gov (United States)

    Teixeira, Fernanda; Pollock, Martin; Karim, Alveera; Jiang, Yuying

    2002-09-01

    "Trench foot" is a particular risk for those involved in adventure tourism, for soldiers in winter mountain training exercises, and for the homeless. Nonfreezing cold nerve injury is characterized by axonal degeneration, which is attributed to free radicals released during cycles of ischemia and reperfusion. This pilot study sought to determine whether the administration of antioxidants might prevent or ameliorate the development of cold nerve injury. Twenty-six rats were divided into two groups. Group 1 animals received, by gavage, a mixture of vitamin C (150 mg/kg/d), vitamin E (100 mg/kg/d), and N-acetyl-L-cysteine (250 mg/kg/d) daily for 4 weeks. Allopurinol (20 mg/kg/d) was added in the last 4 days of treatment. Group 2 animals served as controls and did not receive any antioxidant supplements. After 1 month, two cycles of sciatic nerve cooling (0 degrees C) were induced in 10 controls and 10 experimental animals using circulating water through a nerve cuff. Six additional control animals were subjected to surgery but did not undergo nerve cooling. All animals were killed on the third postoperative day, and their nerves were processed for ultrastructural and quantitative studies. The proportion of degenerated myelinated and unmyelinated axons showed no significant difference between treated and untreated animals. We conclude that the administration of commonly used antioxidants does not prevent cold nerve injury.

  6. Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model.

    Science.gov (United States)

    Farrag, Tarik Y; Lehar, Mohamed; Verhaegen, Pauline; Carson, Kathryn A; Byrne, Patrick J

    2007-01-01

    To investigate the effects of platelet rich plasma (PRP) and fibrin sealant (FS) on facial nerve regeneration. Prospective, randomized, and controlled animal study. Experiments involved the transection and repair of facial nerve of 49 male adult rats. Seven groups were created dependant on the method of repair: suture; PRP (with/without suture); platelet poor plasma (PPP) (with/without suture); and FS (with/without suture) groups. Each method of repair was applied immediately after the nerve transection. The outcomes measured were: 1) observation of gross recovery of vibrissae movements within 8-week period after nerve transection and repair using a 5-point scale and comparing the left (test) side with the right (control) side; 2) comparisons of facial nerve motor action potentials (MAP) recorded before and 8 weeks after nerve transection and repair, including both the transected and control (untreated) nerves; 3) histologic evaluation of axons counts and the area of the axons. Vibrissae movement observation: the inclusion of suturing resulted in overall improved outcomes. This was found for comparisons of the suture group with PRP group; PRP with/without suture groups; and PPP with/without suture groups (P .05). The movement recovery of the suture group was significantly better than the FS group (P = .014). The recovery of function of the PRP groups was better than that of the FS groups, although this did not reach statistical significance (P = .09). Electrophysiologic testing: there was a significantly better performance of the suture group when compared with the PRP and PPP without suture groups in nerve conduction velocity (P facial nerve axotomy models occurred when the nerve ends were sutured together. At the same time, the data demonstrated a measurable neurotrophic effect when PRP was present, with the most favorable results seen with PRP added to suture. There was an improved functional outcome with the use of PRP in comparison with FS or no bioactive

  7. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  8. Ultrasound-Guided Multiple Peripheral Nerve Blocks in a Superobese Patient

    Directory of Open Access Journals (Sweden)

    Alper Kilicaslan

    2014-01-01

    Full Text Available The number of obese patients has increased dramatically worldwide. Morbid obesity is associated with an increased incidence of medical comorbidities and restricts the application choices in anesthesiology. We report a successfully performed combined ultrasound-guided blockade of the femoral, tibial, and common peroneal nerve in a superobese patient. We present a case report of a 31-year-old, ASA-PS II, super obese man (190 kg, 180 cm, BMI: 58 kg/m2 admitted to the emergency department with a type II segmental tibia shaft fracture and ankle dislocation after a vehicle accident. After two failed spinal anesthesia attempts, we decided to apply a femoral block combined with a sciatic block. Femoral blocks were successfully performed with US guided in-plane technique. Separate blocks of the tibial and common peroneal nerves were planned after the sciatic nerve could not be located due to the thick subcutaneous tissue. We performed a tibial nerve block at 2 cm above the popliteal crease and common peroneal nerve at the level of the fibular head with US guided in-plane technique. The blocks were successful and no block-related complications were noted. Ultrasound guidance allows new approaches for multiple peripheral nerve blocks with low local anesthetic doses in obese patients.

  9. Retroperitoneal Malignant Peripheral Nerve Sheath Tumor Replacing an Absent Kidney in a Child

    Directory of Open Access Journals (Sweden)

    Samin Alavi

    2013-01-01

    Full Text Available Malignant peripheral nerve sheath tumors (MPNSTs are nonrhabdomyosarcoma soft tissue sarcomas with rare occurrence in children specially in the retroperitoneum. We describe a young child who presented with an abdominal mass. Both ultrasound and computed tomography revealed a large right-sided abdominal mass in the anatomic place of right kidney, while no kidney or ureter was observed at that side. He underwent surgical resection of the tumor with a primary impression of Wilms tumor. To the authors’ knowledge, this is the first case of retroperitoneal malignant peripheral nerve sheath tumor and absent kidney. This case suggests the very rare probability of association of MPNSTs in children with genitourinary tract anomalies such as renal agenesis.

  10. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors

    DEFF Research Database (Denmark)

    Boyle, Jenny L; Haupt, Helen M; Stern, Jere B

    2002-01-01

    of tyrosinase expression in the differential diagnosis of melanoma, desmoplastic melanoma, and peripheral nerve sheath tumors. DESIGN: Immunoreactivity for tyrosinase, HMB-45 (anti-gp100 protein), S100 protein, CD34, and vimentin was studied in 70 tumors, including 15 melanomas (5 desmoplastic, 4 amelanotic, 6...... at 121 degrees C. RESULTS: All melanomas demonstrated positive immunostaining for tyrosinase, HMB-45, and S100 protein. Immunoreactivity for HMB-45 was generally stronger than that for tyrosinase in amelanotic lesions and significantly stronger in 1 of the desmoplastic lesions. The 4 pigmented...... neurofibromas were focally positive for tyrosinase, but did not stain for HMB-45. The pigmented schwannoma was focally positive for both tyrosinase and HMB-45. The malignant peripheral nerve sheath tumors, dermatofibrosarcoma protuberans, and dermatofibromas were nonreactive for tyrosinase and HMB-45...

  11. Epithelioid variant of malignant peripheral nerve sheath tumor (malignant schwannoma) of the urinary bladder.

    Science.gov (United States)

    Eltoum, I A; Moore, R J; Cook, W; Crowe, D R; Rodgers, W H; Siegal, G P

    1999-10-01

    Sarcoma represents less than 2% of all neoplasms diagnosed or recognized in effusions. Epithelioid peripheral nerve sheath tumor is a rare tumor that is difficult to differentiate from other epithelioid tumors without the use of ancillary studies. A 39-year-old paraplegic man presented with hematuria and a bladder mass that extended to involve the pelvic peritoneum. Light microscopy using hematoxylin-eosin, Papanicolaou, and immunohistochemical stains as well as transmission electron microscopy showed features of epithelioid malignant peripheral nerve sheath tumor with rhabdoid features and an accompanying eosinophilic infiltrate. Cytologic smears confirmed the similarities between the primary tumor in the bladder and the cells in the pelvic fluid and excluded the possibility of reactive changes related to postsurgical radiation. Ancillary studies were critical in narrowing the differential diagnoses and reaching the final conclusion.

  12. Efficacy of ultrasound and nerve stimulation guidance in peripheral nerve block: A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Zhi-Xue; Zhang, De-Li; Liu, Xin-Wei; Li, Yan; Zhang, Xiao-Xia; Li, Ru-Hong

    2017-09-01

    Evidence was controversial about whether nerve stimulation (NS) can optimize ultrasound guidance (US)-guided nerve blockade for peripheral nerve block. This review aims to explore the effects of the two combined techniques. We searched EMBASE (from 1974 to March 2015), PubMed (from 1966 to Mar 2015), Medline (from 1966 to Mar 2015), the Cochrane Central Register of Controlled Trials and clinicaltrials.gov. Finally, 15 randomized trials were included into analysis involving 1,019 lower limb and 696 upper limb surgery cases. Meta-analysis indicated that, compared with US alone, USNS combination had favorable effects on overall block success rate (risk ratio [RR] 1.17; confidence interval [CI] 1.05 to 1.30, P = 0.004), sensory block success rate (RR 1.56; CI 1.29 to 1.89, P block onset time (mean difference [MD] -3.84; CI -5.59 to -2.08, P block (MD 1.67; CI 1.32 to 2.02, P block onset time than US alone as well as higher block success rate, but no statistical difference was demonstrated, as more data are required. © 2017 IUBMB Life, 69(9):720-734, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  13. [Malignant peripheral nerve sheath tumor with perineural differentiation (malignant perineurinoma) of the cervix uteri].

    Science.gov (United States)

    Dolzhikov, A A; Mukhina, T S

    2014-01-01

    The paper describes a case of a malignant peripheral nerve sheath tumor with perineural differentiation and at the rare site of the cervix uteri in a 57-year-old patient. The diagnosis was established on the basis of extensive immunohistochemical examination, by excluding the similar neoplasms and detecting an immunophenotype characteristic of perineural differentiation. There are data available in the literature on the morphological and immunophenotypical characteristics of this tumor.

  14. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Marta Martin

    Full Text Available A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.

  15. Electron microscopy of human peripheral nerves of clinical relevance to the practice of nerve blocks. A structural and ultrastructural review based on original experimental and laboratory data.

    Science.gov (United States)

    Reina, M A; Arriazu, R; Collier, C B; Sala-Blanch, X; Izquierdo, L; de Andrés, J

    2013-12-01

    The goal is to describe the ultrastructure of normal human peripheral nerves, and to highlight key aspects that are relevant to the practice of peripheral nerve block anaesthesia. Using samples of sciatic nerve obtained from patients, and dural sac, nerve root cuff and brachial plexus dissected from fresh human cadavers, an analysis of the structure of peripheral nerve axons and distribution of fascicles and topographic composition of the layers that cover the nerve is presented. Myelinated and unmyelinated axons, fascicles, epineurium, perineurium and endoneurium obtained from patients and fresh cadavers were studied by light microscopy using immunohistochemical techniques, and transmission and scanning electron microscopy. Structure of perineurium and intrafascicular capillaries, and its implications in blood-nerve barrier were revised. Each of the anatomical elements is analyzed individually with regard to its relevance to clinical practice to regional anaesthesia. Routine practice of regional anaesthetic techniques and ultrasound identification of nerve structures has led to conceptions, which repercussions may be relevant in future applications of these techniques. In this regard, the ultrastructural and histological perspective accomplished through findings of this study aims at enlightening arising questions within the field of regional anaesthesia. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  16. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    Science.gov (United States)

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  17. Effects of autonomic nerve stimulation on colorectal motility in rats

    Science.gov (United States)

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  18. Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2012-10-01

    Full Text Available Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.

  19. Selective Fiber Degeneration in the Peripheral Nerve of a Patient With Severe Complex Regional Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Adrien Yvon

    2018-04-01

    Full Text Available Aims: Complex regional pain syndrome (CRPS is characterized by chronic debilitating pain disproportional to the inciting event and accompanied by motor, sensory, and autonomic disturbances. The pathophysiology of CRPS remains elusive. An exceptional case of severe CRPS leading to forearm amputation provided the opportunity to examine nerve histopathological features of the peripheral nerves.Methods: A 35-year-old female developed CRPS secondary to low voltage electrical injury. The CRPS was refractory to medical therapy and led to functional loss of the forelimb, repeated cutaneous wound infections leading to hospitalization. Specifically, the patient had exhausted a targeted conservative pain management programme prior to forearm amputation. Radial, median, and ulnar nerve specimens were obtained from the amputated limb and analyzed by light and transmission electron microscopy (TEM.Results: All samples showed features of selective myelinated nerve fiber degeneration (47–58% of fibers on electron microscopy. Degenerating myelinated fibers were significantly larger than healthy fibers (p < 0.05, and corresponded to the larger Aα fibers (motor/proprioception whilst smaller Aδ (pain/temperature fibers were spared. Groups of small unmyelinated C fibers (Remak bundles also showed evidence of degeneration in all samples.Conclusions: We are the first to show large fiber degeneration in CRPS using TEM. Degeneration of Aα fibers may lead to an imbalance in nerve signaling, inappropriately triggering the smaller healthy Aδ fibers, which transmit pain and temperature. These findings suggest peripheral nerve degeneration may play a key role in CRPS. Improved knowledge of pathogenesis will help develop more targeted treatments.

  20. Sensory nerve conduction in the caudal nerves of rats with diabetes Condução nervosa sensorial no nervo caudal de ratos com diabetes experimental

    OpenAIRE

    Celina Cordeiro de Carvalho; Juliana Netto Maia; Otávio Gomes Lins; Sílvia Regina Arruda de Moraes

    2011-01-01

    PURPOSE: To investigate sensory nerve conduction of the caudal nerve in normal and diabetic rats. METHODS: Diabetes was induced in twenty 8-weeks old Wistar male rats. Twenty normal rats served as controls. Caudal nerve conduction studies were made before diabetes induction and the end of each week for six consecutive weeks. The caudal nerve was stimulated distally and nerve potentials were recorded proximally on the animal's tail using common "alligator" clips as surface electrodes. RESULTS:...

  1. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    Science.gov (United States)

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  2. Valproic Acid Promotes Survival of Facial Motor Neurons in Adult Rats After Facial Nerve Transection: a Pilot Study.

    Science.gov (United States)

    Zhang, Lili; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Liu, Wenwen; Bai, Xiaohui; Zhou, Meijuan; Li, Jianfeng; Wang, Haibo

    2018-04-01

    Valproic acid (VPA), a medication primarily used to treat epilepsy and bipolar disorder, has been applied to the repair of central and peripheral nervous system injury. The present study investigated the effect of VPA on functional recovery, survival of facial motor neurons (FMNs), and expression of proteins in rats after facial nerve trunk transection by functional measurement, Nissl staining, TUNEL, immunofluorescence, and Western blot. Following facial nerve injury, all rats in group VPA showed a better functional recovery, which was significant at the given time, compared with group NS. The Nissl staining results demonstrated that the number of FMNs survival in group VPA was higher than that in group normal saline (NS). TUNEL staining showed that axonal injury of facial nerve could lead to neuronal apoptosis of FMNs. But treatment of VPA significantly reduced cell apoptosis by decreasing the expression of Bax protein and increased neuronal survival by upregulating the level of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) expression in injured FMNs compared with group NS. Overall, our findings suggest that VPA may advance functional recovery, reduce lesion-induced apoptosis, and promote neuron survival after facial nerve transection in rats. This study provides an experimental evidence for better understanding the mechanism of injury and repair of peripheral facial paralysis.

  3. Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats

    International Nuclear Information System (INIS)

    Quiroz-González, Salvador; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Pereira-Venegas, Javier; Lopez-Gomez, Rosa Estela; Jiménez-Estrada, Ismael

    2016-01-01

    Highlights: • Fractal analysis of compound action potentials (CAP) evoked in diabetic nerves. • Diabetic rats showed an increment in the chaotic behavior of CAP responses. • Diabetes provokes impaired transmission of sensory information in rats. - Abstract: The electrophysiological alterations in nerves due to diabetes are classically studied in relation to their instantaneous frequency, conduction velocity and amplitude. However, analysis of amplitude variability may reflect the occurrence of feedback loop mechanisms that adjust the output as a function of its previous activity could indicate fractal dynamics. We assume that a peripheral neuropathy, such as that evoked by diabetes, the inability to maintain a steady flow of sensory information is reflected as a breakdown of the long range power-law correlation of CAP area fluctuation from cutaneous nerves. To test this, we first explored in normal rats whether fluctuations in the trial-to-trial CAP area showed a self-similar behavior or fractal structure by means of detrended fluctuations analysis (DFA), and Poincare plots. In addition, we determine whether such CAP fluctuations varied by diabetes induction. Results showed that CAP area fluctuation of SU nerves evoked in normal rats present a long term correlation and self-similar organization (fractal behavior) from trial to trial stimulation as evidenced by DFA of CAP areas. However, CAPs recorded in diabetic nerves exhibited significant reductions in area, larger duration and increased area variability and different Poincare plots than control nerves. The Hurst exponent value determined with the DFA method from a series of 2000 CAPs evoked in diabetic SU nerves was smaller than in control nerves. It is proposed that in cutaneous nerves of normal rats variability of the CAP area present a long term correlation and self-similar organization (fractal behavior), and reflect the ability to maintain a steady flow of sensory information through cutaneous nerves

  4. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  6. A study of tapping by the unaffected finger of patients presenting with central and peripheral nerve damage.

    Science.gov (United States)

    Zhang, Lingli; Han, Xiuying; Li, Peihong; Liu, Yang; Zhu, Yulian; Zou, Jun; Yu, Zhusheng

    2015-01-01

    Whether the unaffected function of the hand of patients presenting with nerve injury is affected remains inconclusive. We aimed to evaluate whether there are differences in finger tapping following central or peripheral nerve injury compared with the unaffected hand and the ipsilateral hand of a healthy subject. Thirty right brain stroke patients with hemiplegia, 30 left arm peripheral nerve injury cases, and 60 healthy people were selected. We tested finger tapping of the right hands, and each subject performed the test twice. Finger tapping following peripheral nerve injury as compared with the unaffected hand and the dominant hand of a healthy person was markedly higher than was found for central nerve injury (P tapping of the male peripheral group's unaffected hand and the control group's dominant hand was significantly higher than the central group (P tapping of the female control group's dominant hand was significantly higher than the central group's unaffected hand (P < 0.01, P = 0.002), the peripheral group's unaffected hand (P < 0.05, P = 0.034). The unaffected function of the hand of patients with central and peripheral nerve injury was different as compared with the ipsilateral hand of healthy individuals. The rehabilitation therapist should intensify the practice of normal upper limb fine activities and coordination of the patient.

  7. A Study of Tapping by the Unaffected Finger of Patients Presenting with Central and Peripheral Nerve Damage

    Directory of Open Access Journals (Sweden)

    Lingli eZhang

    2015-05-01

    Full Text Available Aim: Whether the unaffected function of the hand of patients presenting with nerve injury is affected remains inconclusive. We aimed to evaluate whether there are differences in finger tapping following central or peripheral nerve injury compared with the unaffected hand and the ipsilateral hand of a healthy subject.Methods: 30 right brain stroke patients with hemiplegia, 30 left arm peripheral nerve injury cases and 60 healthy people were selected. We tested finger tapping of the right hands, and each subject performed the test twice.Results: Finger tapping following peripheral nerve injury as compared with the unaffected hand and the dominant hand of a healthy person was significantly higher than was found for central nerve injury (P<0.05. Finger tapping of the male peripheral group’s unaffected hand and the control group’s dominant hand was significantly higher than the central group (P<0.001. However, finger tapping of the female control group’s dominant hand was markedly higher than the central group’s unaffected hand (P<0.01, P=0.002, the peripheral group’s unaffected hand (P<0.05, P=0.034. Conclusion: The unaffected function of the hand of patients with central and peripheral nerve injury was different as compared with the ipsilateral hand of healthy individuals. The rehabilitation therapist should intensify the practice of normal upper limb fine activities and coordination of the patient.

  8. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  9. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NARCIS (Netherlands)

    Stoyanova, II; Wezel, R.J.A. van; Rutten, W.L.C.

    2013-01-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to

  10. Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus

    DEFF Research Database (Denmark)

    Lindberger, M; Schröder, H D; Schultzberg, M

    1989-01-01

    Standardised skin biopsies followed by immunohistochemical examination for the presence of terminal nerve fibres reacting for neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) were evaluated. Healthy subjects regularly displayed free nerve endings of both fibre types in th...... a sensitive tool in evaluation of patients with peripheral neuropathies....

  11. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua

    2011-07-20

    The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview.

    Science.gov (United States)

    Navarro, Xavier

    2016-02-01

    Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Diabetic peripheral neuropathy assessment through texture based analysis of corneal nerve images

    Science.gov (United States)

    Silva, Susana F.; Gouveia, Sofia; Gomes, Leonor; Negrão, Luís; João Quadrado, Maria; Domingues, José Paulo; Morgado, António Miguel

    2015-05-01

    Diabetic peripheral neuropathy (DPN) is one common complication of diabetes. Early diagnosis of DPN often fails due to the non-availability of a simple, reliable, non-invasive method. Several published studies show that corneal confocal microscopy (CCM) can identify small nerve fibre damage and quantify the severity of DPN, using nerve morphometric parameters. Here, we used image texture features, extracted from corneal sub-basal nerve plexus images, obtained in vivo by CCM, to identify DPN patients, using classification techniques. A SVM classifier using image texture features was used to identify (DPN vs. No DPN) DPN patients. The accuracies were 80.6%, when excluding diabetic patients without neuropathy, and 73.5%, when including diabetic patients without diabetic neuropathy jointly with healthy controls. The results suggest that texture analysis might be used as a complementing technique for DPN diagnosis, without requiring nerve segmentation in CCM images. The results also suggest that this technique has enough sensitivity to detect early disorders in the corneal nerves of diabetic patients.

  14. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  15. Gamma knife irradiation of injured sciatic nerve induces histological and behavioral improvement in the rat neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Yuki Yagasaki

    Full Text Available We examined the effects of gamma knife (GK irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF, a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK

  16. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model

    Directory of Open Access Journals (Sweden)

    Noguchi Takashi

    2010-11-01

    Full Text Available Abstract Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of Sry and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.

  17. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Directory of Open Access Journals (Sweden)

    Yookyung Jung

    Full Text Available Peripheral nerve injury (PNI, a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout

  18. Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves.

    Science.gov (United States)

    Anholt, R R; Murphy, K M; Mack, G E; Snyder, S H

    1984-02-01

    Binding levels of [3H]Ro5-4864, a ligand selective for peripheral-type benzodiazepine receptors, are substantially higher in homogenates of the olfactory bulb than in the rest of the brain. Among peripheral tissues evaluated, high levels of [3H]Ro5-4864 binding are found in the nasal epithelium. Drug displacement studies show that these binding sites are pharmacologically of the peripheral type. Their presence in the nasal epithelium and in the olfactory bulb can be demonstrated in several different mammalian species. Autoradiographic studies of murine nose reveal a bipolar staining pattern around the cell bodies of the olfactory receptor cells, suggesting the presence of peripheral-type benzodiazepine receptors on both processes of these bipolar neurons. In the brain a high density of [3H]Ro5-4864 binding sites occurs in the nerve fiber and glomerular layers of the olfactory bulb. Throughout the rest of the brain [3H]Ro5-4864-associated silver grains are diffusely distributed with intense staining over the choroid plexus and along the ependymal linings of the ventricles. Both the distribution and the ontogenic development of the peripheral-type benzodiazepine receptors differ from the central-type receptors. Intranasal irrigation with 5% ZnSO4 results in a 50% reduction of peripheral-type benzodiazepine receptors in the olfactory bulb without affecting the density of central-type benzodiazepine receptors. Thus, [3H]Ro5-4864 binding sites in the olfactory bulb appear in large part to be localized to olfactory nerves which originate in the nasal epithelium.

  19. Comparison of peripheral nerve blockade characteristics between non-diabetic patients and patients suffering from diabetic neuropathy: a prospective cohort study.

    Science.gov (United States)

    Baeriswyl, M; Taffé, P; Kirkham, K R; Bathory, I; Rancati, V; Crevoisier, X; Cherix, S; Albrecht, E

    2018-06-02

    Animal data have demonstrated increased block duration after local anaesthetic injections in diabetic rat models. Whether the same is true in humans is currently undefined. We, therefore, undertook this prospective cohort study to test the hypothesis that type-2 diabetic patients suffering from diabetic peripheral neuropathy would have increased block duration after ultrasound-guided popliteal sciatic nerve block when compared with patients without neuropathy. Thirty-three type-2 diabetic patients with neuropathy and 23 non-diabetic control patients, scheduled for fore-foot surgery, were included prospectively. All patients received an ultrasound-guided popliteal sciatic nerve block with a 30 ml 1:1 mixture of lidocaine 1% and bupivacaine 0.5%. The primary outcome was time to first opioid request after block procedure. Secondary outcomes included the time to onset of sensory blockade, and pain score at rest on postoperative day 1 (numeric rating scale 0-10). These outcomes were analysed using an accelerated failure time regression model. Patients in the diabetic peripheral neuropathy group had significantly prolonged median (IQR [range]) time to first opioid request (diabetic peripheral neuropathy group 1440 (IQR 1140-1440 [180-1440]) min vs. control group 710 (IQR 420-1200 [150-1440] min, p = 0.0004). Diabetic peripheral neuropathy patients had a time ratio of 1.57 (95%CI 1.10-2.23, p peripheral neuropathy group 0 (IQR 0-1 [0-5]) vs. control group 3 (IQR 0-5 [0-9]), p = 0.001). In conclusion, after an ultrasound-guided popliteal sciatic nerve block, patients with diabetic peripheral neuropathy demonstrated reduced time to onset of sensory blockade, with increased time to first opioid request when compared with patients without neuropathy. © 2018 The Association of Anaesthetists.

  20. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve

    International Nuclear Information System (INIS)

    Xu, Fuben; Zhang, Kun; Lv, Peizhen; Lu, Rongbin; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Restoration of normal neurological function of transected peripheral nerve challenged regenerative medicine and surgery. Previous studies showed that Nectin-like molecule 1 (NECL1) is one of the important adhesion molecules on the axons and Schwann cells is located along the internodes in direct apposition to NECL1. In this study, we fabricated PLGA membrane pre-coated with NECL1, mimicking the natural axons to enhance the adhesion of Schwann cells. Investigation of the cellular response in vitro was performed by detecting cytotoxicity, proliferation, morphology, viability, specific markers and Scanning Electron Microscopy (SEM) of Schwann cells cultured in PLGA. Further, the NECL1-coated PLGA conduits were used for peripheral nerve repair after sciatic nerve defect was constructed. Results showed that PLGA-coated NECL1 enhanced cell proliferation compared with PLGA, as evidenced by MTT analysis, cell viability assay and histological evaluation. RT-PCR results showed that GDNF (glial cell line-derived neurotrophic factor), BDNF (brain-derived neurotrophic factor), CNTF (ciliary neurotrophic factor) and neurotrophic factors of axonal regeneration were highly expressed in PLGA/NECL1 group. S100, which is Schwann cell marker, was also elevated in PLGA-NCEL1 in both mRNA and protein expression as demonstrated by PCR and immunohistochemical examination. Moreover, in vivo study showed that implantation of PLGA/NCEL1 tubes in bridging the nerve defect can significantly improve Schwann cell aggregation and attachment and greatly enhance the functional recovery of nerve regeneration as compared with control and PLGA groups. Therefore, the novel blend of PLGA/NECL1 conduits proved to be promising candidate for tissue engineering scaffold. - Highlights: • A fabricated PLGA tubes pre-coated with Nectin-like molecule 1 (NECL1) strategy for sciatic nerve regeneration is proposed. • The NECL1 coated PLGA can promote Schwann cells adhesion and growth meanwhile maintain the

  1. Management of pain secondary to temporomandibular joint syndrome with peripheral nerve stimulation.

    Science.gov (United States)

    Rodriguez-Lopez, Manuel J; Fernandez-Baena, Mariano; Aldaya-Valverde, Carlos

    2015-01-01

    Temporomandibular joint syndrome, or Costen syndrome, is a clinically diagnosed disorder whose most common symptoms include joint pain and clicking, difficulty opening the mouth, and temporomandibular joint discomfort. The temporomandibular joint (TMJ) is supplied by the auriculotemporal nerve, a collateral branch of the mandibular nerve (the V3 branch of the trigeminal nerve). The aim of this study is to assess the effectiveness and safety of permanent peripheral nerve stimulation to relieve TMJ pain. This case series is a prospective study. Pain Unit of a regional universitary hospital. The study included 6 female patients with temporomandibular pain lasting from 2 to 8 years that did not respond to intraarticular local anesthetic and corticoid injections. After a positive diagnostic block test, the patients were implanted with quadripolar or octapolar leads in the affected preauricular region for a 2-week stimulation test phase, after which the leads were connected to a permanent implanted pulse generator. Results of the visual analog scale, SF-12 Health Survey, Brief Pain Inventory, and drug intake were recorded at baseline and at 4, 12, and 24 weeks after the permanent implant. Five out of 6 patients experienced pain relief exceeding 80% (average 72%) and received a permanent implant. The SF-12 Health Survey results were very positive for all specific questions, especially items concerning the physical component. Patients reported returning to normal physical activity and rest at night. Four patients discontinued their analgesic medication and 1 patient reduced their gabapentin dose by 50%. Sample size; impossibility of placebo control. Patients affected with TMJ syndrome who do not respond to conservative treatments may find a solution in peripheral nerve stimulation, a simple technique with a relatively low level of complications.

  2. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Barbon, Silvia; Stocco, Elena; Negro, Alessandro; Dalzoppo, Daniele; Borgio, Luca; Rajendran, Senthilkumar; Grandi, Francesca; Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele

    2016-01-01

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was

  3. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Barbon, Silvia, E-mail: silvia.barbon@yahoo.it [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua (Italy); Stocco, Elena, E-mail: elena.stocco@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua (Italy); Negro, Alessandro, E-mail: alessandro.negro@unipd.it [Department of Biomedical Sciences, University of Padova, Via Colombo 3, 35121 Padua (Italy); Dalzoppo, Daniele, E-mail: daniele.dalzoppo@unipd.it [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Borgio, Luca, E-mail: borgio.luca@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Rajendran, Senthilkumar, E-mail: senthilstem@gmail.com [Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua (Italy); Grandi, Francesca, E-mail: francesca.grandi7825@gmail.com [Department of Women' s and Children' s Health, Pediatric Surgery, University of Padua, Via Giustiniani 3, 35121 Padua (Italy); Porzionato, Andrea, E-mail: andrea.porzionato@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); Macchi, Veronica, E-mail: veronica.macchi@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); De Caro, Raffaele, E-mail: raffaele.decaro@unipd.it [Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua (Italy); and others

    2016-10-15

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was

  4. Radiosensitizing activity and pharmacokinetics of multiple dose administered KU-2285 in peripheral nerve tissue in mice

    International Nuclear Information System (INIS)

    Iwai, Hiroyuki; Matsuno, Etsuko; Sasai, Keisuke; Abe, Mitsuyuki; Shibamoto, Yuta

    1994-01-01

    In a clinical trial in which a 2-nitroimidazole radiosensitizer was administered repeatedly, the dose-limiting toxicity was found to be peripheral neuropathy. In the present study, the in vivo radiosensitizing activity of KU-2285 in combination with radiation dose fractionation, and the pharmacokinetics of cumulative dosing of KU-2285 in the peripheral nerves were examined. The ability of three nitroimidazoles, misonidazole (MISO), etanidazole (SR-2508) and KU-2285, to sensitize SCCVII tumors to radiation treatment has been compared for drug doses in the range 0-200 mg/kg. Single radiation doses or two different fractionation schedules (6 Gy/fractions x three fractions/48 h or 5 Gy/fractions x five fractions/48 h) were used; the tumor cell survival was determined using an in vivo/in vitro colony assay. The pharmacokinetics in the sciatic nerves were undertaken, when KU-2285 or etanidazole were injected at a dose of 200 mg/kg intravenously one, two, three, or four times at 2-h intervals. At less than 100 mg/kg, KU-2285 sensitized SCCVII tumors more than MISO and SR-2508 by fractionated irradiation. Evaluation of pharmacokinetics in the peripheral nerves showed that the apparent biological half-life of SR-2508 increased with the increases in the number of administrations, whereas that of KU-2285 became shorter. Since most clinical radiotherapy is given in small multiple fractions, KU-2285 appears to be a hypoxic cell radiosensitizer that could be useful in such regimens, and that poses no risk of chronic peripheral neurotoxicity. 12 refs., 5 figs., 1 tab

  5. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  6. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.

    Science.gov (United States)

    Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

    2013-12-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function). Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Temporary persistence of conduction block after prolonged kilohertz frequency alternating current on rat sciatic nerve

    Science.gov (United States)

    Bhadra, Narendra; Foldes, Emily; Vrabec, Tina; Kilgore, Kevin; Bhadra, Niloy

    2018-02-01

    Objective. Application of kilohertz frequency alternating current (KHFAC) waveforms can result in nerve conduction block that is induced in less than a second. Conduction recovers within seconds when KHFAC is applied for about 5-10 min. This study investigated the effect of repeated and prolonged application of KHFAC on rat sciatic nerve with bipolar platinum electrodes. Approach. Varying durations of KHFAC at signal amplitudes for conduction block with intervals of no stimulus were studied. Nerve conduction was monitored by recording peak Gastrocnemius muscle force utilizing stimulation electrodes proximal (PS) and distal (DS) to a blocking electrode. The PS signal traveled through the block zone on the nerve, while the DS went directly to the motor end-plate junction. The PS/DS force ratio provided a measure of conduction patency of the nerve in the block zone. Main results. Conduction recovery times were found to be significantly affected by the cumulative duration of KHFAC application. Peak stimulated muscle force returned to pre-block levels immediately after cessation of KHFAC delivery when it was applied for less than about 15 min. They fell significantly but recovered to near pre-block levels for cumulative stimulus of 50  ±  20 min, for the tested On/Off times and frequencies. Conduction recovered in two phases, an initial fast one (60-80% recovery), followed by a slower phase. No permanent conduction block was seen at the end of the observation period during any experiment. Significance. This carry-over block effect may be exploited to provide continuous conduction block in peripheral nerves without continuous application of KHFAC.

  8. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Science.gov (United States)

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Multimodal therapeutic assessment of peripheral nerve stimulation in neuropathic pain: five case reports with a 20-year follow-up

    DEFF Research Database (Denmark)

    Kupers, Ron; Laere, Koen Van; Calenbergh, Frank Van

    2011-01-01

    Neuropathic pain following peripheral nerve lesion is highly resistant to conventional pain treatments but may respond well to direct electrical peripheral nerve stimulation (PNS). In the 1980s, we treated a series of 11 peripheral neuropathic pain patients with PNS. A first outcome assessment......, cool, warmth, cold pain and heat pain thresholds. Laser-evoked potentials showed an enlarged N2-P2 complex during active PNS. Positron Emission Tomography revealed that PNS decreased activation in the pain matrix at rest and during thermal stimulation. PNS led to increased blood flow not only...

  10. Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model

    International Nuclear Information System (INIS)

    Johnstone, Peter A. S.; DeLuca, Anne Marie; Bacher, John D.; Hampshire, Victoria A.; Terrill, Richard E.; Anderson, William J.; Kins