WorldWideScience

Sample records for rat parietal bone

  1. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  2. Intradiploic encephalocele of the left parietal bone: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok [Myongji St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood.

  3. Intradiploic encephalocele of the left parietal bone: A case report

    International Nuclear Information System (INIS)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok

    2015-01-01

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood

  4. Parietal lesions produce illusory conjunction errors in rats

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2012-05-01

    Full Text Available When several different objects are presented, visual objects are perceived correctly only if their features are identified and then bound together. Illusory-conjunction errors result when an object is correctly identified but is combined incorrectly. The parietal cortex (PPC has been shown repeatedly to play an important role in feature binding. The present study builds on a series of recent studies that have made use of visual search paradigms to elucidate the neural system involved in feature binding. This experiment attempts to define the role the PPC plays in binding the properties of a visual object that varies on the features of color and size in rats. Rats with PPC lesions or control surgery were exposed to three blocks of 20 trials administered over a 1-week period, with each block containing ten-one feature and ten-two feature trials. The target object consisted of one color object (e.g. black and white and one size object (e.g. short and tall. Of the ten one feature trials, five of the trials were tailored specifically for size discrimination and five for color discrimination. In the two-feature condition, the animal was required to locate the targeted object among four objects with two objects differing in size and two objects differing in color. The results showed a significant decrease in learning the task for the PPC lesioned rats compared to controls, especially for the two-feature condition. Based on a subsequent error analysis for color and size, the results showed a significant increase in illusory conjunction errors for the PPC lesioned rats relative to controls for color and relative to color discrimination, suggesting that the PPC may support feature binding as it relates to color. There was an increase in illusory conjunctions errors for both the PPC lesioned and control animals for size, but this appeared to be due to a difficulty with size discrimination.

  5. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    OpenAIRE

    Fatemeh Mirsafi; Gholamreza Kaka; Mahnaz Azarnia

    2017-01-01

    Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group rec...

  6. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    Henmi, Akiko; Nakamura, Megumi; Echigo, Seishi; Sasano, Yasuyuki

    2011-01-01

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  7. Surface Reconstruction from Parallel Curves with Application to Parietal Bone Fracture Reconstruction.

    Directory of Open Access Journals (Sweden)

    Abdul Majeed

    Full Text Available Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI illustration.

  8. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    Directory of Open Access Journals (Sweden)

    Fatemeh Mirsafi

    2017-05-01

    Full Text Available Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group received no injections, the sham group received intraperitoneal injections of distilled water solution containing salt and polysorbate (solvent of levothyroxine, and the experimental group received once-daily, intraperitoneal injections of 0.5 mg/kg levothyroxine for a 10-day period to become hyperthyroid rats. The hyperthyroid rats were then mated, and all pregnant rats were killed on the 20th day of gestation. Fetuses were removed, fixed, and processed for histological procedures. The fetuses were sagitally sectioned at 5 µ thickness and stained with hematoxylin-eosin (H and E technique. The sections were examined using a light microscope and Motic software. Results The results showed no significant difference in the studied variables between the sham and control groups. A significantly increase in body weight and a significant decrease in crown-rump length of embryos was observed in the experimental group when compared to the control group. The mean total thickness of the parietal cortex, ventricular layer, and intermediate layer of embryos showed a significant decrease in the experimental group compared to the control and sham groups. The mean number of cells also showed a significant decrease in the intermediate and ventricular layers in the experimental group compared to the control and sham groups. Conclusions This study showed that maternal hyperthyroidism leads to a reduction in development of the parietal cortex in embryos. Maternal hyperthyroidism can disturb the growth and development of embryos.

  9. Matrix Metalloproteinase-9 Expression Is Enhanced in Renal Parietal Epithelial Cells of Zucker Diabetic Fatty Rats and Is Induced by Albumin in In Vitro Primary Parietal Cell Culture

    Science.gov (United States)

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  10. Glucose phosphorylation rate in rat parietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Broendsted, H.E.; Gjedde, A. (Department of General Physiology and Biophysics, Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using (6-{sup 14}C)glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO{sub 2} and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author).

  11. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  12. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available As a subfamily of matrix metalloproteinases (MMPs, gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive

  13. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  14. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells

    Science.gov (United States)

    Hamatani, Hiroko; Sakairi, Toru; Takahashi, Satoshi; Watanabe, Mitsuharu; Maeshima, Akito; Ohse, Takamoto; Pippin, Jeffery W.; Shankland, Stuart J.; Nojima, Yoshihisa

    2014-01-01

    Sestrin 2, initially identified as a p53 target protein, accumulates in cells exposed to stress and inhibits mammalian target of rapamycin (mTOR) signaling. In normal rat kidneys, sestrin 2 was selectively expressed in parietal epithelial cells (PECs), identified by the marker protein gene product 9.5. In adriamycin nephropathy, sestrin 2 expression decreased in PECs on day 14, together with increased expression of phosphorylated S6 ribosomal protein (P-S6RP), a downstream target of mTOR. Sestrin 2 expression was markedly decreased on day 42, coinciding with glomerulosclerosis and severe periglomerular fibrosis. In puromycin aminonucleoside nephropathy, decreased sestrin 2 expression, increased P-S6RP expression, and periglomerular fibrosis were observed on day 9, when massive proteinuria developed. These changes were transient and nearly normalized by day 28. In crescentic glomerulonephritis, sestrin 2 expression was not detected in cellular crescents, whereas P-S6RP increased. In conditionally immortalized cultured PECs, the forced downregulation of sestrin 2 by short hairpin RNA resulted in increased expression of P-S6RP and increased apoptosis. These data suggest that sestrin 2 is involved in PEC homeostasis by regulating the activity of mTOR. In addition, sestrin 2 could be a novel marker of PECs, and decreased expression of sestrin 2 might be a marker of PEC injury. PMID:25056347

  15. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  16. SEM corrosion-casts study of the microcirculation of the flat bones in the rat.

    Science.gov (United States)

    Pannarale, L; Morini, S; D'Ubaldo, E; Gaudio, E; Marinozzi, G

    1997-04-01

    Little is known about the organization of microcirculation in flat bones in comparison with long bones. This study, therefore, helps us to determine the design of this vascular system in flat bones in relation to their structure and function. The organization of microvasculature in parietal, scapula, and ileum bones of 15 young sexually mature rats, aged 6-7 weeks, was studied by light and scanning electron microscopy (SEM) from vascular corrosion cast (vcc), a resin-cast obtained material. Our observations show that the pattern of the microcirculation in flat bones is different in the thick and thin parts of such bones. Where the bone is thinner than 0.4 mm, only periosteal and dural network exist. Larger vessels which do not form a real network connect the two tables of the bones in these regions. In thicker areas, the organization of the microvasculature is similar to that in long bones, with distinct periosteal, cortical and bone marrow networks. Moreover, in different bones, outer networks show slightly different characteristics according to the different adjacent structures (dura mater, muscles etc.). Different types of vessels were recognized by comparing their different diameter, course and endothelial imprints. The microvascular patterns of the flat bones are strongly influenced by the bone thickness. The different microvascular systems can interact both with the bone modelling and remodeling and with the variable metabolic needs, modifying the microvascular pattern and the blood flow. This is even more important in view of the reciprocal influence of the different networks within the same bone.

  17. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex.

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro; Cammarota, Martín; Vianna, Monica R M; Izquierdo, Iván; Medina, Jorge H

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.

  18. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  19. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  20. The gastric acid secretagogue gastrin-releasing peptide and the inhibitor oxyntomodulin do not exert their effect directly on the parietal cell in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1988-01-01

    in vitro by measuring [14C]-aminopyrine accumulation, a reliable index of H+ generation, in isolated rat parietal cells. However, neither gastrin-releasing peptide nor oxyntomodulin influenced basal acid secretion or histamine-stimulated gastric acid secretion. Electron-microscopic studies of unstimulated...... and histamine-stimulated parietal cells confirmed that the cells retained the normal morphology of intracellular organelles and that the cells responded to physiological stimulation by marked expansion of the intracellular canaliculi....

  1. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  2. Bone compositional study during healing of subcritical calvarial defects in rats by Raman spectroscopy

    Science.gov (United States)

    Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon

    2017-07-01

    Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.

  3. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  4. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  5. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    Science.gov (United States)

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  6. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  7. Revascularisation of fresh compared with demineralised bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    2001-01-01

    Revascularisation of bone grafts is influenced by both the anatomical origin and the pre-implantation processing of the graft. We investigated the revascularisation by entrapment of 141Ce (cerium)-labelled microspheres in large, fresh and demineralised syngeneic grafts of predominantly cancellous...... (iliac bone) or cortical (tibial diaphysis) bone three weeks after heterotopic implantation in rats. The mean (SD) 141Ce deposition index (counts per minute (cpm) of mg recovered implant/cpm of mg host iliac bone) was higher in fresh iliac bone grafts, 0.98 (0.46) compared to that of demineralised iliac...... bone, 0.32 (0.20), p bone grafts, 0.51 (0.27), p = 0.007. We found no significant difference in the mean 141Ce deposition index between fresh tibial bone grafts and demineralised tibial bone grafts, 0.35 (0.42), p = 0.4, or between demineralised tibial grafts and demineralised...

  8. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...... volume measurements of the recovered grafts do not differentiate between viable and dead bone. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone implanted in the back muscles of young Lewis rats. Bone formation in grafts recovered 3 weeks...... that the anatomical area of harvest is important regarding new bone formation in syngeneic bone grafts. However, the results do not support the contention that better maintenance of volume of calvarial grafts compared with iliac bone grafts is due to enhanced osteogenesis in the former....

  9. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development.

    Science.gov (United States)

    Goldie, Stephen J; Arhatari, Benedicta D; Anderson, Peter; Auden, Alana; Partridge, Darren D; Jane, Stephen M; Dworkin, Sebastian

    2016-10-18

    Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.

  10. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-01-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  12. Bone metabolism of male rats chronically exposed to cadmium

    International Nuclear Information System (INIS)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina

    2005-01-01

    Recently, based on a female rat model of human exposure, we have reported that low-level chronic exposure to cadmium (Cd) has an injurious effect on the skeleton. The purpose of the current study was to investigate whether the exposure may also affect bone metabolism in a male rat model and to estimate the gender-related differences in the bone effect of Cd. Young male Wistar rats received drinking water containing 0, 1, 5, or 50 mg Cd/l for 12 months. The bone effect of Cd was evaluated using bone densitometry and biochemical markers of bone turnover. Renal handling of calcium (Ca) and phosphate, and serum concentrations of vitamin D metabolites, calcitonin, and parathormone were estimated as well. At treatment with 1 mg Cd/l, corresponding to the low environmental exposure in non-Cd-polluted areas, the bone mineral content (BMC) and density (BMD) at the femur and lumbar spine (L1-L5) and the total skeleton BMD did not differ compared to control. However, from the 6th month of the exposure, the Z score BMD indicated osteopenia in some animals and after 12 months the bone resorption very clearly tended to an increase. The rats' exposure corresponding to human moderate (5 mg Cd/l) and especially relatively high (50 mg Cd/l) exposure dose- and duration-dependently disturbed the processes of bone turnover and bone mass accumulation leading to formation of less dense than normal bone tissue. The effects were accompanied by changes in the serum concentration of calciotropic hormones and disorders in Ca and phosphate metabolism. It can be concluded that low environmental exposure to Cd may be only a subtle risk factor for skeletal demineralization in men. The results together with our previous findings based on an analogous model using female rats give clear evidence that males are less vulnerable to the bone effects of Cd compared to females

  13. The effect of different EEG derivations on sleep staging in rats: the frontal midline–parietal bipolar electrode for sleep scoring

    International Nuclear Information System (INIS)

    Fang, Guangzhan; Zhang, Chunpeng; Xia, Yang; Lai, Yongxiu; Liu, Tiejun; You, Zili; Yao, Dezhong

    2009-01-01

    Most sleep-staging research has focused on developing and optimizing algorithms for sleep scoring, but little attention has been paid to the effect of different electroencephalogram (EEG) derivations on sleep staging. To explore the possible effects of EEG derivations, an automatic computer method was established and confirmed by agreement analysis between the computer and two independent raters, and four fronto-parietal bipolar leads were compared for sleep scoring in rats. The results demonstrated that different bipolar electrodes have significantly different sleep-staging accuracies, and that the optimal frontal electrode for sleep scoring is located at the anterior midline

  14. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  15. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  16. Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake....... The composite implant was technically easier to use than DBM alone....

  17. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    Pinholt, E.M.; Solheim, E.; Bang, G.; Sudmann, E.

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85 Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  18. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats.

    Science.gov (United States)

    Broulík, P D; Vondrová, J; Růzicka, P; Sedlácek, R; Zíma, T

    2010-01-01

    Alcohol use has been identified as a risk factor for the development of osteoporosis. Eight male Wistar rats at two months of age were alcoho-fed (7.6 g 95 % ethanol/kg b.w. per day) to evaluate the effects of long-term administration (three months) of alcohol in drinking water. We have used a dose which is considered to be comparable to a dose of 1 liter of wine or 2.5 liters of 12(°) beer used in male adults daily. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. The bones from alcohol-fed rats were characterized by a reduction in bone density as well as in ash, calcium and phosphate content. In alcohol-fed rats the reduction in bone mineral density (10 %) was reflected by about 12 % reduction of mechanical strength of femur (158+/-5.5 vs. 178+/-3.2 N/mm(2)). Alcohol significantly altered femoral cortical thickness. In our experiment alcohol itself did not exert any antiandrogenic effect and it did not produce changes in the weight of seminal vesicles. Liver function test (GGT, ALP, AST) did not differ between alcohol-fed rats and control rats. Alcohol-induced bone loss is associated with increased bone resorption and decreased bone formation. These results document the efficacy of alcohol at the dose of 7.6 g 95 % ethanol/kg b.w. to cause bone loss and loss of bone mechanical strength in intact rats. The results of the present study may be interpreted as supporting the hypothesis of alcohol as a risk factor for osteoporosis.

  19. Effect of dietary soy isoflavones on bone loss in ovariectomized rats ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ovariectomized (OVX) rats. Methods: Forty-eight rats were assigned randomly to groups of OVX rats receiving soy isoflavones (20, 30, or 40 mg/kg of body weight daily), untreated OVX rats, or untreated intact rats. After 8 weeks, bone ...

  20. Hemorrhage Near Fetal Rat Bone: Preliminary Results

    Science.gov (United States)

    Bigelow, Timothy A.; Miller, Rita J.; Blue, James P.; O'Brien, William D.

    2006-05-01

    High-intensity ultrasound has shown potential in treating many ailments requiring noninvasive tissue necrosis. However, little work has been done on using ultrasound to ablate pathologies on or near the developing fetus. For example, Congenital Cystic Adenomatoid Malformation (cyst on lungs), Sacrococcygeal Teratoma (benign tumor on tail bone), and Twin-Twin Transfusion Syndrome (one twin pumps blood to other twin) are selected problems that will potentially benefit from noninvasive ultrasound treatments. Before these applications can be explored, potential ultrasound-induced bioeffects should be understood. Specifically, ultrasound-induced hemorrhage near the fetal rat skull was investigated. An f/1 spherically focused transducer (5.1-cm focal length) was used to expose the skull of 18- to 19-day-gestation exteriorized rat fetuses. The ultrasound pulse had a center frequency of 0.92 MHz and pulse duration of 9.6 μs. The fetuses were exposed to 1 of 4 exposure conditions (denoted A, B, C, and D) in addition to a sham exposure. Three of the exposures consisted of a peak compressional pressure of 10 MPa, a peak rarefactional pressure of 6.7 MPa, and pulse repetition frequencies of 100 Hz (A), 250 Hz (B), and 500 Hz (C), corresponding to time-average intensities of 1.9 W/cm2, 4.7 W/cm2, and 9.4 W/cm2, respectively. Exposure D consisted of a peak compressional pressure of 6.7 MPa, a peak rarefactional pressure of 5.0 MPa, and a PRF of 500 Hz corresponding to a time-average intensity of 4.6 W/cm2. Hemorrhage occurrence increased slightly with increasing time-average intensity (i.e., 11% for A, 28% for B, 31% for C, and 19% for D with a 9% occurrence when the fetuses were not exposed). The low overall occurrence of hemorrhaging may be attributed to fetal motion (observed in over half of the fetuses from the backscattered echo during the exposure). The mean hemorrhage sizes were 3.1 mm2 for A, 2.5 mm2 for B, 2.7 mm2 for C, and 5.1 mm2 for D. The larger lesions at D may

  1. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  2. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  3. Quantification of osteolytic bone lesions in a preclinical rat trial

    Science.gov (United States)

    Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf

    2013-10-01

    In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.

  4. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  5. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  6. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    OpenAIRE

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2010-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: ...

  7. The binding of Np to rat bone

    International Nuclear Information System (INIS)

    Ramounet, B.; Taylor, D.M.

    1997-01-01

    Neptunium has been shown to massively deposit in bone, after intravenous or intramuscular injections. Initially, it was uniformly distributed on periosteal and endosteal bone surfaces. The nature of the binding molecules, for this actinide, in the skeleton, has not yet been identified. The aim of this work was to characterize the ligands of neptunium by selective extractions of bone components. The preliminary results displayed the binding of 237 Np(IV) in the organic phase of bone, after intravenous or intramuscular contamination. Further studies are in progress, to quantify the fraction of Np bound to the organic and mineral compartment of bone, and to determine the affinity constant and the turn-over of the binding proteins. (authors)

  8. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  9. Bone cell kinetics in the metaphysis of the growing long bone of the rat

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.

    1976-01-01

    The growing long bone metaphysis of rats was studied in a cell kinetic and morphometric analysis using tritiated thymidine as a tracer of cells. The results showed striking differences in the distribution and movements of osteoprogenitor and osteoblasts as compared to the osteoclasts. The results also showed a deficiency in cell production in the proliferating bone cells in the metaphysis. A new model of bone cell origin, proliferation, and movements in the metaphysis is proposed; osteoblasts and osteoprogenitor cells, the bone surface cells endemic to the metaphysis, are a continuum in adding bone forming cells and forming new bone on the calcified cartilage cores of the metaphysis. The osteoclasts, on the other hand, arise from mononuclear blood cells brought to the metaphysis through metaphyseal blood vessel spaces near the growth cartilage-metaphyseal junction

  10. Bone blood flow after spinal paralysis in the rat

    International Nuclear Information System (INIS)

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K.

    1990-01-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow

  11. Uranium in bone: metabolic and autoradiographic studies in the rat

    International Nuclear Information System (INIS)

    Priest, N.D.; Haines, J.W.; Howells, G.R.; Green, D.

    1982-01-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1) Uranium is initially deposited on to all types of bone surface, but preferentially on to those that are accreting. 2) Uranium is deposited in the calcifying zones of skeletal cartilage. 3) Bone accretion results in the burial of surface deposits of uranium. 4) Bone resorption causes the removal of uranium from surfaces. 5) Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6) Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7) The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium. (author)

  12. Uranium in bone: metabolic and autoradiographic studies in the rat.

    Science.gov (United States)

    Priest, N D; Howells, G R; Green, D; Haines, J W

    1982-03-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.

  13. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.

  14. "Repair of cranial bone defects using endochondral bone matrix gelatin in rat "

    Directory of Open Access Journals (Sweden)

    "Sobhani A

    2001-05-01

    Full Text Available Bone matrix gelatin (BMG has been used for bone induction intramuscularly and subcutaneously by many investigators since 1965. More recently, some of the researchers have used BMG particles for bone repair and reported various results. In present study for evaluation of bone induction and new bone formation in parital defects, BMG particles were used in five groups of rats. The BMG was prepared as previously described using urist method. The defects wee produced with 5 –mm diameter in pariteal bones and filled by BMG particles. No BMG was used in control group.For evaluation of new bone formation and repair, the specimens were harvested on days 7 , 14 , 21 and 28 after operation. The samples were processed histologically, stained by H& E, alizarin red S staining, and Alcian blue, and studied by a light microscope.The results are as follows:In control group: Twenty-eight days after operation a narrow rim of new bone was detectable attached to the edge of defect.In BMG groups: At day 7 after operation young chondroblast cells appeared in whole area of defect. At 14th day after operation hypertrophic chondrocytes showed by Alcian blue staining and calcified cartilage were detectable by Alizarin red S staining. The numerous trabeculae spicules, early adult osteocytes and highly proliferated red bone marrow well developed on dayd 21 . finally typic bone trabeculae with regulated osteoblast cells and some osteoclast cells were detectable at day 28 after operation. In conclusion,BMG could stimulate bone induction and new bone formation in bony defects. So, it seems that BMG could be a godd biomaterial substance for new bone inducation in bone defects

  15. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats.

    Science.gov (United States)

    Bagi, Cedo M; Edwards, Kristin; Berryman, Edwin

    2017-12-01

    Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated

  16. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    Science.gov (United States)

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  17. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  18. Safe Harvesting of Outer Table Parietal Bone Grafts Using an Oscillating Saw and a Bone Scraper : A Refinement of Technique for Harvesting Cortical and "Cancellous"-Like Calvarial Bone

    NARCIS (Netherlands)

    Schortinghuis, Jurjen; Putters, Thomas F.; Raghoebar, Gerry M.

    Calvarial bone is a readily available source of bone for preimplantation augmentation procedures of the alveolar process. However, the calvaria consist mostly of cortical bone, and cancellous bone of the diploic space is scarce. A bone scraper (Safescraper Twist; META, Reggio Emilia, Italy) was used

  19. Effectiveness of Russian current in bone regeneration process in rats

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Oliveira Lima

    Full Text Available Abstract Introduction: Russian current is an electric current of average frequency that is able to restore the properties of skeletal muscle at a low treatment cost. It is essential to know the effects of Russian current in bone tissue, since electromagnetic energy could be an efficient and low cost method to treat bone disorders. Objective: The aim of the study was to evaluate the effectiveness of Russian current in the consolidation of tibia fracture in adult rats. Methods: 24 adult male Albinus Wistar rats wereused. The animals were divided randomly into two groups: control group (CG, composed of 12 animals, and Intervention Group (IG consisting of 12 animals, both groups were submitted to osteotomy (proximal medial surface of the tibia. The IG underwent an electrical stimulation protocol with Russian current, while the CG did not undergo any kind of intervention. Euthanasia was performed in three animals of each group on the following days: 5, 10, 20, and 30 days of treatment. Results: The results suggested higher primary ossification, intense osteogenic activity, and increased thickness of the periosteum, characterizing more advanced ossification and a greater presence of trabecular bone marrow in rats in the group subjected to the treatment. In this way, we can assign one more beneficial effect to interventions with Russian current, for the treatment of postfracture rehabilitation. Conclusion: In both groups the bone tissue repair process occurred, but in the electrically stimulated group the osteogenesis process was more advanced.

  20. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  1. Lesion of posterior parietal cortex in rats does not disrupt place avoidance based on either distal or proximal orienting cues

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Telenský, Petr; Blahna, Karel; Zach, P.; Bureš, Jan; Stuchlík, Aleš

    2008-01-01

    Roč. 445, č. 1 (2008), s. 73-77 ISSN 0304-3940 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/07/0341; GA ČR(CZ) GD206/05/H012 Institutional research plan: CEZ:AV0Z50110509 Keywords : learning * memory * rat Subject RIV: FH - Neurology Impact factor: 2.200, year: 2008

  2. Bone turnover is altered in transgenic rats overexpressing the P2Y2 purinergic receptor

    DEFF Research Database (Denmark)

    Ellegaard, Maria; Agca, Cansu; Petersen, Solveig

    2017-01-01

    overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both...

  3. Effects of microgravity on rat bone, cartlage and connective tissues

    Science.gov (United States)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  4. Requirement of alveolar bone formation for eruption of rat molars

    Science.gov (United States)

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  5. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P.

    1988-01-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which 45 Ca release from 45 Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with 45 Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke

  6. Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material.

    Science.gov (United States)

    Marins, Lucele Vieira; Cestari, Tania Mary; Sottovia, André Dotto; Granjeiro, José Mauro; Taga, Rumio

    2004-03-01

    Over the last few years, various bone graft materials of bovine origin to be used in oromaxillofacial surgeries have entered the market. In the present study, we determined the capacity of a block organic bone graft material (Gen-ox, Baumer SA, Brazil) prepared from bovine cancellous bone to promote the repair of critical size bone injuries in rat calvaria. A transosseous defect measuring approximately 8mm in diameter was performed with a surgical trephine in the parietal bone of 25 rats. In 15 animals, the defects were filled with a block of graft material measuring 8mm in diameter and soaked in the animal's own blood, and in the other 10 animals the defects were only filled with blood clots. The calvariae of rats receiving the material were collected 1, 3 and 6 months after surgery, and those of animals receiving the blood clots were collected immediately and 6 months after surgery. During surgery, the graft material was found to be of easy handling and to adapt perfectly to the receptor bed after soaking in blood. The results showed that, in most animals treated, the material was slowly resorbed and served as a space filling and maintenance material, favoring angiogenesis, cell migration and adhesion, and bone neoformation from the borders of the lesion. However, a foreign body-type granulomatous reaction, with the presence of numerous giant cells preventing local bone neoformation, was observed in two animals of the 1-month subgroup and in one animal of the 3-month subgroup. These cases were interpreted as resulting from the absence of demineralization and the lack of removal of potential antigen factors during production of the biomaterial. We conclude that, with improvement in the quality control of the material production, block organic bone matrix will become a good alternative for bone defect repair in the oromaxillofacial region due to its high osteoconductive capacity.

  7. Bone Densitometry of the Femoral Midshaft the Protein-Deprived Rat*

    African Journals Online (AJOL)

    rats, has shown a significant loss of total bone density in the protein-deprived group. This reduction is no greater than can be accounted for by the loss of cortical bone surface area, suggesting that while bone mass is reduced as a result of protein deprivation, the mineral composition of the residual bone is likely to be ...

  8. Bone tissue engineering for spine fusion : An experimental study on ectopic and orthotopic implants in rats

    NARCIS (Netherlands)

    van Gaalen, SM; Dhert, WJA; van den Muysenberg, A; Oner, FC; van Blitterswijk, C; Verbout, AJ; de Bruijn, J.D.

    2004-01-01

    Alternatives to the use of autologous bone as a bone graft in spine surgery are needed. The purpose of this study was to examine tissue-engineered bone constructs in comparison with control scaffolds without cells in a posterior spinal implantation model in rats. Syngeneic bone marrow cells were

  9. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  10. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  11. Celecoxib does not significantly delay bone healing in a rat femoral osteotomy model: a bone histomorphometry study

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2011-12-01

    Full Text Available Jun Iwamoto1, Azusa Seki2, Yoshihiro Sato3, Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan; 2Hamri Co, Ltd, Tokyo, Japan; 3Department of Neurology, Mitate Hospital, Fukuoka, JapanBackground and objective: The objective of the present study was to determine whether celecoxib, a cyclo-oxygenase-2 inhibitor, would delay bone healing in a rat femoral osteotomy model by examining bone histomorphometry parameters.Methods: Twenty-one 6-week-old female Sprague-Dawley rats underwent a unilateral osteotomy of the femoral diaphysis followed by intramedullary wire fixation; the rats were then divided into three groups: the vehicle administration group (control, n = 8, the vitamin K2 administration (menatetrenone 30 mg/kg orally, five times a week group (positive control, n = 5, and the celecoxib administration (4 mg/kg orally, five times a week group (n = 8. After 6 weeks of treatment, the wires were removed, and a bone histomorphometric analysis was performed on the bone tissue inside the callus. The lamellar area relative to the bone area was significantly higher and the total area and woven area relative to the bone area were significantly lower in the vitamin K2 group than in the vehicle group. However, none of the structural parameters, such as the callus and bone area relative to the total area, lamellar and woven areas relative to the bone area, or the formative and resorptive parameters such as osteoclast surface, number of osteoclasts, osteoblast surface, osteoid surface, eroded surface, and bone formation rate per bone surface differed significantly between the vehicle and celecoxib groups.Conclusion: The present study implies that celecoxib may not significantly delay bone healing in a rat femoral osteotomy model based on the results of a bone histomorphometric analysis.Keywords: femoral osteotomy, bone healing, callus, rat, celecoxib

  12. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  13. Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates.

    Science.gov (United States)

    Nagata, Masashi; Kayanoma, Megumu; Takahashi, Takeshi; Kaneko, Tetsuo; Hara, Hiroshi

    2011-08-01

    Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.

  14. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  15. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  16. Wnt/RANKL-mediated bone growth promoting effects of blueberries in weanling rats

    Science.gov (United States)

    We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 and 30 days beginning on PND 21. In both sexes tibial bone mineral density and content a...

  17. [The effects of strontium in drinking water on growth and development of rat bone].

    Science.gov (United States)

    Xu, F; Zhang, X; Liu, J; Fan, M

    1997-05-01

    Effects of strontium at a high level in drinking water on growth and development of rat bone were studied. The results showed that Sr2+ concentration from 5 to 500 mg/L in drinking water could increase the contents of strontium in blood serum, urine, femur, mixilla and tooth in Wistar rats exposed to Sr2+ for 12 weeks with an obvious dose-response relationship. In addition, strontium at over 50 mg/L could decrease the contents of calcium in bone, increase the contents of calcium in tooth and bone density, and decrease the levels of calcium in blood serum except female rats at the 12th week. Effects of Sr2+ on body weight, body length, AKP activity of serum, calcium content of urine and breaking load of bended femur for rats were not found. However, there are differences in the effects of strontium on growth and development of bone between male and female rats. At the 12th week the content of calcium in blood serum decreased in male rats but increased in female rats in exposed groups. At the 4th and 8th weeks, urine Hop/Cr in male rats increased but it remained normal level in female rats. Sr2+ increased the bone density of mixilla in male rats but it did not increase that of femur in female rats. It is suggested that such changes may be a result of the differences in endocritic regulation and metabolic process between two sexes.

  18. Early bone changes after incorporation of low quantities of alpha emitters in male rats

    International Nuclear Information System (INIS)

    Laengle, U.W.

    1988-09-01

    This work shows the early effects of cancergenic doses of alpha emitters in long bones of rats. The investigations were based on radiographic, morphologic, angiographic, histologic and electronmicroscopic methods. A special method for bone angiography in the rat was elaborated and a new method was developed for measurement of the femur neck-head angle. Numerous disturbances in bone growth and bone structure, in the blood supply of bone and also of the bone building cells were observed. There was a correlation between the severity of the damage and the radiation dose, the spacial distribution of the nuclide and partially the age of the rats. The bone injury due to plutonium was markedly reduced by administration of the chelating agent Zn-DTPA. (orig.) [de

  19. Frequency of polyploid cells in the bone marrow of rats fed irradiated wheat

    International Nuclear Information System (INIS)

    George, K.P.; Chaubey, R.C.; Sundaram, K.; Gopal-Ayengar, A.R.

    1976-01-01

    Diets containing different proportions of non-irradiated or irradiated wheat were fed to Wistar rats for 1 or 6 wk. Cytological analysis of the bone marrow showed no significant difference in the frequency of polyploid cells in the rats fed non-irradiated or irradiated wheat diets, even when the treated wheat was fed to the rats within 24 hr of irradiation. (author)

  20. Study of a bridge-like bone transplantation in the mandible of rats

    International Nuclear Information System (INIS)

    Suzuki, Aizo

    1979-01-01

    A bridge-like bone transplantation using fresh auto-ribs was performed in the mandibles of 161 female rats (Donryu strain, weight 130 g) previously irradiated by means of a betatron (group B, 1000 rad; group C, 2000 rad; group D, 3000 rad). Formation of a bridge-like bone in the transplanted region was studied morphologically and the results were compared with those obtained from non-treated rats (nonirradiated and non-transplanted rats, 5), irradiated and non-transplanted rats (36), and control rats (group A: nonirradiated and transplanted rats, 30) on the 7th, 21st, 35th 49th, 63rd and 90th postoperative days (5 rats per day, totaling 90). All the rats had a favorable prognosis without suppuration or exclusion. In groups B, C, and D, depilation was noted on the skin of the mandible. In group D, incisor teeth were shorter, resulting in abnormal occlusion. Disappearance of reactive inflammation, formation of granulation tissues, resorption of transplanted bone, and new growth of bone appeared later in groups C and D than in groups A and B. New growth of bone in the recipient's was remarkably less in groups C and D than in groups A and B. Formation of a bridge-like bone was observed in all the rats in groups A and B after the 35th postoperative day. However, in groups C and D, new growth of bone from the base of the bridge was small and did not connect with the transplanted bone even on the 90th postoperative day. Consequently, a bridge-like bone was not formed. On every observation day, findings in group A were similar to those in group B, and those in group C were similar to those in group D. Irradiation with 2000 rad or 3000 rad had an effect on formation of a bridge-like bone, but irradiation with 1000 rad had no effect. (Ueda, J.)

  1. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    International Nuclear Information System (INIS)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-01-01

    The annual incidence of new cancer patients in China is about 2 million, 30–40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41 Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague–Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl 2 solution (containing 1.4 mg Ca and 5nCi 41 Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41 Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41 Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41 Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  2. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright

  3. Energy Metabolism in the Bone is Associated with Histomorphometric Changes in Rats with Hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Zhuoqing Hu

    2018-04-01

    Full Text Available Background/Aims: In this study we assessed histomorphometric changes induced by thyroxine (T4 in 3-month-old hyperthyroid male rats and examined whether the potential mechanism of these changes is related to bone changes. Methods: Rats were classified as either hyperthyroid following administration of 250 µg/kg/day freshly prepared T4 by gavage for 2 months or euthyroid following administration of vehicle alone (n = 8 per group. We measured bone mineral density (BMD, bone biomechanical properties, and bone histomorphometric changes. Levels of serum indicators were also measured, and three right femurs from the two groups were selected for proteomic investigation. Results: Compared with the control rats, hyperthyroid rats showed a reduction in the fifth lumbar vertebral BMD as well as in the entire femoral BMD (p = 0.033 and 0.026, respectively. Histomorphometric analysis of the proximal tibial metaphysis showed that the percentage of the trabecular area, trabecular number, and percentage of the cortical bone area in the hyperthyroid rats significantly decreased compared with those of the control rats. Conversely, bone formation rate (per unit of bone surface and bone volume, percentage of the osteoclast perimeter, trabecular separation, and endosteal mineral apposition rate in the hyperthyroid rats significantly increased compared with the control rats (all p < 0.05. Except for stiffness (p = 0.24, all bone biomechanical properties of the femur showed a significant decreasing trend in the hyperthyroid rats versus the control rats (all p < 0.05. Serum levels of osteocalcin, alkaline phosphatase, terminal telopeptides of type β collagen, and tartrate-resistant acid phosphatase were higher in the hyperthyroid rats than in the control rats (all p < 0.05. Using isobaric tags for relative and absolute quantification (iTRAQ, the expression levels of 1,310 proteins were found to be significantly different between the hyperthyroid and control rats (711

  4. Effect of Cistanches Herba Aqueous Extract on Bone Loss in Ovariectomized Rat

    Directory of Open Access Journals (Sweden)

    Zaiguo Huang

    2011-08-01

    Full Text Available To assess the ability of traditional Chinese medicine Cistanches Herba extract (CHE to prevent bone loss in the ovariectomized (OVX rat, Cistanches Herba extract (CHE was administered intragastrically to the rats. Female rats were anesthetized with pentobarbital sodium (40 mg kg−1, i.p., and their ovaries were removed bilaterally. The rats in the sham-operated group were anesthetized, laparotomized, and sutured without removing their ovaries. After 1 week of recovery from surgery, the OVX rats were randomly divided into three groups and orally treated with H2O (OVX group or CHE (100 or 200 mg kg−1 daily for 3 months. The sham-operated group (n = 8 was orally treated with H2O. After 3 months, the total body bone mineral density (BMD, bone mineral content (BMC, Bone biomechanical index, blood mineral levels and blood antioxidant enzymes activities were examined in sham-operated, ovariectomized and Cistanches Herba extract treated rats. Results showed that Cistanches Herba extract treatment significantly dose-dependently enhanced bone mineral density (BMD, bone mineral content (BMC, maximum load, displacement at maximum load, stress at maximum load, load at auto break, displacement at auto break, and stress at auto break, and blood antioxidant enzymes activities, decreased blood Ca, Zn and Cu levels compared to the OVX group. This experiment demonstrates that the administration of Cistanches Herba extract to ovariectomized rats reverses bone loss and prevents osteoporosis.

  5. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  6. Early Subchondral Bone Loss at Arthritis Onset Predicted Late Arthritis Severity in a Rat Arthritis Model.

    Science.gov (United States)

    Courbon, Guillaume; Cleret, Damien; Linossier, Marie-Thérèse; Vico, Laurence; Marotte, Hubert

    2017-06-01

    Synovitis is usually observed before loss of articular function in rheumatoid arthritis (RA). In addition to the synovium and according to the "Inside-Outside" theory, bone compartment is also involved in RA pathogenesis. Then, we investigated time dependent articular bone loss and prediction of early bone loss to late arthritis severity on the rat adjuvant-induced arthritis (AIA) model. Lewis female rats were longitudinally monitored from arthritis induction (day 0), with early (day 10) and late (day 17) steps. Trabecular and cortical microarchitecture parameters of four ankle bones were assessed by microcomputed tomography. Gene expression was determined at sacrifice. Arthritis occurred at day 10 in AIA rats. At this time, bone erosions were detected on four ankle bones, with cortical porosity increase (+67%) and trabecular alterations including bone volume fraction (BV/TV: -13%), and trabecular thickness decrease. Navicular bone assessment was the most reproducible and sensitive. Furthermore, strong correlations were observed between bone alterations at day 10 and arthritis severity or bone loss at day 17, including predictability of day 10 BV/TV to day 17 articular index (R 2  = 0.76). Finally, gene expression at day 17 confirmed massive osteoclast activation and interestingly provided insights on strong activation of bone formation inhibitor markers at the joint level. In rat AIA, bone loss was already observed at synovitis onset and was predicted late arthritis severity. Our results reinforced the key role of subchondral bone in arthritis pathogenesis, in favour to the "Inside-Outside" theory. Mechanisms of bone loss in rat AIA involved resorption activation and formation inhibition changes. J. Cell. Physiol. 232: 1318-1325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    2017-10-01

    Full Text Available The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone

  8. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment......, colocystoplasty, and controls. All animals received antibiotics for 1 week after surgery; half of each group remained on oral antibiotics. Bone-related biochemistry was measured in serum and urine. Dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) were used to determine bone...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  9. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  10. Effect of parathyroidectomy on bone growth and composition in the young rat

    Science.gov (United States)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  11. Effect of insulin on the mitotic activity of bone marrow cells after irradiation. [Gamma radiation, rats

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1976-02-01

    A total of 236 white rats were given a whole-body gamma dose of 750 R. Part of the rats were given a subcutaneous insulin injection of 0.2 units/kg. After 10, 20, 30 min, 1, 2, 3, 5, 8, 10 and 12 hours the mitotic index was determined in both groups of rats in the bone marrow of the femur. The content of glucose and insulin in the blood was determined. The mitotic index was found to be higher on administering insulin. The use of insulin in radiation sickness intensifies the mitotic activity of bone marrow cells and stimulates the recovery of bone marrow hematopoiesis. 5 references.

  12. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2007-01-01

    The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of

  13. Radiation-induced aneusomic clones in bone marrow of rats

    International Nuclear Information System (INIS)

    Kohno, Sei-Ichi; Ishihara, Takaaki

    1976-01-01

    Wistar rats 3 months old were given a single whole-body X-irradiation with 700 R. They were killed 9.3 months, on average, after irradiation. From the bone marrows of the 23 irradiated rats, 54 clones of cells with radiation-induced chromosome abnormalities ranging from 3.3 to 78.3% in size were obtained. Karyotype analysis at the banding level showed that 43 out of the 54 clones had balanced chromosome constitutions and that the remaining 11 clones were unbalanced. The 43 balanced clones consisted of 33 clones with reciprocal translocations, 6 with inversions and 4 with both translocations and inversions. The 11 unbalanced clones were made up of 7 aneuploid clones and 4 pseudo-diploid clones. Of the 54 clones, 15 were large with frequencies of more than 25%. Contrary to general belief that cells with unbalanced chromosome constitutions have less capacity to proliferate than those with balanced ones, 8 of the 15 large clones, especially all, except 1, of the largest 6 clones were unbalanced, either aneuploid or pseudo-diploid

  14. The effects of irradiation on the mandibular bone of rats on the low calcium diet

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Eui Whan; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1992-08-15

    The purpose of this study was to investigate the changes of morphology and structure of bone tissue in the irradiated mandibular bone in rats which were fed a low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague- Dawley strain rats weighing about 150gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the group were then subdivided into two groups when the rats reached ten-week old, 16 were assigned rats for each subdivided group, exposed to irradiation. The two irradiation groups received a single dose of 20Gy in the jaws area only and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were serially termination, both sides of the dead rats mandibular bodies were removed and fixed with 10% neutral formalin. One side of the mandibular body was radiographed with a soft X-ray apparatus. Thereafter, the obtained microradiographs were observed by a light microscope. The remaining side of the mandibular bone was further decalcified and embedded in paraffin as using the general method. The specimen ectioned and stained with hematoxylin and eosin, and Rabit Anti-Human Tumor Necrosis Factor-{alpha}, observed by a light microscope. The obtained results were as follows: 1. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of the interradicular bone and mandibular body were observed and noted from the start to finish throughout the experiment in the non-irradiated rats on the low calcium diet rather than in the non-irradiated rats on the normal diet.In microscopic observation, there were marked osteolytic changes in the center of the bone marrow. 2. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of interradicular bone and mandibular body were more marked after 7 days in the irradiated rats in the low calcium diet rather than in the non

  15. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  16. Cola beverage consumption delays alveolar bone healing: a histometric study in rats

    Directory of Open Access Journals (Sweden)

    Juliana Mazzonetto Teófilo

    2010-06-01

    Full Text Available Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group or tap water (control group ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01. Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.

  17. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  18. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  19. Effects of the hexahydroxyhexane myoinositol on bone uptake of radiocalcium in rats: Effect of inositol and vitamin D2 on bone uptake of 45Ca in rats

    International Nuclear Information System (INIS)

    Angeloff, L.G.; Skoryna, S.C.; Henderson, I.W.D.

    1977-01-01

    The objective of this study was to investigate the effects of inositol and vitamin D 2 on bone uptake of 45 Ca in rats. The radioactive calcium was administered to young rats by orogastric intubation (2 μci/100 g body weight (b.wt.)) with inositol (20 mg/100 g b.wt) and/or vitamin D 2 (500 IU/100g b.wt) to normal rats. Bone uptake of 45 Ca was measured after 24 hours by standard technique. Inositol alone produced a 48% increase in calcium uptake. It is concluded that inositol significantly increases bone uptake to radioactive calcium (P>0.005). Simultaneous administration of vitamin D 2 decreases the effect of inositol considerably, while vitamin D 2 has no significant effect. (author)

  20. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  1. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  2. Second hand tobacco smoke adversely affects the bone of immature rats

    Directory of Open Access Journals (Sweden)

    Rodrigo César Rosa

    Full Text Available OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness. RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01 and a decrease of 11.25% in tibia length (p<0.001. Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001, leading to a 42.8% reduction in maximum strength (p<0.001 and a 56.7% reduction in stiffness (p<0.001. CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  3. Effects of chronic mild stress on parameters of bone assessment in adult male and female rats

    Directory of Open Access Journals (Sweden)

    Fabrício L. Valente

    Full Text Available Abstract: Osteoporosis is a multifactorial disease of high prevalence and has great impact on quality of life, because the effects on bone structure increase the risk of fractures, what may be very debilitating. Based on the observation that patients with depression have lower bone mineral density than healthy individuals, many studies have indicated that stress could be an aggravating factor for bone loss. This study evaluates the effect of a protocol of chronic mild stress (CMS on parameters of bone assessment in male and female rats. Five 5-monh-old rats of each sex underwent a schedule of stressor application for 28 days. Stressors included cold, heat, restraint, cage tilt, isolation, overnight illumination, and water and food deprivation. Five rats of each sex were kept under minimum intervention as control group. The animals were weighed at beginning and end of the period, and after euthanasia had their bones harvested. Femur, tibia and lumbar vertebrae were analyzed by bone densitometry. Biomechanical tests were performed in femoral head and diaphysis. Trabecular bone volume was obtained from histomorphometric analysis of femoral head and vertebral body, as well as of femoral midshaft cross-sectional measures. Not all parameters analyzed showed effect of CMS. However, tibial and L4 vertebral bone mineral density and cross-sectional cortical/medullar ratio of femoral shaft were lower in female rats submitted to the CMS protocol. Among male rats, the differences were significant for femoral trabecular bone volume and maximum load obtained by biomechanical test. Thus, it could be confirmed that CMS can affect the balance of bone homeostasis in rats, what may contribute to the establishment of osteopenia or osteoporosis.

  4. Enhancement of Bone Marrow-Derived Mesenchymal Stem Cell Osteogenesis and New Bone Formation in Rats by Obtusilactone A

    Directory of Open Access Journals (Sweden)

    Yi-Hsiung Lin

    2017-11-01

    Full Text Available The natural pure compound obtusilactone A (OA was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs. OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.

  5. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    Energy Technology Data Exchange (ETDEWEB)

    Umoh, Joseph U; Holdsworth, David W [Pre-Clinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, PO Box 5015, 100 Perth Drive, London, ON N6A 5K8 (Canada); Sampaio, Arthur V; Underhill, T Michael [Laboratory of Molecular Skeletogenesis, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC (Canada); Welch, Ian [Animal Care and Veterinary Services, University of Western Ontario, London, ON (Canada); Pitelka, Vasek; Goldberg, Harvey A [CIHR Group in Skeletal Development and Remodelling, University of Western Ontario, London, ON (Canada)], E-mail: jumoh@imaging.robarts.ca, E-mail: asampaio@interchange.ubc.ca, E-mail: tunderhi@interchange.ubc.ca, E-mail: iwelch@uwo.ca, E-mail: vasek.pitelka@schulich.uwo.ca, E-mail: hagoldbe@uwo.ca, E-mail: david.holdsworth@imaging.robarts.ca

    2009-04-07

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 {mu}m. At 6 weeks, the BMC in control animals (4.37 {+-} 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 {+-} 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r{sup 2} = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  6. Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1998-01-01

    Demineralized allogenic bone implanted in the subcutis or muscle of rodents causes formation of heterotopic bone by osteoinduction. The osteoinductive response may be weaker in primates than in rodents. It was suggested that the osteoinductive response of demineralized bone for clinical use could...... be enhanced by using young donors, because studies have indicated that the osteoinductive response is reduced in demineralized bone of old versus young donors. However, these findings may not represent a gradual decline in the osteoinductive property of bone matrix throughout the life span. We evaluated...... quantitatively, by uptake of strontium 85, the osteoinductive effect of demineralized bone matrix from newborn, 8-week-old (adolescent), and 8-month-old (adult) male Wistar rats implanted in the abdominal muscles of 8-week-old male Wistar rats. The osteoinductive response increased significantly with increasing...

  7. Ethylene oxide gas sterilization does not reduce the osteoinductive potential of demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1995-01-01

    It has been shown that different sterilization procedures of demineralized bone may influence its osteoinductive properties. The aim of this study was to evaluate the effect of ethylene oxide sterilization for 1, 3, and 6 hours on the osteoinductive potential of allogeneic demineralized bone...... implanted heterotopically in rats. Sixty male Wistar rats were randomly assigned to one of four groups, A through D, and four demineralized bone chips (2.8 mg) were implanted in a pouch created between the right oblique abdominal muscles in each animal. In Group A, the demineralized bone was implanted...... without prior sterilization of the material, whereas the demineralized bone implanted in Groups B, C, and D had been sterilized in ethylene oxide gas for 1, 3, or 6 hours, respectively, and aerated for 48 hours. At 4 weeks postoperatively, bone formation was evaluated quantitatively by strontium 85 uptake...

  8. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  9. Effect of dietary soy isoflavones on bone loss in ovariectomized rats

    African Journals Online (AJOL)

    Abstract. Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ... Keywords: Mineral elements, Alkaline phosphatase, Isoflavones, Bone loss, Notch pathway. This is an Open .... incubated for 3 h in 5% non-fat-milk blocking solution at ..... protect against osteopenia in ovariectomised rats.

  10. Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats.

    Science.gov (United States)

    Colli, Vilma Clemi; Okamoto, Roberta; Spritzer, Poli Mara; Dornelles, Rita Cássia Menegati

    2012-09-01

    OT was reported to be a direct regulator of bone mass in young rodents, and this anabolic effect on bone is a peripheral action of OT. The goal of this study was to investigate the peripheral action of oxytocin (OT) in the alveolar healing process in old female rats. Females Wistar rats (24-month-old) in permanent diestrus phase, received two ip (12h apart) injections of saline (NaCl 0.15M - control group) or OT (45μg/rat - treated group). Seven days later, the right maxillary incisor was extracted and analyses were performed up to 28 days of the alveolar healing process (35 days after saline or OT administration). Calcium and phosphorus plasma concentrations did not differ between the groups. The plasma biochemical bone formations markers, alkaline phosphatase (ALP) and osteocalcin were significantly higher in the treated group. Histomorphometric analyses confirmed bone formation as the treated group presented the highest mean value of post-extraction bone formation. Tartrate-resistant acid phosphatase (TRAP) was significantly reduced in the treated group indicating an anti-resorptive effect of OT. Immunohistochemistry reactions performed in order to identify the presence of osteocalcin and TRAP in the bone cells of the dental socket confirmed these outcomes. OT was found to promote bone formation and to inhibit bone resorption in old acyclic female rats during the alveolar healing process. Published by Elsevier Ltd.

  11. High-impact exercise in rats prior to and during suspension can prevent bone loss

    International Nuclear Information System (INIS)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension

  12. High-impact exercise in rats prior to and during suspension can prevent bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Frighetto, P.D. [Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, SP (Brazil); Volpon, J.B.; Shimano, A.C. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-02-02

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  13. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    Science.gov (United States)

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-02-16

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation.

  14. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Science.gov (United States)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  15. Comparison of histomorphometry and 85Sr uptake in induced heterotopic bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by 85Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of 85Sr uptake were...... with increasing mass of implanted DBM, whereas the osteogenic index did not change....

  16. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Mortensen, B T; Jensen, P O; Helledie, N

    1998-01-01

    The Brown Norwegian rat transplanted with promyelocytic leukaemic cells (BNML) has been used as a model for human acute myeloid leukaemia. We have previously shown that both the blood supply to the bone marrow and the metabolic rate decrease in relation to the leukaemic development in these rats....

  17. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  18. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Yuri Takamine

    Full Text Available The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21 rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18 rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11, OLETF exercise group (O-Ex; n = 10, LETO sedentary group (L-Sed; n = 9, and LETO exercise group (L-Ex; n = 9. All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age. In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  19. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Science.gov (United States)

    Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi

    2018-01-01

    The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  20. Constitutively Elevated Blood Serotonin Is Associated with Bone Loss and Type 2 Diabetes in Rats.

    Directory of Open Access Journals (Sweden)

    Igor Erjavec

    Full Text Available Reduced peripheral serotonin (5HT in mice lacking tryptophan hydroxylase (TPH1, the rate limiting enzyme for 5HT synthesis, was reported to be anabolic to the skeleton. However, in other studies TPH1 deletion either had no bone effect or an age dependent inhibition of osteoclastic bone resorption. The role of 5HT in bone therefore remains poorly understood. To address this issue, we used selective breeding to create rat sublines with constitutively high (high-5HT and low (low-5HT platelet 5HT level (PSL and platelet 5HT uptake (PSU. High-5HT rats had decreased bone volume due to increased bone turnover characterized by increased bone formation and mineral apposition rate, increased osteoclast number and serum C-telopeptide level. Daily oral administration of the TPH1 inhibitor (LX1032 for 6 weeks reduced PSL and increased the trabecular bone volume and trabecular number of the spine and femur in high-5HT rats. High-5HT animals also developed a type 2 diabetes (T2D phenotype with increased: plasma insulin, glucose, hemoglobin A1c, body weight, visceral fat, β-cell pancreatic islets size, serum cholesterol, and decreased muscle strength. Serum calcium accretion mediated by parathyroid hormone slightly increased, whereas treatment with 1,25(OH2D3 decreased PSL. Insulin reduction was paralleled by a drop in PSL in high-5HT rats. In vitro, insulin and 5HT synergistically up-regulated osteoblast differentiation isolated from high-5HT rats, whereas TPH1 inhibition decreased the number of bone marrow-derived osteoclasts. These results suggest that constitutively elevated PSL is associated with bone loss and T2D via a homeostatic interplay between the peripheral 5HT, bone and insulin.

  1. Bone repair after osteotomy with diamond burs and CVD ultrasonic tips – histological study in rats

    OpenAIRE

    Matuda, Fábio S.; Pagani, Clovis; Miranda, Carolina B.; Crema, Aline A. S.; Brentel, Aline S.; Carvalho, Yasmin R.

    2010-01-01

    This study histologically evaluated the behavior of bone tissue of rats submitted to osteotomy with conventional diamond burs in high speed and a new ultrasonic diamond tips system (CVD – Chemical Vapor Deposition), at different study periods. The study was conducted on 24 Wistar rats. Osteotomy was performed on the posterior paws of each rat, with utilization of diamond burs in high speed under thorough water cooling at the right paw, and CVD tips at the left paw. Animals were killed a...

  2. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  3. Effect of storage on osteoinductive properties of demineralized bone in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1994-01-01

    A requirement for the clinical use of demineralized bone is the possibility of storing the material without loss of its osteoinductive properties. Seventy-five 8-week-old male Wistar rats were randomly assigned to one of five groups of 15 rats each. Lyophilized demineralized allogeneic bone...... was prepared and implanted in the abdominal muscle either without prior storage (control group) or after storage for 9 or 14 months at -70 degrees C or 4 degrees C (four experimental groups). Bone formation in the implants was evaluated quantitatively 4 weeks postoperatively by measuring the strontium 85...

  4. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat

    OpenAIRE

    Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana

    2012-01-01

    Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was as...

  5. Platelet-rich plasma in bone repair of irradiated tibiae of Wistar rats

    International Nuclear Information System (INIS)

    Gumieiro, Emne Hammoud; Abrahao, Marcio; Jahn, Ricardo Schmitutz; Segretto, Helena; Alves, Maria Tereza de Seixas; Nannmark, Ulf; Granstroem, Goesta; Dib, Luciano Lauria

    2010-01-01

    Purpose: to evaluate the influence of PRP addition on bone repair of circular defects created in irradiated tibiae of rats by histometric analysis. Methods: sixty male Wistar rats had the right tibiae irradiated with 30 Gy. After 30 days monocortical defects were created and platelet-rich plasma as applied in 30 rats. In the control group defects were created but not filled. The animals were sacrificed after 4, 7, 14, 21, 56 and 84 days and the tibiae removed for histological processing. Results: there was a tendency in the PRP group to increased bone neoformation from 14-days to 84-days; in the control group increased bone neoformation was not seen after 21 days or later. Conclusion: the addition of platelet-rich plasma had a beneficial effect in the initial cellular regeneration period and enhanced bone formation in later periods when compared to control. (author)

  6. Two Different Isomers of Vitamin E Prevent Bone Loss in Postmenopausal Osteoporosis Rat Model

    Directory of Open Access Journals (Sweden)

    Norliza Muhammad

    2012-01-01

    Full Text Available Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV and trabecular number (Tb.N and an increase in trabecular separation (Tb.S. The increase in osteoclast surface (Oc.S and osteoblast surface (Ob.S in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.

  7. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    Science.gov (United States)

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  8. Effects of 15 Gy 137Cs γ-rays radiation of rat kidneys on bone metabolism

    International Nuclear Information System (INIS)

    Gao Linfeng; Wang Hongfu; Xu Peikang; Xu Aihong; Zhu Feipeng

    2003-01-01

    The work was to observe the effects of γ-rays radiation of rat kidneys on rat bone metabolism. Ten male SD rats aged 6 months were irradiated at their kidneys with 15 Gy 137 Cs γ-rays (0.91 Gy/min) and were raised for 3 months after the radiation. On collecting 24h urine of rats they were sacrificed for serum, kidney, spine, femur and tibia exams. Results show that the γ-ray irradiation could induce the pathological injuries of renal glomeruli, tubules and mesenchyme. Comparing to the control group, significant changes were found in the irradiated group in terms of their blood urea, nitrogen creatinine, urinal β-2 microglobulin, serum Ca and P, urine Ca and P, activity of serum alkaline phosphatase, 1,25 (OH) 2 D 3 , serum PTH, urine PYD/creatinine, bone mineral density (BMD) of lumbar vertebras, mineral mass of No.4 lumbar vertebra, BMD, dehydrated weight and ash weight of right femur. Marked changes were also found in bone trabecula volume, average bone trabecula thick and the ratio of nodes/points, and rate of mineralization deposition. It was concluded that renal dysfunction and metabolic bone disease might occur with the character of accelerated bone turnover and decreased bone mass

  9. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  10. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  11. Heterogeneity within the spleen colony-forming cell population in rat bone marrow

    International Nuclear Information System (INIS)

    Martens, A.C.; van Bekkum, D.W.; Hagenbeek, A.

    1986-01-01

    The pluripotent hemopoietic stem cell (HSC) of the rat can be enumerated in a spleen colony assay (SCA) in rats as well as mice. After injection of rat bone marrow into lethally irradiated mice, macroscopically visible spleen colonies (CFU-S) are found from day 6 through 14, but the number varies on consecutive days. In normal bone marrow a constant ratio of day-8 to day-12 colony numbers is observed. However, this ratio is changed after in vivo treatment of rats with cyclophosphamide, as well as after in vitro treatment of rat bone marrow with cyclophosphamide derivatives. This indicates that the CFU-S that form colonies on day 8 react differently to this treatment than the CFU-S that form colonies on day 12, and suggests heterogeneity among the CFU-S population. Posttreatment regrowth of day-8 and day-12 CFU-S is characterized by differences in population-doubling times (Td = 0.85 days vs 1.65 days). Another argument in support of the postulate of heterogeneity within the rat CFU-S population is derived from the fact that (in contrast to normal rat spleen) the spleen of leukemic rats contains high numbers of CFU-S that show a ratio of day-8 to day-12 CFU-S of 4.5, which is different than that observed for a CFU-S population in normal bone marrow (a ratio of 2.4). It is concluded that, in rat hemopoiesis, two populations of spleen colony-forming cells can be distinguished using the rat-to-mouse SCA. This indicates that mouse and rat hemopoiesis are comparable in this respect and that heterogeneity in the stem cell compartment is a general phenomenon

  12. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Bryan D. Johnston

    2015-01-01

    Full Text Available In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed.

  14. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  15. Therapeutic effects of radix dipsaci, pyrola herb, and cynomorium songaricum on bone metabolism of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Liu Meijie

    2012-05-01

    Full Text Available Abstract Background The objective of this study was to evaluate the effects of herbal medicines, such as Radix Dipsaci (RDD, Pyrola Herb (PHD, and Cynomorium songaricum decoction (CSD, on osteoporotic rats induced by ovariectomy (OVX. Methods OVX or sham operations were performed on 69 virgin Wistar rats that were divided into six groups: sham (sham, n = 12, OVX control group (OVX, n = 12, and OVX rats with treatments (diethylstilbestrol, E2, n = 12; RDD, n = 11, PHD, n = 11, and CSD, n = 11. Non-surgical rats served as normal control (NC, n = 12. The treatments began four weeks after surgery and lasted for 12 weeks. Bone mass and bone turnover were analyzed by histomorphometry. Levels of protein expression and mRNA of OPG and RANKL in osteoblasts (OB and bone marrow stromal cells (bMSC were evaluated by immunohistochemistry and in situ hybridization. Results Compared to NC and sham rats, trabecular bone formation was significantly reduced in OVX rats, but restored in E2-treated rats. Treatment with either RDD or PHD enhanced trabecular bone formation remarkably. No significant change of bone formation was observed in CSD-treated rats. OPG expression of protein and mRNA was reduced significantly in OB and bMSC of OVX control rats. RANKL expression of protein and mRNA was increased significantly in OB and bMSC of OVX control rats. These effects were substantially reversed (increased in OPG and decreased in RANKL by treatment with E2, RDD, or PHD in OB and bMSC of OVX rats. No significant changes in either OPG or RANKL expression were observed in OB and bMSC of OVX rats treated with CSD. Conclusions Our study showed that RDD and PHD increased bone formation by stimulating overexpression of OPG and downregulation of RANKL in OB and bMSC. This suggests that RDD and PHD may be used as alternative therapeutic agents for postmenopausal osteoporosis.

  16. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  17. Bone growth during rapamycin therapy in young rats

    Directory of Open Access Journals (Sweden)

    He Yu-Zhu

    2009-01-01

    Full Text Available Abstract Background Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties. Methods Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption. Results At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by histone-4 and mammalian target of rapamycin (mTOR expression. A reduction in parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP and an increase in Indian hedgehog (Ihh expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the receptor activator of nuclear factor kappa β ligand (RANKL and vascular endothelial growth factor (VEGF expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks. Conclusion When given to young rats, 2 weeks of rapamycin

  18. Effects of different varieties of Maca (Lepidium meyenii) on bone structure in ovariectomized rats.

    Science.gov (United States)

    Gonzales, Carla; Cárdenas-Valencia, Isaias; Leiva-Revilla, Johanna; Anza-Ramirez, Cecilia; Rubio, Julio; Gonzales, Gustavo F

    2010-01-01

    This study was designed to determine the effect of different varieties of maca (Lepidium meyenii) on bone structure in ovariectomized (OVX) rats. 36 female rats were randomly divided into 6 groups: sham and OVX rats treated with vehicle, estradiol (40 microg/kg), black, yellow or red maca (63 mg/ml) for 4 weeks. At the end of the treatment, uterine weight, femoral bone and lumbar vertebra histomorphology were assessed. Ovariectomy reduced weight, diameter and width of the femoral bone. Estradiol, black and red maca treatment reduced the effect of ovariectomy on these variables. Histological analyses revealed that estradiol, black and red maca treatments reversed the effect of ovariectomy by increasing the trabecular bone area in the second lumbar vertebra. Uterine weight was reduced in OVX rats, and estradiol but neither black nor red maca increased uterine weight. Red and black maca have protective effects on bone architecture in OVX rats without showing estrogenic effects on uterine weight. 2010 S. Karger AG, Basel.

  19. Influence of ferutinin on bone metabolism in ovariectomized rats. II: Role in recovering osteoporosis

    Science.gov (United States)

    Ferretti, Marzia; Bertoni, Laura; Cavani, Francesco; Zavatti, Manuela; Resca, Elisa; Carnevale, Gianluca; Benelli, Augusta; Zanoli, Paola; Palumbo, Carla

    2010-01-01

    The aim of the present investigation, which represents an extension of a previous study, was to investigate the effect of ferutinin in recovering severe osteoporosis due to estrogen deficiency after rat ovariectomy and to compare phytoestrogen effects with those of estrogens commonly used in hormone replacement therapy (HRT) by women with postmenopausal osteoporosis. The animal model used was the Sprague–Dawley ovariectomized rat. Ferutinin was orally administered (2 mg kg−1 per day) for 30 or 60 days starting from 2 months after ovariectomy (i.e. when osteoporosis was clearly evident) and its effects were compared with those of estradiol benzoate (1.5 μg per rat twice a week, subcutaneously injected) vs. vehicle-treated ovariectomized (OVX) and sham-operated (SHAM) rats. Histomorphometric analyses were performed on trabecular bone of lumbar vertebrae (4th and 5th) and distal femoral epiphysis, as well as on cortical bone of femoral diaphysis. Bone histomorphometric analyses showed that ferutinin seems to display the same effects on bone mass recorded with estradiol benzoate, thus suggesting that it could enhance the recovery of bone loss due to severe estrogen deficiency in OVX rats. On this basis, the authors propose listing ferutinin among the substances representing a potential alternative for the treatment of postmenopausal osteoporosis, which occurs as a result of estrogen deficiency. PMID:20492429

  20. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Deborah Queiroz de; Neves, Ellen Gaby; Boscolo, Frab Norberto; Almeida, Solange Maria de [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Department of Oral Diagnosis. Oral Radiology Area; Ramos-Perez, Flavia Maria de Moraes [Federal University of Pernambuco, Recife, PE (Brazil). Department of Clinical and Preventive Dentistry; Marques, Marcelo Rocha [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Division of Histology. Department of Morphology

    2012-07-01

    This study evaluated protection by selenium (Se) in the bone repair process in ovariectomized rats after irradiation. For such purpose, 80 ovariectomized female Wistar rats were randomly divided into 4 experimental groups: ovariectomized (Ov), Ov/Se, Ov/irradiated (Irr) and Ov/ Se/Irr. A bone defect was created on the tibia of all animals 40 days after ovariectomy. Two days after surgery, only the Ov/Se and Ov/Se/Irr rats received 0.8 mg Se/kg. Three days after surgery, only the Ov/Irr and Ov/Se/Irr rats received 10 Gy of x-rays on the lower limb region. The animals were euthanized at 7, 14, 21 and 28 days after surgery to assess the repair process, which was evaluated by analysis of trabecular bone number (Masson Trichrome) and birefringence analysis (Picrosirius). It was possible to observe a delay in the bone repair process in the ovariectomized/irradiated group and similarity between the ovariectomized, Ov/Se and Ov/Se/Irr groups. In conclusion, sodium selenite exerted a radioprotective effect in the bone repair of tibia of ovariectomized rats without toxicity. (author)

  1. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  2. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P smoke on bone healing may represent a new concern for implant success/failure.

  3. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  4. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Reconstructive Effects of Percutaneous Electrical Stimulation Combined with GGT Composite on Large Bone Defect in Rats

    Directory of Open Access Journals (Sweden)

    Bo-Yin Yang

    2013-01-01

    Full Text Available Previous studies have shown the electromagnetic stimulation improves bone remodeling and bone healing. However, the effect of percutaneous electrical stimulation (ES was not directly explored. The purpose of this study was to evaluate effect of ES on improvement of bone repair. Twenty-four adult male Sprague-Dawley rats were used for cranial implantation. We used a composite comprising genipin cross-linked gelatin mixed with tricalcium phosphate (GGT. Bone defects of all rats were filled with the GGT composites, and the rats were assigned into six groups after operation. The first three groups underwent 4, 8, and 12 weeks of ES, and the anode was connected to the backward of the defect on the neck; the cathode was connected to the front of the defect on the head. Rats were under inhalation anesthesia during the stimulation. The other three groups only received inhalation anesthesia without ES, as control groups. All the rats were examined afterward at 4, 8, and 12 weeks. Radiographic examinations including X-ray and micro-CT showed the progressive bone regeneration in the both ES and non-ES groups. The amount of the newly formed bone increased with the time between implantation and examination in the ES and non-ES groups and was higher in the ES groups. Besides, the new bone growth trended on bilateral sides in ES groups and accumulated in U-shape in non-ES groups. The results indicated that ES could improve bone repair, and the effect is higher around the cathode.

  6. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  7. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  8. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Science.gov (United States)

    Liu, JunLi; Wang, YiHu; Song, ShuJun; Wang, XiJie; Qin, YaYa; Si, ShaoYan; Guo, YanChuan

    2015-01-01

    Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  9. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    JunLi Liu

    Full Text Available Collagen peptides (CPs and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8 for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg; OVX + calcium citrate (75 mg/kg. After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  10. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  11. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  12. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Talsnes, O

    1994-01-01

    Some studies have suggested that membranous bone grafts undergo less resorption than endochondral grafts, and faster revascularization of the former has been proposed as the explanation. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone...... implanted in the back muscles of young Lewis rats. As a measure of the quantity of cancellous bone in grafts before implantation, the ratio of the total area of soft-tissue spaces to the total area of the graft was measured histomorphometrically. Revascularization in grafts 3 weeks postoperatively...... was evaluated by deposit of 141Ce-labeled microspheres. Both the quantity of cancellous bone (before implantation) and the revascularization (3 weeks postoperatively) were greater in the mandibular and iliac bone grafts than in the calvarial and tibia diaphyseal grafts. The results suggest that the anatomical...

  13. Regeneration of calvarial defects by a composite of bioerodible polyorthoester and demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    A study was performed to evaluate regeneration of defects in rat calvaria either unfilled or filled with a bioerodible polyorthoester only, demineralized bone only, or a composite of both. At 4 weeks, histological and radiographic studies showed that defects filled with a composite of bioerodible...... polyorthoester and demineralized bone or demineralized bone alone were bridged by bone. Unfilled defects or defects filled with polyorthoester only did not heal. The polyorthoester caused slight inflammation that subsided by 3 weeks, and only traces of the filler could be detected at 4 weeks. The polyorthoester...... provided local hemostasis when used either alone or in composites with demineralized bone. The composite implant was moldable, easily contoured, and technically easier to use than demineralized bone alone....

  14. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    Directory of Open Access Journals (Sweden)

    Yusuke Uto

    Full Text Available Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD, Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively, as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution

  15. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  16. Effects of amlodipine on bone metabolism in male albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Iveta Gradošová

    2011-01-01

    Full Text Available Amlodipine (dihydropyridine-type calcium channel blocker is a widely used agent for the treatment of hypertension in human and veterinary medicine but detailed information about its effects on bone metabolism are missing. Therefore, the aim of our study was to investigate the effect of amlodipine on bone metabolism in male albino Wistar rats. Amlodipine (0.3 mg/100 g body weight; gavage was administered to 8 rats for 8 weeks. Control group (n = 8 received aqua pro inj. (0.2 ml/100 g body weight; gavage. Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I and aminoterminal propeptide of procollagen type I in serum, and of bone alkaline phosphatase (BALP in both serum and bone homogenate were measured by enzyme immunoassay. We investigated the expression of bone morphogenetic protein 2 (BMP-2 in proximal tibia using Western blotting, and bone mineral density was measured by Dual-energy X-ray Absorptiometry in lumbar and caudal vertebrae and in femoral areas. Mechanical properties of the femurs were measured by three-point bending of the shaft and compression testing of the femoral neck. After 8 weeks of amlodipine administration there was a significant decrease in serum concentrations of BALP (p = 0.0009 and CTX-I (p = 0.003, and the content of BALP in bone homogenate (p = 0.026 compared to the control. In addition, Western blot analysis indicated increased BMP-2 protein concentration after amlodipine administration. Our findings suggest that amlodipine has a retarding influence on bone metabolism in rats by decreasing bone turnover, which probably in consequence increases expression of BMP-2.

  17. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat.

    Science.gov (United States)

    Takahashi, Takahiro; Watanabe, Takehiro; Nakada, Hiroshi; Sato, Hiroki; Tanimoto, Yasuhiro; Sakae, Toshiro; Kimoto, Suguru; Mijares, Dindo; Zhang, Yu; Kawai, Yasuhiko

    2016-01-01

    The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O) and magnesium and zinc chlorides (MgCl 2 and ZnCl 2 , respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.

  18. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  19. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  20. Preventive effects of running exercise on bones in heavy ion particle irradiated rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Iida, Haruzo; Yan, Xueming

    2002-01-01

    We examined the effects of running exercise on preventing decreases in bone mineral and tissue volume after heavy ion particle irradiation in rats. Male Wistar rats experienced whole-body irradiation by heavy ion particle beam (C-290 MeV) at doses of 0.5, 1.0, and 5.0 Gy and were divided into voluntary running groups and control groups. Rats in the running groups ran on the treadmill 15 m/mim, 90 min/day for 35 days after exposure. At the end of the experiment, a tibia was obtained from each rat for measurement of bone mineral density (BMD) and cross-sectional area, strength strain index, and bone histomorphometric analysis. The weights of muscles and concentration of serum calcium were measured. Total BMD and trabecular BMD in the metaphysis and cortical BMD of the diaphysis of tibia in the running groups increased. Bone volume and trabecular thickness increased while trabecular separation decreased in the running groups compared to those in the control groups at respective doses. However, the osteoid surface and eroded surface varied in the running groups compared to those of the respective corresponding groups. The dynamic parameters such as mineralizing surface, mineral apposition rate, and bone formation rate in the running groups were varied, probably due to the differences in radiation-induced sensitivities of bones following radiation exposure. The overall results suggest that running exercise might have a beneficial effect on preventing bone mineral loss and changes in bone structure induced by space radiation, but it is necessary to examine the optimal conditions of running exercise response to doses. (author)

  1. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    Directory of Open Access Journals (Sweden)

    Ellen Neven

    Full Text Available The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF. In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  2. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    Science.gov (United States)

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  4. Synergistic effects of radiation and immobilization of hind limb on bone in rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Ikeda, Mizuyo; Nakamura, Mariko

    2008-01-01

    Synergistic effects of radiation (x-ray) and immobilization of hind limbs on bone in rats were examined, and the preventive effect of milk basic protein (MBP) on radiation effects was tested. One hundred and twenty female rats were divided into three large groups and then each group was divided into four small groups such as the no treatment, oral administered MBP, immobilization (IM) of hind limb, and IM+MBP groups. The rats of two large groups were exposed to a whole-body dose of 3 Gy or 6 Gy of x-ray. Half of the rats of each large group were sacrificed at 1 and 3 months, respectively. Muscle weights and bone mineral density decreased significantly in the IM groups following radiation, and bone volume in the proximal metaphysis of the tibia decreased significantly in all of the radiation groups and most in the radiation+IM group at 1 month. The bone volume recovered in all of the radiation groups except for the radiation+IM groups. The results indicated that the bone damages increased more as a result of the synergistic effects of radiation and IM than as a result of either of IM or radiation alone, and the harmful damage caused by IM was much greater than that of radiation. (author)

  5. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  6. Histometric study of alveolar bone healing in rats treated with the nonsteroidal anti-inflammatory drug nimesulide.

    Science.gov (United States)

    Teófilo, Juliana Mazzonetto; Giovanini, Gabriela Salgueiro; Fracon, Ricardo Nogueira; Lamano, Teresa

    2011-04-01

    There is extensive experimental and clinical evidence in the orthopedic area that prolonged use of nonselective (inhibitor of both cyclooxygenases 1 and 2) nonsteroidal anti-inflammatory drugs can hinder long bone fracture healing, spinal fusion rate, and new bone formation around implants. The purpose of the present study was to investigate whether nimesulide (Nimesulida, Medley S.A., Campinas, SP, Brazil), a preferential cyclooxygenase-2 inhibitor, can hinder alveolar bone healing, in rats. Treated rats received oral doses (5 mg/kg/rat/day) of nimesulide from the day of tooth extraction until euthanasia 2 weeks later and control rats received tap water (n = 5 per group). The volume of neoformed bone inside the alveolar socket was estimated in semiserial longitudinal histological sections by a differential point-counting method, and the significance of the difference between groups was analyzed by Student t test (P alveolar bone healing in rats.

  7. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment...... mass ex vivo.RESULTS: Most (90%) of the rats survived the study period (8 months); six rats died from bowel obstruction at the level of the entero-anastomosis and four had to be killed because of persistent severe diarrhoea. Vital intestinal mucosa was found in all augmented bladders. There were...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  8. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  9. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    Directory of Open Access Journals (Sweden)

    Ponzoni Deise

    2009-01-01

    Full Text Available Abstract Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field.

  10. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    Marble, G.; Valderas, R.

    1966-01-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [fr

  11. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-01-01

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n = 12) to 1000 ppm lead acetate in drinking water for 90 days while control group (n = 8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ + Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.

  12. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  14. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  15. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  16. Bone histomorphometric study of young rats following oestrogen ...

    African Journals Online (AJOL)

    Osteoporosis is a global problem which results in increased fractures risk. The reports from earlier studies were inconsistent with the aging factor as well as the time which is needed to induce bone loss post-ovariectomy. This study aimed to determine the short-term effects of estrogen deficiency on bone structural ...

  17. Osteoporotic rat models for evaluation of osseointegration of bone implants

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Beucken, J.J.J.P van den; Jansen, J.A.

    2014-01-01

    Osseointegration of dental and orthopedic bone implants is the important process that leads to mechanical fixation of implants and warrants implant functionality. In view of increasing numbers of osteoporotic patients, bone implant surface optimization strategies with instructive and drug-loading

  18. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  19. Effect of music therapy on pain behaviors in rats with bone cancer pain.

    Science.gov (United States)

    Gao, Ji; Chen, Shaoqin; Lin, Suyong; Han, Hongjing

    2016-01-01

    To investigate the effects of music therapy on the pain behaviors and survival of rats with bone cancer pain and analyze the mediating mechanism of mitogen activated protein kinase (MAPK) signal transduction pathway. Male Wistar rats aged 5-8 weeks and weighing 160-200 g were collected. The rat models of colorectal cancer bone cancer pain was successfully established. Animals were divided into experimental and control group, each with 10 rats. The animals in the observation group were given Mozart K448 sonata, sound intensity of 60 db, played the sonata once every 1 hr in the daytime, stopped playing during the night, and this cycle was kept for 2 weeks. On the other hand, rats in the control group were kept under the same environment without music. Animals in the experimental group consumed more feed and gained significant weight in comparison to the control group. The tumor volume of the experimental group was significantly smaller than that of the control group (pMusic therapy may improve the pain behaviors in rats with bone cancer pain, which might be related with low expression of p38á and p38β in the MAPK signal transduction pathway.

  20. Longitudinal as well as age-matched assessments of bone changes in the mature ovariectomized rat model

    NARCIS (Netherlands)

    Leitner, M.M.; Tami, A.E.; Montavon, P.M.; Ito, K.

    2009-01-01

    In the past, bone loss in the ovariectomized (OVX) osteoporotic rat model has been monitored using in vitro micro-computed tomography (micro-CT) to assess bone structure (bone volume/total volume, BV/TV). The purpose of this study was to assess the importance of baseline control and sham groups in

  1. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Rao, J S; Rao, V H [Central Leather Research Inst., Madras (India)

    1981-01-01

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of /sup 3/H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of /sup 3/H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls.

  2. Uranium deposition in bones of Wistar rats associated with skeleton development.

    Science.gov (United States)

    Rodrigues, G; Arruda-Neto, J D T; Pereira, R M R; Kleeb, S R; Geraldo, L P; Primi, M C; Takayama, L; Rodrigues, T E; Cavalcante, G T; Genofre, G C; Semmler, R; Nogueira, G P; Fontes, E M

    2013-12-01

    Sixty female Wistar rats were submitted to a daily intake of ration doped with uranium from weaning to adulthood. Uranium in bone was quantified by the SSNTD (solid state nuclear track detection) technique, and bone mineral density (BMD) analysis performed. Uranium concentration as a function of age exhibited a sharp rise during the first week of the experiment and a drastic drop of 70% in the following weeks. Data interpretation indicates that uranium mimics calcium. Results from BMD suggest that radiation emitted by the incorporated Uranium could induce death of bone cells. © 2013 Elsevier Ltd. All rights reserved.

  3. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  4. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  5. Effects of high-intensity swimming training on the bones of ovariectomized rats.

    Science.gov (United States)

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-09-01

    This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.

  6. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    Science.gov (United States)

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. PTH prevents the adverse effects of focal radiation on bone architecture in young rats.

    Science.gov (United States)

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A; Altman, Allison R; Cengel, Keith A; Liu, X Sherry; Qin, Ling

    2013-08-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. On the reliability of archaeological rat bone for radiocarbon dating in New Zealand

    International Nuclear Information System (INIS)

    Higham, T.F.G.; Petchey, F.J.

    2000-01-01

    Holdaway and Beavan (1999) discussed the radiocarbon dating of bone of various species from the site of Hukanui Pool, Hawkes Bay. We question their conclusion that two apparently reliable rat bone gelatin determinations from the Hukanui Pool site provide support for the entire suite of rat determinations from previously dated 'natural' sites. We present evidence that contradicts their conclusion that bone material from the broad range of archaeological midden sites is generally less well-preserved than bone from 'natural' caves in New Zealand such as Hukanui Pool. We show that when dates from archaeological bone from Pleasant River and Shag River Mouth are evaluated, the state of preservation is comparable with material from the 'natural' site of Hukanui Pool, and should provide accurate and reproducible radiocarbon determinations. Our conclusion has serious implications for the acceptance of the model proposed by Holdaway (1999), because if archaeological bone is well-preserved but yields unreliable and unreproducible results, it is likely that well-preserved 'natural' bone is similarly affected. (author)

  9. Effects of long-term administration of pantoprazole on bone mineral density in young male rats.

    Science.gov (United States)

    Matuszewska, Agnieszka; Nowak, Beata; Rzeszutko, Marta; Zduniak, Krzysztof; Szandruk, Marta; Jędrzejuk, Diana; Landwójtowicz, Marcin; Bolanowski, Marek; Pieśniewska, Małgorzata; Kwiatkowska, Joanna; Szeląg, Adam

    2016-10-01

    Epidemiological studies suggest that long-term administration of proton pump inhibitors (PPIs) may decrease bone mineral density (BMD) and increase the risk of osteoporotic fractures. The aim of the study was to assess the influence of pantoprazole on bone metabolism in growing rats. The experiment was carried out on twenty-four young male Wistar rats divided into two groups receiving either pantoprazole at the dose of 3mg/kg or vehicle for 12 weeks. Femoral bone mineral density (BMD) and bone histomorphometry were assessed. Serum total calcium, inorganic phosphate and markers of bone turnover were measured. In pantoprazole-treated rats a decreased BMD was detected (0.2618±0.0133g/cm(2)vs. 0.2715±0.0073g/cm(2), p<0.05). Bone histomorphometry revealed a decrease in growth plate thickness (G.Pl.RTh.) (161.0±27.8μm vs. 195.0±20.8, p<0.05) in pantoprazole-treated animals. Serum total calcium level and osteocalcin concentrations were decreased in the pantoprazole-treated group (9.62±0.55mg/dl vs. 10.15±0.38mg/dl, p<0.05 and 242.7±44.4pg/ml vs. 342.5±123.3pg/ml, p<0.05, respectively). We observed that PPIs might have a negative impact on bone formation in growing rats mainly due to their inhibitory effects on the gastric proton pump, with probable deterioration of calcium absorption and decrease in growth plate thickness. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  10. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    Energy Technology Data Exchange (ETDEWEB)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2013-04-15

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.

  11. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    International Nuclear Information System (INIS)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan

    2013-01-01

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP

  12. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    International Nuclear Information System (INIS)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun; Wang, Zhenming; Lu, Xiong; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2015-01-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion

  13. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China); Wang, Zhenming; Lu, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan (China); Yimin [Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Oda, Kimimitsu [Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata (Japan); Amizuka, Norio [Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Li, Minqi, E-mail: liminqi@sdu.edu.cn [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China)

    2015-04-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion.

  14. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  15. Topical Treatment with Xiaozheng Zhitong Paste (XZP Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    Directory of Open Access Journals (Sweden)

    Yanju Bao

    2015-01-01

    Full Text Available To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05. Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all. Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.

  16. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment.

    Science.gov (United States)

    Marković, Dejan; Jokanović, Vukoman; Petrović, Bojan; Perić, Tamara; Vukomanović, Biserka

    2014-05-01

    Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA) obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material's particles took place after 25 weeks. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects.

  17. Study on {sup 41}Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hongtao; Pang, Fangfang [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang [China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Pang, Yijun [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Yang, Xianlin [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); Ruan, Xiangdong [College of Physics, Guangxi University, Nanning 530004 (China); Liu, Manjun; Xia, Chunbo [Guiin Medical University, Guilin 541004 (China)

    2015-10-15

    The annual incidence of new cancer patients in China is about 2 million, 30–40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of {sup 41}Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague–Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl{sub 2} solution (containing 1.4 mg Ca and 5nCi {sup 41}Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for {sup 41}Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of {sup 41}Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that {sup 41}Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  18. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  19. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    Science.gov (United States)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  20. Mechanism of donor to host tolerance in rat bone marrow chimeras

    International Nuclear Information System (INIS)

    Tutschka, P.; Schwerdtfeger, R.; Slavin, R.; Santos, G.

    1977-01-01

    Lewis rats were conditioned with cyclophosphamide and grafted with AgB incompatible bone marrow. They were examined 250 days after transplantation and demonstrated to be healthy complete chimeras. Marrow cells from these chimeras were infused into lethally irradiated ACI, Lewis and BN recipients. Graft-versus-host disease occurred only in the BN rats. Other chimeric rats were given no treatment, busulfan, CY, or total body irradiation prior to the infusion of normal ACI BM. GvHD occurred only in animals given CY or TBI. Normal Lewis rats were conditioned with TBI and given ACI BM. In addition, they received whole blood, irradiated blood, or serum from chimeric rats. GvHD developed in all animals except those given unirradiated chimeric blood. These studies suggest that suppressor cell populations, sensitive to immunosuppression, are likely the fundamental mechanism of recovery from GvHD

  1. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Huddleston Slater, J. J. R.; Gielkens, P. F. M.; de Jong, J. R.; Grijpma, D. W.; Bos, R. R. M.

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a

  2. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A.C.; Huddelston Slater, J.J.R.; Gielkens, P.F.M.; de Jong, J.R.; Grijpma, Dirk W.; Bos, R.R.M.

    2012-01-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a

  3. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  4. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    International Nuclear Information System (INIS)

    Rocha, Anna Silvia Setti da; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria; Manzi, Flavio Ricardo; Chicareli, Mariliani

    2009-01-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  5. Impact of cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio R; Todescan, Sylvia; Shah, Adnan; Rosa, Bruno T; Tunes, Urbino da R; Cesar Neto, Joao B

    2011-11-01

    Cannabis sativa (marijuana) can interfere with bone physiopathology because of its effect on osteoblast and osteoclast activity. However, its impact on periodontal tissues is still controversial. The present study evaluates whether marijuana smoke affects bone loss (BL) on ligature-induced periodontitis in rats. Thirty male Wistar rats were used in the study. A ligature was placed around one of the mandible first molars (ligated teeth) of each animal, and they were then randomly assigned to one of two groups: control (n = 15) or marijuana smoke inhalation ([MSI] for 8 minutes per day; n = 15). Urine samples were obtained to detect the presence of tetrahydrocannabinol. After 30 days, the animals were sacrificed and decalcified sections of the furcation area were obtained and evaluated according to the following histometric parameters: bone area (BA), bone density (BD), and BL. Tetrahydrocannabinol was positive in urine samples only for the rats of the MSI group. Non-significant differences were observed for unligated teeth from both groups regarding BL, BA, and BD (P >0.05). However, intragroup analysis showed that all ligated teeth presented BL and a lower BA and BD compared to unligated teeth (P <0.05). The intergroup evaluation of the ligated teeth showed that the MSI group presented higher BL and lower BD (P <0.05) compared to ligated teeth from the control group. Considering the limitations of this animal study, cannabis smoke may impact alveolar bone by increasing BL resulting from ligature-induced periodontitis.

  6. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats.

    Science.gov (United States)

    Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Linhares, Camila Rodrigues Borges; Bergamini, Mariana Lobo; Rocha, Flaviana Soares; Morais, Richarlisson Borges de; Balbi, Ana Paula Coelho; Hiraki, Karen Renata Nakamura; Dechichi, Paula

    2018-01-29

    The aim of this study was evaluate the effect of HBO on diabetic rats. Twenty rats were distributed into four groups (n = 5): Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin, and bone defects were created in both femurs in all animals. HBO therapy began immediately after surgery and was performed daily in the CH and DH groups. After 7 days, the animals were euthanized. The femurs were removed, demineralized, embedded in paraffin, and histologic images were analyzed. Qualitative histologic analyses showed more advanced stage bone regeneration in control groups (C and CH) compared with diabetic groups (D and DH). Histomorphometric analysis showed significantly increased bone neoformation in CH compared with the other groups (p  0.05). The mast cell population increased in CH compared with the other groups (C, D, and DH) (p < 0.05). The mast cell population did not differ between D and DH Groups. This study showed that HBO therapy improved early bone regeneration in diabetic rats and increased the mast cell population only in non-diabetic animals. HBO was shown to be important treatment for minimizing deleterious effects of diabetes on bone regeneration.

  7. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Anna Silvia Setti da [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR, (Brazil). Dept. of Physics; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Oral Diagnosis], e-mail: flaviamaria@fop.unicamp.br; Manzi, Flavio Ricardo [Pontifical Catholic University of Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil). Dept. of Stomatology; Chicareli, Mariliani [State Univ. of Maringa, PR (Brazil). Dept. of Oral Diagnosis

    2009-07-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  8. Experimental study on healing process of rat mandibular bone fracture examined by radiological procedures

    International Nuclear Information System (INIS)

    Iuchi, Yukio; Furumoto, Keiichi

    1994-01-01

    The healing process of rat mandibular fractures was stereoscopically observed daily, using plain roentgenography in the lateral-oblique and tooth axis directions and bone scintigraphy using 99m-Tc-methylene diphosphoric acid (Tc-99m-MDP). The findings were compared with microradiograms of regional polished specimens. X-ray findings included the following. Up to 3 days after bone fracture, the fracture mesiodistally showed distinct radiolucency, with sharp and irregular fracture stump. Radiopacity of the fracture site gradually increased 7 days or later, and bone trabecular formation by callus and stump bridging started to occur at 14 days. Findings similar to those in the control group were observed 49 days or later. The inside was difficult to differentiate, irrespective of the observation time. Bone scans in the mesiodistal and buccolingual planes revealed tracer uptake in the areas of mandibular and soft tissue damage one day after bone fracture. Tracer uptake began to be seen in the fracture site 3 days later, and became marked at 14 days. Then Tc-99m DMP began to be localized and returned to the findings similar to those at 49 days. Bone scanning tended to show wider areas earlier than roentgenography. Microradiographic mesiodistal examination revealed distinct radiopacy of the fracture line for 3 days after bone fracture. Seven days later, bone resorption cavity occurred in the cortical bone around the fracture stump, along with neogenesis of callus. Neogenesis and calcification began to occur gradually, and 14 days later, the fracture osteoremodeling of the internal bone trabeculae was observed. Bone trabecular formation within the bone, however, occurred later. (N.K.)

  9. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats

    Directory of Open Access Journals (Sweden)

    Siti Sarah Mohamad Zaid

    2012-07-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. METHODS: Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8: four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum. The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey. Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water, and the baseline control group was sacrificed without treatment. RESULTS: All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV, trabecular thickness (Tb.Th and trabecular number (Tb.N and a significant decrease in inter-trabecular space (Tb.Sp compared with the ovariectomized control group. The trabecular thickness (Tb.Th in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. CONCLUSION: In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

  10. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats.

    Science.gov (United States)

    Zaid, Siti Sarah Mohamad; Sulaiman, Siti Amrah; Othman, Nor Hayati; Soelaiman, Ima-Nirwana; Shuid, Ahmad Nazrun; Mohamad, Norazlina; Muhamad, Norliza

    2012-07-01

    The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment. All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

  11. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  12. Biomechanical and microstructural benefits of physical exercise associated with risedronate in bones of ovariectomized rats.

    Science.gov (United States)

    Shimano, Roberta Carminati; Macedo, Ana Paula; Falcai, Maurício José; Ervolino, Edilson; Shimano, Antônio Carlos; Issa, João Paulo Mardegan

    2014-06-01

    Several treatments have been developed aiming the prevention of bone loss. There are discussions about the best prophylactic and therapeutic procedures for osteoporosis. This study evaluated the effects of physical exercise associated with risedronate as a prophylactic and therapeutic procedure in osteopenic bones of rats submitted to ovariectomy. We used 48 Wistar rats divided into: ovariectomized or subjected to sham surgery. Ovariectomized rats were divided into the following sub-groups: OVX, 12 weeks sedentary; OVX-EX, treadmill training for 12 weeks; OVX-RA, 12 weeks with risedronate administration; and OVX-EX-RA, 12 weeks with risedronate administration and treadmill training. Rats subjected to sham surgery were divided into the following sub-groups: SH, 12 weeks sedentary; SH-EX, treadmill training for 12 weeks; SH-RA, 12 weeks with risedronate administration; and SH-EX-RA, 12 weeks with risedronate administration and training on the treadmill. The effectiveness of the treatment was evaluated in tibias using biomechanical, radiological, histomorphometric, and immunohistochemical analyses. Data were analyzed by statistical tests, with significance level of P bones of ovariectomized rats. © 2014 Wiley Periodicals, Inc.

  13. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    Science.gov (United States)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p small BMC changes in animals.

  14. Bone turnover markers in medicamentous and physiological hyperprolactinemia in female rats

    Directory of Open Access Journals (Sweden)

    Radojković Danijela

    2014-01-01

    Full Text Available Background/Aim. There is a lack of data on the effects of prolactin on calcium metabolism and bone turnover in hyperprolactinemia of various origins. The aim of this study was to compare the influence of medicamentous and physiological hyperprolactinemia on bone turnover in female rats. Methods. Experimental animals (18 weeks old, Wistar female rats were divided as follows: the group P - 9 rats, 3 weeks pregnant; the group M3-10 rats that were intramuscularly administrated sulpirid (10 mg/kg twice daily for 3 weeks, the group M6 - 10 rats that were intramuscularly administrated with sulpirid (10 mg/kg twice daily for 6 weeks, and age matched nulliparous rats as the control group: 10 rats, 18-week-old (C1 and 7 rats, 24 weeks old (C2. Laboratory investigations included serum ionized calcium and phosphorus, urinary calcium and phosphorous excretion, osteocalcin and serum procollagen type 1 N-terminal propeptide (P1NP. Results. Experimental animals in the group P compared to the control group, displayed lower mean serum ionized calcium (0.5 ± 0.2 vs 1.12 ± 0.04 mmol/L; p < 0.001; higher mean serum phosphorus (2.42 ± 0.46 vs 2.05 ± 0.2 mmol/L; p < 0.05; increased urinary calcium (3.90 ± 0.46 vs 3.05 ± 0.58; p < 0.01 and significantly increased P1NP (489,22 ± 46,77 vs 361.9 ± 53,01 pg/mL; p < 0.001. Experimental animals in the group M3 had significantly decreased P1NP, compared to the control group. Prolongated medicamentous hyperprolactinemia (the group M6 induced increased serum ionized calcium (1.21 ± 0.03 vs 1.15 ± 0.02 mmol/L; p < 0.001; decreased serum phosphorus (1.70 ± 0.13 vs 1.89 ± 0.32 mmol/L; p < 0.001; decreased osteocalcin and P1NP. Conclusions. Physiological hyperprolactinemia does not have such harmful effect on bone metabolism as medicamentous hyperprolactinemia. Chronic medicamentous hyperprolactinemia produces lower serum levels of bone formation markers. Assessment of bone turnover markers in prolongated medicamentous

  15. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  16. Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia.

    Science.gov (United States)

    Nowak, Beata; Matuszewska, Agnieszka; Nikodem, Anna; Filipiak, Jarosław; Landwójtowicz, Marcin; Sadanowicz, Ewa; Jędrzejuk, Diana; Rzeszutko, Marta; Zduniak, Krzysztof; Piasecki, Tomasz; Kowalski, Przemysław; Dziewiszek, Wojciech; Merwid-Ląd, Anna; Trocha, Małgorzata; Sozański, Tomasz; Kwiatkowska, Joanna; Bolanowski, Marek; Szeląg, Adam

    2017-10-01

    Postmenopausal osteoporosis and osteoporotic fractures constitute an increasing problem in developing countries. Kaempferol, isolated from seeds of Cuscuta chinensis, is an active flavonoid inhibiting in vitro osteoclast activity. The aim of the presented research was an assessment of kaempferol effect on estrogen-deficiency-induced bone structure disturbances in rats. The study was performed on 24 Wistar female rats divided into 3 groups: SHAM - rats undergoing a "sham" surgery, OVX-C - control group of animals that underwent ovariectomy, OVX-K - rats undergoing ovariectomy and receiving kaempferol for 8 weeks (from day 56 to day 112). In the OVX-K group, contrary to the OVX-C one, there was no significant decrease in femoral bone mineral density (BMD). A significant increase in Young's modulus was observed in the OVX-K group compared to the OVX-C (15.33±2.51GPa vs. 11.14±1.93GPa, p<0.05). A decreased bone turnover was detected in the OVX-K group. Tissue volume ratio (BV/TV) and trabecular bone perimeter were increased in the OVX-K group compared to the OVX-C one (0.241±0.037 vs. 0.170±0.022, p<0.05 and 15.52±2.78mm vs. 9.67±3.07mm, p<0.05, respectively). Kaempferol has a beneficial influence on estrogen-deficiency-induced disturbances of bone structure in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.; Simske, S.J. [BioServe Space Technologies University of Colorado Boulder, Colorado80309-0429 (United States); Zimmerman, R.J. [Chiron Corporation 4560 Horton Street Emeryville, California94608-2916 (United States)

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}

  18. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  19. Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain.

    Directory of Open Access Journals (Sweden)

    Louis Doré-Savard

    2010-10-01

    Full Text Available Pre-clinical bone cancer pain models mimicking the human condition are required to respond to clinical realities. Breast or prostate cancer patients coping with bone metastases experience intractable pain, which affects their quality of life. Advanced monitoring is thus required to clarify bone cancer pain mechanisms and refine treatments. In our model of rat femoral mammary carcinoma MRMT-1 cell implantation, pain onset and tumor growth were monitored for 21 days. The surgical procedure performed without arthrotomy allowed recording of incidental pain in free-moving rats. Along with the gradual development of mechanical allodynia and hyperalgesia, behavioral signs of ambulatory pain were detected at day 14 by using a dynamic weight-bearing apparatus. Osteopenia was revealed from day 14 concomitantly with disorganization of the trabecular architecture (µCT. Bone metastases were visualized as early as day 8 by MRI (T(1-Gd-DTPA before pain detection. PET (Na(18F co-registration revealed intra-osseous activity, as determined by anatomical superimposition over MRI in accordance with osteoclastic hyperactivity (TRAP staining. Pain and bone destruction were aggravated with time. Bone remodeling was accompanied by c-Fos (spinal and ATF3 (DRG neuronal activation, sustained by astrocyte (GFAP and microglia (Iba1 reactivity in lumbar spinal cord. Our animal model demonstrates the importance of simultaneously recording pain and tumor progression and will allow us to better characterize therapeutic strategies in the future.

  20. Parathyroid hormone related to bone regeneration in grafted and nongrafted tooth extraction sockets in rats.

    Science.gov (United States)

    Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro

    2013-02-01

    The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.

  1. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  2. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  3. Comparative radioprotective studies of chlorpromazine and cysteamine on rat bone development; Effect on serum and bone proteins

    Energy Technology Data Exchange (ETDEWEB)

    Abdeen, A M; Ibrahim, H A; Badawy, M; Elkholy, W M.E.

    1986-01-01

    Experiments were planned to study the radioprotective effect of chlorpromazine (CPZ) and Cysteamine (Cys), when injected separately or combined before irradiation, on some factors affecting the development of rat bone. The results obtained can be summarized as follows: (1) The body weight decreased due to gamma-irradiation. (2) The mortality rate increased after irradiation, but diminished by single or double chemical injection before irradiation. (3) The serum total protein; albumin, globulin contents and A/G ratio were significantly increased, 6 hrs. After irradiation, then declined afterwards. (4) Histochemically, a decrease in bone protein content was demonstrates after irradiation. The above irradiation effects were suppressed by injection of the radioprotective substances. Their effect seems to be cumulative. 4 fig.,3 tab.

  4. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  5. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.

    Science.gov (United States)

    Kwon, Doo Yeon; Park, Ji Hoon; Jang, So Hee; Park, Joon Yeong; Jang, Ju Woong; Min, Byoung Hyun; Kim, Wan-Doo; Lee, Hai Bang; Lee, Junhee; Kim, Moon Suk

    2018-02-01

    Recently, computer-designed three-dimensional (3D) printing techniques have emerged as an active research area with almost unlimited possibilities. In this study, we used a computer-designed 3D scaffold to drive new bone formation in a bone defect. Poly-L-lactide (PLLA) and bioactive β-tricalcium phosphate (TCP) were simply mixed to prepare ink. PLLA + TCP showed good printability from the micronozzle and solidification within few seconds, indicating that it was indeed printable ink for layer-by-layer printing. In the images, TCP on the surface of (and/or inside) PLLA in the printed PLLA + TCP scaffold looked dispersed. MG-63 cells (human osteoblastoma) adhered to and proliferated well on the printed PLLA + TCP scaffold. To assess new bone formation in vivo, the printed PLLA + TCP scaffold was implanted into a full-thickness cranial bone defect in rats. The new bone formation was monitored by microcomputed tomography and histological analysis of the in vivo PLLA + TCP scaffold with or without MG-63 cells. The bone defect was gradually spontaneously replaced with new bone tissues when we used both bioactive TCP and MG-63 cells in the PLLA scaffold. Bone formation driven by the PLLA + TCP30 scaffold with MG-63 cells was significantly greater than that in other experimental groups. Furthermore, the PLLA + TCP scaffold gradually degraded and matched well the extent of the gradual new bone formation on microcomputed tomography. In conclusion, the printed PLLA + TCP scaffold effectively supports new bone formation in a cranial bone defect. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Possible Role of Garlic Oil and Parsley Extract in Ameliorating Radiation-Induced Bone Loss in Female Rats

    International Nuclear Information System (INIS)

    Ramadan, L.; El-Sabbagh, W.; Kenawy, S.

    2011-01-01

    To Investigate the possible protective effect of garlic oil and parsley extract against bone loss resulted in female virgin rats exposed to fractionated doses of gamma-radiation (1 Gy 3 times weekly for 5 weeks). Urinary calcium (U Ca), calcium to creatinine ratio (Ca/Cr), hydroxyproline and serum phosphorus were measured as bone resorption bio markers, while serum osteocalcine (OST) and serum alkaline phosphatase (ALP) were measured as bone formation bio markers. Furthermore, nitric oxide (NO) which represents the balance in bone remodeling was measured. Malondiadehyde level (MDA) as well as superoxide dismutase activity (SOD) was measured as oxidative stress bio markers. Female irradiated rats in the present study had significant increases in both bone resorption and bone formation bio markers after 6 weeks from the last exposure to gamma-radiation. Irradiated rats also had significant decreases in plasma NO indicating imbalance in bone remodeling as well as significant increase in oxidative stress bio markers. Daily treatment with garlic oil extracted in olive oil improved all measured parameters except OST level, while the vehicle used for garlic oil (extra virgin olive oil) significantly decreased bone resorption bio markers. Parsley extract induced normalization to all bone resorption and formation parameters measured in irradiated rats. Daily administration of garlic oil and parsley extract protected the bone from degeneration induced by exposure to fractionated doses of gamma radiation.

  7. Systemic Administration of Allogeneic Mesenchymal Stem Cells Does Not Halt Osteoporotic Bone Loss in Ovariectomized Rats.

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    Full Text Available Mesenchymal stem cells (MSCs have innate ability to self-renew and immunosuppressive functions, and differentiate into various cell types. They have become a promising cell source for treating many diseases, particular for bone regeneration. Osteoporosis is a common metabolic bone disorder with elevated systemic inflammation which in turn triggers enhanced bone loss. We hypothesize that systemic infusion of MSCs may suppress the elevated inflammation in the osteoporotic subjects and slow down bone loss. The current project was to address the following two questions: (1 Will a single dose systemic administration of allogenic MSCs have any effect on osteoporotic bone loss? (2 Will multiple administration of allogenic MSCs from single or multiple donors have similar effect on osteoporotic bone loss? 18 ovariectomized (OVX rats were assigned into 3 groups: the PBS control group, MSCs group 1 (receiving 2x106 GFP-MSCs at Day 10, 46, 91 from the same donor following OVX and MSCs group 2 (receiving 2x106 GFP-MSCs from three different donors at Day 10, 46, 91. Examinations included Micro-CT, serum analysis, mechanical testing, immunofluorescence staining and bone histomorphometry analysis. Results showed that BV/TV at Day 90, 135, BMD of TV and trabecular number at Day 135 in the PBS group were significantly higher than those in the MSCs group 2, whereas trabecular spacing at Day 90, 135 was significantly smaller than that in MSCs group 2. Mechanical testing data didn't show significant difference among the three groups. In addition, the ELISA assay showed that level of Rantes in serum in MSCs group 2 was significantly higher than that of the PBS group, whereas IL-6 and IL-10 were significantly lower than those of the PBS group. Bone histomorphometry analysis showed that Oc.S/BS and Oc.N/BS in the PBS group were significant lower than those in MSCs group 2; Ob.S/BS and Ob.N/BS did not show significant difference among the three groups. The current study

  8. Effects of different durations of treadmill training exercise on bone mineral density in growing rats

    Directory of Open Access Journals (Sweden)

    K Ertem

    2008-06-01

    Full Text Available In this study, we aimed to investigate the effects of different durations of treadmill training exercise (daily for 30 min and 60 min on bone mineral density (BMD in young growing rats. Training consisted of treadmill running at 5 days per week during a period of 13 weeks. The rats in 30 min and 60 min exercise groups began to training on day 63 of life and had maintained for at least a week, with a minimal progression as a guide to the rats’ training and adaptation to the treadmill. Running time was gradually increased from 15 min to 30 and 60 min per session for two exercise groups respectively. Control rats were kept in the cages at the same environmental conditions and daily inspected to control their health. At the end of 13 weeks, bone mineral densities of the bilateral tibia of all rats were measured .with dual-energy X-ray absorptiometry (DEXA (QDR 4500/W, Hologic Inc., Bedford, MA, USA and results were evaluated. There were significantly increases in BMD of right and left tibia of rats in 30 min exercise group at post-exercise period (p<0.01 for both sides when compared to the control group. BMD of right and left tibia of rats were also correlated with each other (r=0.556 and p=0.003. Otherwise, there is a positive correlation between pre- and post-exercise body weights of rats (r=0.588 and p=0.002. From our results, we concluded that subjects should perform moderate running exercise for development of bone mass and its protection during the lifelong. However, intensity and duration of performing exercise are required to put in order for every ages or actual physical conditions.

  9. Bone architecture analyses of rat femur with 3D microtomographics images

    International Nuclear Information System (INIS)

    Lima, I.C.B.; Lopes, R.T.; Oliveira, L.F.

    2006-01-01

    One of the great 3D micro tomography (3D-μCT) applications in the medical area is the characterization of bone architecture, especially when it is spoken in osteoporosis because, among other factors, is characterized by the deterioration of the architecture. This work shows the 3D quantification, based on stereological concepts, of the bone tissue through 3D-μCT in real time. The analyses were carried out in femur rat and the 3D visualizations helped to understand bones morphology. The results showed the potential of this computational technique to verify the capability of characterization of the internal bone structures and the importance of the threshold level in the binarization process. (author)

  10. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    Jung, Ui-Won; Song, Kun-Young; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  11. A stimulator of proliferation of spleen colony-forming cells (CFU-S) in the bone marrow of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, Z.; Milenkovic, P.; Stojanovic, N.; Lukic, M.; Kataranovski, M.

    1993-07-01

    The presence and activity of a spleen colony - forming cell (CFU-S) proliferation stimulator was investigated in rat bone marrow after irradiation. The dose dependent increase in cytosine arabinoside induced cell dealth of normal mouse bone marrow. The results demonstrate the existence of a CFU-S proliferation stimulator in rat bone marrow similar to that originally found as a macrophage product in regenarating mouse bone marrow. The CFU-S proliferation stimulator activity was not associated with the presence of interleukin - 1,2, or 6 like activities in the material tested.

  12. Therapeutic effect of bone marrow transplantation plue previous blood transfusion on rats with total body irradiation

    International Nuclear Information System (INIS)

    Yan Yongtang; Ran Xinze; Wei Shuqing

    1988-01-01

    Therapeutic effect of bone marrow transplantation (BMT) and blood transfusion on different groups of rats subjected to various doses of total body irradiation (TBI) was studied. In the control group, 80 rats that received TBI of 8,9,10,11 and 12 Gy died between 3∼14 days. In the second group, 67 rats that received the same doses of irradiation were treated with BMT. Except that 8 rats died from lung hemorrhages at 4∼6 days after TBI. 85% of these animals (500/59) showed hemopoietic engraftment. The survival rates of 8, 9, 10, 11 and 12 Gy subgroups at 90 days after BMT were 90%, 56%, 56%, 25% and 0% respectively. In the third group, 82 rats receive TBI and blood transfusion prior to BMT. Except that 8 rats subjected to 11∼12 Gy irradiation died from lung hemorrhage at 4∼6 days after BMT, 97% of these animals (72/74) showed hemopoietic engraftment. The 90-day survival rates of 8, 9, 10, 11 and 12 Gy subgroups were 93%, 80%, 80%, 60% and 6% respectively. The 90-day survival rate of 50 rats subjected to 9∼11 Gy TBI and treated with blood transfusion and BMT, was 72%, while that 47 rats treated simply with BMT was only 42%. These results showed clearly that previous blood transfusion could increase the rate of hemopoietic engraftment, reduce the incidence if rejection, and raise the survival rate

  13. Effect of Silicon Supplementation on Bone Status in Ovariectomized Rats Under Calcium-Replete Condition.

    Science.gov (United States)

    Bu, So Young; Kim, Mi-Hyun; Choi, Mi-Kyeong

    2016-05-01

    Previous studies have suggested that silicon (Si) had positive effects on bone, but such benefits from Si may be dependent on calcium status. Also, several biochemical roles of Si in osteoblastic mineralization, the regulation of gene expression related to bone matrix synthesis, and the decrease in reactive oxygen species and pro-inflammatory mediators were reported, but these effects were mostly shown in cell culture studies. Hence, we tested the effect of Si supplementation on bone status and the gene expression related to bone metabolism and inflammatory mediators in young estrogen-deficient rats under calcium-replete condition (0.5 % diet). Results showed that 15-week supplementation of both high and very high doses of Si (0.025 and 0.075 % diet, respectively) could not restore the ovariectomy (OVX)-induced decrease of bone mineral density (BMD) of vertebrae, femur, and tibia. Also, several bone biochemical markers (ALP, osteocalcin, CTx) and mRNA expression of COL-I, RANKL, IL-6, and TNF-α in femur metaphysis were not significantly changed by Si in OVX rats. However, a very high dose (0.075 %) of Si supplementation significantly increased OPG expression and decreased the ratio of RANKL/OPG in mRNA expression comparable to that of sham-control animals. Taken together, Si supplementation did not increase BMD under calcium-replete condition but the decrease in the ratio of RANKL/OPG expression to the normal level suggests the possibility of a bone health benefit of Si in estrogen deficiency-induced bone loss.

  14. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis

    Directory of Open Access Journals (Sweden)

    Jaqueline Suemi HASSUMI

    2018-06-01

    Full Text Available Abstract Alveolar bone healing after upper incisor extraction in rats is a classical model of preclinical studies. The underlying morphometric, cellular and molecular mechanism, however, remains imprecise in a unique study. Objectives The aim of this study was therefore to characterize the alveolar bone healing after upper incisor extraction in rats by micro computed tomographic (Micro-CT, immunohistochemical and real-time polymerase chain reaction (RT-PCR analysis. Material and Methods Thirty animals (Rattus norvegicus, Albinus Wistar were divided into three groups after upper incisors extraction at 7, 14, and 28 days. Micro-CT was evaluated based on the morphometric parameters. Subsequently, the histological analyses and immunostaining of osteoprotegerin (OPG, receptor activator of nuclear kappa B ligand (RANKL and tartrate resistant acid phosphate (TRAP was performed. In addition, RT-PCR analyses of OPG, RANKL, the runt-related transcription factor 2 (RUNX2, osteocalcin (OC, osteopontin (OPN, osterix (OST and receptor activator of nuclear kappa B (RANK were performed to determine the expression of these proteins in the alveolar bone healing. Results Micro-CT: The morphometric parameters of bone volume and trabecular thickness progressively increased over time. Consequently, a gradual decrease in trabecular separation, trabecular space and total bone porosity was observed. Immunohistochemical: There were no differences statistically significant between the positive labeling for OPG, RANKL and TRAP in the different periods. RT-PCR: At 28 days, there was a significant increase in OPG expression, while RANKL expression and the RANKL/OPG ratio both decreased over time. Conclusion Micro-CT showed the newly formed bone had favorable morphometric characteristics of quality and quantity. Beyond the RUNX2, OC, OPN, OST, and RANK proteins expressed in the alveolar bone healing, OPG and RANKL activity showed to be essential for activation of basic

  15. Alveolar bone healing process in spontaneously hypertensive rats (SHR). A radiographic densitometry study.

    Science.gov (United States)

    Manrique, Natalia; Pereira, Cassiano Costa Silva; Garcia, Lourdes Maria Gonzáles; Micaroni, Samuel; Carvalho, Antonio Augusto Ferreira de; Perri, Sílvia Helena Venturoli; Okamoto, Roberta; Sumida, Doris Hissako; Antoniali, Cristina

    2012-01-01

    Hypertension is one of the most important public health problems worldwide. If undiagnosed or untreated, this pathology represents a systemic risk factor and offers unfavorable conditions for dental treatments, especially those requiring bone healing. The purpose of this study was to demonstrate, by analysis of bone mineral density (BMD), that the alveolar bone healing process is altered in spontaneously hypertensive rats (SHRs). Wistar rats and SHRs were submitted to extraction of the upper right incisor and were euthanized 7, 14, 21, 28 and 42 days after surgery. Right maxillae were collected, radiographed and analyzed using Digora software. BMD was expressed as minimum (min), middle (med) and maximum (max) in the medium (MT) and apical (AT) thirds of the dental alveolus. The results were compared across days and groups. Wistar showed difference in med and max BMD in the MT between 7 and 28 and also between 14 and 28 days. The AT exhibited significant difference in med and min BMD between 7 and 28 days, as well as difference in min BMD between 28 and 42 days. SHRs showed lower med BMD in the MT at 28 days when compared to 21 and 42 days. Differences were observed across groups in med and min BMD at day 28 in the MT and AT; and in max BMD at 14, 21 and 42 days in the MT. These results suggest that the alveolar bone healing process is delayed in SHRs comparing with Wistar rats.

  16. Biomechanical properties: effects of low-level laser therapy and Biosilicate® on tibial bone defects in osteopenic rats.

    Science.gov (United States)

    Fangel, Renan; Bossini, Paulo S; Renno, Ana Cláudia; Granito, Renata N; Wang, Charles C; Nonaka, Keico O; Driusso, Patricia; Parizotto, Nivaldo A; Oishi, Jorge

    2014-12-30

    The aim of this study was to investigate the effects of laser therapy and Biosilicate® on the biomechanical properties of bone callus in osteopenic rats. Fifty female Wistar rats were equally divided into 5 groups (n=10/group): osteopenic rats with intact tibiae (SC); osteopenic rats with unfilled and untreated tibial bone defects (OC); osteopenic rats whose bone defects were treated with Biosilicate® (B); osteopenic rats whose bone defects were treated with 830-nm laser, at 120 J/cm2 (L120) and osteopenic rats whose bone defects were treated with Biosilicate® and 830-nm laser, at 120 J/cm2 (BL120). Ovariectomy (OVX) was used to induce osteopenia. A non-critical bone defect was created on the tibia of the osteopenic animals 8 weeks after OVX. In Biosilicate® groups, bone defects were completely filled with the biomaterial. For the laser therapy, an 830-nm laser, 120 J/cm2 was used. On day 14 postsurgery, rats were euthanized, and tibiae were removed for biomechanical analysis. Maximal load and energy absorption were higher in groups B and BL120, according to the indentation test. Animals submitted to low-level laser therapy (LLLT) did not show any significant biomechanical improvement, but the association between Biosilicate® and LLLT was shown to be efficient to enhance callus biomechanical properties. Conversely, no differences were found between study groups in the bending test. Biosilicate® alone or in association with low level laser therapy improves biomechanical properties of tibial bone callus in osteopenic rats.

  17. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  18. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis.

    Science.gov (United States)

    Araújo, Aurigena Antunes de; Pereira, Aline de Sousa Barbosa Freitas; Medeiros, Caroline Addison Carvalho Xavier de; Brito, Gerly Anne de Castro; Leitão, Renata Ferreira de Carvalho; Araújo, Lorena de Souza; Guedes, Paulo Marcos Matta; Hiyari, Sarah; Pirih, Flávia Q; Araújo Júnior, Raimundo Fernandes de

    2017-01-01

    To evaluate the effects of metformin (Met) on inflammation, oxidative stress, and bone loss in a rat model of ligature-induced periodontitis. Male albino Wistar rats were divided randomly into five groups of twenty-one rats each, and given the following treatments for 10 days: (1) no ligature + water, (2) ligature + water, (3) ligature + 50 mg/kg Met, (4) ligature + 100 mg/kg Met, and (5) ligature + 200 mg/kg Met. Water or Met was administered orally. Maxillae were fixed and scanned using Micro-computed Tomography (μCT) to quantitate linear and bone volume/tissue volume (BV/TV) volumetric bone loss. Histopathological characteristics were assessed through immunohistochemical staining for MMP-9, COX-2, the RANKL/RANK/OPG pathway, SOD-1, and GPx-1. Additionally, confocal microscopy was used to analyze osteocalcin fluorescence. UV-VIS analysis was used to examine the levels of malondialdehyde, glutathione, IL-1β and TNF-α from gingival tissues. Quantitative RT-PCR reaction was used to gene expression of AMPK, NF-κB (p65), and Hmgb1 from gingival tissues. Significance among groups were analysed using a one-way ANOVA. A p-value of ploss after 50 mg/kg Met compared to the ligature and Met 200 mg/kg groups. The same pattern was observed volumetrically in BV/TV and decreased osteoclast number (ploss in ligature-induced periodontitis in rats.

  19. Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Ghosal, J.; Chakraborty, M.; Biswas, T.; Ganguly, C.K.; Datta, A.G.

    1987-01-01

    The effect of Ep on radioactive glucose and methyl-alpha-D-glucoside transport by rat erythrocytes and bone marrow cells were studied. There is initial linearity followed by saturation kinetics of [ 14 C]glucose transport by the erythrocytes of starved and starved plus Ep-treated rats at different concentrations of glucose. Starvation caused slight inhibition of glucose transport which increased markedly on Ep administration to starved rats. Normal animals failed to show any significant change in glucose transport after Ep treatment. Methyl-alpha-D-glucoside inhibited the Ep-stimulated glucose transport significantly. Ep also stimulated the transport of radioactive methyl-alpha-D-glucoside which was competitively inhibited in presence of D-glucose. Glucose transport in erythrocytes was found to be sensitive to metabolic inhibitors like azide and DNP. A sulfhydryl reagent and ouabain also inhibited the transport process. Ep stimulated glucose and methyl-alpha-D-glucoside transport in the bone marrow cells of starved rats. The sugar analog competitively inhibited the glucose transport in bone marrow cells and vice versa

  20. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  1. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP Synthesized from Porous Foraminifera Carbonate Macrospheres

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    2013-12-01

    Full Text Available Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair.

  2. Local vs. systemic administration of bisphosphonates in rat cleft bone graft: A comparative study.

    Directory of Open Access Journals (Sweden)

    Christine Hong

    Full Text Available A majority of patients with orofacial cleft deformity requires cleft repair through a bone graft. However, elevated amount of bone resorption and subsequent bone graft failure remains a significant clinical challenge. Bisphosphonates (BPs, a class of anti-resorptive drugs, may offer great promise in enhancing the clinical success of bone grafting. In this study, we compared the effects of systemic and local delivery of BPs in an intraoral bone graft model in rats. We randomly divided 34 female 20-week-old Fischer F344 Inbred rats into four groups to repair an intraoral critical-sized defect (CSD: (1 Control: CSD without graft (n = 4; (2 Graft/Saline: bone graft with systemic administration of saline 1 week post-operatively (n = 10; (3 Graft/Systemic: bone graft with systemic administration of zoledronic acid 1 week post-operatively (n = 10; and (4 Graft/Local: bone graft pre-treated with zoledronic acid (n = 10. At 6-weeks post-operatively, microCT volumetric analysis showed a significant increase in bone fraction volume (BV/TV in the Graft/Systemic (62.99 ±14.31% and Graft/Local (69.35 ±13.18% groups compared to the Graft/Saline (39.18±10.18%. Similarly, histological analysis demonstrated a significant increase in bone volume in the Graft/Systemic (78.76 ±18.00% and Graft/Local (89.95 ±4.93% groups compared to the Graft/Saline (19.74±18.89%. The local delivery approach resulted in the clinical success of bone grafts, with reduced graft resorption and enhanced osteogenesis and bony integration with defect margins while avoiding the effects of BPs on peripheral osteoclastic function. In addition, local delivery of BPs may be superior to systemic delivery with its ease of procedure as it involves simple soaking of bone graft materials in BP solution prior to graft placement into the defect. This new approach may provide convenient and promising clinical applications towards effectively managing cleft patients.

  3. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  4. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.

    Science.gov (United States)

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

  5. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  6. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats.

    Science.gov (United States)

    Tanaka, Yu-Ki; Yajima, Nobuyuki; Higuchi, Yusuke; Yamato, Hideyuki; Hirata, Takafumi

    2017-12-01

    Herein, we measure the Ca isotope ratios ( 44 Ca/ 42 Ca and 43 Ca/ 42 Ca) in serum and bone samples collected from rats with chronic kidney disease (CKD) or diabetes mellitus (DM). For the serum samples, the isotope ratios are lower for the CKD (δ 44 Ca/ 42 Ca serum = 0.16 ± 0.11‰; 2SD, n = 6) and the DM (δ 44 Ca/ 42 Ca serum = -0.11 ± 0.25‰; 2SD, n = 7) rats than that for the control rats (δ 44 Ca/ 42 Ca serum = 0.25 ± 0.04‰; 2SD, n = 7). Bone samples from two distinct positions of 20 rats in total, namely, the center and proximal parts of the tibial diaphysis, are subject to Ca isotope analysis. The resulting δ 44 Ca/ 42 Ca values for the bone of the proximal part are about 0.3‰ lower than that for the serum samples from the same rats. The larger isotope fractionations between the serum and bone are consistent with previously reported data for vertebrate animals (e.g., Skulan and DePaolo, 1999), which suggests the preferential incorporation of lighter Ca isotopes through bone formation. For the bones from the control and CKD rats, there were no differences in the δ 44 Ca/ 42 Ca values between the positions of the bone. In contrast, the δ 44 Ca/ 42 Ca values of the bone for the DM rats were different between the positions of the bone. Due to the lower bone turnover rate for the DM rats, the δ 44 Ca/ 42 Ca for the middle of the diaphysis can reflect the Ca isotopes in the bone formed prior to the progression of DM states. Thus, the resulting δ 44 Ca/ 42 Ca values show a clear correlation with bone mineral density (BMD). This can be due to the release of isotopically lighter Ca from the bone to the serum. In the present study, our data demonstrate that the δ 44 Ca/ 42 Ca value for serum can be used as a new biomarker for evaluating changes in bone turnover rate, followed by changes in bone volume.

  7. Comparing the effects of chlorhexidine and persica on alveolar bone healing following tooth extraction in rats, a randomised controlled trial.

    Science.gov (United States)

    Dorri, Mojtaba; Shahrabi, Shokufeh; Navabazam, Alireza

    2012-02-01

    Chlorhexidine is broadly prescribed by clinicians for treating extraction socket wounds; however, studies have reported adverse effects for chlorhexidine. Persica, a herbal antibacterial agent, could be an alternative for chlorhexidine. The aim of this randomised controlled trial was to investigate the effects of persica and chlorhexidine on alveolar bone healing following tooth extraction in rats. Eighteen Wistar rats were randomly allocated to three study groups: 0.2% chlorhexidine, 10% persica and controls (tap water). The rats were mouth-rinsed for 14 days. On day 8, the mandibular right first molars of all the rats were extracted. On day 21, the rats were euthanized and histological slides of their extraction sockets were prepared. The amount of new bone formation and the number of inflammatory cells in the extraction socket for each rat were recorded. Data were analysed using linear regression and Mann-Whitney tests. There was no significant difference between the control group and the intervention groups in terms of new bone formation and inflammatory cell count. The mean new bone formation was significantly higher in the persica group than in the chlorhexidine group. There was a significant association between new bone formation and inflammatory cell count in the entire sample. In conclusion, there were no significant differences between rinsing with tap water and rinsing with 0.2% chlorhexidine and 10% persica in enhancing extraction socket wound healing in rats. Extraction socket wound healing in rats was better enhanced with 10% persica than 0.2% chlorhexidine.

  8. Randall Selitto pressure algometry for assessment of bone-related pain in rats.

    Science.gov (United States)

    Falk, S; Ipsen, D H; Appel, C K; Ugarak, A; Durup, D; Dickenson, A H; Heegaard, A M

    2015-03-01

    Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the effect of morphine was investigated. Randall Selitto measures of cancer-induced bone pain were supplemented by von Frey testing, weight-bearing and limb use test. Contribution of cutaneous nociception to Randall Selitto measures were examined by local anaesthesia. Randall Selitto pressure algometry over the tibia resulted in reproducible withdrawal thresholds, which were dose-dependently increased by morphine. Cutaneous nociception did not contribute to Randall Selitto measures. In cancer-bearing animals, compared with sham, significant differences in pain-related behaviours were demonstrated by the Randall Selitto test on day 17 and 21 post-surgery. A difference was also demonstrated by von Frey testing, weight-bearing and limb use tests. Our results indicate that pressure applied by the Randall Selitto algometer on a region, where the bone is close to the skin, may offer a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®

  9. Combined Effects of Phytoestrogen Genistein and Silicon on Ovariectomy-Induced Bone Loss in Rat.

    Science.gov (United States)

    Qi, Shanshan; Zheng, Hongxing

    2017-06-01

    This study was performed to evaluate the effect of concomitant supplementation of genistein and silicon on bone mineral density and bone metabolism-related markers in ovariectomized rat. Three-month-old Sprague Dawley female rats were subjected to bilateral ovariectomy (OVX) or sham surgery, and then the OVX rats were randomly divided into four groups: OVX-GEN, OVX-Si, OVX-GEN-Si, and OVX. Genistein and silicon supplementation was started immediately after OVX and continued for 10 weeks. In the OVX-GEN group, 5 mg genistein per gram body weight was injected subcutaneously. The OVX-Si group was given soluble silicon daily in demineralized water (Si 20 mg/kg body weight/day). The OVX-GEN-Si group was given subcutaneous injections of 5 mg genistein per gram body weight, at the same time, given soluble silicon daily (Si 20 mg/kg body weight/day). The results showed that the genistein supplementation in the OVX rats significantly prevented the loss of uterus weight; however, the silicon supplementation showed no effect on the uterus weight loss. The lumbar spine and femur bone mineral density was significantly decreased after OVX surgery; however, this decrease was inhibited by the genistein and/or silicon, and the BMD of the lumbar spine and femur was the highest in the OVX-GEN-Si-treated group. Histomorphometric analyses showed that the supplementation of genistein and/or silicon restored bone volume and trabecular thickness of femoral trabecular bone in the OVX group. Besides, the treatment with genistein and silicon for 10 weeks increased the serum levels of calcium and phosphorus in the OVX rats; serum calcium and serum phosphorus in the OVX-GEN-Si group were higher than those in the OVX-GEN and OVX-Si group (P silicon decreased serum alkaline phosphatase (ALP) and osteocalcin, which were increased by ovariectomy; serum ALP and osteocalcin in the OVX-GEN-Si group were lower than those in the OVX-GEN and OVX-Si groups (P silicon have synergistic effects on

  10. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

    Directory of Open Access Journals (Sweden)

    Liao Wang

    Full Text Available Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA sintered at 1200°C and two biphasic calcium phosphate (BCP ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate, sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.

  11. Dietary phosphorus exacerbates bone loss induced by cadmium in ovariectomized rats.

    Science.gov (United States)

    Bakhshalian, Neema; Johnson, Sarah A; Hooshmand, Shirin; Feresin, Rafaela G; Elam, Marcus L; Soung, Do Y; Payton, Mark E; Arjmandi, Bahram H

    2014-12-01

    Postmenopausal bone loss can be exacerbated by environmental contaminants, including the heavy metal cadmium (Cd). We hypothesized that incorporating phosphorus (P) into the diet would lead to the chelation of Cd into P, preventing its absorption and subsequent bone loss. To test this hypothesis, we used ovariectomized rats as a model of postmenopausal osteoporosis to examine the deleterious effects of Cd on bone with and without added P. Fifty 3-month-old ovariectomized Sprague-Dawley rats were assigned to five treatment groups (n = 10 per group) for 3 months as follows: (1) control; (2) 50 ppm Cd; (3) 50 ppm Cd plus 1.2% P; (4) 200 ppm Cd; and (5) 200 ppm Cd plus 1.2% P. Cd plus P caused a significant loss of whole body (P = 0.0001 and P properties, 50 ppm Cd plus 1.2% P caused an increase in trabecular separation, whereas 200 ppm Cd plus 1.2% P caused a decrease in bone volume-to-total volume ratio, a decrease in trabecular number, and an increase in trabecular separation and structural model index. Our findings indicate that Cd exposure, along with high intake of P, may be a public health hazard with respect to bone health.

  12. Analysis of fractal dimensions of rat bones from film and digital images

    Science.gov (United States)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  13. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  14. Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium

    International Nuclear Information System (INIS)

    Fukuda, S.; Ikeda, M.; Chiba, M.; Kaneko, K.

    2006-01-01

    The toxic effects and changes in biochemical markers related to kidney and bone in depleted uranium (DU)-injected rats were examined in order to clarify the relation between clinical biochemical markers and the degree of damage in these organs. Male Wistar rats received a single injection in the femoral muscles of 0.2, 1.0 or 2.0 mg kg -1 of DU which was dissolved in nitric acid solution adjusted to pH 3.2, for comparison with the group injected with nitric acid solution, and the control group. Urine and faeces were collected periodically over a 24 h period. Thereafter, the rats were killed at 28 d after DU injection. The body weights of the DU-injected groups decreased dose-dependently for the first 3-7 d, and then began to increase. The DU concentrations in the urine and faeces decreased rapidly within 3-7 d after DU injection. Urinary N-acetyl-β-D-glucosaminidase (NAG)/ creatinine peaked at the third day after DU injection, with a high correlation to the injected DU doses. There were high correlations among the injected DU doses, DU concentrations in the kidney and urinary NAG/ creatinine values that were obtained at 28 d, respectively. The blood urea nitrogen (BUN) and creatinine in the serum also showed a high correlation with the DU-injected doses. The results indicated that urinary NAG/creatinine, BUN and creatinine in serum were useful indicators to diagnose the renal damage by DU, as well as to estimate the DU intake and concentration in the kidney when the intake is >2 mg kg -1 DU. The total bone mineral density of the proximal metaphysis of the tibia decreased in the 2 mg kg -1 DU group. In addition, alterations of the trabecular bone structure by inhibiting bone formation and promoting bone resorption were observed by bone histo-morphometry. The bone biochemical markers osteo-calcin, tartrate-resistance acid phosphatase, pyridinoline and rat-parathyroid hormone increased in all the DU injected groups, indicating that these markers were useful as

  15. Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model.

    Science.gov (United States)

    Lovati, Arianna B; Bottagisio, Marta; Maraldi, Susanna; Violatto, Martina B; Bortolin, Monica; De Vecchi, Elena; Bigini, Paolo; Drago, Lorenzo; Romanò, Carlo L

    2018-06-01

    Implant-related infections are associated with impaired bone healing and osseointegration. In vitro antiadhesive and antibacterial properties and in vivo antiinflammatory effects protecting against bone loss of various formulations of vitamin E have been demonstrated in animal models. However, to the best of our knowledge, no in vivo studies have demonstrated the synergistic activity of vitamin E in preventing bacterial adhesion to orthopaedic implants, thus supporting the bone-implant integration. The purpose of this study was to test whether a vitamin E phosphate coating on titanium implants may be able to reduce (1) the bacterial colonization of prosthetic implants and (2) bone resorption and osteomyelitis in a rat model of Staphylococcus aureus-induced implant-related infection. Twelve rats were bilaterally injected in the femurs with S aureus UAMS-1-Xen40 and implanted with uncoated or vitamin E phosphate-coated titanium Kirschner wires without local or systemic antibiotic prophylaxis. Eight rats represented the uninfected control group. A few hours after surgery, two control and three infected animals died as a result of unexpected complications. With the remaining rats, we assessed the presence of bacterial contamination with qualitative bioluminescence imaging and Gram-positive staining and with quantitative bacterial count. Bone changes in terms of resorption and osteomyelitis were quantitatively analyzed through micro-CT (bone mineral density) and semiquantitatively through histologic scoring systems. Six weeks after implantation, we found only a mild decrease in bacterial count in coated versus uncoated implants (Ti versus controls: mean difference [MD], -3.705; 95% confidence interval [CI], -4.416 to -2.994; p E-treated group compared with uncoated implants (knee joint: MD, -11.88; 95% CI, -16.100 to -7.664; p E-coated nails compared with the uncoated nails. These preliminary findings indicate that vitamin E phosphate implant coatings can exert a

  16. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M-C; Thomsen, Jesper Skovhus; Nyengaard, J R

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind...... of periosteal BFR/BS (2-fold increase vs. BTX, Pmuscle mass (+29% vs. BTX, Pmuscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse......BMD, -13%, Pmuscle mass (-69%, Pmuscle cell cross sectional area (CSA) (-73%, P

  17. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat

    Directory of Open Access Journals (Sweden)

    Mouna Abdelrahman Abujazia

    2012-01-01

    Full Text Available Virgin coconut oil (VCO was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX and superoxide dismutase (SOD in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.

  18. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    Science.gov (United States)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  19. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2017-02-01

    Full Text Available Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2 gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1 lovastatin 11 mg/kg/day alone; (2 tocotrienol derived from annatto bean (annatto tocotrienol 60 mg/kg/day alone; (3 lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05. There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05. The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  20. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  1. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  2. Effects of high-intensity swimming training on the bones of ovariectomized rats

    OpenAIRE

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-01-01

    [Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17?-estradiol (OE2) and 6) ...

  3. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    Koppen, A. van; Papazova, D.A.; Oosterhuis, N.R.; Gremmels, H.; Giles, R.H.; Fledderus, J.O.; Joles, J.A.; Verhaar, M.C.

    2015-01-01

    Introduction: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  4. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    van Koppen, Arianne; Papazova, Diana A.; Oosterhuis, Nynke R.; Gremmels, Hendrik; Giles, Rachel H.; Fledderus, Joost O.; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    INTRODUCTION: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  5. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods.Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing.Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups.PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as

  6. Strontium incorporates at sites critical for bone mineralization in rats with renal failure

    International Nuclear Information System (INIS)

    Oste, Line; Verberckmoes, Steven C.; Behets, Geert J.; Dams, Geert; Bervoets, An R.; De Broe, Marc E.; D'Haese, Patrick C.; Van Hoof, Viviane O.; Bohic, Sylvain; Drakopoulos, Michael

    2007-01-01

    We previously demonstrated the development of a mineralization defect during strontium administration and its reversibility after withdrawal in rats with chronic renal failure. Recently, strontium ranelate has been introduced as a therapeutic agent for osteoporosis. However, caution has to be taken, as this bone disorder mainly develops in elderly people who may present a moderately decreased renal function. In order to assess the ultra-structural localization of strontium in bone and thereby to get a better insight into the element's systemic effects on bone, synchrotron-based x-ray micro-fluorescence was applied, which showed that after 2 weeks of strontium loading (2 g l -1 in drinking water) in rats with renal failure, concomitant with the development of impaired mineralization, the element was localized mainly at the outer edge of the mineralized bone, while after longer loading periods, a more homogeneous distribution was found. After washout, strontium was found at sites deeper within the trabeculae, while newly deposited low-strontium-containing mineral was found at the outer edges. Synchrotron x-ray micro-diffraction analysis showed that strontium is incorporated in the apatite crystal lattice through exchange with calcium. The results show that strontium is initially incorporated in bone at sites of active bone mineralization, close to the osteoid/mineralization front.Most likely, strontium binds to matrix proteins serving as crystal nucleation points and by hetero-ionic substitution with calcium within the hydroxyapatite crystals, thereby impairing further hydroxyapatite formation. After withdrawal, strontium is released from these sites, by which mineralization is restored and the previously formed strontium-containing hydroxyapatite is buried under a new layer of mineralized bone. (authors)

  7. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  8. Bone marker gene expression in calvarial bones: different bone microenvironments.

    Science.gov (United States)

    Al-Amer, Osama

    2017-12-01

    In calvarial mice, mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and then differentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix. In this case, the cells participating in bone formation include MSCs, osteoprogenitor cells, osteoblasts and osteocytes. The calvariae of C57BL/KaLwRijHsD mice consist of the following five bones: two frontal bones, two parietal bones and one interparietal bone. This study aimed to analyse some bone marker genes and bone related genes to determine whether these calvarial bones have different bone microenvironments. C57BL/KaLwRijHsD calvariae were carefully excised from five male mice that were 4-6 weeks of age. Frontal, parietal, and interparietal bones were dissected to determine the bone microenvironment in calvariae. Haematoxylin and eosin staining was used to determine the morphology of different calvarial bones under microscopy. TaqMan was used to analyse the relative expression of Runx2, OC, OSX, RANK, RANKL, OPG, N-cadherin, E-cadherin, FGF2 and FGFR1 genes in different parts of the calvariae. Histological analysis demonstrated different bone marrow (BM) areas between the different parts of the calvariae. The data show that parietal bones have the smallest BM area compared to frontal and interparietal bones. TaqMan data show a significant increase in the expression level of Runx2, OC, OSX, RANKL, OPG, FGF2 and FGFR1 genes in the parietal bones compared with the frontal and interparietal bones of calvariae. This study provides evidence that different calvarial bones, frontal, parietal and interparietal, contain different bone microenvironments.

  9. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    Science.gov (United States)

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    Directory of Open Access Journals (Sweden)

    Jodi A. Carlson Scholz

    2012-12-01

    Full Text Available Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH. Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.

  11. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  12. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  13. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  14. Epistasis between QTLs for bone density variation in Copenhagen × dark agouti F2 rats

    OpenAIRE

    Koller, Daniel L.; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2009-01-01

    The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, o...

  15. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  16. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis....

  17. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    Science.gov (United States)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  18. Influence of Piezosurgery on Bone Healing around Titanium Implants: A Histological Study in Rats.

    Science.gov (United States)

    Sirolli, Marcelo; Mafra, Carlos Eduardo Secco; Santos, Rodrigo Albuquerque Basílio Dos; Saraiva, Luciana; Holzhausen, Marinella; César, João Batista

    2016-01-01

    The aim of this study was to evaluate histomorphometrically the influence of two techniques of dental implant site preparation on bone healing around titanium implants. Fifteen male Wistar rats (±300 g) were used in the study. Each tibia was randomly assigned to receive the implant site preparation either with a conventional drilling technique (control - DRILL group) or with a piezoelectric device (PIEZO group). The animals were sacrificed after 30 days and then the following histomorphometric parameters were evaluated (percentage) separately for cortical and cancellous regions: proportion of mineralized tissue (PMT) adjacent to implant threads (500 μm adjacent); bone area within the threads (BA) and bone-implant contact (BIC). The results demonstrated that there were no statistically significant differences between both groups for cancellous BIC (p>0.05) and cortical PMT (p>0.05). On the other hand, a higher percentage of BA was observed in the PIEZO group in the cortical (71.50±6.91 and 78.28±4.38 for DRILL and PIEZO groups, respectively; ppiezosurgery also showed higher PMT values in the cancellous zone (9.35±5.54 and 18.72±13.21 for DRILL and PIEZO groups, respectively; ppiezosurgery was beneficial to bone healing rates in the cancellous bone region, while the drill technique produced better results in the cortical bone.

  19. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts

    International Nuclear Information System (INIS)

    Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R.

    2006-01-01

    We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO 2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO 2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by 3 H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O 2 were less organized and much less abundant than in 20% O 2 cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia

  20. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  1. UMF-synthetase activity in rat tissue extracts with the bone 4 marrow form of radiation sickness

    International Nuclear Information System (INIS)

    Levitova, E.N.; Koshcheenko, N.N.; Romantsev, E.F.

    1986-01-01

    Whole-body γ-irradiation of rats with a dose inducing bone marrow radiation syndrome caused phase organospecific chages in UMP-synthase activity. Disturbances of enzymic activity in the bone marrow and spleen well correlated with the dynamics of interphase and reproductive cell death. In brain extracts, UMP biosynthesis from orotic acid did not undergo essential changes

  2. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185 ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  3. Effect of autoclave devitalization on autograft incorporation and bone morphogenetic protein of tibia in Sprague-Dawley rats

    OpenAIRE

    Anak A.G.Y. Asmara; Achmad F. Kamal; Nurjati C. Siregar; Marcel Prasetyo

    2014-01-01

    Background: Heating process with autoclave is one of limb salvage modalities that are widely used. but the results are not satisfying, due to mechanical bone fragility. However, considering this treatment modality is widely accepted in terms of financial, religion and sociocultural aspects, we conducted a on study rats treated with resection and reconstruction with autoclave heating method to assess bone healing by sequential radiology, histopathologic osteoblasts count, and bone morphogeneti...

  4. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets.

    Science.gov (United States)

    Sá, M A; Andrade, V B; Mendes, R M; Caliari, M V; Ladeira, L O; Silva, E E; Silva, G A B; Corrêa-Júnior, J D; Ferreira, A J

    2013-07-01

    We evaluated the effects of sodium hyaluronate (HY) and carbon nanotubes functionalized with HY (HY-CNT) on bone repair in the tooth sockets of diabetic rats. Diabetes was induced by streptozotocin (50 mg kg(-1) i.v.), and the sockets were divided into normal control, diabetic control, diabetic treated with HY (1%), and diabetic treated with HY-CNT (100 μg ml(-1)) groups. The sockets were analyzed according to the percentage of bone formation and the number of cell nuclei. The percentage of bone trabeculae was lower in diabetic control animals (11.16 ± 5.10% vs 41.92 ± 6.34% in normal animals) after 14 days. Treating diabetic animals with HY or HY-CNT significantly increased the percentage of neoformed trabeculae (HY: 29.43 ± 3.29%; HY-CNT: 36.90 ± 3.07%). Moreover, the sockets of diabetic animals had an increased number of cell nuclei and HY or HY-CNT reduced this parameter. Our results indicate that HY and HY-CNT restore bone repair in the tooth sockets of diabetic rats, suggesting that these biomaterials are potential adjuvant therapies for the management of diabetes. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  6. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  7. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    Science.gov (United States)

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  8. Modulation of Radiation Injury in Pregnant Rats by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd Rabu, M.A.

    2011-01-01

    This Work aims to point out the influence of bone marrow transplantation (BMT) in protection of irradiated pregnant rats and suppression of oxidative stress. BMT was administered to rats, 1 h post gamma irradiation at the dose level of 2 Gy given at the 7th or 14th day of gestation. Rats were examined after 20 days from gestation to detect the physiological parameters of the mother and number of implantation sites and resorption as well as length of foetuses and tails. Pregnant rats irradiated at the 7th and 14th day of gestation showed reduction in live foetuses and length of foetuses and their tails and significant decrease in erythrocytes (RBCs), leucocytes (WBCs), haemoglobin content (Hb), and hematocrit percentage (Ht). Irradiation-induced an elevation in aldosterone and a drop in calcium (Ca). Glutathione levels showed significant decreases in blood while the content of serum thiobarbituric acid reactive substance (TBARS) showed significant increases. Lipid profile exhibited an increase in the concentrations of total cholesterol (TC), triglycerides (TG) and low lipoproteins cholesterol (LDL-C) with a significant decrease in high lipoproteins cholesterol (HDL-C) in both groups. BMT to irradiated pregnant rats induced significant amelioration in radiation- induced changes. BMT was shown to be effective in reducing physiological disorders and oxidative stress in pregnant rats reflected on minimizing embryonic injuries

  9. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    Directory of Open Access Journals (Sweden)

    Zhiqun Qiu

    Full Text Available Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse.To elucidate the skeletal effects of multi-generational bottled water drinking in female rats.Rats continuously drank tap water (TW, bottled natural water (bNW, bottled mineralized water (bMW, or bottled purified water (bPW for three generations.The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group.Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  10. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    Science.gov (United States)

    2011-04-01

    of rhBMP-2 in patients.8 Both the physical properties and pharmacokinetics of the FR +BMP scaffold are believed to contribute to its superior...scaffolds investigated in this study exhibit these key physical properties.28 Further, the observation of re- generated bone grown in direct contact with...Amit, Y., Arbel, R., Aro, H., Atar , D., Bishay, M., Borner, M.G., Chiron, P., Choong, P., Cinats, J., Courtenay, B., Fei- bel, R., Geulette, B., Gravel

  11. Investigation of flurbiprofen genotoxicity and cytotoxicity in rat bone marrow cells.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan B

    2015-01-01

    This study was performed to investigate cytogenetic effects of NSAID flurbiprofen which was used as active ingredient in some analgesic, antipyretic and anti-inflammatory drugs. Genotoxic effect of flurbiprofen was investigated using in vivo chromosome aberration (CA) test and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) test. Also, oxidative stress potential of flurbiprofen was determined by measuring total oxidant and antioxidant level which occurred with flurbiprofen treatment in rat peripheral blood. For these purposes, rats were treated with three concentrations of flurbiprofen (29.25, 58.50 and 117 mg/kg, body weight) in single dose at two different treatment periods (12 and 24 h). According to the results, flurbiprofen did not affect chromosome aberrations in rat bone marrow cells with CA test. In RAPD-PCR test, polymorphic bands were unaffected. Also, test substance did not change total oxidant and antioxidant status (except for 58.50 and 117 mg/kg, 12 h) and therefore it did not lead to significant increase on oxidative stress (again except 58.50 and 117 mg/kg, 12 h). However, flurbiprofen reduced to mitotic indexes and these reductions were dose-dependent for 12 h treatment. In summary, flurbiprofen did not show significant genotoxic effect. But it caused cytotoxicity in rat bone marrow cells.

  12. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    Science.gov (United States)

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  13. Experimental study on the effect of x-irradiation in the rat bone matrix

    International Nuclear Information System (INIS)

    You, Dong Soo

    1979-01-01

    The author studied on the side effects of x-ray irradiation to the developing mandible of the gestation and period of grow the stage rats. For experimental observation, 100 rads, 200 rads, and 300 rads of x-ray were irradiated in regular order at the lower abdomen of the 8th day gestated rats. 5 weeks after conception, their offspring were sacrificed and their mandibles were extracted with intact form. All the extracted mandible were examined for their developing modes histological findings. The results were as followed; 1) In 10 -200 rads irradiated rats offsprings, their mandibles were not revealed any morphological changes except of the irregular pattern of trabeculatum. In accompany with this findings, most of all the fibroblasts and osteoclasts had their nucleus with shrunken and eccentric position. 2) In according to the increasing x-ray irradiation, marked advent of osteoclast and cortical bone remuamsorption were observed. 3) In 300 rads irradiated rats offsprings, there irregular pattern of trabeculae and widening of bone morrow cavity in their alveolar proper.

  14. DETERMINATION OF THE SPECTRUM OF ANTIBIOTIC RESISTANCE GENES HAVE PHENOTYPIC RESISTANT STRAINS OF PARIETAL INTESTINAL MICROBIOTA IN RATS BY RT-PCR

    Directory of Open Access Journals (Sweden)

    Bukina Y.V.

    2016-06-01

    Full Text Available Introduction. The problem of formation of bacterial resistance to glycopeptides and beta-lactam antibiotics (cephalosporins and carbapenems are used worldwide for the treatment of severe community acquired and nosocomial infections, especially caused by polymicrobial flora has become global and is a major factor limiting the effectiveness of antibiotic therapy. In this regard, the study of genetic microbial resistance determinants allows not only to carry out an effective antibiotic therapy, but also to identify two main processes leading to the development of epidemiologically significant events: the introduction of the agent in the risk population from the outside and in situ pathogen (spontaneous genetic drift targeted restructuring of the population. Therefore, the aim of our study was to investigate the resistance genes to carbapenems, cephalosporins, glycopeptides have clinically important phenotype of resistant strains of microorganisms families Enterobacteriaceae, Pseudomonadaceae, Bacteroidaceae, Enterococcaceae, Peptostreptococcaceae. Materials and methods. As a material for PCR studies 712 phenotypically resistant strains of microorganisms isolated from 80 rats "Wistar" line in microbiological study microflora of the wall were used. During the investigation 474 isolates of bacteria of the family Enterobacteriaceae, 39 - Pseudomonadaceae, 71 - Bacteroidaceae, 96 - Enterococcaceae, 32 - Peptostreptococcaceae were studied. Isolation of DNA from bacteria in the study was performed using reagents "DNA-Express" ("Litekh", Russia. For the detection of resistance genes by PCR in real time (RT-PCR reagent kits "FLUOROPOL-RV" ("Litekh", Russia were used. During the experiment, the VIM genes, OXA-48, NDM, KPC, responsible for the resistance of microorganisms to carbapenems, CTX-M - resistance to cephalosporins, as well as genes Van A and van B, the development of resistance to glycopeptides (vancomycin and teicoplanin were determined. Analysis

  15. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment

    Directory of Open Access Journals (Sweden)

    Marković Dejan

    2014-01-01

    Full Text Available Background/Aim. Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. Results. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material’s particles took place after 25 weeks. Conclusion. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  16. Bone Marrow Cell Therapy on 1,2-Dimethylhydrazine (DMH)-Induced Colon Cancer in Rats.

    Science.gov (United States)

    El-Khadragy, Manal F; Nabil, Heba M; Hassan, Basmaa N; Tohamy, Amany A; Waaer, Hanaa F; Yehia, Hany M; Alharbi, Afra M; Moneim, Ahmed Esmat Abdel

    2018-01-01

    Stem cell based therapies are being under focus due to their possible role in treatment of various tumors. Bone marrow stem cells believed to have anticancer potential and are preferred for their activities by stimulating the immune system, migration to the site of tumor and ability for inducting apoptosis in cancer cells. The current study was aimed to investigate the tumor suppressive effects of bone marrow cells (BMCs) in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. The rats were randomly allocated into four groups: control, BMCs alone, DMH alone and BMCs with DMH. BMCs were injected intrarectally while DMH was injected subcutaneously at 20 mg/kg body weight once a week for 15 weeks. Histopathological examination and gene expression of survivin, β-catenin and multidrug resistance-1 (MDR-1) by real-time reverse transcription-polymerase chain reaction (RT-PCR) in rat colon tissues. This is in addition to oxidative stress markers in colon were performed across all groups. The presence of aberrant crypt foci was reordered once histopathological examination of colon tissue from rats which received DMH alone. Administration of BMCs into rats starting from zero-day of DMH injection improved the histopathological picture which showed a clear improvement in mucosal layer, few inflammatory cells infiltration periglandular and in the lamina propria. Gene expression in rat colon tissue demonstrated that BMCs down-regulated survivin, β-catenin, MDR-1 and cytokeratin 20 genes expression in colon tissues after colon cancer induction. Amelioration of the colon status after administration of MSCs has been evidenced by a major reduction of lipid peroxidation, nitric oxide, and increasing of glutathione content and superoxide dismutase along with catalase activities. Our findings demonstrated that BMCs have tumor suppressive effects in DMH-induced colon cancer as evidenced by down-regulation of survivin, β-catenin, and MDR-1 genes and enhancing the antioxidant

  17. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  18. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Lee, Kang Kyoo [Dept. of Radiation Oncology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-03-15

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  19. Mitosis dynamics in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebovsky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Values were investigated of the mitotic index (MI) and the metaphase/prophase ratio (M/P) in rats continuously irradiated with daily doses of 0.5 to 82.5 R. Changes resulting from the continuous irradiation were manifest in two stages, viz.: 1. adaptation stage up to the 30th day of irradiation - the values fluctuated considerably; 2. steady-state stage since the 30th day till the end of irradiation - the values stabilized at a certain level. During the adaptation stage, MI values decreased till the 25th day; then they increased and remained at a certain lower value till the end of the experiment. M/P values showed a considerable variability between the 5th and the 25th days and a significant increase in the steady-state stage, mainly at higher dose rates.

  20. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    Science.gov (United States)

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  1. Correlative link ages between indices of bone metabolism and thyroid hormones in rats with periodontitis

    Directory of Open Access Journals (Sweden)

    Vitaliy Shcherba

    2017-12-01

    Full Text Available Introduction: It has been established that changes in the bone tissue of the jaw are present in all cases where there are at least small pathological inflammatory changes in the mucous membrane of the oral cavity. This suggests a significantly greater pathogenetic relationship between inflammatory changes in the mucosa and changes in the bone part of the periodontal disease. Despite a large number of studies, the molecular mechanisms of the influence of thyroid hormones on the bone metabolism have not been completely studied.  The aim of study: to clarify mechanisms of the periodontitis development in rats with thyroid dysfunction based on a comparative analysis of the correlations between the bone metabolism indices and the concentration of  thyroid stimulating hormone,  free thyroxine and free triiodothyronine. Material and methods: Experimental studies were conducted on male, nonliner, white rats of around 4 months of age.  The experimental animals were divided into the following groups: І – control animals;  ІІ – animals with periodontitis; ІІІ – animals with periodontitis combined with hyperthyroidism; IV – animals with periodontitis combined with hypothyroidism. Total calcium, ionized calcium, phosphorus, osteocalcin concentration and  activity of phosphatases were measured. Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r and its fidelity (p was calculated that was accordingly denoted in the tables (correlation matrices. The correlation coefficient was significant at p<0.05. Results: The conducted correlative analysis shows that there are different interconnections between the indices of calcium-phosphorus metabolism, bone formation and bone resorption with free triiodothyronine, free thyroxine and thyroid stimulating hormone, in case of the experimental periodontitis combined with thyroid dysfunction. In animals with modelled periodontitis combined with

  2. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  3. Effect of local hemostatics on bone induction in rats: a comparative study of bone wax, fibrin-collagen paste, and bioerodible polyorthoester with and without gentamicin

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    Local hemostatics for osseous tissue should preferably be absorbable and biocompatible and should not inhibit osteogenesis. The tissue response and effect on demineralized bone-induced heterotopic osteogenesis in the abdominal muscle of 120 male Wistar rats by different local hemostatics were...... evaluated by light microscopy and 85Sr uptake analyses. Non-absorbable bone wax of 88% beeswax and absorbable bovine fibrin-collagen paste both significantly inhibited osteoinduction, whereas a bioerodible polyorthoester drug delivery system with or without 4% gentamicin did not. Bone wax was not absorbed...

  4. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  5. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  6. Hematopoiesis Stimulating Role of IL-12 Enabling Bone Marrow Transplantation in Irradiated Rats

    International Nuclear Information System (INIS)

    Ashry, O.M.; Abd el Sammad, H.; El Shahat, M.; Abou el Khier, I.

    2012-01-01

    Severe myelosuppression is a common side effect of radiotherapy or chemotherapy. As a mean to stimulate the full-lineage blood cell recovery from severe myelosuppression, sublethally irradiated animals were used to evaluate immunological effect of interleukin IL-12 in bone marrow transplanted animals. Isologous bone marrow (BM), from the same inbred strain, were given to male rats, 1 hour post whole body gamma irradiation at a single dose level of 5 Gy and subcutaneous injection of 100 ng/ml IL-12. Irradiation induced a significant drop in haematological values, blood glutathione(GSH) as well as bone marrow viability associated with a significant elevation of serum malondialdehyde (MDA). Related to immunological data, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) also recorded a significant depression. Irradiated animals receiving BM and IL-12 showed significantly elevated body and spleen weights, erythrocytes count (RBCs), hemoglobin content (Hb) and hemotocrit value (Hct %) besides, white blood cells (WBCs)and its differential count, as well as GSH, while MDA was significantly depressed as compared to the irradiated group. Bone marrow viability was significantly increased while IL-6 and TNF-α were normalized. The curative action of IL-12 enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation, hence improving oxidative stress. IL-12 administration is proposed as a complementary strategy to treat radiation-induced path-physiology and trapping free radicals accumulations after irradiation.

  7. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  8. Effects of young-coconut juice on increasing mandibular cancellous bone in orchidectomized rats: Preliminary novel findings

    Directory of Open Access Journals (Sweden)

    Pranee Suwanpal

    2011-12-01

    Full Text Available Androgens play a very important role in building the skeleton in young adults and help to prevent bone loss andosteoporosis in aging men. In addition, in hypogonadism or elderly men, bone mass has been related to estrogen levels ratherthan to testosterone. Estrogen replacement therapy has therefore been proposed to prevent bone loss in males as well as infemales. Estrogen, however, has been considered to be one of the hormonal risk factors for benign prostatic hyperplasia andprostate cancer and also has other side effects. Young coconut juice (YCJ presumably containing phytoestrogen was investigatedin the present study for its possible beneficial effects on delaying osteoporosis using a male rat model, and by this totest the possibility that it might be able to replace estrogen replacement therapy without side effects. In this study, mandibularcancellous bone was used as the osteoporotic model. Using the same model, we have previously found that total cartilagethickness particularly the hypertrophic zone of mandibular condylar cartilage was thicker in the sham-operated rats receivingYCJ orally fed for a 14 day period, compared with sham, orchidectomized animal, orchidectomized rats receiving estradiolbenzoate, and orchidectomized rats receiving YCJ. The present study confirmed our former study that mandibular cancellousbone in the sham-operated rats and in the orchidectomized rats receiving YCJ orally fed for a 14–day period were thicker thanthose of the sham and orchidectomized rat groups. This study results are novel and they indicate that YCJ may have beneficialeffects in the treatment of osteoporosis in andropause men.

  9. Early matrix change of a nanostructured bone grafting substitute in the rat.

    Science.gov (United States)

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  10. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats.

    Directory of Open Access Journals (Sweden)

    Zhongshuang Liu

    Full Text Available To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats.Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX and a sham-ovariectomy group (sham. Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed.Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012, but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005. A thickness and separation map showed that trabeculae of less than 100 μm increased by 46%, whereas trabeculae of more than 200 μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200 μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028 and bone volume fraction (p = 0.001 were also significantly decreased in the OVX group compared to the sham group.Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture.

  11. The bisphosphonate zoledronate prevents vertebral bone loss in mature estrogen-deficient rats as assessed by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Glatt M.

    2001-01-01

    Full Text Available The effect of long-term treatment with the bisphosphonate zoledronate on vertebral bone architecture was investigated in estrogen-deficient mature rats. 4-month-old rats were ovariectomized and development of cancellous osteopenia was assessed after 1 year. The change of bone architectural parameters was determined with a microtomographic instrument of high resolution. After 1 year of estrogen-deficiency, animals lost 55% of vertebral trabecular bone in comparison to sham operated control animals. Trabecular number (Tb.N and trabecular thickness (Tb.Th were significantly reduced in ovariectomized animals, whereas trabecular separation (Tb.Sp, bone surface to volume fraction (BS/BV and trabecular bone pattern factor (TBPf were significantly increased, indicating a loss of architectural integrity throughout the vertebral body. 3 groups of animals were treated subcutaneously with zoledronate for 1 year with 0.3, 1.5 and 7.5 microgram/kg/week to inhibit osteoclastic bone degradation. Administration started immediately after ovariectomy and treatment dose-dependently prevented the architectural bone deterioration and completely suppressed the effects of estrogen deficiency at the higher doses. The results show that microtomographic determination of static morphometric parameters can be used to quantitate the effects of drugs on vertebral bone architecture in small laboratory animals and that zoledronate is highly effective in this rat model.

  12. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  13. Liposomal Encapsulation for Systemic Delivery of Propranolol via Transdermal Iontophoresis Improves Bone Microarchitecture in Ovariectomized Rats.

    Science.gov (United States)

    Teong, Benjamin; Kuo, Shyh Ming; Tsai, Wei-Hsin; Ho, Mei-Ling; Chen, Chung-Hwan; Huang, Han Hsiang

    2017-04-13

    The stimulatory effects of liposomal propranolol (PRP) on proliferation and differentiation of human osteoblastic cells suggested that the prepared liposomes-encapsulated PRP exerts anabolic effects on bone in vivo. Iontophoresis provides merits such as sustained release of drugs and circumvention of first pass metabolism. This study further investigated and evaluated the anti-osteoporotic effects of liposomal PRP in ovariectomized (OVX) rats via iontophoresis. Rats subjected to OVX were administered with pure or liposomal PRP via iontophoresis or subcutaneous injection twice a week for 12 weeks. Changes in the microarchitecture at the proximal tibia and the fourth lumbar spine were assessed between pure or liposomal PRP treated and non-treated groups using micro-computed tomography. Administration of liposomal PRP at low dose (0.05 mg/kg) via iontophoresis over 2-fold elevated ratio between bone volume and total tissue volume (BV/TV) in proximal tibia to 9.0% whereas treatment with liposomal PRP at low and high (0.5 mg/kg) doses via subcutaneous injection resulted in smaller increases in BV/TV. Significant improvement of BV/TV and bone mineral density (BMD) was also found in the fourth lumbar spine when low-dose liposomal PRP was iontophoretically administered. Iontophoretic low-dose liposomal PRP also elevated trabecular numbers in tibia and trabecular thickness in spine. Enhancement of bone microarchitecture volumes has highlighted that liposomal formulation with transdermal iontophoresis is promising for PRP treatment at the lower dose and with longer duration than its clinical therapeutic range and duration to exhibit optimal effects against bone loss in vivo.

  14. Synchrotron-based XRD from rat bone of different age groups

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V., E-mail: dvrao_9@yahoo.com [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Gigante, G.E. [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Cesareo, R.; Brunetti, A. [Istituto di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari (Italy); Schiavon, N. [Hercules Laboratory, University of Evora (Portugal); Akatsuka, T.; Yuasa, T. [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata 992-8510 (Japan); Takeda, T. [Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] bone fill with varying composition (60% and 70%) and bone cream (35–48%), has been acquired with 15 keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ = 0.82666 A{sup 0}). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6{sub 3}/m with the lattice parameters of a = 9.4328 Å and c = 6.8842 Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15 kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100 μm resolution. - Highlights: • For

  15. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  16. Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Bone marrow mesenchymal stem cells (BMMSCs have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control, isogeneically transplanted rats (BN-BN and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg cells were assessed at each time point.Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF-α, and interferon (IFN-γ while upregulating IL-10 and transforming growth factor (TGF-β expression and increasing Treg levels.BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.

  17. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    Science.gov (United States)

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  18. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    Energy Technology Data Exchange (ETDEWEB)

    Moczar, E; Berenholc, S; Phan-Dinh-Tuy, B; Robert, A M

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with /sup 14/C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. /sup 14/C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones .

  19. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  20. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    International Nuclear Information System (INIS)

    Moczar, E.; Berenholc, S.; Phan-Dinh-Tuy, B.; Robert, A.M.

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with 14 C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. 14 C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones

  1. Comparison of estrogenic responses in bone and uterus depending on the parity status in Lewis rats.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Bernhardt, Ricardo; Scharnweber, Dieter; Jarry, Hubertus; Vollmer, Günter; Zierau, Oliver

    2013-01-01

    The reproductive transition of women through peri- to postmenopause is characterized by changes in steroid hormone levels due to the cessation of the ovarian function. Beside several complaints associated with these hormonal changes, the deterioration of the trabecular bone micro-architecture and the loss of skeletal mass can cause osteoporosis. At this life stage, women often have a reproductive history of one to several pregnancies. The ovariectomized skeletally mature rat (>10 months old) is one of the most commonly used animal models for postmenopausal osteoporosis research. Despite the fact that mammals can undergo up to several reproductive cycles (primi-/pluriparous), nulliparous animals are often used and the question whether changes in the hormonal milieu subsequently affect the skeleton and influence the outcome of intervention studies is often neglected in study designs. Therefore, the aim of the present study was to compare the estrogen responsiveness of nulliparous and pluriparous rats. For this purpose, one year old virgin or retired breeder Lewis rats were either sham operated or ovariectomized, whereas half of the ovariectomized animals received subcutaneous 17β-estradiol pellets eight weeks after surgery. After another four weeks, the effects on the uterus were determined by expression analysis of estrogen-dependently regulated steroid receptor genes and well-established marker genes. Moreover, trabecular bone parameters in the tibia were analyzed by micro-computed tomography (μCT). Parity-dependency in estrogen responsiveness was observed with respect to the achieved serum E2 levels in response to similar E2 treatment. This led to differences both on the uterus wet weight and on the expression level of uterine target genes. In addition, a reversal of the ovariectomy-induced changes of the bone architecture after 17β-estradiol substitution was only observed among the nulliparous. In conclusion, the observations of this study support parity

  2. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan

    International Nuclear Information System (INIS)

    Li, Jingfeng; Jin, Lin; Zhu, Shaobo; Wang, Mingbo; Xu, Shuyun

    2015-01-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP 2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP 2 /PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP 2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP 2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP 2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. (paper)

  3. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  4. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats.

    Science.gov (United States)

    Rodrigues, Willian Caetano; Fabris, André Luís da Silva; Hassumi, Jaqueline Suemi; Gonçalves, Alaíde; Sonoda, Celso Koogi; Okamoto, Roberta

    2016-06-01

    Immunohistochemical studies and molecular biology have enabled us to identify numerous proteins that are involved in the metabolism of bone, and their encoding genes. Among these is alkaline phosphatase (ALP), an enzyme that is responsible for the initiation of mineralisation of the extracellular matrix during alveolar bone repair. To evaluate the gene expression of ALP during this process, we studied nine healthy adult male rats, which had their maxillary central incisors extracted from the right side and were randomly divided into three groups. During three experimental periods, 7 days, 14 days, and 28 days, the alveoli were curetted, the rats killed, and samples analysed by real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNAm that encodes the gene for the synthesis of ALP was expressed during the three periods analysed, but its concentration was significantly increased at 14 and 28 days compared with at 7 days. There was no significant difference between 14 and 28 days (p=0.0005). We conclude that genes related to ALP are expressed throughout the healing process and more intensively during the later periods (14 and 28 days), which coincides with the increased formation of mineralised bone. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    Science.gov (United States)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  6. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  7. Effects of Velvet Antler with Blood on Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Ching-Chiung Wang

    2012-09-01

    Full Text Available In traditional Chinese medicine (TCM, both velvet antlers (VA and VA blood can tonify qi, essence, and marrow, nourish the blood, and invigorate bones and tendons. In TCM, the combination of VA and VA blood is believed to have superior pharmacological effects. Scientific evidence supporting the traditional therapeutic preference for redder antler is needed. The effectiveness of the combination therapy of VA middle sections (VAMs and VA blood (VAM-B was first examined in promoting proliferation of mouse osteoblastic cells (MC3T3-E1. The anti-osteoporotic activity of VAM-B (ratio of VAM:VA blood = 1:0.2 was evaluated with ovariectomized (OVX rats at a dose of 0.2 g/kg. In VAM-B-treated OVX rats, the body weight decreased 10.7%, and the strength of vertebrae and the femur respectively increased 18.1% and 15.4%, compared to the control. VAM-B treatment also recovered the estrogen-related loss of the right tibial trabecular bone microarchitecture. Alkaline phosphatase (ALP significantly decreased, but estradiol did not significantly change in serum of VAM-B-treated OVX rats. We also provide an effective strategy to enhance the anti-osteoporotic activity of VAM. In conclusion, our results provide scientific evidence supporting the traditional therapeutic preference of redder antler and indicate that VAM-B is a potential therapeutic agent for managing osteoporosis.

  8. Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats

    NARCIS (Netherlands)

    Brouwers, J.E.M.; Ruchselman, M.; Rietbergen, van B.; Bouxsein, M.L.

    2009-01-01

    Summary Compressive fatigue properties of whole vertebrae, which may be clinically relevant for osteoporotic vertebral fractures, were determined in untreated, intact rats and zoledronic-acid-treated, ovariectomized rats. Typical fatigue behavior was found and was similar to that seen in other

  9. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    Science.gov (United States)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  10. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    Science.gov (United States)

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  11. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    Science.gov (United States)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  12. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  13. Synchrotron-based XRD from rat bone of different age groups.

    Science.gov (United States)

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Advanced age diminishes tendon-to-bone healing in a rat model of rotator cuff repair.

    Science.gov (United States)

    Plate, Johannes F; Brown, Philip J; Walters, Jordan; Clark, John A; Smith, Thomas L; Freehill, Michael T; Tuohy, Christopher J; Stitzel, Joel D; Mannava, Sandeep

    2014-04-01

    Advanced patient age is associated with recurrent tearing and failure of rotator cuff repairs clinically; however, basic science studies have not evaluated the influence of aging on tendon-to-bone healing after rotator cuff repair in an animal model. Hypothesis/ This study examined the effect of aging on tendon-to-bone healing in an established rat model of rotator cuff repair using the aged animal colony from the National Institute on Aging of the National Institutes of Health. The authors hypothesized that normal aging decreases biomechanical strength and histologic organization at the tendon-to-bone junction after acute repair. Controlled laboratory study. In 56 F344xBN rats, 28 old and 28 young (24 and 8 months of age, respectively), the supraspinatus tendon was transected and repaired. At 2 or 8 weeks after surgery, shoulder specimens underwent biomechanical testing to compare load-to-failure and load-relaxation response between age groups. Histologic sections of the tendon-to-bone interface were assessed with hematoxylin and eosin staining, and collagen fiber organization was assessed by semiquantitative analysis of picrosirius red birefringence under polarized light. Peak failure load was similar between young and old animals at 2 weeks after repair (31% vs 26% of age-matched uninjured controls, respectively; P > .05) but significantly higher in young animals compared with old animals 8 weeks after repair (86% vs 65% of age-matched uninjured controls, respectively; P repair, fibroblasts appeared more organized and uniformly aligned in young animals on hematoxylin and eosin slides compared with old animals. Collagen birefringence analysis of the tendon-to-bone junction demonstrated that young animals had increased collagen fiber organization and similar histologic structure compared with age-matched controls (53.7 ± 2.4 gray scales; P > .05). In contrast, old animals had decreased collagen fiber organization and altered structure compared with age

  15. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  16. The protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulating Wnt and p38 MAPK signaling.

    Science.gov (United States)

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-12-12

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.

  17. Combined Treatment of Alendronate and Low-Intensity Pulsed Ultrasound (LIPUS Increases Bone Mineral Density at the Cancellous Bone Osteotomy Site in Aged Rats: A Preliminary Study.

    Directory of Open Access Journals (Sweden)

    H Aonuma

    2011-12-01

    Full Text Available Introduction: During fracture healing, alendronate encourages callus volume by inhibiting bone resorption, whereas low-intensity pulsed ultrasound (LIPUS enhances bone regeneration by promoting an anabolic response. Methods: In the present study, 9-month-old Sprague-Dawley rats, with a unilateral proximal tibial osteotomy, were treated with alendronate (daily, 1 g/kg plus sham-LIPUS (n = 14, saline plus LIPUS (20 min/day (n = 18, alendronate plus LIPUS (n = 16, or saline plus sham- LIPUS as a control (n = 13 for 4 weeks. The rats were then examined for changes in bone mineral density (BMD during metaphyseal bone repair. Results: The combined therapy signi cantly increased BMD at the osteotomy site at 4 weeks (p < 0.001 compared with the control, without affecting the contralateral, non-osteotomized tibia. Both alendronate and LIPUS alone also exerted a positive, albeit less, effect on BMD in the affected limb (p < 0.001 and p = 0.006, respectively. Conclusions: Alendronate and LIPUS cooperate to enhance BMD during metaphyseal bone healing. Keywords: LIPUS, bisphosphonate, bone mineral density.

  18. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.

    Science.gov (United States)

    Bhattarai, Govinda; Poudel, Sher Bahadur; Kook, Sung-Ho; Lee, Jeong-Chae

    2016-01-01

    Resveratrol is an antioxidant and anti-inflammatory polyphenol. Periodontitis is induced by oral pathogens, where a systemic inflammatory response accompanied by oxidative stress is the major event initiating disease. We investigated how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs). We also explored whether resveratrol protects rats against alveolar bone loss in an experimental periodontitis model. Periodontitis was induced around the first upper molar of the rats by applying ligature infused with LPS. Stimulating hGFs with 5μg/ml LPS augmented the expression of cyclooxygenase-2, matrix metalloproteinase (MMP)-2, MMP-9, and Toll-like receptor-4. LPS treatment also stimulated the production of reactive oxygen species (ROS) and the phosphorylation of several protein kinases in the cells. However, the expression of heme oxygenase-1 (HO-1) and nuclear factor-E2 related factor 2 (Nrf2) was inhibited by the addition of LPS. Resveratrol treatment almost completely inhibited all of these changes in LPS-stimulated cells. Specifically, resveratrol alone augmented HO-1 induction via Nrf2-mediated signaling. Histological and micro-CT analyses revealed that administration of resveratrol (5mg/kg body weight) improved ligature/LPS-mediated alveolar bone loss in rats. Resveratrol also attenuated the production of inflammation-related proteins, the formation of osteoclasts, and the production of circulating ROS in periodontitis rats. Furthermore, resveratrol suppressed LPS-mediated decreases in HO-1 and Nrf2 levels in the inflamed periodontal tissues. Collectively, our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in

  19. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

    Science.gov (United States)

    Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing

    2017-06-01

    Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  1. Quantitation of specific myeloid cells in rat bone marrow measured by in vitro /sup 35/S-sulphate incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A F; Rose, M S

    1984-08-01

    A biochemical measurement which can be used for quantitation of specific early myeloid cells in rat bone marrow has been developed. This measurement consists of a rapid, simple assay for the in vitro quantitation of /sup 35/S-sulfate incorporation into rat bone marrow cells. Incubation of bone marrow cells with /sup 35/S-sulfate led to a time-dependent increase in radioactivity obtained in perchloric acid insoluble fractions of bone marrow cell suspensions. This incorporation was inhibited by cyanide and puromycin. Autoradiography has demonstrated the radiolabel to be specifically associated with immature cells of the myeloid series. The cells most active in this respect were eosinophils. When rats were treated with endotoxin, the rate of /sup 35/S-sulfate incorporation was increased. Cell number measurements, using conventional histopathology and a Coulter Counter, demonstrated that endotoxin caused an initial release of mature granulocytes from the bone marrow. The regeneration of this mature population in the marrow was rapid, and was characterized by an increase in the number of immature cells and a concomitant increase in the rate of /sup 35/S-sulfate incorporation measured in preparations of bone marrow cells in vitro. Furthermore, this response to endotoxin has demonstrated that Coulter Counting techniques can be used to distinguish specific populations of cells (e.g. mature granulocytes) within the bone marrow.

  2. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.In this report, we show that feeding a high quality diet supplemented with blueberries (BB to pre-pubertal rats throughout development or only between postnatal day 20 (PND20 and PND34 prevented ovariectomy (OVX-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.These results indicate: 1 a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2 the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.

  3. Autoradiographic studies of the distribution of radium-226 in rat bone: their implications for human radiation dosimetry and toxicity

    International Nuclear Information System (INIS)

    Priest, N.D.; Haines, J.W.; Howells, G.; Green, D.

    1983-01-01

    A solution containing 226 Ra chloride was injected into young female rats via the saphenous vein. Subsequently, the distribution and retention of the 226 Ra in the skeleton was studied. The results show that 226 Ra is initially deposited in the rat femur as a volume deposit and is fairly evenly distributed throughout the bone matrix. Much of the 226 Ra initially deposited in the skeleton is lost within a few days of its administration. During the first week 226 Ra gradually accumulates at sites of bone deposition including accreting surfaces. Subsequent bone growth results in the burial of contaminated bone surfaces. Following bone resorption some of the 226 Ra released from individual bones is recycled systemically so that all skeletal components tend towards a uniform 226 Ra concentration per unit of bone mineral. Of the two models conventionally used for radiation dosimetry purposes, these results reported for rats suggest that though neither is ideal, the volume distribution model is preferable to the surface model at all times after the uptake of radium by the skeleton. (author)

  4. [Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].

    Science.gov (United States)

    Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming

    2017-12-25

    To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.

  5. Relative accretion of /sup 99m/Tc-polyphosphate by forming and resorbing bone systems in rats: its significance in the pathologic basis of bone scanning

    International Nuclear Information System (INIS)

    Garcia, D.A.; Tow, D.E.; Kapur, K.K.; Wells, H.

    1976-01-01

    The relative roles of osteogenesis and osteolysis in the production of positive radionuclide images of skeletal lesions were investigated. The uptake of /sup 99m/Tc-polyphosphate (Tc-PP) by each process was measured in an animal model that permitted bone formation and resorption to be studied independently. Ten rats received intramuscular implants of bone-forming demineralized matrix (DM) and resorbing devitalized bone (DV). Radiographs and Tc-PP scintiscans were made each week thereafter. At 6 to 10 weeks, the implants and normal bone samples were removed, counted for /sup 99m/Tc, and examined histologically. The uptake of Tc-PP by DM implants was first detected on images made 3 weeks after implantation, and by DV implants, 1 to 2 weeks later. Serial radiography showed progressive calcification of DM and resorption of DV implants. Microscopic examinations of undecalcified sections, stained with a modified Goldner preparation, revealed vital-bone formation in the DM implants and osteoclastic resorption in the DV. Activity counts per gram of DM and DV implants were, respectively, 200 percent and 90 percent that of normal bone. Since only the bone-forming system (DM) accumulated Tc-PP at greater than normal concentrations, this study indicates that positive bone images of osteolytic lesions solely reflect compensatory osteogenic responses

  6. Immunological Enhancement of Interferon Alpha Treatment to Allogeneic Bone Marrow Transplantation in Irradiated Rats

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd El-Naby, Y.H.

    2011-01-01

    The Influence of the biological response modifiers: interferon alpha (IFN-α) and bone marrow transplantation (BMT) on stimulation of blood cell recovery and boosting the immunological response were investigated in this work. Male rats received BMT 3 h post total body ?-irradiation of 5 Gy and were injected with 10 units of IFN-α weekly for 5 weeks. Irradiation induced a significant decrease in blood parameters, reduced glutathione (GSH) as well as bone marrow lymphocyte count and viability. Immunological data revealed that tumour necrosis factor alpha (TNF-α) and interleukin-2 (IL-2) recorded a significant depression while lipid peroxidation (MDA) was conversely elevated. White blood cells (WBC), erythrocytes (RBC), haemoglobin (Hb), haematocrit (Hct), lymphocytes and GSH in irradiated animals receiving BMT and IFN-α, were significantly elevated, while MDA was significantly depressed as compared to the irradiated group. Bone marrow lymphocytic count and viability percentage were significantly increased while IL-2 and TNF-α were normalized. The curative action of IFN-α enforcing significant innate response could trigger and augment adaptive immune response by bone marrow transplantation. Such therapies boosting both components of immunity would be considered a potential strategy for irradiation treatment

  7. Quantitative assessment of metabolic bone disease in rat models by dual tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Fumishige; Seto, Hikaru

    1989-05-01

    The usefulness of radionuclide techniques for early differential diagnosis of metabolic bone disease has been controversial. We tried to develop a new method to distinguish alterations in bone metabolism prior to radiologic changes, measuring 24-hr whole-body retention (WBR) and femoral uptake of two radiopharmaceuticals (/sup 47/Ca-chloride, /sup 99m/Tc-MDT). Control normal (C), osteoporosis (P), osteomalacia (M) and steroid-induced osteoporosis (S) were produced in 60 eight-week old Wistar male rats by means of dietary manipulation and steroid administration. Fine detail radiographs of the femurs and bone specimens were obtained over six weeks at two week intervals. Good correlation between WBR and femoral uptake of /sup 47/Ca was noted (r=0.86, p<0.01). WBR ratios of /sup 47/Ca were significantly higher in the M and S groups and were lower in the P group when compared to the C group throughout the study. WBR ratios of /sup 99m/Tc-MDP were significantly higher in the M group and were lower in the S group from the 2nd week. Fine detail radiographs analyzed by microdensitometry revealed significant osteopenia in the S, M and P groups from the 4th week. The dual tracer method was found to distinguish alterations in bone metabolism in the groups examined prior to detectable radiologic changes. (author).

  8. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Science.gov (United States)

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  9. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Science.gov (United States)

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  10. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Directory of Open Access Journals (Sweden)

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  11. The effect of phototherapies on bone repair of euthyroid and hypothyroid rats: Raman spectroscopic study

    Science.gov (United States)

    Soares, Amanda P.; Rodriguez, Tania T.; Soares, Luiz G. P.; dos Santos, Jean Nunes; Silveira, Landulfo; Pinheiro, Antonio Luiz B.

    2018-04-01

    The repair of bone tissue is complex and can be influenced by several local and systemic factors that can delay the repair. Laser and LED phototherapies have shown positive results in the repair of bone tissue. The aim of this study was to evaluate, through Raman spectroscopy, the influence of laser (λ780 nm) and LED (λ850 nm) phototherapies in the repair of surgical defects in femurs of euthyroid and hypothyroid rats. Thirty Albinus Wistar rats were randomly divided into 6 groups. The animals of the hypothyroid groups were submitted to surgical removal of the thyroid gland. After general anesthesia, a surgical bone defect was created in the femur of each animal and filled with blood clot in all groups. In group I (Euthyroid) the defect was created in euthyroid animals; In Group II (Hypo) the defect was created in hypothyroid animals; In Group III (Euthyroid Laser) the defect was irradiated with Laser; on Group IV (Hypo Laser) the defect was made in a hypothyroid animal and irradiated with Laser; on Group V (Euthyroid LED) the defect was irradiated with LED and on Group VI (Hypo LED) the defect was created in hypothyroid animals and LED irradiated. Irradiation was carried out at every 48-h for 15 days. Specimens were taken and stored in liquid nitrogen. Intensity of peaks of phosphate HA ( 960 cm-1), carbonated HA ( 1,070 cm-1) and collagen ( 1,414 cm-1) were measured by Raman Spectroscopy. The results showed that the health status had significant influence all peaks. Irradiation influenced only the peak of 1454 cm-1. It is concluded that phototherapies influences bone repair in cases of thyroid diseases.

  12. The effects of a novel botanical agent on lipopolysaccharide-induced alveolar bone loss in rats.

    Science.gov (United States)

    Lee, Bo-Ah; Lee, Hwa-Sun; Jung, Young-Suk; Kim, Se-Won; Lee, Yong-Wook; Chang, Sun-Hwa; Chung, Hyun-Ju; Kim, Ok-Su; Kim, Young-Joon

    2013-08-01

    The development of host-modulatory agents with low risk of adverse effects has been needed to treat periodontitis, a chronic inflammatory disease. A botanical mixture of extracts from two natural substances, Panax notoginseng and Rehmannia glutinosa Libosch, was developed as a novel botanical agent synthesized with anti-inflammatory effect. The aim of this study is to evaluate the effects of the botanical mixture on the release of inflammatory cytokines and its inhibitory effect on lipopolysaccharide (LPS)-induced alveolar bone loss (ABL) in a rat model. Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay using human gingival fibroblast (hGF) and human periodontal ligament (hPDL) cells. Human acute monocytic leukemia cell line and hGF cells were cultured to assay tumor necrosis factor (TNF)-α and interleukin (IL)-6, respectively. Microcomputed tomography analysis and immunofluoresence analysis were performed to evaluate the efficacy of the botanical mixture to inhibit the destruction of alveolar bone and connective tissue in a rat model. The botanical mixture is cytotoxic at concentrations exceeding 2.5 mg/mL (P botanical mixture to be used in all subsequent in vitro and in vivo experiments. The botanical mixture reduced the release of TNF-α and IL-6 from human monocytic cells and hGF cells in a dose-dependent manner (P botanical mixture significantly reduced the alveolar bone loss in a rat model (P botanical mixture, matrix metalloproteinase (MMP)-9 was detected along the alveolar bone crest (ABC), but not around the gingival connective tissue, while in the group with LPS-induced ABL, pronounced expression of MMP-9 around the ABC, periodontal ligament, and gingival connective tissue was found. The botanical mixture showed a potential adjunctive effect in the treatment of periodontitis. However, the present findings are obtained in vitro and in a rat model, so further clinical study is needed

  13. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were......V and showed a similar tendency to form agglomerates with a size of ∼200 nm in cell culture environment. The cytotoxicity of CuO NPs to MSCs at various concentrations and incubation periods were firstly evaluated. The CuO NPs showed dose-dependent and time-dependent toxicity to MSCs, and their surface...

  14. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.

    Science.gov (United States)

    Prodinger, Peter M; Foehr, Peter; Bürklein, Dominik; Bissinger, Oliver; Pilge, Hakan; Kreutzer, Kilian; von Eisenhart-Rothe, Rüdiger; Tischer, Thomas

    2018-02-14

    Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat-all of which are potentially available in the experimental situation-to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. 40 paired femura, tibiae and humeri of male Wistar rats (10-38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone's length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1-3% measured by DXA and 2.5-5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R 2  = 0.94-0.99). The load-displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy

  15. Simultaneous bone marrow and composite tissue transplantation in rats treated with nonmyeloablative conditioning promotes tolerance1

    Science.gov (United States)

    Xu, Hong; Ramsey, Deborah M.; Wu, Shengli; Bozulic, Larry D.; Ildstad, Suzanne T.

    2012-01-01

    Background Approaches to safely induce tolerance in vascularized composite allotransplantation (VCA) with chimerism through bone marrow transplantation (BMT) are currently being pursued. However, the VCA were historically performed sequentially after donor chimerism was established. Delayed VCA is not clinically applicable due to the time constraints associated with procurement from deceased donors. A more clinically relevant approach to perform both the BMT and VCA simultaneously was evaluated. Methods WF (RT1Au) rats were treated with a short course of immunosuppressive therapy (anti-αβ-TCR mAb, FK-506, and anti-lymphocyte serum). One day prior to BMT, rats were treated with varying doses of total body irradiation (TBI) followed by transplantation of heterotopic osteomyocutaneous flaps from hind limbs of ACI (RT1Aabl) rats. Results 80% of rats conditioned with 300 cGy TBI and 40% of rats receiving 400 cGy TBI accepted the VCA. Mixed chimerism was detected in peripheral blood at one month post-VCA, but chimerism was lost in all transplant recipients by 4 months. The majority of peripheral donor cells originated from the BMT and not the VCA. Acceptors of VCA were tolerant of a donor skin graft challenge and no anti-donor antibodies were detectable, suggesting a central deletional mechanism for tolerance. Regulatory T cells (Treg) from spleens of acceptors more potently suppressed lymphocyte proliferation than Treg from rejectors in the presence of donor stimulator cells. Conclusions These studies suggest that simultaneous BMT and VCA may establish indefinite allograft survival in rats through Treg-mediated suppression and thymic deletion of alloreactive T cells. PMID:23250336

  16. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  17. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  18. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  19. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  20. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  1. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    Science.gov (United States)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  2. Efficacy comparison of Accell Evo3 and Grafton demineralized bone matrix putties against autologous bone in a rat posterolateral spine fusion model.

    Science.gov (United States)

    Brecevich, Antonio T; Kiely, Paul D; Yoon, B Victor; Nguyen, Joseph T; Cammisa, Frank P; Abjornson, Celeste

    2017-06-01

    Spinal fusion procedures are intended to stabilize the spinal column for a multitude of disorders including abnormal curvature, traumatic instability, degenerative instability, and damage from infections or tumors. As an aid in the bone healing response, bone graft materials are used to bridge joints for arthrodesis and promote unions in pseudoarthrosis. Currently, the gold standard for stabilizing fusion masses in spinal procedures involves using the osteogenic, osteoinductive, and osteoconductive properties of autologous iliac crest corticocancellous bone. However, considerable morbidity is associated with harvesting the autologous graft. Donor site complications including infection, large hematomas, and pain have been reported at rates as high as 50% (Boden and Jeffrey, 1995). Biologically, the rate of bone repair dictates the rate at which the fusion mass will unite under autologous graft conditions. The purpose of this study is to compare the quality and rate of fusion between Accell Evo3 and Grafton demineralized bone matrix (DBM), with the gold standard iliac crest bone graft (ICBG) as the control, in athymic rat posterolateral fusion. This study was a randomized, controlled study in a laboratory setting at the Hospital for Special Surgery in New York City. Blinded observations were made, which created an assessment of outcomes for successful fusions between each method. Forty-eight (48) athymic rats were used in this study and underwent posterolateral lumbar fusion. They were assessed at either 3 weeks or 9 weeks to see the rate and efficacy of fusion. Outcome measures will be the efficacy of the different bone grafts and their success rates of fusion in the rats. A comparison of the quality and rate of fusion between Accell Evo3® (DBM A) and Grafton (DBM B), with the gold standard iliac crest bone graft (ICBG) as the control, was performed using the established posterolateral intertransverse process on an athymic rat model. Materials were evaluated for

  3. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Foong Kiew Ooi

    2014-12-01

    Full Text Available Little information exists about the effects of swimming exercise on bone health in ovariectomized animals with estrogen deficiency, which resembles the postmenopausal state and age-related bone loss in humans. This study investigated the effects of swimming exercise on tibia and femur bone mineral density (BMD, geometry, and microstructure in sham and ovariectomized rats. Forty 3-month-old female rats were divided into four groups: sham operated-sedentary control (Sham-control, sham operated with swimming exercise group (Sham-Swim, ovariectomy-sedentary control (OVx-control, and ovariectomy and swimming exercise (OVx-Swim groups. Swimming sessions were performed by the rats 90 minutes/day for 5 days/week for a total of 8 weeks. At the end of the study, tibial and femoral proximal volumetric total BMD, midshaft cortical volumetric BMD, cross-sectional area, and cross-sectional moment of inertia (MOI, and bone microstructural properties were measured for comparison. Data were analyzed using one-way analysis of variance (ANOVA. The Sham-Swim group exhibited significantly (p < 0.05; one-way ANOVA greater values in bone geometry parameters, that is, tibial midshaft cortical area and MOI compared to the Sham-control group. However, no significant differences were observed in these parameters between the Ovx-Swim and Ovx-control groups. There were no significant differences in femoral BMD between the Sham-Swim and Sham-control groups. Nevertheless, the Ovx-Swim group elicited significantly (p < 0.05; one-way ANOVA higher femoral proximal total BMD and improved bone microstructure compared to the Ovx-Sham group. In conclusion, the positive effects of swimming on bone properties in the ovariectomized rats in the present study may suggest that swimming as a non- or low-weight-bearing exercise may be beneficial for enhancing bone health in the postmenopausal population.

  4. Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model

    Directory of Open Access Journals (Sweden)

    Seiji Shimomura

    2018-06-01

    Full Text Available We analyzed the influence of treadmill running on rheumatoid arthritis (RA joints using a collagen-induced arthritis (CIA rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old, CIA group (induced CIA at 8-weeks-old, and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV was significantly decreased in the CIA group. Marrow star volume (MSV, an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.

  5. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats

    Directory of Open Access Journals (Sweden)

    Somayeh Sadat Tavafzadeh

    2015-01-01

    Full Text Available This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise. Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.

  6. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization.

    Science.gov (United States)

    Xu, Lei; Li, Zhe; Lei, Lei; Zhou, Yue-Zhu; Deng, Song-Yun; He, Yong-Bin; Ni, Guo-Xin

    2016-03-01

    This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage. © 2016 Wiley Periodicals, Inc.

  7. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    Science.gov (United States)

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  8. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  9. Intravenous Infusion of Bone Marrow–Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats

    OpenAIRE

    Yohei Matsuda, MD; Masanori Sasaki, MD, PhD; Yuko Kataoka-Sasaki, MD, PhD; Akio Takayanagi, MD, PhD; Ko Kobayashi, MD, PhD; Shinichi Oka, MD, PhD; Masahito Nakazaki, MD, PhD; Naoya Masumori, MD, PhD; Jeffery D. Kocsis, PhD; Osamu Honmou, MD, PhD

    2018-01-01

    Introduction: Intravenous preload (delivered before cavernous nerve [CN] injury) of bone marrow–derived mesenchymal stem cells (MSCs) can prevent or decrease postoperative erectile dysfunction (J Sex Med 2015;12:1713–1721). In the present study, the potential therapeutic effects of intravenously administered MSCs on postoperative erectile dysfunction were evaluated in a rat model of CN injury. Methods: Male Sprague-Dawley rats were randomized into 2 groups after electric CN injury. Intrave...

  10. Resistance training and hormone replacement increase MMP-2 activity, quality and quantity of bone in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Markus V.C Souza

    2017-12-01

    Full Text Available Abstract AIMS The aim of the present study was to investigate the influence of resistance training (RT and hormone replacement (HR on MMP-2 activity, biomechanical and physical properties bone of ovariectomized (OVX rats. METHODS Sprague-Dawley female rats were grouped into six experimental groups (n = 11 per group: sham-operated sedentary (SHAM Sed, ovariectomized sedentary (OVX Sed, sham-operated resistance training (SHAM RT, ovariectomized resistance training (OVX RT, ovariectomized sedentary hormone replacement (OVX Sed-HR, and ovariectomized resistance training hormone replacement (OVX RT-HR. HR groups received implanted silastic capsules with a 5% solution of 17β-estradiol (50 mg 17β-estradiol/ml of sunflower oil. In a 12-week RT period (27 sessions; 4-9 climbs the animals climbed a 1.1 m vertical ladder with weights attached to their tails. Biomechanical and physical bone analyses were performed using a universal testing machine, and MMP-2 activity analysis was done by zymography. RESULTS Bone density and bone mineral content was higher in the RT and HR groups. The MMP-2 activity was higher in the RT and HR groups. The biomechanical analysis (stiffness, fracture load and maximum load demonstrated better bone tissue quality in the RT associated with HR. CONCLUSION The RT alone as well as when it is associated with HR was efficient in increasing MMP-2 activity, biomechanical and biophysical properties bone of ovariectomized rats.

  11. Effect of Formononetin on Mechanical Properties and Chemical Composition of Bones in Rats with Ovariectomy-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ilona Kaczmarczyk-Sedlak

    2013-01-01

    Full Text Available Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol’s effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg and ovariectomized treated with formononetin (10 mg/kg. Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place. Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content. To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.

  12. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats.

    Science.gov (United States)

    Reis-Filho, Cláudio R; Silva, Elisângela R; Martins, Adalberto B; Pessoa, Fernanda F; Gomes, Paula V N; de Araújo, Mariana S C; Miziara, Melissa N; Alves, José B

    2012-05-01

    In this study we investigated the possible use of human demineralised dentine matrix (DHDM), obtained from the extracted teeth, as bone graft material and evaluated the expression of vascular endothelial growth factor (VEGF) induced by this material in the healing process of tooth sockets of rats. To evaluate bone regeneration and expression of VEGF induced by DHDM, thirty-two male Wistar rats weighing approximately 200 g were used. After maxillary second molar extraction, the left sockets were filled with DHDM and the right sockets were naturally filled by blood clot (control). The animals were sacrificed at 3, 7, 14 and 21 days after surgery and upper maxillaries were processed for histological, morphometric and immunohistochemical analyses. DHDM was used to evaluate the mechanical effect of bone graft material into sockets. Expression of VEGF was determined by immunohistochemistry in all groups. Our results demonstrated a significant increase in the newly formed bone tissue in sockets of 7, 14 and 21 days and a significant increase in VEGF expression at days 7 and 14 on treated sockets. Our results showed that DHDM increases the expression of VEGF and accelerates the healing process in rats tooth sockets, by stimulating bone deposition and also vessels formation. These results suggest that DHDM has osteoinductive/osteoconductive potential and may represent an efficient grafting material on guided bone regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Combination of Weight-Bearing Training and Anti-MSTN Polyclonal Antibody Improve Bone Quality In Rats.

    Science.gov (United States)

    Tang, Liang; Gao, Xiaohang; Yang, Xiaoying; Zhang, Didi; Zhang, Xiaojun; Du, Haiping; Han, Yanqi; Sun, Lijun

    2016-12-01

    Weight-bearing exercise is beneficial to bone health. Myostatin (MSTN) deficiency has a positive effect on bone formation. We wondered if a combination of weight-bearing training and polyclonal antibody for MSTN (MsAb) would augment bone formation to a greater degree than single treatment. In this study, rats were randomly assigned to four groups: Control, weight-bearing training (WT), MsAb, and WT+MsAb. The trained rats ran at 15 m/min bearing with 35% of their body weight, 40 min/day (2 min of running followed by 2 min of rest), 6 days/week, for 8 weeks. The rats with MsAb were injected once a week with MsAb for 8 weeks. MicroCT analysis showed that compared with the MsAb group, WT+MsAb significantly enhanced cortical bone mineral density (BMD) (p .05), weight-bearing training significantly increased energy absorption (p weight-bearing training and MsAb have a greater positive effect on bone than treatment with either MsAb or weight-bearing training alone, suggesting that resistance training in combination with MSTN antagonists could be an effective approach for improving bone health and reducing osteoporosis risk.

  14. Peripubertal Caffeine Exposure Impairs Longitudinal Bone Growth in Immature Male Rats in a Dose- and Time-Dependent Manner.

    Science.gov (United States)

    Choi, Yun-Young; Choi, Yuri; Kim, Jisook; Choi, Hyeonhae; Shin, Jiwon; Roh, Jaesook

    2016-01-01

    This study investigated the dose- and time-dependent effects of caffeine consumption throughout puberty in peripubertal rats. A total of 85 male SD rats were randomly divided into four groups: control and caffeine-fed groups with 20, 60, or 120 mg/kg/day through oral gavage for 10, 20, 30, or 40 days. Caffeine decreased body weight gain and food consumption in a dose- and time-dependent manner, accompanied by a reduction in muscle and body fat. In addition, it caused a shortening and lightening of leg bones and spinal column. The total height of the growth plate decreased sharply at 40 days in the controls, but not in the caffeine-fed groups, and the height of hypertrophic zone in the caffeine-fed groups was lower than in the control. Caffeine increased the height of the secondary spongiosa, whereas parameters related to bone formation, such as bone area ratio, thickness and number of trabeculae, and bone perimeter, were significantly reduced. Furthermore, serum levels of IGF-1, estradiol, and testosterone were also reduced by the dose of caffeine exposure. Our results demonstrate that caffeine consumption can dose- and time-dependently inhibit longitudinal bone growth in immature male rats, possibly by blocking the physiologic changes in body composition and hormones relevant to bone growth.

  15. Epistasis between QTLs for bone density variation in Copenhagen × dark agouti F2 rats

    Science.gov (United States)

    Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2010-01-01

    The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation. PMID:19153792

  16. Epistasis between QTLs for bone density variation in Copenhagen x dark agouti F2 rats.

    Science.gov (United States)

    Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H

    2009-03-01

    The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation.

  17. Beta Palmitate Improves Bone Length and Quality during Catch-Up Growth in Young Rats

    Directory of Open Access Journals (Sweden)

    Meytal Bar-Maisels

    2017-07-01

    Full Text Available Palmitic acid (PA is the most abundant saturated fatty acid in human milk, where it is heavily concentrated in the sn-2-position (termed beta palmitate, BPA and as such is conserved in all women, regardless of their diet or ethnicity, indicating its physiological and metabolic importance. We hypothesized that BPA improves the efficiency of nutrition-induced catch up growth as compared to sn-1,3 PA, which is present in vegetable oil. Pre-pubertal male rats were subjected to a 17 days food restriction followed by re-feeding for nine days with 1,3 PA or BPA-containing diets. We measured bone length, epiphyseal growth plate height (EGP, histology, bone quality (micro-CT and 3-point bending assay, and gene expression (Affymetrix. The BPA-containing diet improved most growth parameters: humeri length and EGP height were greater in the BPA-fed animals. Further analysis of the EGP revealed that the hypertrophic zone was significantly higher in the BPA group. In addition, Affymetrix analysis revealed that the diet affected the expression of several genes in the liver and EGP. Despite the very subtle difference between the diets and the short re-feeding period, we found a small but significant improvement in most growth parameters in the BPA-fed rats. This pre-clinical study may have important implications, especially for children with growth disorders and children with special nutritional needs.

  18. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  19. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    Science.gov (United States)

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Changes in morphology of long bone marrow tissue of rats submitted to cryotherapy with liquid nitrogen.

    Science.gov (United States)

    Costa, Fábio Wildson Gurgel; Pessoa, Rosana Maria Andrade; Nogueira, Carlos Bruno Pinheiro; Pereira, Karuza Maria Alves; Brito, Gerly Anne de Castro; Soares, Eduardo Costa Studart

    2012-02-01

    To study the main effects of local use of liquid nitrogen on bone marrow tissue in rats. The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for one or two minutes, intercalated with periods of five minutes of passive thawing. The animals were sacrificed after one, two, four and 12 weeks and the specimens obtained were analyzed histomorphologically. In the second experimental week of one-minute protocol, histological degree of inflammation obtained a mean score of one (mild), ranging from 0 (absent or scarce) and two (moderate) (Kruskal-Wallis test p=0.01). In the second experimental week of two-minute protocol, degree of inflammation to the medullar tissue obtained an average score of two (Kruskal-Wallis test p=0.01). The degree of inflammation of the bone marrow tissue was higher in protocol of three applications of two minutes compared to protocol of three applications of one minute.

  1. Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats.

    Science.gov (United States)

    Oliveira, M R; deC Silva, A; Ferreira, S; Avelino, C C; Garcia, I R; Mariano, R C

    2015-05-01

    This study aimed to investigate the effects of platelet-rich fibrin (PRF) associated or not with Bio-Oss on bone defects in the calvaria of rats. A critical-size defect of 5-mm diameter was performed in the calvaria of 48 rats. These animals were divided into six groups of eight animals each, according to the treatment received: homogeneous clot, autogenous clot, autogenous PRF, homogeneous PRF, Bio-Oss, or Bio-Oss associated with PRF. The animals were euthanized after 30 or 60 days. Bone regeneration was evaluated by histomorphometric analysis. The highest mean percentages of new bone formation at 30 days (54.05% ± 5.78) and 60 days (63.58% ± 5.78) were observed in the Bio-Oss associated with PRF group; in particular, the percentage of new bone at 30 days was significantly higher than that of all of the other groups (P<0.01). At 60 days, the Bio-Oss associated with PRF (63.58% ± 5.78) and Bio-Oss (57.34% ± 5.78) groups had similar results, and both showed a statistical difference compared to the other groups. PRF had a positive effect on bone regeneration only when associated with Bio-Oss. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  3. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.

  4. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    Science.gov (United States)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  5. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A

    1987-01-01

    Two monoclonal antibodies (LAM-A and LAM-B) specific for laminin from normal and neoplastic parietal yolk sac (PYS) cells were produced in rats immunized with a mouse yolk sac carcinoma cell line. Both antibodies immunoprecipitated the 400,000- and 200,000-Da chains of laminin and reacted...... with purified PYS laminin in ELISA. LAM-A reacted with mouse and rat PYS laminin, whereas LAM-B reacted only with mouse PYS laminin. Formaldehyde- and methanol-fixed adult and fetal somatic tissues were immunohistochemically unreactive with either of the two antibodies. In acetone-fixed tissue sections, both...

  6. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  7. Encefalomenigocele atrésico parietal Parietal atresic encephalomeningocele

    Directory of Open Access Journals (Sweden)

    Liliana Rivera Oliva

    2011-09-01

    Full Text Available El encefalocele es una anomalía congénita rara, en la que una porción del encéfalo protruye a través de un orificio craneal (evaginación, generalmente situado en la línea media. Clínicamente se caracteriza por una masa epicraneal, de consistencia blanda, muchas veces acompañada de trastornos psicomotores, convulsiones y trastornos de la visión. Se presenta el caso de un recién nacido con diagnóstico de encefalomeningocele atrésico parietal, intervenido quirúrgicamente y con evolución satisfactoria.The encephalocele is a uncommon congenital anomaly where a portion of encephalon protrudes through a cranial orifice (evagination, generally located in the middle line. Clinically, it is characterized by a soft epicranial mass often accompanied or psychomotor disorders, convulsions and vision disorders. This is the case of a newborn diagnosed with parietal atresic encephalomeningocele operated on with a satisfactory evolution.

  8. Investigations of genotoxic potential of levamisole hydrochloride in bone marrow cells of Wistar rats

    Directory of Open Access Journals (Sweden)

    Kulić Milan

    2006-01-01

    Full Text Available An experiment was performed under in vivo conditions on bone marrow cells of Wistar rats. The following doses of levamisole hydrochloride were tested: a therapeutic dose of 2.2 mg/kg bm, a dose of 4.4 mg/kg bm, LD50 -25% mg/kg bm, and LD50 -75% mg/kg bm. We followed the effect of levamisole hydrochloride on kinetics of the cell cycle and the appearance of structural and numeric changes in chromosomes in bone marrow cells. The therapeutic dose of levamisole of 2.2 mg/kg bm exhibited a capability to increase mitotic activity in the observed cells, thus confirming knowledge of the immunostimulative effect of this dose of the medicine under in vivo conditions. The other tested doses of levamisole in this experiment, observed in comparison with the control group, had an opposite effect, namely, they caused a reduction in the mitotic activity of bone marrow cells. All the examined doses in vivo exhibited the ability to induce numeric (aneuploid and polyploid and structural (lesions, breaks and insertions chromosomal aberrations. It can be concluded on the grounds of these findings that the examined doses have a genotoxic effect.

  9. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    Science.gov (United States)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  10. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  11. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    Science.gov (United States)

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-08

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  12. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  13. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis.

    Science.gov (United States)

    Hanada, Keigo; Furuya, Kazuyuki; Yamamoto, Noriko; Nejishima, Hiroaki; Ichikawa, Kiyonoshin; Nakamura, Tsutomu; Miyakawa, Motonori; Amano, Seiji; Sumita, Yuji; Oguro, Nao

    2003-11-01

    A novel nonsteroidal androgen receptor (AR) binder, S-40503, was successfully generated in order to develop selective androgen receptor modulators (SARMs). We evaluated the binding specificity for nuclear receptors (NRs) and osteoanabolic activities of S-40503 in comparison with a natural nonaromatizable steroid, 5alpha-dihydrotestosterone (DHT). The compound preferentially bound to AR with nanomolar affinity among NRs. When S-40503 was administrated into orchiectomized (ORX) rats for 4 weeks, bone mineral density (BMD) of femur and muscle weight of levator ani were increased as markedly as DHT, but prostate weight was not elevated over the normal at any doses tested. In contrast, DHT administration caused about 1.5-fold increase in prostate weight. The reduced virilizing activity was clearly evident from the result that 4-week treatment of normal rats with S-40503 showed no enlargement of prostate. To confirm the bone anabolic effect, S-40503 was given to ovariectomized (OVX) rats for 2 months. The compound significantly increased the BMD and biomechanical strength of femoral cortical bone, whereas estrogen, anti-bone resorptive hormone, did not. The increase in periosteal mineral apposition rate (MAR) of the femur revealed direct bone formation activity of S-40503. It was unlikely that the osteoanabolic effect of the compound was attribute to the enhancement of muscle mass, because immobilized ORX rats treated with S-40503 showed a marked increase in BMD of tibial cortical bone without any actions on the surrounding muscle tissue. Collectively, our novel compound served as a prototype for SARMs, which had unique tissue selectivity with high potency for bone formation and lower impact upon sex accessory tissues.

  14. The effects of X-ray radiation on mandibular bone of low-calcium diet rats

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Akihiko (Nippon Dental Univ., Tokyo (Japan))

    1991-08-01

    In an attempt to examine the effects of X-ray on osteoporosis, a single dose of 30 Gy was delivered to the mandible in rats given low-calcium diet. Serum levels of calcium (Ca) and inorganic phosphorus (P) were measured; and changes in bone salt were determined by autoradiography, microradiography, and roentgenography using an electron probe microanalyzer. Body weight was lower in the irradiated group than the non-irradiated group, irrespective of types of diet. The serum Ca levels in the irradiated group given a normal diet were significantly decreased on Days 3, 7, and 14 days after irradiation. When given a low-Ca diet, these levels tended to be lower in the irradiated group than the non-irradiated group on Day 7 or later. The serum levels of inorganic P were significantly lower in the irradiated group given a normal diet than the non-irradiated group on Day 3. Rats given a low-Ca diet had the same levels, irrespective of irradiation. Autoradiography revealed that Ca-45 retention in the whole jaw was slightly greater in the irradiated group than the non-irradiated group On Days 7 and 21. Rats given a low-Ca diet in both irradiated and non-irradiated groups had a greater Ca-45 retention than those given a normal diet. Microradiography revealed that bone formation-like changes, such as flat surface of the periodontal membrane at the intra-alveolar septum, were slightly noticeable in the irradiated group of rats given a normal diet on Day 21. Thinning of the intra-alveolar septum and decrease of the trabecula at the diaphysis were also noticeable in the irradiated group of rats given a low-Ca diet. Variation of X-ray intensity was more marked on Day 7 than on Day 21 in the irradiated group given a normal diet. When given a low-Ca diet, both the irradiated and non-irradiated group had noticeable X-ray intensity variation. (N.K.).

  15. Acquisition and Expansion of Adult Rat Bone Marrow Multipotent Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Šulla I.

    2017-03-01

    Full Text Available This study was initiated in order to test a mini-invasive method of mesenchymal stem/progenitor cells (MS/PCs isolation from a rat bone marrow (BM, and subsequently their expansion, differentiation, and evaluation of their immunophenotypic characteristics; and later their preservation as donor cells in an optimal condition for potential autotransplantation. The study group comprised of 6 adult male Sprague-Dawley (S-D rats, weighing 480—690 g. The rats were anaesthetised by isoflurane with room air in a Plexiglas box and maintained by inhalation of a mixture of isoflurane and O2. Their femurs were surgically exposed and their diaphyses double-trephined. Then BM cells were flushed out by saline with heparin and aspirated into a syringe with a solution of DMEM (Dulbecco’s modified eagle’s medium and heparin. The mononuclear cells from the BM were isolated by centrifugation and expanded in a standard culture medium supplemented with ES-FBS (es-cell-qualified foetal bovine serum, L-glutamine and rh LIF (recombinant human leukemia inhibitory factor. Following 14 days of passaging cultures, the cells were split into 2 equal parts. The first culture continued with the original medium. The second culture received additional supplementation with a human FGFβ (fibroblast growth factor beta and EGF (epidermal growth factor. The populations of these cells were analysed by light-microscopy, then the mean fluorescence intensities (MFIs of CD90 and Nestin were evaluated by a tricolour flow cytometry using monoclonal antibodies. The type of general anaesthesia used proved to be appropriate for the surgical phase of the experiments. All rats survived the harvesting of the BM without complications. The total number of mononuclear cells was 1.5—4.0 × 106 per sample and the proportion of CD90/Nestin expressing cells was < 1 %. Following 14 days of expansion, the cells became larger, adherent, with fibrillary morphology; the proportion of cells expressing

  16. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  17. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    Science.gov (United States)

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of swimming training and free mobilization on bone mineral densities of rats with the immobilization-induced osteopenia

    International Nuclear Information System (INIS)

    Karatosun, H.; Erdogan, A.; Akgun, C.; Cetin, C.; Yeldiz, M.

    2006-01-01

    To investigate the possible effects of regular swimming exercise on bone mineral density (BMD) compared with free activity after cast immobilization of rats. We carried out the study from April 2005 to June 2005 at the Department of Sports Medicine, Medical School of Suleyman Demirel University, Isparta, Turkey. The study included a total of 24 female Wistar rats. The rats were randomized to control (n = 6), swimming training (ST) n = 9, and free mobilization (FM) n = 9 groups. We measured Bone mineral densities of femur and vertebra of all rats with a total body scanner using software specifically designed for small animals, before study started and at weeks 3 and 7. Timepoints corresponded to basal, after cast removal (ACIM), and after 3 weeks of free mobilization (AFM) or swimming training (AST). We immobilized the right hindlimb of each ST and FM animal with a cast while the left hindlimbs were kept free. After 3 weeks, the casts were removed. Then we allowed the rats to move freely in their cage for one week, after which the animals in ST group started to swim for 5 days a week for 3 weeks for 30 minutes per day. The group FM rats moved freely in the cage. Bone mineral density of the femur and vertebra after cast immobilization was significantly decreased compared with both their basal and age-matched control group. After mobilization, significant increases occurred in both groups according to ACIM. Similar but milder changes were observed in free limbs femur BMD of rats. Interestingly, vertebra BMD of swimming group was also higher than its age-matched control group (p<0.05). Our study showed that swimming exercise had a significant rehabilitative effect on BMD loss associated with immobilization. Further studies are needed to investigate the effects of swimming on other bone properties. (author)

  19. Protective effect of ellagic acid on healing alveolar bone after tooth extraction in rat--a histological and immunohistochemical study.

    Science.gov (United States)

    Al-Obaidi, Mazen M Jamil; Al-Bayaty, Fouad Hussain; Al Batran, Rami; Hassandarvish, Pouya; Rouhollahi, Elham

    2014-09-01

    This study has attempted to evaluate the effects of ellagic acid (EA) on alveolar bone healing after tooth extraction in rats. Twenty-four Sprague Dawley (SD) male rats (200-250g) were selected and were anaesthetised for the extraction of upper left incisor. Then, the rats were divided into two groups, comprising 12 rats each; the first group has been considered as a control group and was given only normal saline, whereas, the second group (treated group) was intragastrically administrated with EA daily once, for 28 days. Then three rats from each group had been selected on 7th, 14th, 21st, and 28th days to dissect their maxilla tissue either for histological observation and homogenisation purposes. The tissues fixed, decalcified and embedded in paraffin. Serial sections of 5μm thickness were prepared and stained with haematoxylin and eosin (H&E) for the histological study. Similar sections were taken for immunohistochemical analysis to assess osteocalcin (OSC) and osteopontin (OPN). Furthermore, Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in homogenated gingival maxilla tissue of rat by commercial kit. Based on the histological analysis we have identified that, EA treatment has induced earlier trabecular bone deposition in the treated group, resulting in more organised bone matrix on the 14th, 21st, and 28th days after tooth extraction, as against the control group. In comparison to control group, the positive labelling of OSC and OPN of the treated group have been highly expressed in the alveolar socket on 14th, and 21st days, which has indicated a the possibility of formation of new bone trabeculae at the beginning of the mineralisation process, after tooth extraction. In the EA treatment group, lipid per-oxidation (MDA) was significantly decreased (Phealing process in teeth socket of rats. Furthermore, the EA treated group showed a stronger positive immunolabelling for OSC and OPN, when compared with the control group. Copyright © 2014

  20. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    Science.gov (United States)

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  1. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg -1 day -1 ). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  2. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Stoelinga, P.J.W.; Jansen, J.A.

    2007-01-01

    OBJECTIVE: The early effect of platelet-rich plasma (PRP) on bone regeneration in combination with dense biphasic hydroxyl apatite (HA)/beta-tricalcium phosphate (TCP) particles (ratio 60%/40%) was evaluated in rat cranial defects with a diameter of 6.2 mm. We hypothesize that PRP exerts its

  3. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  4. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    Science.gov (United States)

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  5. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Diego Pulzatto Cury

    Full Text Available Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  6. Ultrasound to stimulate mandibular bone defect healing : A placebo-controlled single-blind study in rats

    NARCIS (Netherlands)

    Schortinghuis, J; Ruben, JL; Raghoebar, GM; Stegenga, B

    Purpose: Because of the limitations of the body to heal large maxillofacial bone defects, an attempt was made to stimulate mandibular defect healing with low intensity pulsed ultrasound in rats. This ultrasound consists of a 1.5-MHz pressure wave administered in pulses of 200 musec, with an average

  7. Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells.

    NARCIS (Netherlands)

    Brugge, P.J. ter; Wolke, J.G.C.; Jansen, J.A.

    2002-01-01

    In this study, we examined the effect of calcium phosphate (Ca-P) coating crystallinity and of surface roughness on growth and differentiation of osteogenic cells. Grit-blasted titanium substrates were provided with Ca-P coatings of different crystallinities. Rat bone marrow (RBM) cells were

  8. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    Science.gov (United States)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  9. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    Science.gov (United States)

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  11. Magnetic labeling and in vitro MR imaging of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Cai Jinhua; Feng Gansheng; Wu Hanping; Wang Xin; Li Chuan; Zhao Jiannong; Guo Daqin; Yu Guorong; Liu Guanxing; Wang Shiyi

    2006-01-01

    Objective: To label rat bone marrow mesenchymal stem cells with feridex combined with poly-l-lysine (PLL), and to determine the feasibility of detection of magnetically labeled stem cells with MR imaging. Methods: Feridex were incubated with PLL for 1 hour to obtain a complex of feridex-PLL. Mesenchymal stem cells isolated from the bone marrows of Wistar rats were cultured and expanded. By the 4th passage, cells were co-incubated overnight with the feridex-PLL complex. Prussian blue staining for demonstrating intracytoplastic nanoparticles and trypan-blue exclusion test for cell viability were performed respectively at 24 h, 1 w, 2 w, 3 w after labeling. MR imaging of cell suspensions was performed by using T 1 WI, T 2 WI and T 2 * WI sequences at a clinical 1.5 T MR system. Results: Numerous intracytoplastic iron particles were stained with Prussian blue. With division of stern cells, the stained particles were seen decreased gradually. Trypan blue exclusion test at 24 h, 1 w, 2 w and 3 w showed that the viability of the labeled cells was 91.00%, 93.00%, 91.75%, and 92.50%, not significantly different with that of nonlabeled cells (P>0.05). For 10 3 , 10 4 and l0 5 cells, T 2 signal intensity decreased by 63.75%, 82.31% and 91.92% respectively, T 2 * signal intensity decreased by 68.24%, 83.01%, and 93.94% respectively. For 10 5 labeled cells, T 2 * signal intensity decreased by 93.75%, 75.92%, 41.75% and 8.83 % respectively at 24 h, 1 w, 2 w and 3 w after labeling. Conclusion: Magnetic labeling of rat bone marrow stem cells with feridex-PLL complex is feasible, efficient and safe. T 2 * WI is the most sensitive sequence to detect the labeled cells. The degree of T 2 signal decreasing may be related to the cell count and division phase. (authors)

  12. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    Science.gov (United States)

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p periodontal disease (p periodontal disease (p periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  13. Adaptive responses induced in bone marrow and blood of the rats by tritium contamination

    International Nuclear Information System (INIS)

    Savu, D.I.; Ionescu, M.A.; Petcu, I.

    2000-01-01

    It has been more than a decade since the initial report on the phenomenon termed 'adaptive response to ionizing radiation'. Although a number of reports have appeared since then, the understanding of this response is still incomplete. Our group intended to investigate whether the adaptive response could be induced in vivo by low level internal tritium contamination of rats and subsequently exposed to challenging irradiations with fast neutrons or gamma rays. Two experiments were performed and analysed comparatively. In the first experiment the rats have been pre-contaminated for 3 weeks to total doses of 7 cGy and 35 cGy and subsequently irradiated to 1 Gy by fast neutrons (d(13.5)+Be). They were sacrificed after 24 hours. In the second experiment rats were exposed to high gamma irradiation (1.4 Gy) after prior contamination with tritium for 20 days to total doses of 4.4 cGy and 5.1 cGy. We followed up the modifications of two biochemical parameters: (i) the in vitro tritiated thymidine incorporation in the bone marrow cells and (ii) the reduced glutathione level in the blood cells. The thymidine incorporation assay revealed a putative adaptive reaction only for the rats preirradiated with tritiated water to 35 cGy and post-irradiated with fast neutrons. The glutathione content was found to be increased (back to the normal level) for the tritium pre-contaminated and neutron irradiated animals as compared to those exposed only to fast neutrons. The adaptive response is believed to be a protective mechanism that confers resistance to the detrimental effects of ionizing radiation. Our studies suggest that the irradiation with low conditioning doses of tritium (7; 35 cGy) is more efficient in conferring radioresistance to bone marrow and blood cells at the treatment with fast neutrons (1 Gy) than the irradiation with tritium doses of 4.4 and 5.1 cGy followed by gamma rays (1.4 Gy). (authors)

  14. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  15. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    Directory of Open Access Journals (Sweden)

    Yunfei Huang

    2018-05-01

    Full Text Available The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each: hindlimb unloading (HU, HU + vibration (HUV, and cage-control (CON. The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density, immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  16. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    Science.gov (United States)

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  17. Pharmacological study of the possible protective effect of certain natural products against irradiation-induced bone loss in female rats

    International Nuclear Information System (INIS)

    Elsabbagh, W.M.A.

    2007-01-01

    osteoporosis is a common human bone disease characterized by decreased bone mass and increased risk of fractures . it is associated with numerous risk factors; post menopausal oestrogen loss is the major factor. on another hand, exposure to γ -radiation may be responsible for the late reduction in bone mass following radiotherapy. research in nutrition suggests that diet can help to achieve optimal health specifically that human diet that contain macro nutrients and phytochemicals which have antioxidant and anti-inflammatory properties. the present study has been constructed to identify the effect of radiation exposure on bone, and to investigate the possible protective effect of garlic oil and parsley extract against bone loss induced in female virgin rats(180-200 g) either by ovariectomization or by exposure to γ -radiation. a pilot lest was carried first in this study on 2 groups of female virgin rats to estimate the degree of bone loss induced by exposure to fractionated doses of γ -radiation . the 1 st group's rats were normal non-irradiated and served as control normal group. in the 2 nd group, female rats were exposed to total dose of 15 Gy fractionated over 5 weeks (1 Gy 3 times weekly for 5 weeks), and measurements of urinary calcium and urinary hydroxyproline were carried out periodically after 4,8,11 and 15 weeks from the 1 st day of exposure to γ -radiation doses . the highest values were detected after 11 weeks i.e. after 6 weeks from the last exposure to γ -radiation

  18. Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Zhao, Danqing; Zhao, Yuxi; Iqbal, Javed; Shen, Liming

    2018-07-01

    Long-term excessive intake of fluoride (F) could lead to chronic fluorosis. To explore the underlying molecular mechanisms, present study is designed to elucidate the effect of fluoride on proteome expression of bone in sodium fluoride (NaF)-treated SD rats. Hematoxylin and eosin (H&E) staining was used to determine the severity of osteofluorosis, and bone samples were submitted for iTRAQ analysis. The results showed that the cortical thickness and trabecular area of femur bone in medium- and high-dose groups were higher than in control group. Contrary to this, trabecular area was reduced in the low-dose group, indicating that the bone mass was increased in medium- and high-dose groups, and decreased in the low-dose group. Thirteen (13), 35, and 34 differentially expressed proteins were identified in low-, medium-, and high-dose group, respectively. The medium- and high-dose groups shared a more similar protein expression pattern. These proteins were mainly associated with collagen metabolism, proteoglycans (PGs), matrix metalloproteinases (MMPs), etc. The results suggested that the effect of NaF on SD rats is in a dose-dependent manner. Some key proteins found here may be involved in affecting the bone tissues and bone marrow or muscle, and account for the complex pathology and clinical symptoms of fluorosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The effect of methotrexate on the bone healing of mandibular condylar process fracture: an experimental study in rats.

    Science.gov (United States)

    Cavalcanti, Samantha Cristine Santos X B; Corrêa, Luciana; Mello, Suzana Beatriz Veríssimo; Luz, João Gualberto C

    2014-10-01

    Methotrexate (MTX) is an anti-metabolite used in rheumatology and oncology. High doses are indicated for oncological treatment, whereas low doses are indicated for chronic inflammatory diseases. This study evaluated the effect of two MTX treatment schedules on the bone healing of the temporomandibular joint fracture in rats. Seventy-five adult male Wistar rats were used to generate an experimental unilateral medially rotated condylar fracture model that allows an evaluation of bone healing and the articular structures. The animals were subdivided into three groups that each received one of the following treatments intraperitoneally: saline (1 mL/week), low-dose MTX (3 mg/kg/week) and high-dose MTX (30 mg/kg). The histological study comprised fracture site and temporomandibular joint evaluations and bone neoformation was evaluated by histomorphometric analysis. A biochemical parameter of bone formation was also assessed. When compared with saline, high-dose MTX delayed bone fracture repairs. In this latter group, after 90 days, the histological analysis revealed atrophy of the fibrocartilage and the presence of fibrous tissue in the joint space. The histomorphometric analysis revealed diminished bone neoformation. The alkaline phosphatase levels also decreased after MTX treatment. It was concluded that high-dose MTX impaired mandibular condyle repair and induced degenerative articular changes. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  1. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  2. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  3. Obesity reduces bone density associated with activation of PPARγ and suppression of Wnt/β-catenin in rapidly growing male rats.

    Directory of Open Access Journals (Sweden)

    Jin-Ran Chen

    Full Text Available BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD or a chow diet (low fat diet, LFD fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life.

  4. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    Science.gov (United States)

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  5. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  6. Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats

    Science.gov (United States)

    Xia, Wei; Emanuelsson, Lena; Norlindh, Birgitta; Omar, Omar; Thomsen, Peter

    2013-01-01

    The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone. PMID:24376855

  7. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats.

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Justino Oliveira Limirio

    Full Text Available The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO.Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI and Amide III + Collagen/HA (M:MIII.In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness.Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.

  8. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats.

    Science.gov (United States)

    Limirio, Pedro Henrique Justino Oliveira; da Rocha Junior, Huberth Alexandre; Morais, Richarlisson Borges de; Hiraki, Karen Renata Nakamura; Balbi, Ana Paula Coelho; Soares, Priscilla Barbosa Ferreira; Dechichi, Paula

    2018-01-01

    The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Diabetes decreased collagen maturation an