WorldWideScience

Sample records for rat muscle cells

  1. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    Science.gov (United States)

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p run in the training group (r = 0.61, p running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  2. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Directory of Open Access Journals (Sweden)

    Bart Spronck

    Full Text Available In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  3. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Science.gov (United States)

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  4. Cellular location of rat muscle ferritins and their preferential loss during cell isolation.

    Science.gov (United States)

    Linder, M C; Roboz, M; McKown, M J; Pardridge, W M; Zak, R

    1984-04-10

    Heart and other muscles of the rat contain two forms of ferritin separable in polyacrylamide gel electrophoresis. The cellular location of the fast- and slow-migrating ferritins was investigated using primary cultures of hindlimb skeletal muscle, and isolated myocardial cell populations. Muscle and non-muscle cells were isolated in good yield from hearts of adult rats pretreated with large doses of iron to increase their ferritin content. In virtually all cases, the isolated muscle cells contained traces only of the fast-migrating species and the non-muscle cells contained small amounts of the slow-migrating ferritin. During cell isolation, 90-100% of both ferritins was lost and could be recovered in the perfusates and solutions employed, while one third of the total tissue protein, and a larger percentage of creatine phosphokinase, was recovered in the isolated cells. Primary cultures of thigh muscle from adult rats which had differentiated into multi-nucleated myotubes, were incubated for 1-3 days with chelated iron. These cells contained substantial amounts of the electrophoretically fast migrating ferritin, with its characteristic larger Stokes' radius (determined by quantitative polyacrylamide gel electrophoresis). None of the slow-migrating ferritin species was detected, although hindlimb muscle from iron-treated rats contained both forms. It is concluded that the fast-migrating ferritin of muscle, which is much larger and more asymmetric than other ferritins, is confined to the muscle cell population, while the other form is predominantly or exclusively in the non-muscle cells. Both ferritins are lost preferentially over other proteins during procedures which injure muscle tissue.

  5. EFFECTS OF VOLUNTARY WHEEL RUNNING ON SATELLITE CELLS IN THE RAT PLANTARIS MUSCLE

    Directory of Open Access Journals (Sweden)

    Atsushi Kojima

    2009-03-01

    Full Text Available This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5 or training (n = 12 group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05. The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05. Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run

  6. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Science.gov (United States)

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  7. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  8. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  9. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    International Nuclear Information System (INIS)

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-01-01

    After injection of 10 6 Walker 256 carcinoma cells labelled with 125 I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10 6 Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle

  10. Extracellular creatine regulates creatine transport in rat and human muscle cells.

    OpenAIRE

    Loike, J D; Zalutsky, D L; Kaback, E; Miranda, A F; Silverstein, S C

    1988-01-01

    Muscle cells do not synthesize creatine; they take up exogenous creatine by specific Na+-dependent plasma membrane transporters. We found that extracellular creatine regulates the level of expression of these creatine transporters in L6 rat muscle cells. L6 myoblasts maintained for 24 hr in medium containing 1 mM creatine exhibited 1/3rd of the creatine transport activity of cells maintained for 24 hr in medium without creatine. Down-regulation of creatine transport was partially reversed whe...

  11. In Vivo Real-Time Imaging of Exogenous HGF-Triggered Cell Migration in Rat Intact Soleus Muscles

    International Nuclear Information System (INIS)

    Ishido, Minenori; Kasuga, Norikatsu

    2012-01-01

    The transplantation of myogenic cells is a potentially effective therapy for muscular dystrophy. However, this therapy has achieved little success because the diffusion of transplanted myogenic cells is limited. Hepatocyte growth factor (HGF) is one of the primary triggers to induce myogenic cell migration in vitro. However, to our knowledge, whether exogenous HGF can trigger the migration of myogenic cells (i.e. satellite cells) in intact skeletal muscles in vivo has not been reported. We previously reported a novel in vivo real-time imaging method in rat skeletal muscles. Therefore, the present study examined the relationship between exogenous HGF treatment and cell migration in rat intact soleus muscles using this imaging method. As a result, it was indicated that the cell migration velocity was enhanced in response to increasing exogenous HGF concentration in skeletal muscles. Furthermore, the expression of MyoD was induced in satellite cells in response to HGF treatment. We first demonstrated in vivo real-time imaging of cell migration triggered by exogenous HGF in intact soleus muscles. The experimental method used in the present study will be a useful tool to understand further the regulatory mechanism of HGF-induced satellite cell migration in skeletal muscles in vivo

  12. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    International Nuclear Information System (INIS)

    Qiao, Yong; Tang, Chengchun; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-01-01

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K"+ channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  13. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  14. the response of muscle cells during compensatory growth in rats

    African Journals Online (AJOL)

    selle het teen die hoogste tempo vermenigvuldig, maar die toename in spierselgroolte was laag. ... Today much is known of the interplay of the factors which determine rate and degree of recovery from under- nutrition. Again, a ~alth of information is available on ... fluence of nutrition on muscle cell growth in rats and dis·.

  15. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  16. Maintenance of DNA repair capacity in differentiating rat muscle cells in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Kaufman, S.J.

    1981-01-01

    Unscheduled DNA synthesis was measured at several times during the differentiation of cultured rat skeletal muscle cells in response to exposures to 254 nm UV light. There was no change in the amount of repair DNA synthesis as the cells fuse and differentiate from postmitotic prefusion myoblasts to multinucleated contracting myotubes. (author)

  17. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    Science.gov (United States)

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary

  18. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  19. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    Science.gov (United States)

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  2. Role of cyclic GMP in cells with the properties of smooth muscle cultured from the rat myometrium

    International Nuclear Information System (INIS)

    Krall, J.F.; Morin, A.

    1986-01-01

    Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated 45 Ca 2+ from the medium. Ca 2+ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca 2+ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-medicated functions that reflected some neurotransmitter-sensitive properties of uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the β-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca 2+ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture

  3. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N

    1982-01-01

    Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during...... in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell. Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was unaltered......; however its ability to stimulate the incorporation of [(14)C]glucose into glycogen in certain muscles was enhanced. Thus at a concentration of 75 muU/ml insulin stimulated glycogen synthesis eightfold more in the fast-twitch red fibers of the red gastrocnemius than it did in the same muscle...

  4. Histological study of rat masseter muscle following experimental occlusal alteration.

    Science.gov (United States)

    Nishide, N; Baba, S; Hori, N; Nishikawa, H

    2001-03-01

    It has been suggested that occlusal interference results in masticatory muscle dysfunction. In our previous study, occlusal interference reduced the rat masseter energy level during masticatory movements. The purpose of this study was to investigate the histological alterations of rat masseter muscles following experimental occlusal alteration with unilateral bite-raising. A total of eight male adult Wistar rats were equally divided into control and experimental groups. The experimental rats wore bite-raising splints on the unilateral upper molar. However, 4 weeks after the operation, the anterior deep masseter muscles were removed and then stained for succinic acid dehydrogenase (SDH), haematoxylin eosin (HE) and myofibrillar ATPase. Most of the muscle fibres in experimental rats remained intact, although partial histological changes were observed, such as extended connective tissue, appearance of inflammatory cells in the muscle fibres and existence of muscle fibres with central nuclei and central cores. Moreover, the fibre area-fibre frequency histograms of experimental muscle indicated a broad pattern than that of controls. These results indicated that occlusal interference caused histological changes in masseter muscles and that this may be related to the fact that the masseter energy level was reduced during masticatory movements in unilateral bite-raised rats.

  5. Effects of growth hormone on morphology of cardiac muscle and skeletal muscle and hormone levels in rats

    International Nuclear Information System (INIS)

    Yang Ping; Liu Cong; Meng Fanbo; Zhu Jinming; Ni Jinsong; Zhou Hong; Tang Yubo

    2005-01-01

    Objective: To study the effects of growth hormone (GH) on morphology of cardiac muscle and skeletal muscle and hormone levels in Wistar rats. Methods: The GH was given with subcutaneous injection for 15 days, the level of serum GH was determined by radiation-immune method; the body weight and the ratio of organ weight to body weight were determined; the cell appearances of cardiac muscle and skeletal muscle were observed under microscope. the control group was set up. Results; The level of serum GH and rat body weight in experimental group were obviously higher than that in the control group, but the ratio of organ weight to body weight was not obviously different in two groups; musculature hypertrophy and cell nucleolus increasing were observed under microscopy, there were no capillary vessel hyperplasia and inflammatory soakage. Conclusion: GH can induce hypertrophy of cardiac muscle cells and skeletal muscle cells but not interstitial proliferation. (authors)

  6. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pereira-Da-Silva, Lucia; Juel, Carsten

    2003-01-01

    We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluoresce...

  7. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Hopp, L.; Khalil, F.; Tamura, H.; Kino, M.; Searle, B.M.; Tokushige, A.; Aviv, A.

    1986-01-01

    The binding of ouabain and K + to the Na + pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH) Wistar-Kyoto (WKY), and American Wistar (W) rats. The techniques have utilized analyses of displacement of [ 3 H]ouabain by both unlabeled ouabain and K + from specific binding sites on the VSMCs. The authors have found that 1) each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na + pumps); 2) the number of Na + pump units of both the SH and WKY rats was significantly lower than the number of Na + pump units of W rat VSMCs; 3) the equilibrium dissociation constant values (μM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats; and 4) among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K + (mM) was the lowest in those of the SH rat compared with VSMCs of the WKY rat and W rat. Previous studies have demonstrated increased passive Na + and K + transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells. They propose that the combined effect of a low number of Na + pump units with higher permeabilities to Na + and K + predisposes VSMCs of the SH rat to disturbances in their cellular ionic regulation. These genetic defects, if they occur in vivo, may lead to an increase in the vascular tone

  8. TIME COURSE ALTERATIONS OF SATELLITE CELL EVENTS IN RESPONSE TO LIGHT MODERATE ENDURANCE TRAINING IN WHITE GASTROCNEMIUS MUSCLE OF THE RAT

    Directory of Open Access Journals (Sweden)

    Zong-Yan Cai

    2012-01-01

    Full Text Available This study investigated satellite cells and their related molecular events adapted to light moderate endurance training in the white gastrocnemius muscle of the rat. The white gastrocnemius muscle of male Sprague-Dawley rats that had been trained for 4 weeks and 8 weeks, with control rats being analysed alongside them, was selected for analysis (n=3 per group. The training protocol consisted of treadmill running at 20 m · min-1 for 30 min on a 0% grade, for 3 days · week-1. Immunohistochemical staining coupled with image analysis was used for quantification. To provide deeper insight into the cell layer, 40 sections per rat, corresponding to 120 values per group, were obtained as a mean value for statistical comparison. The results indicated that at week 4, training effects increased the vascular endothelial growth factor (VEGF content and c-met positive satellite cell numbers. At week 8, the training effect was attenuated for VEGF and c-met satellite cell numbers, but it increased in the muscle fibre area. Additionally, c-met positive satellite cell numbers correlated with VEGF content (r = 0.79, p<0.05. In conclusion, this study suggests that light moderate endurance training could stimulate satellite cell activation that might be related to VEGF signalling. Additionally, the satellite cells activated by moderate endurance training might contribute to slight growth in myocytes.

  9. Association of testicular undescent induced by prenatal flutamide treatment with thickening of the cremaster muscle in rats

    Science.gov (United States)

    Matsuno, Yoshiharu; Komiyama, Masatoshi; Tobe, Toyofusa; Toyota, Naoji; Adachi, Tetsuya

    2003-01-01

    Background and Aims:  Previously, in cryptorchid rats, which were induced by prenatal exposure to flutamide, we found a thickening of the cremaster muscle. This study was undertaken to quantify the increase of the cremaster muscle thickness in the cryptorchid rats, and to examine its possible relationship with the proliferation of muscle cells. Methods:  To obtain cryptorchid rats, pregnant Wistar rats were subcutaneously injected with flutamide (100 mg/kg per day) during gestational days 16–17. Serial sections of the scrotum, containing the testis and cremaster muscle, were prepared from the control and cryptorchid rats that were 2–6 weeks of age, and stained with hematoxylin–eosin for morphometry, or stained with antibody against the proliferating cell nuclear antigen (PCNA) to analyze the cell proliferation ability. Results:  The thickened cremaster muscle was always associated with cryptorchid testis and, in the case of unilateral cryptorchidism, the cremaster muscle of the contralateral (descended testis) side exhibited normal thickness. The average thickness of the affected cremaster muscle was 0.80 and 1.89 mm at 4 and 6 weeks of age, respectively, although that of the normal muscle was 0.28 and 0.33 mm at the same time period, respectively. Conclusion:  Our results showed that the cremaster muscle of the cryptorchid rats was significantly thicker than that of the control rats. The immunohistochemical analysis revealed that a thickened cremaster muscle contained many PCNA‐positive nuclei even at 4 weeks of age, in contrast to the control, which had only a few positive nuclei. Our present study indicates that continuous proliferation of the muscle cells associated with cryptorchid testis increases the thickness of cremaster cells in rats exposed to flutamide prenatally. (Reprod Med Biol 2003; 2: 109–113) PMID:29699173

  10. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    Science.gov (United States)

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  11. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.

    Science.gov (United States)

    Alway, Stephen E; Pereira, Suzette L; Edens, Neile K; Hao, Yanlei; Bennett, Brian T

    2013-09-01

    Loss of myonuclei by apoptosis is thought to contribute to sarcopenia. We have previously shown, that the leucine metabolite, β-hydroxy-β-methylbutyrate (HMB) suppresses apoptotic signaling and the apoptotic index (the ratio of apoptotic positive to apoptotic negative myonuclei) during muscle disuse and during reloading periods after disuse in aged rats. However, it was not clear if the apoptotic signaling indexes were due only to preservation of myonuclei or if perhaps the total myogenic pool increased as a result of HMB-mediated satellite cell proliferation as this would have also reduced the apoptotic index. In this study, we tested the hypothesis that HMB would augment myogenic cells (satellite cells) proliferation during muscle recovery (growth) after a period of disuse in senescent animals. The hindlimb muscles of 34 month old Fisher 344 × Brown Norway rats were unloaded for 14 days by hindlimb suspension (HLS), and then reloaded for 14 days. The rats received either Ca-HMB (340 mg/kg body weight; n = 16), or the vehicle (n = 10) by gavage throughout the experimental period. HMB prevented the functional decline in maximal plantar flexion isometric force production during the reloading period, but not during HLS. HMB-treatment enhanced the proliferation of muscle stem cells as shown by a greater percentage of satellite cells that had proliferated (more BrdU positive, Pax-7 positive, and more Pax7/Ki67 positive nuclei) and as a result, more differentiated stem cells were present (more MyoD/myogenin positive myonuclei), relative to total myonuclei, in reloaded plantaris muscles as compared to reloaded muscles from vehicle-treated animals. Furthermore HMB increased the nuclear protein abundance of proliferation markers, inhibitor of differentiation-2 and cyclin A, as compared to vehicle treatment in reloaded muscles. Although HMB increased phosphorylated Akt during reloading, other mTOR related proteins were not altered by HMB treatment. These data show that

  12. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  13. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  14. Establishment of artery smooth muscle cell proliferation model after subarachnoid hemorrhage in rats

    Directory of Open Access Journals (Sweden)

    Yu-jie CHEN

    2011-12-01

    Full Text Available Objective The current paper aims to simulate the effects of hemolytic products on intracranial vascular smooth muscle cell after subarachnoid hemorrhage(SAH,and probe into the molecular mechanism and strategy for the prevention and cure of vascular proliferation after SAH.Methods Thirty Sprague-Dawley rats were randomly divided into three groups,including sham-operated,24 h after SAH,and 72 h after SAH groups.The artificial hemorrhage model around the common carotid artery was established for the latter two groups.The animals were put to death after 24 h and 72 h to take the common carotid artery,and to measure the expression level of PCNA,SM-α-actin protein,and mRNA in the smooth muscle cell.Results The PCNA mRNA expression was significantly up-regulated in the 24-h group(P < 0.01.The expression in the 72-h group was lower than that of the 24-h group(P < 0.01,whereas it was still remarkably higher than that of the sham group(P < 0.01.The SM-α-actin mRNA expression in the smooth muscle cell in the 24-h and 72-h groups decreased compared with that of the Sham group(P < 0.05,whereas the 72-h group was significantly lower than that of the 24-h group(P < 0.05.The protein expression of PCNA and SM-α-actin showed a similar trend.Conclusion The current experiment simulates better effects of the hemolytic products on vascular smooth muscle cell after SAH.It also shows that artificial hemorrhage around the common carotid artery could stimulate vascular smooth muscle cell to change from contractile phenotype into synthetic phenotype,and improve it to proliferate.

  15. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  16. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  17. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  18. Lentivirus administration to rat muscle provides efficient sustained expression of erythropoietin

    NARCIS (Netherlands)

    Seppen, J.; Barry, S. C.; Harder, B.; Osborne, W. R.

    2001-01-01

    A lentivirus pseudotyped with vesicular stomatitis virus G protein (VSV-G) encoding rat erythropoietin (EPO) complementary DNA was administered to rat skeletal muscle and red blood cell production was serially monitored. After a single intramuscular injection hematocrit values increased and reached

  19. Danshensu prevents hypoxic pulmonary hypertension in rats by inhibiting the proliferation of pulmonary artery smooth muscle cells via TGF-β-smad3-associated pathway.

    Science.gov (United States)

    Zhang, Ning; Dong, Mingqing; Luo, Ying; Zhao, Feng; Li, Yongjun

    2018-02-05

    Hypoxic pulmonary hypertension is characterized by the remodeling of pulmonary artery. Previously we showed that tanshinone IIA, one lipid-soluble component from the Chinese herb Danshen, ameliorated hypoxic pulmonary hypertension by inhibiting pulmonary artery remodeling. Here we explored the effects of danshensu, one water-soluble component of Danshen, on hypoxic pulmonary hypertension and its mechanism. Rats were exposed to hypobaric hypoxia for 4 weeks to develop hypoxic pulmonary hypertension along with administration of danshensu. Hemodynamics and pulmonary arterial remodeling index were measured. The effects of danshensu on the proliferation of primary pulmonary artery smooth muscle cells and transforming growth factor-β-smad3 pathway were assessed in vitro. Danshensu significantly decreased the right ventricle systolic pressure, the right ventricle hypertrophy and pulmonary vascular remodeling index in hypoxic pulmonary hypertension rats. Danshensu also reduced the increased expression of transforming growth factor-β and phosphorylation of smad3 in pulmonary arteries in hypoxic pulmonary hypertension rats. In vitro, danshensu inhibited the hypoxia- or transforming growth factor-β-induced proliferation of primary pulmonary artery smooth muscle cells. Moreover, danshensu decreased the hypoxia-induced expression and secretion of transforming growth factor in primary pulmonary adventitial fibroblasts and NR8383 cell line, inhibited the hypoxia or transforming growth factor-β-induced phosphorylation of smad3 in rat primary pulmonary artery smooth muscle cells. These results demonstrate that danshensu ameliorates hypoxic pulmonary hypertension in rats by inhibiting the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, and the inhibition effects is associated with transforming growth factor-β-smad3 pathway. Therefore danshensu may be a potential treatment for hypoxic pulmonary hypertension. Copyright © 2017 Elsevier B.V. All rights

  20. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    Science.gov (United States)

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  1. Inhaled corticosteroids inhibit substance P receptor expression in asthmatic rat airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Li Miao

    2012-12-01

    Full Text Available Abstract Background Neurokinins (NKs participate in asthmatic airway inflammation, but the effects of NKs on airway smooth muscle cells (ASMCs and those of corticosteroids on NKs are unknown. Methods To investigate the effect of budesonide on substance P (NK-1 receptor (NK-1R expression in the lung and ASMCs, 45 Wistar rats were randomly divided into three groups: control, asthmatic, and budesonide treatment. Aerosolized ovalbumin was used to generate the asthmatic rat model, and budesonide was administered after ovalbumin inhalation. On day 21, bronchial responsiveness tests, bronchoalveolar lavage, and cell counting were conducted. NK-1R protein expression in the lung was investigated by immunohistochemistry and image analysis. Primary rat ASMC cultures were established, and purified ASMCs of the fourth passage were collected for mRNA and protein studies via real-time RT-PCR, immunocytochemistry, and image analysis. Results NK-1R mRNA and protein expression in the budesonide treatment group rat’s lung and ASMCs were less than that in the asthmatic group but greater than that in the control group. Conclusions NK-1R is involved in the pathogenesis of asthma and that budesonide may downregulate the expression of NK-1R in the ASMCs and airways of asthmatic rats, which may alleviate neurogenic airway inflammation.

  2. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  3. Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.

    Science.gov (United States)

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.

  4. A Rat Model for Muscle Regeneration in the Soft Palate

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  5. Metabolic characteristics of skeletal muscle from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Campion, D.R.; Shapira, J.F.; Allen, C.E.; Hausman, G.J.; Martin, R.J.

    1987-01-01

    The purpose of this study was to determine if the metabolic response to obesity and to pair feeding of obese Zucker rats to lean Zucker rats was similar across skeletal muscles. Oxidation of glucose, palmitate and isoleucine was studied in muscle strips in vitro using appropriate 14- carbon substrates as tracers. The plantaris muscle was subjected to histochemical analyses using an alkaline actomyosin ATPase, NADH-tetrazolium reductase and an oil red 0 stain. Soleus muscles from both ad libitum and pair fed obese rats oxidized less glucose to CO 2 , but released similar amounts of lactate when compared to the soleus muscles of lean rats. Oxidation of glucose was similar in the extensor digitorum longus (EDL) muscle of ad libitum fed obese rats, but lower when pair fed to the intake of lean rats. No differences were apparent in palmitate oxidation to CO 2 or in incorporation into lipid, except in the EDL muscle of pair-fed obese rats which exhibited a higher rate for palmitate metabolism when compared with lean rats. Isoleucine oxidation to CO 2 was higher in the EDL and plantaris muscles, but similar in the soleus muscle of ad libitum-fed obese rats when compared with lean rats. The magnitude of the difference in isoleucine oxidation was similar when the obese rats were pair fed. No differences in the percentage of plantaris muscle fibers sensitive to alkaline ATPase staining were observed. The plantaris muscle of obese rats, contained a higher proportion of oxidative fibers. These results indicate the great risk in generalizing about metabolic activity of the whole skeletal muscle mass based on observations made on one, or even two, distinct muscles in this animal model. Also, pair feeding of obese to lean Zucker rats did not result in uniform change sin metabolism between muscles of the obese rats

  6. Effect of hypertensive rat plasma on ion transport of cultured vascular smooth muscle

    International Nuclear Information System (INIS)

    Magargal, W.W.; Overbeck, H.W.

    1986-01-01

    We layered fresh, unprocessed plasma from healthy rats with early (less than or equal to 7 days) or benign, chronic (greater than 3 wk) one-kidney, one-clip hypertension and from paired one-kidney normotensive control rats over confluent primary-cultured rat aortic smooth muscle cells. Plasma from all rats increased cellular ouabain-sensitive 86 Rb + uptake and sodium content and decreased ouabain-insensitive 86 Rb + uptake compared with uptakes and content in the presence of balanced salt solution (P less than 0.01). Cells incubated in the presence of plasma from rats with early (P less than 0.02) or chronic hypertension (P less than 0.01) had significantly reduced ouabain-sensitive 86 Rb + uptake when compared with cells incubated in normotensive plasma, but their intracellular Na+ contents were not lower. We no longer detected this uptake difference when chronic hypertensives drank 0.9% NaCl instead of water. Plasma from hypertensive rats also altered ouabain-insensitive 86 Rb + uptake by the cultured cells. These findings of this new, reproducible, and specific assay system support the hypothesis that plasma factors inhibit the membrane sodium-potassium pump in vascular smooth muscle cells in this form of hypertension. The abnormality occurs in both early and chronic stages, but may not be related to sodium intake. The data also provide evidence for plasma factors in hypertension altering membrane K+ permeability

  7. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    Directory of Open Access Journals (Sweden)

    Anna Salazar-Degracia

    2017-12-01

    Full Text Available Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection, redox balance (protein oxidation and nitration and antioxidants and muscle proteins (1-dimensional immunoblots, carbonylated proteins (2-dimensional immunoblots, inflammatory cells (immunohistochemistry, and mitochondrial respiratory chain (MRC complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV. Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.

  8. Suppression of vascular smooth muscle cells' proliferation and ...

    African Journals Online (AJOL)

    This study aimed to determine the effects of valsartan on the proliferation and migration of isolated rat vascular smooth muscle cells (VSMCs) and the expression of phospho-p42/44 mitogen-activated protein kinase (MAPK) promoted by angiotensin II (Ang II). VSMCs from the rat thoracic aorta were cultured by ...

  9. Age-related effect of cell death on fiber morphology and number in tongue muscle.

    Science.gov (United States)

    Kletzien, Heidi; Hare, Allison J; Leverson, Glen; Connor, Nadine P

    2018-01-01

    Multiple pathways may exist for age-related tongue muscle degeneration. Cell death is one mechanism contributing to muscle atrophy and decreased function. We hypothesized with aging, apoptosis, and apoptotic regulators would be increased, and muscle fiber size and number would be reduced in extrinsic tongue muscles. Cell death indices, expression of caspase-3 and Bcl-2, and measures of muscle morphology and number were determined in extrinsic tongue muscles of young and old rats. Significant increases in cell death, caspase-3, and Bcl-2 were observed in all extrinsic tongue muscles along with reductions in muscle fiber number in old rats. We demonstrated that apoptosis indices increase with age in lingual muscles and that alterations in apoptotic regulators may be associated with age-related degeneration in muscle fiber size and number. These observed apoptotic processes may be detrimental to muscle function, and may contribute to degradation of cranial functions with age. Muscle Nerve 57: E29-E37, 2018. © 2017 Wiley Periodicals, Inc.

  10. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    Science.gov (United States)

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  11. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    Science.gov (United States)

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  12. Mitochondrial Morphofunctional Alterations in Smooth Muscle Cells of Aorta in Rats

    Science.gov (United States)

    Tarán, Mariana; Llorens, Candelaria; Balceda, Ariel; Scribano, María de La Paz; Pons, Patricia; Moya, Mónica

    2014-01-01

    In an experimental model of atherogenesis induced by hyperfibrinogenemia (HF), the pharmacological response of vitamin E was studied in order to assess its antioxidant effect on the mitochondrial morphofunctional alterations in aortic smooth muscle cells. Three groups of male rats were used: (Ctr) control, (AI) atherogenesis induced for 120 days, and (AIE) atherogenesis induced for 120 days and treated with vitamin E. HF was induced by adrenalin injection (0.1 mg/day/rat) for 120 days. AIE group was treated with the administration of 3.42 mg/day/rat of vitamin E for 105 days after the first induction. Mitochondria morphology was analyzed by electronic microscopy (EM) and mitochondrial complexes (MC) by spectrophotometry. In group AI the total and mean number of mitochondria reduced significantly, the intermembranous matrix increased, and swelling was observed with respect to Ctr and AIE (P < 0.01). These damages were related to a significant decrease in the activity of citrate synthase and complexes I, II, III, and IV in group AI in comparison to Ctr (P < 0.001). Similar behavior was presented by group AI compared to AIE (P < 0.001). These results show that vitamin E produces a significative regression of inflammatory and oxidative stress process and it resolved the morphofunctional mitochondrial alterations in this experimental model of atherogenic disease. PMID:24653842

  13. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  14. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  15. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  16. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro

    Directory of Open Access Journals (Sweden)

    Tomoko Funakoshi

    2018-03-01

    Full Text Available Muscle satellite cells are committed myogenic progenitors capable of contributing to myogenesis to maintain adult muscle mass and function. Several experiments have demonstrated that muscle satellite cells can differentiate into adipocytes in vitro, supporting the mesenchymal differentiation potential of these cells. Moreover, muscle satellite cells may be a source of ectopic muscle adipocytes, explaining the lipid accumulation often observed in aged skeletal muscle (sarcopenia and in muscles of patients` with diabetes. Quercetin, a polyphenol, is one of the most abundant flavonoids distributed in edible plants, such as onions and apples, and possesses antioxidant, anticancer, and anti-inflammatory properties. In this study, we examined whether quercetin inhibited the adipogenesis of muscle satellite cells in vitro with primary cells from rat limbs by culture in the presence of quercetin under adipogenic conditions. Morphological observations, Oil Red-O staining results, triglyceride content analysis, and quantitative reverse transcription polymerase chain reaction revealed that quercetin was capable of inhibiting the adipogenic induction of muscle satellite cells into adipocytes in a dose-dependent manner by suppressing the transcript levels of adipogenic markers, such as peroxisome proliferator-activated receptor-γ and fatty acid binding protein 4. Our results suggested that quercetin inhibited the adipogenesis of muscle satellite cells in vitro by suppressing the transcription of adipogenic markers. Keywords: Quercetin, Muscle satellite cell, Differentiation, Intramuscular lipid

  17. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Carlo A Rossi

    2010-01-01

    Full Text Available Satellite cells (SCs represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC present in major proportion (approximately 75% and the high proliferative clones (HPC, present instead in minor amount (approximately 25%. LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m, ATP balance and Reactive Oxygen Species (ROS generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.

  18. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    Science.gov (United States)

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL

  19. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  20. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM...... concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining...

  1. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  2. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    Science.gov (United States)

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  4. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  5. Effect of age on fatty infiltration of supraspinatus muscle after experimental tendon release in rats

    Directory of Open Access Journals (Sweden)

    Farshad Mazda

    2011-12-01

    Full Text Available Abstract Background Rotator cuff tendon tear is a leading cause for atrophy, fibrosis and fatty infiltration of the rotator cuff muscles. The pathophysiology of fatty muscle infiltration is not well understood. An animal model suited to study cellular and molecular mechanisms would therefore be desirable. While a rat model has been established for chronic rotator cuff tendon pathology, sufficient and easily identifiable fatty infiltration of the muscle has not yet been shown in rats. As younger animals regenerate better, we hypothesized that the absence of a sufficient amount of fatty infiltration in previous experiments was due to the selection of young animals and that older animals would exhibit higher amounts of fatty infiltration after tendon tear. Findings The supraspinatus tendon was released using tenotomy in 3 young (6 weeks old and in 3 aged (24 months old Sprague Dawley rats (group I and II. Another 3 aged (24 months old rats underwent sham surgery and served as a control group (group III. In group I and II retraction of the musculotendinous unit was allowed for 6 weeks. All animals were sacrificed 6 weeks after surgery and the supraspinatus muscles were harvested. Each sample was examined for fatty infiltration of the muscle by histological methods and micro-CT. In histology, fat cells were counted with a 10-fold magnification in 6 fields of view twice. An adjusted measurement setup was developed for the use of micro-CT to quantify the absorption coefficient of the muscle as a reciprocal indicator for fatty infiltration, based on the established procedure for quantification of fatty infiltration on CT in humans. Tenotomy resulted in an insignificant increase of fat cells in histological sections in both, aged and young rats. Micro-CT was able to quantify small differences in the absorption coefficients of muscle samples; the absorption coefficient was 8.1% ± 11.3% lower in retracted muscles (group I and II compared with the control

  6. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats. The 2nd report

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Xiao Dong Wang; Nagaoka, Shunji; Nojima, Kumie

    2004-01-01

    We examined the effects of acute exposure of heavy ion on the properties of motoneurons and their innervating muscle fibers. A 40 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in five 8-week-old male rats. Five male rats served as controls. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of motoneurons innervating the soleus and plantaris muscles were analyzed. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no changes in the number of motoneurons between the control and heavy-ion-exposed rats. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in motoneurons of the heavy-ion-exposed rats. There were no changes in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the muscles between the control and heavy-ion-exposed rats. It is concluded that a 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there were no influences on the properties of muscle fibers which they innervate. (author)

  7. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    International Nuclear Information System (INIS)

    Murakami, Taro; Yoshinaga, Mariko

    2013-01-01

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles

  8. THE NEPHROTOXICITY RISK IN RATS SUBJECTED TO HEAVY MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gülsen Öner

    2009-09-01

    Full Text Available When the body is exposed to insults, the kidneys exhibit adaptive changes termed renal cytoresistance, characterized by cholesterol accumulation in the membranes of the tubule cells. However, heavy muscle activity has not yet been accepted as one of the stressors that could lead to cytoresistance. In order to study the renal functional characteristics of animals exposed to heavy muscle activity, rats were subjected to exhaustive treadmill exercise for 5 days and their data was compared to those of sedentary controls. It was found that in exercised rats, blood lactate, muscle citrate synthase and proximal tubule peroxynitrite levels were all elevated, suggesting the presence of oxidative stress in the proximal tubule segments. However, mean arterial pressure, renal blood flow, glomerular filtration rate, fractional excretion of sodium and potassium, and organic anion excretion remained normal. Despite unchanged blood cholesterol levels, cholesterol loading in the proximal tubule segments, especially the free form, and decreased lactate dehydrogenase release from cytoresistant proximal tubule segments indicated the development of renal cytoresistance. However, this resistance did not seem to have protected the kidneys as expected because organic anion accumulation associated with glycosuria and proteinuria, in addition to the elevated urinary cholesterol levels, all imply the presence of an impaired glomerular permeability and reabsorption in the proximal tubule cells. Therefore, we suggest that in response to heavy muscle activity the tubular secretion may remain intact, although cytoresistance in the proximal tubule cells may affect the tubular reabsorptive functions and basolateral uptake of substances. Thus, this differential sensitivity in the cytoresistance should be taken into account during functional evaluation of the kidneys

  9. Lectins binding during alloxan-induced diabetes in rat soleus muscle

    African Journals Online (AJOL)

    Membrane structural changes of soleus muscle of alloxan-diabetic rats were detected with a panel of six biotinylated lectins. Samples of muscles were obtained from normal and diabetic rats. The biotinylated lectins in staining were detected by avidin-peroxidase complex. Lectin stainning of soleus muscle cryostat sections ...

  10. Postirradiation recovery of the skeletal muscle of rats of various age

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.

    1977-01-01

    The skeletal muscle of young rats (particularly of 3-and 4-week old ones) exposed to local irradiation of 2000 R was markedly repaired in the course of one month after irradiation . This was indicated by a restored ability of the muscle for posttraumatic regeneration. A regeneration ability of the irradiated muscle of old rats was not restored. The more intensive processes of postirradiation recovery in muscles of young rats may be explained by their more active metabolism

  11. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  12. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-12-01

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  13. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    Science.gov (United States)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  14. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    International Nuclear Information System (INIS)

    Westfall, M.V.; Sayeed, M.M.

    1988-01-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of 14 C-labeled 3-O-methylglucose ( 14 C-3-MG) after loading muscles with 14 C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated 14 C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters

  15. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob

    2016-01-01

    Botulinum toxin is used to diminish spasticity and reduce the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats...... received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the non-injected contralateral side in all rats. Acute experiments were performed 1, 2, 4 and 8 weeks following injection. The triceps surae muscle was dissected free, the Achilles tendon was cut...... and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex mediated torque was normalized to the maximal muscle force (Mmax) evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused...

  16. Could mesenchymal stem cell therapy help in the treatment of muscle damage caused by Bothrops alternatus venom?

    Directory of Open Access Journals (Sweden)

    Thalita da Costa Telles

    2018-03-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the use of mesenchymal stem cells (MSC in the treatment of myonecrosis induced by Bothrops alternatus venom in rats. Seventy-five male adult Wistar rats were divided into three experimental groups. G1 and G2 were injected in the gastrocnemius muscle with 120μg of B. alternatus venom, while G3 received 200μL of PBS only. Three days after the venom injection, 12 rats from G1 were treated with 5.0 x 106 MSC in PBS, whereas G2 and G3 rats received PBS. Every three days, blood and muscle samples of five animals from each group were taken for serum biochemical and pathological analyses. Histological examinations showed more intense muscle lesions following MSC treatment, characterized by disorganization and loss of muscle fibers, with focal necrosis and inflammatory infiltration by mononuclear cells. In conclusion, the use of MSC for the treatment of local damage caused by inoculation of B. alternatus venom impaired muscle regeneration and interfered in the healing process.

  17. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  18. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  19. Three-O-methylglucose transport in soleus muscle of bacteremic rats

    International Nuclear Information System (INIS)

    Westfall, M.V.; Sayeed, M.M.

    1987-01-01

    Basal and insulin-stimulated soleus muscle 3-O-[ 14 C]merhylglucose ([ 14 C]-3-O-MG) transport was studied in vitro and in vivo during bacteremia in rats. Fasted rats were injected with Escherichia coli to produce bacteremia (B), and controls (C) received saline. In vitro studies using soleus muscles were carried out 8 of 12 hr after bacterial injection, and transport was measured using the rate coefficient (λ = min/sup /minus/1/). Although insulin-stimulated [ 14 C]-3-O-MG transport was decreased in 12-h bacteremic rat muscles the basal [ 14 C]-3-O-MG transport was rate coefficient was elevated. For in vivo studies, [ 14 C]-3-O-MG with or without insulin was injected into rats 10-40 min prior to removing soleus muscles at 12 h postbacterial or postsaline injection. Transport was measured as the ratio of [ 14 C]-3-O-MG/sub intracell//[ 14 C]-3-O-MG/sub extracell/. Basal ratios were not different and muscles from both control and bacteremic rats responded comparably to insulin with increased [ 14 C]-3-O-MG transport during the initial 30 min. At 35-40 min postinsulin injection there was a further stimulation of [ 14 C]-3-O-MG transport in control but not in 12-h bacteremic rat muscles. The changes in [ 14 C]-3-O-MG transport observed in vitro and in vivo after 12 h of bacteremia may be due to circulating mediators and/or changes in membrane function

  20. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  1. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  2. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  3. Site-dependent effects of experimental hypo- and hyperthyroidism on resident macrophages in extraocular muscles of rats: a quantitative immunohistochemical study

    NARCIS (Netherlands)

    Schmidt, E. D.; van Hogerwou, G.; van der Gaag, R.; Wiersinga, W. M.; Asmussen, G.; Koornneef, L.

    1992-01-01

    It has been suggested that the effects of dysthyroidism on resident immunocompetent cells of the extraocular muscles may play a role in the pathogenesis of Graves' ophthalmopathy. The distribution of such cells was therefore studied in extraocular muscles of rats that were made hyper- or hypothyroid

  4. Effects of adriamycin and irradiation on beating of rat heart muscle cells in culture

    International Nuclear Information System (INIS)

    Petrovic, D.; Brown, S.M.; Yatvin, M.B.

    1977-01-01

    In an attempt to elucidate the mechanisms involved in Adriamycin (ADM) induced cardiotoxicity as well as determining the possible potentiating effect that irradiation has when it is combined with the drug, heart cells from newborn rats were isolated, cultured and treated with Adriamycin. The actions of these two agents separately or in combination on the survival of beating activity and beating frequency are measured. Beating activity could be decreased temporarily either by exposing the cells to 50 krad of γ-irradiation or 0.1 μg of Adriamycin. Following 100 krad of γ-radiation or 1.0 μg Adriamycin, an irreversible cessation of beating occurred. In the case of Adriamycin, cessation was preceded by a temporary sharp increase in beating frequency. Doses of radiation up to 10 krad in combination with Adriamycin were not potentiating. The results indicate that Adriamycin produces its cardiotoxic effects, at least in part, by a direct action on heart muscle cells. It is less likely, however, that damage which occurs in the heart following therapeutic doses of irradiation is the result of such direct action

  5. A new iridoid and effect on the rat aortic vascular smooth muscle cell proliferation of isolated compounds from Buddleja officinalis.

    Science.gov (United States)

    Tai, Bui Huu; Nhiem, Nguyen Xuan; Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Tung, Nguyen Huu; Kim, Yohan; Lee, Jung-Jin; Myung, Chang-Seon; Cuong, Nguyen Manh; Kim, Young Ho

    2011-06-01

    A new iridoid, named methylscutelloside (1) together with 19 known compounds belonging to the iridoids (2-4), monoterpenoids (5), flavonoids (6-8), triterpenoids (9-14), and phenylethanoids (15-20) were isolated from the flowers of Buddleja officinalis. Their chemical structures were elucidated on the basis of physicochemical properties, and by spectroscopic methods including 1D, 2D NMR, and MS. All isolated compounds were tested in vitro for their effects on the proliferation of rat aortic vascular smooth muscle cells (VSMCs). Among them, iridoids were the main active components and showed significant inhibitory effects on PDGF-BB-induced proliferation in rat aortic VSMCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  7. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats (the 3rd report)

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Wang, Xiao Dong; Nagaoka, Shunji; Nojima, Kumie

    2005-01-01

    The effects of acute exposure of heavy ion on the properties of spinal motoneurons and their innervating muscle fibers were investigated. A 15, 20, 40, 50, or 70 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in 8-week-old male rats. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of spinal motoneurons innervating the soleus and plantaris muscles were analyzed by a computer-assisted image processing system. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no differences in the number of spinal motoneurons innervating the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in spinal motoneurons of the heavy-ion-exposed rats at the dose levels of 40, 50, and 70 Gy. There were no differences in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. It is concluded that more than 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there are no influences on the properties of muscle fibers which they innervate. (author)

  8. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  9. β-adrenergic receptor binding characteristics and responsiveness in cultured Wistar-Kyoto rat arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Jazayeri, A.; Meyer, W.J. III

    1988-01-01

    The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). β- 2 -adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of β 2 -adrenergic receptors on cultured rat ASMC and that these receptors are functional. β-adrenergic receptor binding was measured using [ 3 H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC β-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a β 2 -adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. β-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed β-adrenergic receptor differences can be further explored

  10. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Norifumi; Nagaoka, Shunji; Nojima, Kumie

    2003-01-01

    We investigate effects of localized exposure of heavy ion to the lumbar 4th to 6th segments of the rat spinal cord on the properties of motoneurons and the innervated muscle fibers without surgical treatments. Twenty 7-week-old male Wistar rats were exposed to 5 mm spread-out Bragg peak (SOBP) carbon beam (290 MeV, linear energy transfer (LET)=130 keV/μm): Two doses (15 Gy or 20 Gy) were applied to each group of rats (n=5) in two different depths; one group was exposed only for ventral horn of the spinal cord while other for whole spinal cord. Five rats served as controls. The rats were exposed to carbon irons on October 26, 2002. We will sacrifice the rats soon after they show an abnormal behavior including posture and walking. Cell body size and oxidative enzyme activity of spinal motoneurons of the control and heavy-ion-exposed rats will be analyzed. In addition, cell size, oxidative enzyme activity, and expressions of myosin heavy chain isoforms of the gastrocnemius, soleus, plantaris, extensor digitorum longus, and tibialis anterior muscle fibers will be also determined. This study is performed to test our hypothesis that atrophy and a decrease in cross-sectional area of motoneurons and muscle fibers which they innervate, as well as a decrease in oxidative activity of motoneurons and muscle fibers, will be induced due to exposure to heavy ion. (author)

  11. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    Directory of Open Access Journals (Sweden)

    C.C.F. Nascimento

    2008-09-01

    Full Text Available The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase. Data were analyzed statistically by the mixed effects linear model (P < 0.05. Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001. In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001. In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009. We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  12. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle

    International Nuclear Information System (INIS)

    Xin Hong; Tanaka, Hideyuki; Yamaguchi, Maki; Takemori, Shigeru; Nakamura, Akio; Kohama, Kazuhiro

    2005-01-01

    Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca 2+ . The SR releases Ca 2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca 2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca 2+ occurs through a channel composed of VR1

  13. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter; Luiken, Joost J.

    2009-01-01

    FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P ...In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated....... METHODS: Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10-20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36...

  14. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  15. Effect of salbutamol on innervated and denervated rat soleus muscle

    Directory of Open Access Journals (Sweden)

    ?oic-Vranic T.

    2005-01-01

    Full Text Available The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10, treated with salbutamol (N = 30, denervated (N = 30, and treated with salbutamol after denervation (N = 30. Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21% in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  16. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  17. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats.

    Science.gov (United States)

    Willand, Michael P; Rosa, Elyse; Michalski, Bernadeta; Zhang, Jennifer J; Gordon, Tessa; Fahnestock, Margaret; Borschel, Gregory H

    2016-10-15

    Despite advances in surgery, patients with nerve injuries frequently have functional deficits. We previously demonstrated in a rat model that daily electrical muscle stimulation (EMS) following peripheral nerve injury and repair enhances reinnervation, detectable as early as two weeks post-injury. In this study, we explain the enhanced early reinnervation observed with electrical stimulation. In two groups of rats, the tibial nerve was transected and immediately repaired. Gastrocnemius muscles were implanted with intramuscular electrodes for sham or muscle stimulation. Muscles were stimulated daily, eliciting 600 contractions for one hour/day, repeated five days per week. Sixteen days following nerve injury, muscles were assessed for functional reinnervation by motor unit number estimation methods using electromyographic recording. In a separate cohort of rats, surgical and electrical stimulation procedures were identical but muscles and distal nerve stumps were harvested for molecular analysis. We observed that stimulated muscles had significantly higher motor unit number counts. Intramuscular levels of brain-derived and glial cell line-derived neurotrophic factor (BDNF and GDNF) mRNA were significantly upregulated in muscles that underwent daily electrical stimulation compared to those without stimulation. The corresponding levels of trophic factor mRNA within the distal stump were not different from one another, indicating that the intramuscular electrical stimulus does not modulate Schwann cell-derived trophic factor transcription. Stimulation over a three-month period maintained elevated muscle-derived GDNF but not BDNF mRNA. In conclusion, EMS elevates intramuscular trophic factor mRNA levels which may explain how EMS enhances neural regeneration following nerve injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery

    Directory of Open Access Journals (Sweden)

    Gurney Alison M

    2005-10-01

    Full Text Available Abstract Background Uridine 5'-triphosphate (UTP and uridine 5'-diphosphate (UDP act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems. Methods The perforated-patch clamp technique was used to record the Ca2+-dependent, Cl- current (ICl,Ca activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA and large (LPA intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student's t test or one way ANOVA. Results ATP, UTP and UDP (10-4M evoked oscillating, inward currents (peak = 13–727 pA in 71–93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P -1 and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10-4M abolished currents evoked by ATP in SPA (n = 4 and LPA (n = 4, but pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS (10-4M, also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively. Currents elicited by UTP (n = 37 or UDP (n = 14 were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4 and abolished by suramin (n = 5. Both antagonists abolished the contractions in LPA. Conclusion At least two P2Y subtypes couple to ICl,Ca in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP

  19. The uremic environment and muscle dysfunction in man and rat

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Nielsen, Arne Høj; Eidemak, I.

    2006-01-01

    Background: Patients reaching end-stage renal disease experience debilitating fatigue, with progression of this disease, rendering patients dysfunctional in their everyday lives. Methods: In vivo measurements of muscle function, assessed using surface electromyography (EMG), were made on 25...... patients prior to and after a session of hemodialysis (HD) treatment, alongside in vitro measurements of muscle function in isolated rat muscles incubated in normal or uremic conditions approximating to those found in uremic rats (rat uremic: RU) or uremic humans (human uremic: HU). Results: HD...... significantly affected plasma values, e.g. reducing urea (69%), creatinine (62%), potassium (23%) and phosphate (48%) concentrations in patients (all pimproved the EMG frequency of 2nd dorsal interosseous (fast-twitch) (p

  20. Elastase effect on the extracellular matrix of rat aortic smooth muscle cells in culture

    International Nuclear Information System (INIS)

    Kispert, J.; Mogayzel, P.J. Jr.; Pratt, C.A.; Toselli, P.; Wolfe, B.L.; Faris, B.; Franzblau, C.

    1986-01-01

    The effect of porcine pancreatic elastase on the extracellular matrix (ECM) of neonatal rat aortic smooth muscle cell cultures was monitored both chemically and ultrastructurally. Initially, the elastin appeared as non-coalesced material closely associated with filaments, presumably microfibrils. The insoluble elastin accumulated in the ECM of cells in culture for 6 weeks accounted for 40-45% of the total protein. After exposure to elastase for 30-60 minutes, the elastin content was reduced to 14-20%. The reduction in the total protein content of the cultures after elastase treatment was due primarily to the loss of elastin. Although the amino acid compositions of the elastin isolated from cultures both before and after elastase treatment were similar, there were striking ultrastructural differences in the amorphous elastin. The elastin assumed a mottled appearance after elastase exposure, similar to that seen in in vivo emphysema models. Pulse experiments with 3 H-valine demonstrated an increase in protein synthesis by the cells 20 hours after elastase exposure, suggesting the potential for elastin repair. The use of this culture system will aid in clarifying the role of elastolysis in pulmonary and vascular injuries

  1. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  2. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  3. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Hoshi, Akio; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Akatsuka, Akira; Usui, Yukio; Terachi, Toshiro

    2008-06-15

    Postoperative damage of the urethral rhabdosphincter (URS) and neurovascular bundle (NVB) is a major operative complication of radical prostatectomy. It is generally recognized to be caused by unavoidable surgical damage to the muscle-nerve-blood vessel units around the urethra. We attempted to treat this damage using skeletal muscle-derived stem cells, which are able to reconstitute muscle-nerve-blood vessel units. Cells were enzymatically extracted and sorted by flow cytometry as CD34/45 (Sk-34) and CD34/45 (Sk-DN) cells from green fluorescent protein transgenic mice and rats. URS-NVB damage was induced by manually removing one-third of the total URS and unilateral invasion of NVB in wild-type Sprague-Dawley and node rats. Freshly isolated Sk-34, Sk-34+Sk-DN cells, and cultured Sk-DN cells were directly transplanted into the damaged portion. At 4 and 12 weeks after transplantation, urethral pressure profile by electrical stimulation through the sacral surface (L6-S1) was evaluated as functional recovery. The recovery ratio in the control and transplanted groups was 37.6% and 72.9%, at 4 weeks, and 41.6% and 78.4% at 12 weeks, respectively (Pcells differentiated into numerous skeletal muscle fibers having neuromuscular junctions (innervation) and nerve bundle-related Schwann cells and perineurium, and blood vessel-related endothelial cells and pericyte around the urethra. Thus, we conclude that transplantation of skeletal muscle-derived multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of postoperative damage of URS and NVB after radical prostatectomy.

  4. Use of 5-Bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures

    International Nuclear Information System (INIS)

    Masse, M.J.O.; Harary, I.

    1980-01-01

    A method for killing dividing cells was adapted for the elimination of dividing heart muscle cells (myoblasts) in cultures. We have used this method to demonstrate their presence and to estimate their number as well as the number of nondividing heart muscle cells (myocytes) in the neo-natal rat heart. Cells were cultivated in BUdR (5-bromodeoxyuridine) 10 -4 M for 3 days and then irradiated with long uv light. The selective elimination of dividing cells led to a loss of myosin Ca 2+ -activated ATPase in the cultures. The percent of ATPase left after irradiation was 32% of the control in cultures derived from 1-day postnatal rats and 48% in cultures from 4-day postnatal rats. This reflects an in vivo shift of myoblasts to myocytes in the muscle cell population as the rat ages

  5. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N

    1984-01-01

    glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity......Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle...... was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization...

  6. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M-C; Thomsen, Jesper Skovhus; Nyengaard, J R

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind...... of periosteal BFR/BS (2-fold increase vs. BTX, Pmuscle mass (+29% vs. BTX, Pmuscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse......BMD, -13%, Pmuscle mass (-69%, Pmuscle cell cross sectional area (CSA) (-73%, P

  7. Chronic dietary supplementation with soy protein improves muscle function in rats.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified "Western" diets (n = 10/group differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI, whey protein isolate (WPI, soy protein isolate (SPI, soy protein concentrate (SPC or enzyme-treated soy protein (SPE. The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05 with increases ranging from 13.3-27.5% and 22.8-29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05, whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05. There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.

  8. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki

    2015-01-01

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  10. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    2015-11-27

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  11. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  12. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  13. Pre-mRNA Processing Is Partially Impaired in Satellite Cell Nuclei from Aged Muscles

    Directory of Open Access Journals (Sweden)

    Manuela Malatesta

    2010-01-01

    Full Text Available Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.

  14. Effects of elevated temperature on protein breakdown in muscles from septic rats

    International Nuclear Information System (INIS)

    Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.; Fischer, J.E.

    1990-01-01

    Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of [14C]phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total protein breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats

  15. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  16. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-01-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall

  17. Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Khalil, F.; Fine, B.; Kuriyama, S.; Hatori, N.; Nakamura, A.; Nakamura, M.; Aviv, A.

    1987-01-01

    To explore the role of the atrial natriuretic factor (ANF) system in the pathophysiology of hypertension we examined the binding kinetics of synthetic ANF to cultured vascular smooth muscle cells (VSMCs) derived from the spontaneously hypertensive rat (SHR) and two normotensive controls-the Wistar Kyoto (WKY) and American Wistar (W). The number of maximal binding sites (Bmax) per cell (mean +/- SEM; X10(3] were: SHR = 278.0 +/- 33.0, WKY = 28.3 +/- 7.1 and W = 26.6 +/- 4.2. The differences between the SHR and normotensive strains were significant at p less than 0.001. The equilibrium dissociation constant (Kd; X 10(-9)M) was higher in SHR VSMCs (0.94 +/- 0.14) than in WKY (0.22 +/- 0.09; p less than 0.01) and W (0.39 +/- 0.14; p less than 0.02) cells. The plasma levels of the immunoreactive ANF were higher in SHR than the normotensive controls. We suggest that the relatively greater ANF receptor density in cultured VSMCs of the SHR represents a response to the in vitro environment which is relatively more deficient in ANF for VSMCs of the SHR as compared with the normotensive rats. Thus, the capacity of the SHR VSMC to regulate ANF receptor density appears to be independent of the blood pressure level

  18. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  19. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat.

    Science.gov (United States)

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-12-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.

  20. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    Science.gov (United States)

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ATP-induced changes in rat skeletal muscle contractility.

    Science.gov (United States)

    Gabdrakhmanov, A I; Khayrullin, A E; Grishin, C H; Ziganshin, A U

    2015-01-01

    Extracellular purine compounds, adenosine triphosphate (ATP) and adenosine, are involved in regulation of many cell functions, engaging in rapid and long-term cellular processes. The nucleotides, including ATP, exert their extracellular effects by influencing membrane P2 receptors. ATP outside of the cell rapidly is metabolized by the ecto-enzyme system to produce adenosine, which acts on separate adenosine (P1) receptors. Since adenosine and ATP often are functional antagonists, ATP degradation not only limits its effect, but also brings new ligand with different, often opposing, properties. Great variety and widespread of P2 and adenosine receptors in the body emphasize the important physiological and pathophysiological significance of these receptors, and make them very attractive as targets for potential drug action.The existence of several subtypes of P2 and adenosine receptors has been shown in the skeletal muscles. ATP as a co-transmitter is densely packed together with classical neurotransmitters in the presynaptic vesicles of vertebral motor units but until recently ATP was refused to have its own functional role there and was recognized only as a source of adenosine. However, on the eve of the third millennium there appeared data that ATP, released from the nerve ending and acting on presynaptic P2 receptors, suppresses subsequent quantum release of acetylcholine. The final product of its degradation, adenosine, performs a similar inhibitory effect acting on presynaptic adenosine receptors.Despite the fact that the mechanisms of presynaptic inhibitory action of ATP and other purines were studied earlier, the object of those studies was usually neuromuscular synapse of cold-blooded animals. The few studies, in which experiments were carried out on preparations of warm-blooded animals, described the basic effects of purines. These often were guided by the convenience of preparation of the synapses of the diaphragm. We think that those results cannot be

  2. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  3. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  4. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect

  5. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  6. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  7. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear.

    Science.gov (United States)

    Gumucio, Jonathan P; Flood, Michael D; Roche, Stuart M; Sugg, Kristoffer B; Momoh, Adeyiza O; Kosnik, Paul E; Bedi, Asheesh; Mendias, Christopher L

    2016-04-01

    Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.

  8. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  9. Doxazosin blocks the angiotensin II-induced smooth muscle cell DNA synthesis in the media, but not in the neointima of the rat carotid artery after balloon injury

    NARCIS (Netherlands)

    van Kleef, E. M.; Smits, J. F.; Schwartz, S. M.; Daemen, M. J.

    1996-01-01

    Infusion of angiotensin II (AngII) during the third and fourth week after balloon injury of the left common carotid artery of the rat induces smooth muscle cell (SMC) DNA synthesis. In this study we wanted to investigate whether alpha 1-adrenoreceptors are involved in AngII-induced SMC DNA synthesis

  10. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  11. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  12. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  13. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  14. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  15. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Directory of Open Access Journals (Sweden)

    Kosuke Saito

    Full Text Available Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL. We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs, which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST. Culture medium was transplanted as a control (NT. In the mouse experiment, facial-nerve-palsy (FNP scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  16. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Science.gov (United States)

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  17. Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3.

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    Full Text Available Autophagy is a conserved process in eukaryotes required for metabolism and is involved in diverse diseases. To investigate autophagy in skeletal muscle under hyperglycemia status, we established two hyperglycemia-rat models that differ in their circulating insulin levels, by glucose infusion and singe high-dose streptozotocin injection. We then detected expression of autophagy related genes with real-time PCR and western blot. We found that under hyperglycemia status induced by glucose-infusion, autophagy was inhibited in rat skeletal muscle, whereas under streptozotocin-induced hyperglycemia status autophagy was enhanced. Meanwhile, hyperglycemic gastrocnemius muscle was more prone to autophagy than soleus muscle. Furthermore, inhibition of autophagy in skeletal muscle in glucose-infusion hyperglycemia rats was mediated by the m-TOR pathway while m-TOR and FoxO3 both contributed to enhancement of autophagy in gastrocnemius muscle in streptozotocin-induced hyperglycemia rats. These data shows that insulin plays a relatively more important role than hyperglycemia in regulating autophagy in hyperglycemia rat muscle through selectively activating the m-TOR or FoxO3 pathway in a fiber-selective manner.

  18. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  19. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age.

    Science.gov (United States)

    Tian, Zhi-Ling; Jiang, Shu-Kun; Zhang, Miao; Wang, Meng; Li, Jiao-Yong; Zhao, Rui; Wang, Lin-Lin; Li, Shan-Shan; Liu, Min; Zhang, Meng-Zhou; Guan, Da-Wei

    2016-01-01

    The study was focused on time-dependent expressions of paired-box transcription factor 7 (Pax7) and myoblast determination protein (MyoD) during skeletal muscle wound healing. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17, and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. By morphometric analysis, the data based on the number of Pax7(+)/MyoD(-), Pax7(+)/MyoD(+), and Pax7(-)/MyoD(+) cells were highly correlated with the wound age. Pax7 and MyoD expressions were upregulated after injury by Western blot and quantitative real-time PCR assays. The relative quantity of Pax7 protein peaked at 5 days after injury, which was >1.13, and decreased thereafter. Similarly, the relative quantity of MyoD mRNA expression peaked at 3 days after injury, which was >2.59. The relative quantity of Pax7 protein >0.73 or mRNA expression >2.38 or the relative quantity of MyoD protein >1.33 suggested a wound age of 3 to 7 days. The relative quantity of MyoD mRNA expression >2.02 suggested a wound age of 1 to 7 days post-injury. In conclusion, the expressions of Pax7 and MyoD are upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting that Pax7 and MyoD may be potential markers for wound age estimation in skeletal muscle.

  20. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  1. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Science.gov (United States)

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  2. The effects of methylmercury on the mitochondrial energetics of rat skeletal muscle

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Nagashima, Masaru; Igarashi, Hironaka; Yonemochi, Yousuke; Atsumi, Tetsushi; Miyatake, Tadashi

    1989-01-01

    In this report it is shown that methylmercury chloride (MMC) affected the mitochondrial energetics of rat skeletal muscles in case of chronic intoxication. High energy phosphate compounds were measured by 31 P-NMR spectroscopy in the living rat hindleg skeletal muscle. Decreased value of phosphocreatine (PCr)/inorganic phosphate (Pi) ratio was observed in the resting muscle of the MMC intoxicated group, and suspend recovery of the ATP, PCr and intracellular pH after muscle contraction was found in the MMC intoxicated muscle. There was no difference in the ATP levels of the resting muscle between the control and MMC group. These results suggested that the synthesis of ATP was disturbed by the inhibition of mitochondrial respiration below TCA cycle. (author)

  3. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin...... stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......M. This concentration of wortmannin also decreased the contraction-stimulated glucose transport and uptake by approximately 30-70% without confounding effects on contractility or on muscle ATP and phosphocreatine concentrations. At higher concentrations (3 and 10 microM), wortmannin completely blocked the contraction...

  4. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Layner, Kayla N; Triscuit, Alyssa M; Chetlin, Robert D; Ensey, James; Baker, Brent A

    2017-04-01

    Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms

  6. Expression of smooth muscle and non-muscle myosin heavy chain isoforms in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Rovner, A.S.; Murphy, R.A.; Owens, G.K.

    1986-01-01

    Immunocytochemical studies of cultured smooth muscle cells (SMCs) have disagreed on the nature of myosin expression. This investigation was undertaken to test for the presence of heterogeneous myosin heavy chain (MHC) isoforms in cell culture as a possible explanation for these results. Previously, Rovner et al. detected two MHCs in intact smooth muscles which differed in molecular weight by ca. 4000 daltons (SM1 and SM2) using a 3-4% acrylamide gradient SDS gel system. When sub-confluent primary cultures of rat aorta SMCs were assayed by this system, SM1 and SM2 were seen, along with large amounts of a third, unique MHC, NM, which closely resembled the MHC from human platelet in size and antigenicity. Data from 35 S-methionine autoradiograms showed that the log growth phase SMC cultures were producing almost exclusively NM, but the growth arrest, post-confluent cultures synthesized increased relative amounts of the SM MHC forms and contained comparable amounts of SM1, SM2, and NM. The same patterns of MHC synthesis were seen in sub-passaged SMCs. The expression of the SM-specific forms of myosin in quiescent, post-confluent cultures parallels that of smooth muscle actin suggesting that density induced growth arrest promotes cytodifferentiation in cultured vascular SMCs

  7. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury.

    Science.gov (United States)

    Davies, Michael R; Ravishankar, Bharat; Laron, Dominique; Kim, Hubert T; Liu, Xuhui; Feeley, Brian T

    2015-07-01

    Rotator cuff tears (RCTs) are among the most common musculoskeletal injuries seen by orthopaedic surgeons. Clinically, massive cuff tears lead to unique pathophysiological changes in rotator cuff muscle, including atrophy, and massive fatty infiltration, which are rarely seen in other skeletal muscles. Studies in a rodent model for RCT have demonstrated that these histologic findings are accompanied by activation of the Akt/mammalian target of rapamycin (mTOR) and transforming growth factor-β (TGF-β) pathways following combined tendon-nerve injury. The purpose of this study was to compare the histologic and molecular features of rotator cuff muscle and gastrocnemius muscle--a major hindlimb muscle, following combined tendon-nerve injury. Six weeks after injury, the rat gastrocnemius did not exhibit notable fatty infiltration compared to the rotator cuff. Likewise, the adipogenic markers SREBP-1 and PPARγ as well as the TGF-β canonical pathway were upregulated in the rotator cuff, but not the gastrocnemius. Our study suggests that the rat rotator cuff and hindlimb muscles differ significantly in their response to a combined tendon-nerve injury. Clinically, these findings highlight the unique response of the rotator cuff to injury, and may begin to explain the poor outcomes of massive RCTs compared to other muscle-tendon injuries. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801

    Directory of Open Access Journals (Sweden)

    Jeong Min Kim

    2015-01-01

    Full Text Available MK801 (dizocilpine, a phencyclidine (PCP derivative, is a potent noncompetitive antagonist of the N-Methyl-D-aspartate receptor (NMDAr. Another PCP derivative, ketamine, was reported to block voltage-gated K+ (Kv channels, which was independent of NMDAr function. Kv currents are major regulators of the membrane potential (Em and excitability of muscles and neurons. Here, we investigated the effect of MK801 on the Kv channels and Em in rat mesenteric arterial smooth muscle cells (RMASMCs. We used the whole-cell patch clamp technique to analyze the effect of MK801 enantiomers on Kv channels and Em. (+MK801 inhibited Kv channels in a concentration-dependent manner (IC50 of 89.1 ± 13.1 μM, Hill coefficient of 1.05 ± 0.08. The inhibition was voltage- and state- independent. (+MK801 didn't influence steady-state activation and inactivation of Kv channels. (+MK801 treatment depolarized Em in a concentration-dependent manner and concomitantly decreased membrane conductance. (−MK801 also similarly inhibited the Kv channels (IC50 of 134.0 ± 17.5 μM, Hill coefficient of 0.87 ± 0.09. These results indicate that MK801 directly inhibits the Kv channel in a state-independent manner in RMASMCs. This MK801-mediated inhibition of Kv channels should be considered when assessing the various pharmacological effects produced by MK801, such as schizophrenia, neuroprotection, and hypertension.

  9. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  10. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen

    1987-01-01

    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O-MG...... concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  11. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.

    2009-01-01

    is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing......The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... on the mRNA levels of ERalpha and ERbeta was studied to determine the functional consequence of the transactivation. Myoblasts were isolated from rat skeletal muscle and transfected with a vector consisting of sequences of EREs coupled to the gene for luciferase. The transfected myoblasts were...

  12. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  13. The mechanism of inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhuang Yongzhi; Wang Junjie; Zhang Zhanchun; Jia Tingzhen

    2001-01-01

    Objective: To investigate the inhibitory effect of γ-ray irradiation on rat vascular smooth muscle cells (VSMCs). Methods: Dose-survival curve of VSMCs was figured by colony formation. The effect of γ-ray irradiation on viability and proliferation of VSMCs was observed by 3 H incorporation. Flow cytometry and DNA Ladder were used to detect the apoptosis effect of γ-ray irradiation on VSMCs. Results: The values of D 0 , D q , D 37 and N for VSMCs were 1.95 Gy, 1.76 Gy, 3.71 Gy and 2.47, respectively. The inhibitory effect of γ-ray irradiation on VSMCs proliferation was dose-dependent, being stronger along with increase of dose. VSMCs did not undergo apoptosis within 48 hours after γ-ray irradiation. Conclusion: γ-ray irradiation could inhibit the proliferation of VSMCs, the main mechanism of which is the killing effect and inhibition of mitosis of VSMCs

  14. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  15. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  16. Gender-Dimorphic Regulation of Skeletal Muscle Proteins in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Minji Choi

    2013-03-01

    Full Text Available Background: Despite the fact that sexual differences increase diabetic risk and contribute to the need for gender-specific care, there remain contradictory results as to whether or not sexual dimorphism increases susceptibility to the development of type 1 diabetes mellitus. Methods: To examine gender-dimorphic regulation of skeletal muscle proteins between healthy control and STZ-induced diabetic rats of both genders, we performed differential proteome analysis using two-dimensional electrophoresis combined with mass spectrometry. Results: Animal experiments revealed that STZ treatment rendered female rats more susceptible to induction of diabetes than their male littermates with significantly lower plasma insulin levels due to hormonal regulation. Proteomic analysis of skeletal muscle identified a total of 21 proteins showing gender-dimorphic differential expression patterns between healthy controls and diabetic rats. Most interestingly, gender-specific proteome comparison showed that male and female rats displayed differential regulation of proteins involved in muscle contraction, carbohydrate, and lipid metabolism, as well as oxidative phosphorylation and cellular stress. Conclusion: The current proteomic study revealed that impaired protein regulation was more prominent in the muscle tissue of female diabetic rats, which were more susceptible to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

  17. Satellite Cells and the Muscle Stem Cell Niche

    Science.gov (United States)

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  18. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells.

    Science.gov (United States)

    He, Chao; Chen, Ying; Liu, Chun; Cao, Ming; Fan, Yu-jin; Guo, Xiao-mei

    2013-04-01

    Mitofusin2 (Mfn2) plays a pivotal role in the proliferation and apoptosis of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the effects of Mfn2 on the trafficking of intracellular cholesterol in the foam cells derived from rat VSMCs (rVSMCs) and also to investigate the effects of Mfn2 on the expression of adenosine triphosphate-binding cassette subfamily A member 1 (ABCA1), adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) and peroxisome proliferator-activated receptor gamma (PPARγ). The rVSMCs were co-cultured with oxidized low density lipoprotein (LDL, 80 μg/mL) to produce foam cells and cholesterol accumulation in cells. Before oxidized LDL treatment, different titers (20, 40 and 60 pfu/cell) of recombinant adenovirus containing Mfn2 gene (Adv-Mfn2) were added into the culture medium for 24 h to transfect the Mfn2 gene into the rVSMCs. Then the cells were harvested for analyses. The protein expression of Mfn2 was significantly higher in Adv-Mfn2-transfected group than in untransfected group (PLDL treatment, rVSMCs became irregular and their nuclei became larger, and their plasma abounded with red lipid droplets. However, the number of red lipid droplets was significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group. At 48 h after oxidized LDL treatment, the intracellular cholesterol in rVSMCs was significantly increased (P0.05), the phosporylation levels of PPARγ were significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group (Pcholesterol in oxidized LDL-induced rVSMCs possibly by decreasing PPARγ phosporylation and then increasing protein expression levels of ABCA1 and ABCG1, which may be helpful to suppress the formation of foam cells.

  19. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Science.gov (United States)

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  20. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  1. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  2. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Directory of Open Access Journals (Sweden)

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  3. Fatty acid induced changes in gene expression in cultured L6 rat muscle cells : An in vitro model on high dietary fat-induced insulin resistance in red gastrocnemius rat muscle in vivo

    OpenAIRE

    Breivik, Børge

    2004-01-01

    ABSTRACT Type 2 diabetes is a serious cause of morbidity and mortality and the disease is reaching epidemic proportions in the developed world. A core defect in type 2 diabetes is insulin resistance in skeletal muscle. Previous global gene expression experiments conducted at the Garvan Medical Research Institute has shown that 3 weeks high fat feeding induced increased expression of stress related genes in rat muscle. These stress-related genes could be involved in the devel...

  4. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    International Nuclear Information System (INIS)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-01-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH 4 Cl x 100 g body wt -1 x day -1 . Epitrochlearis muscles were incubated with L-[1- 14 C]-valine and L-[1- 14 C]leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain α-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain α-keto acid dehydrogenase

  5. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  6. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  7. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    Science.gov (United States)

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  8. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    OpenAIRE

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidizati...

  9. The Effect of Recombinant Human MG53 Protein on Tourniquet-induced Ischemia Reperfusion Injury in Rat Muscle

    Science.gov (United States)

    2014-06-01

    blind to the treatment , and the prevalence of damaged fibers was quantitated from 10 10x images from each muscle . Approximately 800 fibers were counted...therapeutic cell membrane repair in treatment of muscular dystrophy . Sci Transl Med. 2012; 4(139):139ra185. 11. Weisleder N, Lin P, Zhao X, Orange M, Zhu H...The effect of recombinant human MG53 protein on tourniquet- induced ischemia reperfusion injury in rat muscle Benjamin T. Corona, Ph.D.1, Koyal Garg

  10. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity

    Science.gov (United States)

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle. PMID:24408995

  11. Effects of hypertonic dextrose on injured rat skeletal muscles.

    Science.gov (United States)

    Kunduracioglu, Burak; Ulkar, Bulent; Sabuncuoglu, Bizden T; Can, Belgin; Bayrakci, Kenan

    2006-04-01

    Histological examination of proliferative therapy effects on the healing process of muscular injury. We performed this study between March and August 2002 at Ankara University, School of Medicine, Laboratory of Animal Experiments, Ankara, Turkey. We used an experimental animal model by conducting a standardized cut injury of the gastrocnemius muscle in 30 adult male albino rats, which we divided into 2 groups; proliferative therapy group and control group. We evaluated the injured rat muscles by light microscopy on the fifth, eight, and twelfth day of injury. The muscular regeneration process began at day 5 in both the control and proliferative therapy groups. The proliferative therapy group revealed a prominent inflammatory reaction, fibroblast migration, and necrosis with accompanying regeneration and excessive connective tissue formation. We cannot consider proliferative therapy an appropriate treatment modality for muscular injuries, unless there is evidence of normal muscle physiology and biomechanics post traumatically.

  12. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187

    DEFF Research Database (Denmark)

    Gissel, Hanne; Clausen, Torben

    2003-01-01

    We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionoph...

  13. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    Science.gov (United States)

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  14. [Experimental occlusal interference induces the expression of protein gene products and substance P in masseter muscles of rats].

    Science.gov (United States)

    Cao, Ye; Li, Kai; Fu, Kai-yuan; Xie, Qiu-fei

    2010-02-18

    To investigate the peripheral mechanism by studying the histological changes of masseter muscles using HE stains and substance P (SP) and protein gene product 9.5 (PGP9.5) immunohistochemical stains. Fifteen male Sprague-Dawley were randomly assigned into occlusal interference group (n=12) and control group (n=3). In occlusal interference group, 0.4 mm thick crowns were bonded to the rats' first molar of the maxillary. In the control group, rats were anesthetized and mouths were forced open for about 5 min but restorations were not applied. 1, 5, 10, and 21 d after 0.4 mm occlusal alteration treatment, mechanical pain thresholds of bilateral masseter muscles were quantitatively measured by modified electronic anesthesiometer in control group and occlusal interference group. The rats were euthanized by transcardiac perfusion after deep anesthetization at different time points. The paraffin sections of masseter muscles were made and processed for HE, SP, and PGP9.5 immunohistochemical staining. Decreased head withdrawal threshold to mechanical pressure was detected in masseter muscles on both sides following occlusal interference. Histological stains of masseter muscles presented intact following occlusal interference, and no inflammatory cells were observed in both sides. Intensely stained PGP9.5 was observed at 1 d in occlusal interference groups and maintained until the end of the experiment. SP expression was the most obviously increased at 5 d in both sides and gradually decreased to the level of control. Experimental occlusal interference-induced masticatory muscle pain is associated with peripheral sensitization of nociceptive neurons rather than muscle damage and inflammation.

  15. The influence of flow redistribution on working rat muscle oxygenation.

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  16. DiabetterTM Reduces Post Meal Hyperglycemia Via Enhancement Of Glucose Uptake Into Adipocytes And Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis

    2014-01-01

    Currently, there are lots of herbal products available in local markets that are used for treatment of diabetes mellitus. Most of these products are not standardized and lack of efficacy and safety data. DiaBetterTM is one of the local herbal products that have been used for treatment of diabetes. This study was carried out to determine the efficacy of DiaBetterTM in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. Antihyperglycemic evaluation was done in normal and streptozotocin-induced diabetic rats at different prandial states and the antihyperglycemic mechanisms elucidation was carried out in muscle and adipocytes cells using glucose tracer method (2-deoxy-[1-3H]-glucose). The results showed that DiaBetterTM significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetterTM significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54-fold (p<0.01) and 1.46-fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetterTM was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity activity of DiaBetterTM was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetterTM suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that DiaBetterTM can be used as dietary adjunct for the treatment of type 2 diabetes mellitus which related to insulin resistance. (author)

  17. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  18. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  19. Influence of different types of carbon nanotubes on muscle cell response

    Energy Technology Data Exchange (ETDEWEB)

    Fraczek-Szczypta, Aneta, E-mail: afraczek@agh.edu.pl [Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Menaszek, Elzbieta [Department of Cytobiology, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-068 Krakow (Poland); Blazewicz, Stanislaw [Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Adu, Jimi; Shevchenko, Ross [Pharmidex Pharmaceutical Services, 72 New Bond Street, Mayfair London, W1S 1RR (United Kingdom); Syeda, Tahmina Bahar; Misra, Anil; Alavijeh, Mohammad [School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, BN2 4GJ (United Kingdom)

    2015-01-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs), before and after chemical surface functionalization on muscle cell response in vitro and in vivo conditions. Prior to biological tests the surface physicochemical properties of the carbon nanotubes (CNTs) deposited on a polymer membrane were investigated. To 'evaluate microstructure and structure of CNTs scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) were used. During in vitro study CNTs deposited on polymer membrane were contacted directly with myoblast cells, and after 7 days of culture cytotoxicity of samples was analyzed. Moreover, cell morphology in contact with CNTs was observed using SEM and fluorescence microscopy. The cytotoxicity of CNTs modified in a different way was comparable and significantly lower in comparison with pure polymer membrane. Microscopy analysis of cultured myoblasts confirms intense cell proliferation of all investigated samples with CNTs while for two kinds of CNTs myoblasts' differentiation into myotubes was observed. Histochemical reactions for the activity of enzymes such as acid phosphatase, cytochrome C oxidase, and non-specific esterase allowed the analysis of the extent of inflammation, degree of regeneration process of the muscle fibers resulting from the presence of the satellite cells and the neuromuscular junction on muscle fibers in contact with CNTs after implantation of CNTs into gluteal muscle of rat.

  20. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    Full Text Available Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED. Many relative animal studies have been done to evaluate the efficacy of this therapy in rats.This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED.We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP to mean arterial pressure (MAP and in the structure of the cavernous body were compared.10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001. In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS and neuronal nitric oxide synthase (nNOS, the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF. Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification.Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic

  1. Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved.

    Science.gov (United States)

    Zhang, Ming; Tang, Jingjing; Li, Yali; Xie, Yingying; Shan, Hu; Chen, Mingxia; Zhang, Jie; Yang, Xia; Zhang, Qiuhong; Yang, Xudong

    2017-11-01

    Curcumin has been widely used to treat numerous diseases due to its antioxidant property. The aim of the present study is to investigate the effect of curcumin on skeletal muscle mitochondria in chronic obstructive pulmonary disease (COPD) and its underlying mechanism. The rat model of COPD was established by cigarette smoke exposure combined with intratracheal administration of lipopolysaccharide. Airway inflammation and emphysema were notably ameliorated by the treatment with curcumin. Oral administration of curcumin significantly improved muscle fiber atrophy, myofibril disorganization, interstitial fibrosis and mitochondrial structure damage in the skeletal muscle of COPD rats. Mitochondrial enzyme activities of cytochrome c oxidase, succinate dehydrogenase, Na + /K + -ATPase and Ca 2+ -ATPase in skeletal muscle mitochondria from COPD rats were significantly increased after treatment with curcumin. Moreover, curcumin significantly decreased oxidative stress and inflammation by determining the levels of malondialdehyde, manganese superoxide dismutase, glutathione peroxidase, catalase, IL-6 and TNF-α in skeletal muscle of COPD rats. Furthermore, curcumin significantly increased the mRNA and protein expression of PGC-1α and SIRT3 in the skeletal muscle tissues of COPD rats. These results suggested that curcumin can attenuate skeletal muscle mitochondrial impairment in COPD rats possibly by the up-regulation of PGC-1α/SIRT3 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  3. The effect of palytoxin on neuromuscular junctions in the anococcygeus muscle of the rat.

    Science.gov (United States)

    Amir, I; Harris, J B; Zar, M A

    1997-06-01

    Palytoxin, a highly toxic natural product isolated from zoanthids of the genus Palythoa, is accumulated by a wide range of fishes and marine invertebrates used as food in the Indo-Pacific. It is responsible for many incidents of human morbidity and mortality. The toxin is a potent smooth muscle spasmogen. The cause of the contraction of smooth muscle is unclear, but recent work strongly suggests that it is primarily initiated by the release of neurotransmitters from the motor innervation of the smooth muscle. We show here that palytoxin caused the swelling of the muscle cells and some internal organelles of the anococcygeus muscle of the rat, but no substantial structural damage to the tissue. Axons and Schwann cells were also swollen but the most dramatic feature was the depletion of synaptic vesicles from putative release sites in the axons. Some axons were physically damaged following exposure to the toxin, but this was relatively uncommon (< 10% of all axons studied). In the majority of axons there was no damage to nerve terminal membranes, but there was damage to mitochondria. The depletion of vesicles involved all types-clear, dense-cored, large and small. Our observations and pharmacological data gathered elsewhere, provide a neuropathological basis for the spasmogenic activity of palytoxin.

  4. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  5. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    International Nuclear Information System (INIS)

    Yanagisawa, Michiko; Mukai, Atsushi; Shiomi, Kosuke; Song, Si-Yong; Hashimoto, Naohiro

    2011-01-01

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  6. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    Science.gov (United States)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  7. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    Science.gov (United States)

    2013-02-04

    Zou K, Boppart MD. Eccentric exercise facil- itates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [40] Matziolis G...remaining muscle mass leading to additional improvements in functional capacity; how- ever, no study has explicitly studied these effects . The purpose of...muscles were isolated from donor Lewis rats. The tendon and fascia were removed and TA muscle decellularization was performed using an enzymatic and

  8. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Science.gov (United States)

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  9. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  10. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    Full Text Available Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  11. Formation of Nano scale Bio imprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    International Nuclear Information System (INIS)

    Samsuri, F.; Alkaisi, M.M.; Mitchell, J.S.; Evans, J.J.

    2009-01-01

    We report a nano scale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS) or a UV-curable elastomer introduced Bio imprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bio imprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM), in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nano structures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nano scale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  12. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  13. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  14. Skeletal muscle and hormonal adaptation to physical training in the rat

    DEFF Research Database (Denmark)

    Henriksson, J; Svedenhag, J; Richter, Erik

    1985-01-01

    The main purpose of the present study was to test the hypothesis that adrenergic stimulation of muscle fibres during exercise is a major stimulus for the training-induced enhancement of skeletal muscle respiratory capacity. Therefore, Sprague-Dawley rats either underwent bilateral surgical ablati...

  15. Proximo-distal organization and fibre type regionalization in rat hindlimb muscles

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Five muscles of the rat's lower hindlimb were compared with regard to their histochemical fibre type distribution at seven different proximo-distal levels. The muscles were: extensor digitorum longus (ED), flexor digitorum and hallucis longus (FD), gastrocnemius medialis (GM), peroneus longus (PE)

  16. Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats.

    Science.gov (United States)

    Zargar, Sana; Moreira, Tracy S; Samimi-Seisan, Helena; Jeganathan, Senthure; Kakade, Dhanshri; Islam, Nushaba; Campbell, Jonathan; Adegoke, Olasunkanmi A J

    2011-06-01

    Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.

  17. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  18. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  19. Noninvasive Cu-64-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, D.; Kjaer, M.; Madsen, J.

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1 alpha and CAIII using real-time polymerase chain reaction. Results: Immediately after the contractions, uptake of Cu-64-ATSM......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer Cu-64-diacetyl bis(N-4-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1 alpha (HIF1 alpha) and carbonic anhydrase III (CAIII). Methods: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, Cu-64-ATSM was injected...

  20. Noninvasive 64Cu-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; Madsen, Jacob

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1alpha and CAIII using real-time polymerase chain reaction. RESULTS: Immediately after the contractions, uptake of (64)Cu......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer (64)Cu-diacetyl bis(N(4)-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1alpha (HIF1alpha) and carbonic anhydrase III (CAIII). METHODS: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, (64)Cu-ATSM was injected...

  1. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  2. Arginase promotes skeletal muscle arteriolar endothelial dysfunction in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Fruzsina K. Johnson

    2013-05-01

    Full Text Available Endothelial dysfunction is a characteristic feature in diabetes that contributes to the development of vascular disease. Recently, arginase has been implicated in triggering endothelial dysfunction in diabetic patients and animals by competing with endothelial nitric oxide synthase for substrate L-arginine. While most studies have focused on the coronary circulation and large conduit blood vessels, the role of arginase in mediating diabetic endothelial dysfunction in other vascular beds has not been fully investigated. In the present study, we determined whether arginase contributes to endothelial dysfunction in skeletal muscle arterioles of diabetic rats. Diabetes was induced in male Sprague Dawley rats by streptozotocin injection. Four weeks after streptozotocin administration, blood glucose, glycated hemoglobin, and vascular arginase activity were significantly increased. In addition, a significant increase in arginase I and II mRNA expression was detected in gracilis muscle arterioles of diabetic rats compared to age-matched, vehicle control animals. To examine endothelial function, first-order gracilis muscle arterioles were isolated, cannulated in a pressure myograph system, exposed to graded levels of luminal flow, and internal vessel diameter measured. Increases in luminal flow (0-50µL/min caused progressive vasodilation in arterioles isolated from control, normoglycemic animals. However, flow-induced vasodilation was absent in arterioles obtained from streptozotocin-treated rats. Acute in-vitro pretreatment of blood vessels with the arginase inhibitors Nω-hydroxy-nor-L-arginine or S-(2-boronoethyl-L-cysteine restored flow-induced responses in arterioles from diabetic rats and abolished differences between diabetic and control animals. Similarly, acute in-vitro pretreatment with L-arginine returned flow-mediated vasodilation in vessels from diabetic animals to that of control rats. In contrast, D-arginine failed to restore flow

  3. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  4. Squalene Modulates Radiation-Induced Structural, Ultrastructural And Biochemical Changes In Cardiac Muscles Of Male Albino Rats

    International Nuclear Information System (INIS)

    REZK, R.G.; YACOUB, S.F.; ABDEL AZIZ, N.

    2009-01-01

    The failing heart represents an enormous clinical problem and is a major cause of death throughout the world. Hyperlipidemia and oxidative stress have been shown to contribute to heart failure. Squalene is a remarkable bioactive substance that belongs to a class of antioxidants called isoprenoids, which neutralize the harmful effect of excessive free radicals production in the body.The present study was designed to determine the possible protective effect of squalene against oxidative cardiac muscle damage induced by gamma irradiation.Rats were treated daily by gavage with 0.4 ml/kg squalene for 42 days before whole body gamma irradiation at a dose of 4 Gy and continued until animals were sacrificed 3 days post irradiation.Histological examination of cardiac muscles sections by using light and electron microscopes showed that exposure of rats to ionizing radiation has provoked a severe architecture damage such as necrotic nuclei, nuclei located at the periphery, alteration in chromatin distribution, ruptured cell and mitochondrial membranes, cristae of mitochondria disappeared, sticking mitochondria and ruptured myofibers. Structural and ultra-structural changes were associated with severe oxidative stress. Significant increase of lipid peroxidation products (malondialdehyde) (MDA) along with reduction in the activity of the antioxidant enzymes; superoxide dismutase (SOD) and catalse (CAT), and glutathione content (GSH), were recorded.Treatment of rats with squalene has significantly attenuated the radiation-induced oxidative damage and histopathological changes in cardiac muscle which was substantiated by a significant amelioration in the activity of plasma lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST). Furthermore, administration of squalene to rats has adjusted the radiation-induced increase in plasma triglycerides (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Based on these results, it

  5. Species selective resistance of cardiac muscle voltage gated sodium channels: characterization of brevetoxin and ciguatoxin binding sites in rats and fish.

    Science.gov (United States)

    Dechraoui, Marie-Yasmine Bottein; Wacksman, Jeremy J; Ramsdell, John S

    2006-11-01

    Brevetoxins (PbTxs) and ciguatoxins (CTXs) are two suites of dinoflagellate derived marine polyether neurotoxins that target the voltage gated sodium channel (VGSC). PbTxs are commonly responsible for massive fish kills and unusual mortalities in marine mammals. CTXs, more often noted for human intoxication, are suspected causes of fish and marine mammal intoxication, although this has never been reported in the field. VGSCs, present in the membrane of all excitable cells including those found in skeletal muscle, nervous and heart tissues, are found as isoforms with differential expression within species and tissues. To investigate the tissue and species susceptibility to these biotoxins, we determined the relative affinity of PbTx-2 and -3 and P-CTX-1 to native VGSCs in the brain, heart, and skeletal muscle of rat and the marine teleost fish Centropristis striata by competitive binding in the presence of [(3)H]PbTx-3. No differences between rat and fish were observed in the binding of PbTxs and CTX to either brain or skeletal muscle. However, [(3)H]PbTx-3 showed substantial lower affinity to rat heart tissue while in the fish it bound with the same affinity to heart than to brain or skeletal muscle. These new insights into PbTxs and CTXs binding in fish and mammalian excitable tissues indicate a species related resistance of heart VGSC in the rat; yet, with comparable sensitivity between the species for brain and skeletal muscle.

  6. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  7. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  8. Self-organization of muscle cell structure and function.

    Directory of Open Access Journals (Sweden)

    Anna Grosberg

    2011-02-01

    Full Text Available The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  9. Self-organization of muscle cell structure and function.

    Science.gov (United States)

    Grosberg, Anna; Kuo, Po-Ling; Guo, Chin-Lin; Geisse, Nicholas A; Bray, Mark-Anthony; Adams, William J; Sheehy, Sean P; Parker, Kevin Kit

    2011-02-01

    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  10. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  11. The Effects of Phrenic Nerve Degeneration by Axotomy and Crush on the Electrical Activities of Diaphragm Muscles of Rats.

    Science.gov (United States)

    Alkiş, Mehmet Eşref; Kavak, Servet; Sayır, Fuat; Him, Aydin

    2016-03-01

    The aim of this study was to investigate the effect of axotomy and crush-related degeneration on the electrical activities of diaphragm muscle strips of experimental rats. In the present study, twenty-one male Wistar-albino rats were used and divided into three groups. The animals in the first group were not crushed or axotomized and served as controls. Phrenic nerves of the rats in the second and third groups were crushed or axotomized in the diaphragm muscle. Resting membrane potential (RMP) was decreased significantly in both crush and axotomy of diaphragm muscle strips of experimental rats (p phrenic nerves may produce electrical activities in the diaphragm muscle of the rat by depolarization time and half-repolarization time prolonged in crush and axotomy rats.

  12. Response of macrophages in rat skeletal muscle after eccentric exercise.

    Science.gov (United States)

    Zuo, Qun; Wang, Shu-Chen; Yu, Xin-Kai; Chao, Wei-Wei

    2018-04-01

    Macrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration. Adult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately. It was showed that CD68 + M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 + M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05). The data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  13. Properties of 5'-deiodinase of 3,3',5'-triiodothyronine in rat skeletal muscle

    International Nuclear Information System (INIS)

    Tsukahara, Fujiko; Nomoto, Teruko; Maeda, Michiko

    1989-01-01

    To characterize rT 3 5'-deiodinase (5'D) in rat skeletal muscle, the effects of altered thyroid status and PTU on rT 3 f'D were studied. rT 3 5'D activity was measured by incubating homogenates of rat skeletal muscle with [ 125 ]rT 3 , iodine labelled in the outer ring, in the presence of 20 mmol/l DL-dithiothreitol. This activity was observed to increase significantly 24 h after a single sc injection of T 3 (75μg/kg). The increase following the daily administration of this drug (15 or 75 μ/kg) for 3 and 14 days was dependent on the dose and number of previous days of injection. A significant decrease in activity was observed 2 weeks after thyroidectomy. The addition of 0.1 mmol/l 6-n-propyl-2-thiouracil (PTU) to the incubation medium in vitro caused a marked reduction in the activity in homogenates of skeletal muscle from hypothyroid, euthyroid and hyperthyroid rats. PTU, pressent at 0.05% in the drinking water for 2 weeks virtually abolished it. The properties of rT 3 5'D in rat skeletal muscle thus appear to be essentially the same as those of type I enzyme with respect to response toward altered thyroid status and PTU. (author)

  14. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  15. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    ) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147...

  16. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.

    Science.gov (United States)

    Cao, Ye; Xie, Qiu-Fei; Li, Kai; Light, Alan R; Fu, Kai-Yuan

    2009-08-01

    Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.

  17. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  18. Comparative characteristic of transmembrane currents and caffeine-induced responses of intact and irradiated small intestine smooth muscle cells

    International Nuclear Information System (INIS)

    Stepanov, Yu.V.; Gordienko, D.V.; Preobrazhenskaya, T.D.; Stepanova, L.I.; Vojtsitskij, V.M.

    1994-01-01

    A comparative investigation of transmembrane ion currents and caffeine-induced responses of single smooth muscle cells isolated from the circular layer of rat small intestine was curried out by the method of 'patch-clamp'. No reliable difference in potential-dependent and amplitude-kinetic characteristics of transmembrane ion currents in cells of intact and irradiated with dose of 3 Gy rats was revealed. In cells of irradiated animals external application of caffeine (4 mM) was not accompanied by strong quick-inactivated transient Ca 2+ -dependent potassium current as in control

  19. The effect of diuretics and lithium on 3H-ouabain binding site concentration and Na,K-content in rat skeletal muscle

    International Nuclear Information System (INIS)

    Noergaard, Aa.; Kjeldsen, K.

    1986-01-01

    Previous studies have shown an increase in 3 H-ouabain binding sites or Na,K-pumps in vitro in cultured cells in response to incubation in low K, diuretics or lithium. However, in the present study the administration in vivo of various diuretics or lithium combined with supplementary K was not associated with any significant changes in Na,K-content or 3 H-ouabain binding site concentration in rat skeletal muscle. When the diuretics were administered in combination with only the basal K requirement a decrease in both K-content and 3 H-ouabain binding site concentration was seen. This indicates that the decrease in 3 H-ouabain binding site concentration is not caused by these drugs per se but is secondary to the associated K-depletion. The discrepancy between the results obtained using isolated cells and rat skeletal muscles could be related to the fact that cultured cells are not subjected to the normal growth control of the intact organism. It should be emphasized that results obtained using cultured cells do not necessarily reflect processes taking place in the intact organism. (author)

  20. [Electrophysiological study on rat conduit pulmonary artery smooth muscle cells under normoxia and acute hypoxia].

    Science.gov (United States)

    Hu, Ying; Zou, Fei; Cai, Chun-Qing; Wu, Hang-Yu; Yun, Hai-Xia; Chen, Yun-Tian; Jin, Guo-En; Ge, Ri-Li

    2006-10-25

    The present study was designed to investigate the electrophysiological characteristics of rat conduit pulmonary artery smooth muscle cells (PASMCs) and the response to acute hypoxia. PASMCs of the 1st to 2nd order branches in the conduit pulmonary arteries were obtained by enzymatic isolation. The PASMCs were divided into acute hypoxia preconditioned group and normoxia group. Hypoxia solutions were achieved by bubbling with 5% CO2 plus 95% N2 for at least 30 min before cell perfusion. Potassium currents were compared between these two groups using whole-cell patch clamp technique. The total outward current of PASMCs was measured under normoxia condition when iBTX [specific blocking agent of large conductance Ca-activated K(+) (BK(Ca)) channel] and 4-AP [specific blocking agent of delayed rectifier K(+) (K(DR)) channel] were added consequently into bath solution. PASMCs were classified into three types according to their size, shape and electrophysiological characteristics. Type I cells are the smallest with spindle shape, smooth surface and discrete perinuclear bulge. Type II cells show the biggest size with banana-like appearance. Type III cells have the similar size with type I, and present intermediary shape between type I and type II. iBTX had little effect on the total outward current in type I cells, while 4-AP almost completely blocked it. Most of the total outward current in type II cells was inhibited by iBTX, and the remaining was sensitive to 4-AP. In type III cells, the total outward current was sensitive to both iBTX and 4-AP. Acute hypoxia reduced the current in all three types of cells: (1614.8+/-62.5) pA to (892.4+/-33.6) pA for type I cells (Ppotassium current and improves the E(m) in PASMCs. These effects may be involved in the modulation of constriction/relaxation of conduit artery under acute hypoxia. Different distribution of K(DR) and BK(Ca) channels in these three types of PASMCs might account for their different constriction

  1. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration.

    Science.gov (United States)

    Kesavan, R; Chandel, S; Upadhyay, S; Bendre, R; Ganugula, R; Potunuru, U R; Giri, H; Sahu, G; Kumar, P Uday; Reddy, G Bhanuprakash; Joksic, G; Bera, A K; Dixit, Madhulika

    2016-04-01

    Studies suggest that Gentiana lutea (GL), and its component isovitexin, may exhibit anti-atherosclerotic properties. In this study we sought to investigate the protective mechanism of GL aqueous root extract and isovitexin on endothelial inflammation, smooth muscle cell migation, and on the onset and progression of atherosclerosis in streptozotocin (STZ)-induced diabetic rats. Our results show that both GL extract and isovitexin, block leukocyte adhesion and generation of reactive oxygen species in human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs), following TNF-alpha and platelet derived growth factor-BB (PDGF-BB) challenges respectively. Both the extract and isovitexin blocked TNF-α induced expression of ICAM-1 and VCAM-1 in HUVECs. PDGF-BB induced migration of RASMCs and phospholipase C-γ activation, were also abrogated by GL extract and isovitexin. Fura-2 based ratiometric measurements demonstrated that, both the extact, and isovitexin, inhibit PDGF-BB mediated intracellular calcium rise in RASMCs. Supplementation of regular diet with 2% GL root powder for STZ rats, reduced total cholesterol in blood. Oil Red O staining demonstrated decreased lipid accumulation in aortic wall of diabetic animals upon treatment with GL. Medial thickness and deposition of collagen in the aortic segment of diabetic rats were also reduced upon supplementation. Immunohistochemistry demonstrated reduced expression of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and vascular endothelial cadherin (VE-cadherin) in aortic segments of diabetic rats following GL treatment. Thus, our results support that GL root extract/powder and isovitexin exhibit anti-atherosclerotic activities. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  3. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats

    Science.gov (United States)

    Purrello, Francesco

    2018-01-01

    Background: The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Methods: Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. Results: The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers (p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. Conclusions: High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers. PMID:29462978

  4. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  5. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  6. Regulatory T cells and skeletal muscle regeneration.

    Science.gov (United States)

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  7. [Post-traumatic reconnection of the cervical spinal cord with skeletal striated muscles. Study in adult rats and marmosets].

    Science.gov (United States)

    Horvat, J C; Affane-Boulaid, F; Baillet-Derbin, C; Davarpanah, Y; Destombes, J; Duchossoy, Y; Emery, E; Kassar-Duchossoy, L; Mira, J C; Moissonnier, P; Pécot-Dechavassine, M; Reviron, T; Rhrich-Haddout, F; Tadié, M; Ye, J H

    1997-01-01

    In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the

  8. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Science.gov (United States)

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  9. EFFECTS OF PHYSICAL EXERCISES ON TRIACYLGLYCEROL LEVEL IN SKELETAL MUSCLES IN DIETARY-INDUCED OBESE RATS

    Directory of Open Access Journals (Sweden)

    I. Yu. Yakimovich

    2014-01-01

    Full Text Available The accumulation of triacylglycerol in peripheral tissues is one of mechanisms of insulin resistance. This paper presents the investigation of the influence of aerobic and anaerobic physical exercises on triacylglycerol level in skeletal muscles and on insulin resistance in dietary-induced obese rats. It is estimated that a high-energy (HE diet causes the accumulation of triacylglycerols in skeletal muscles that leads to high resistance to insulin. Aerobic and anaerobic physical exercises reduce the level of triacylglycerols in skeletal  muscles  and  raise  sensitivity to  insulin  in  obese  rats.  Physical  exercises  raise  the  level  of triacylglycerols in skeletal muscles in standard-diet rats that probably is the adaptation to high energy expenditure, but does not lead to high insulin resistance.

  10. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    Science.gov (United States)

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  11. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration.

    Science.gov (United States)

    Popescu, L M; Manole, Emilia; Serboiu, Crenguţa S; Manole, C G; Suciu, Laura C; Gherghiceanu, Mihaela; Popescu, B O

    2011-06-01

    Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  13. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  14. Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway.

    Science.gov (United States)

    Son, Dong Ju; Jung, Jae Chul; Hong, Jin Tae

    2016-01-01

    Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.

  15. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  16. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    Science.gov (United States)

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption

    Directory of Open Access Journals (Sweden)

    Andrea C. Baeder

    2016-01-01

    Full Text Available Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE. Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity.

  18. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  19. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  20. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  1. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  2. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    Science.gov (United States)

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  3. PGC-1α mRNA Level and Oxidative Capacity of the Plantaris Muscle in Rats with Metabolic Syndrome, Hypertension, and Type 2 Diabetes

    International Nuclear Information System (INIS)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Gu, Ning; Takeda, Isao; Ishioka, Noriaki; Tsuda, Kinsuke; Ishihara, Akihiko

    2011-01-01

    We examined the fiber profiles and the mRNA levels of peroxisome proliferator-activated receptors (PPARα and PPARδ/β) and of the PPARγ coactivator-1α (PGC-1α) in the plantaris muscles of 15-week-old control (WR), metabolic syndrome (CP), hypertensive (SHR), and type 2 diabetic (GK) rats. The deep regions in the muscles of SHR and GK rats exhibited lower percentages of high-oxidative type I and IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR and CP rats. The surface regions in the muscles of CP, SHR, and GK rats exhibited lower percentages of high-oxidative type IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR rats. The muscles of SHR and GK rats had lower oxidative enzyme activity compared with WR rats. The muscles of SHR rats had the lowest PPARδ/β mRNA level. In addition, the muscles of SHR and GK rats had lower PGC-1α mRNA level compared with WR and CP rats. We concluded that the plantaris muscles of rats with hypertension and type 2 diabetes have lower oxidative capacity, which is associated with the decreased level of PGC-1α mRNA

  4. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    Science.gov (United States)

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  5. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  6. Effects of sildenafil and/or muscle derived stem cells on myocardial infarction

    Directory of Open Access Journals (Sweden)

    Wang Judy SC

    2012-08-01

    Full Text Available Abstract Background Previous studies have shown that long-term oral daily PDE 5 inhibitors (PDE5i counteract fibrosis, cell loss, and the resulting dysfunction in tissues of various rat organs and that implantation of skeletal muscle-derived stem cells (MDSC exerts some of these effects. PDE5i and stem cells in combination were found to be more effective in non-MI cardiac repair than each treatment separately. We have now investigated whether sildenafil at lower doses and MDSC, alone or in combination are effective to attenuate LV remodeling after MI in rats. Methods MI was induced in rats by ligature of the left anterior descending coronary artery. Treatment groups were: “Series A”: 1 untreated; 2 oral sildenafil 3 mg/kg/day from day 1; and “Series B”: intracardiac injection at day 7 of: 3 saline; 4 rat MDSC (106 cells; 5 as #4, with sildenafil as in #2. Before surgery, and at 1 and 4 weeks, the left ventricle ejection fraction (LVEF was measured. LV sections were stained for collagen, myofibroblasts, apoptosis, cardiomyocytes, and iNOS, followed by quantitative image analysis. Western blots estimated angiogenesis and myofibroblast accumulation, as well as potential sildenafil tachyphylaxis by PDE 5 expression. Zymography estimated MMPs 2 and 9 in serum. Results As compared to untreated MI rats, sildenafil improved LVEF, reduced collagen, myofibroblasts, and circulating MMPs, and increased cardiac troponin T. MDSC replicated most of these effects and stimulated cardiac angiogenesis. Concurrent MDSC/sildenafil counteracted cardiomyocyte and endothelial cells loss, but did not improve LVEF or angiogenesis, and upregulated PDE 5. Conclusions Long-term oral sildenafil, or MDSC given separately, reduce the MI fibrotic scar and improve left ventricular function in this rat model. The failure of the treatment combination may be due to inducing overexpression of PDE5.

  7. Chronic hypertension alters the expression of Cx43 in cardiovascular muscle cells

    Directory of Open Access Journals (Sweden)

    Haefliger J.-A.

    2000-01-01

    Full Text Available Connexin43 (Cx43, the predominant gap junction protein of muscle cells in vessels and heart, is involved in the control of cell-to-cell communication and is thought to modulate the contractility of the vascular wall and the electrical coupling of cardiac myocytes. We have investigated the effects of arterial hypertension on the expression of Cx43 in aorta and heart in three different models of experimental hypertension. Rats were made hypertensive either by clipping one renal artery (two kidney, one-clip renal (2K,1C model by administration of deoxycorticosterone and salt (DOCA-salt model or by inhibiting nitric oxide synthase with NG-nitro-L-arginine methyl ester (L-NAME model. After 4 weeks, rats of the three models showed a similar increase in intra-arterial mean blood pressure and in the thickness of the walls of both aorta and heart. Analysis of heart mRNA demonstrated no change in Cx43 expression in the three models compared to their respective controls. The same 2K,1C and DOCA-salt hypertensive animals expressed twice more Cx43 in aorta, and the 2K,1C rats showed an increase in arterial distensibility. In contrast, the aortae of L-NAME hypertensive rats were characterized by a 50% decrease in Cx43 and the carotid arteries did not show increased distensibility. Western blot analysis indicated that Cx43 was more phosphorylated in the aortae of 2K,1C rats than in those of L-NAME or control rats, indicating a differential regulation of aortic Cx43 in different models of hypertension. The data suggest that localized mechanical forces induced by hypertension affect Cx43 expression and that the cell-to-cell communication mediated by Cx43 channels may contribute to regulating the elasticity of the vascular wall.

  8. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  9. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    Science.gov (United States)

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  10. Contraction-associated translocation of protein kinase C in rat skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Cleland, P J; Rattigan, S

    1987-01-01

    Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short...... tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism....

  11. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    International Nuclear Information System (INIS)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N G -nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats

  12. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  13. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  14. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  15. In vivo postprandial lipid partitioning in liver and muscle of diabetic rats is disturbed

    NARCIS (Netherlands)

    Prompers, J.J.; Jonkers, R.A.M.; Loon, van L.J.C.; Nicolay, K.

    2012-01-01

    Objective: To study in vivo lipid partitioning in insulin-resistant liver and muscle of diabetic rats using magnetic resonance spectroscopy (MRS). Methods: Four groups of n=6 male Zucker diabetic fatty rats were used for this study: obese, pre-diabetic fa/fa rats and lean, non-diabetic fa/+

  16. Extracellular matrix components direct porcine muscle stem cell behavior

    International Nuclear Information System (INIS)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-01-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  17. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  18. Respiration-related discharge of hyoglossus muscle motor units in the rat.

    Science.gov (United States)

    Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F

    2014-01-01

    Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.

  19. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  1. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    Science.gov (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  2. Functional heterogeneity of side population cells in skeletal muscle

    International Nuclear Information System (INIS)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2006-01-01

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31 - CD45 - SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31 - CD45 - SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31 - CD45 - SP cells participate in muscle regeneration

  3. Influence of chronic stress and oclusal interference on masseter muscle pain in rat.

    Science.gov (United States)

    Simonić-Kocijan, Suncana; Uhac, Ivone; Braut, Vedrana; Kovac, Zoran; Pavicić, Daniela Kovacević; Fugosić, Vesna; Urek, Miranda Muhvić

    2009-09-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant difference of nociceptive behavioral response in chronicaly stressed rats and in the animals with occlusal interference in comparation to the control group were not obtained (p > 0.05). In contrast, nociceptive behavioral response was significantly increased in rats submitted to both of experimental procedures (p occlusal interference and chronic stress influence masseter muscle pain.

  4. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  5. [Influence of the occlusal interference time on masticatory muscle mechanical hyperalgesia in rats].

    Science.gov (United States)

    Liu, Cun-rui; Xu, Xiao-xiang; Cao, Ye; Xie, Qiu-fei

    2016-02-18

    To investigate the relationship between the removal time of 0.2 mm occlusal interference and the recovery of masticatory muscle mechanical hyperalgesia in rats. Forty male Sprague-Dawley rats (200-220 g) were randomly assigned to eight groups, with five rats in each group: (1) naive group: these rats were anesthetized and their mouths were forced open for about 5 min (the same duration as the other groups), but restorations were not applied; (2) sham-occlusal interference control group: bands were bonded to the right maxillary first molars which did not interfere with occlusion; (3)occlusal interference group: 0.2 mm thick crowns were bonded to the right maxillary first molars; (4) 2, 3, 4, 5, and 6 d removal of occlusal interference groups: 0.2 mm thick crowns were bonded to the right maxillary first molars and removed on days 2, 3, 4, 5, and 6. The naive group and sham-occlusal interference control group were control groups. The other groups were experimental groups. Bilateral masticatory muscle mechanical withdrawal thresholds were tested on pre-application days 1, 2, and 3, and on post-application days 1, 3, 5, 7, 10, 14, 21 and 28. The rats were weighed on pre-application day 1 and on post-application days 1, 2, 3, 4, 5, 6, and 7. Between the naive group and the sham-occlusal interference control group, there was no significant difference in the masticatory muscle mechanical withdrawal threshold of bilateral temporalis and masseters at each time point. No significant difference was detected between the contralateral side and ipsilateral side in experimental groups (P>0.05). In the 2, 3, 4, and 5 d removal of occlusal interference groups, the masticatory muscle mechanical withdrawal thresholds decreased after occlusal interference and increased after removal of the crowns and recovered to the baseline on days 7, 10, 14, and 14, respectively [the masticatory muscle mechanical withdrawal thresholds of right masseter muscle were (137.46 ± 2.08) g, (139.02 ± 2

  6. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  7. D-TRP(8-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway.

    Directory of Open Access Journals (Sweden)

    Ana Belén Gómez-SanMiguel

    Full Text Available Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteolysis. Melanocyte stimulating hormones (MSH is a family of peptides that have potent anti-inflammatory effects. Melanocortin receptor-3 (MC3-R has been reported as the predominant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse whether activation of MC3-R, by administration of its agonist D-Trp(8-γMSH, is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/kg D-Trp(8-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours afterwards. D-Trp(8-γMSH decreased LPS-induced anorexia and prevented the stimulatory effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corticosterone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in rats injected with LPS, but not in those that also received D-Trp(8-γMSH. However, D-Trp(8-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp(8-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as the increase in pNF-κB(p65, FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1 and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8-γMSH was able to prevent TNFα-induced increase of NF-κB(p65 phosphorylation and decrease of Akt phosphorylation as well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65 pathway.

  8. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  9. Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Weifeng Lu

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P<0.05. rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P<0.05. RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P<0.05. Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.

  10. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    Directory of Open Access Journals (Sweden)

    Michel Barbosa de Araújo

    2013-12-01

    Full Text Available The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1 Control: sedentary rats that received balanced diet; 2 Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3 Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanced diet; and 4 Supplemented-trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received creatine supplementation (2% in the balanced diet. The hydric intake increased and the body weight gain decreased in the supplemented-trained group. In the soleus muscle, the glucose oxidation increased in both supplemented groups. The production of lactate and glycemia during glucose tolerance test decreased in the supplemented-trained group. Creatine supplementation in conjunction with exercise training improved muscular glycidic metabolism of rats.

  11. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  12. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age.

    Science.gov (United States)

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G

    2016-12-19

    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades.

  13. Metabolic changes of masseter muscle in experimental unilateral bite-raised rat determined by 31P-MRS

    International Nuclear Information System (INIS)

    Nishide, Naoto

    1997-01-01

    Occlusal interference is known to alter the functional activity of masticatory muscle, but no alteration of the energy metabolism of masticatory muscle which has gone occlusal interference has been reported. The purpose of this study was to investigate the energy metabolism in rat masseter muscle during masticatory movements following unilateral bite-raising. A bite-raising splint (1 mm) was fixed on the unilateral upper molar of experimental rats, and after 2, 4 and 6 weeks, the rats were anesthetized and masticatory movements were induced by electrical stimulation applied to the masseter muscle (with a biting force of 40 g, a frequency of 5 Hz and a stimulation time of 32 min). 31 P Magnetic Resonance Spectroscopy of the masseter muscle were recorded during a sequence of rest, stimulation and recovery periods, and the resonance signal area ratio of PCr and Pi ((PCr)/(PCr + Pi)) and the muscle pH were determined. After 4 and 6 weeks following the bite-raising, the masseter of the bite-raised side showed a decrease in the (PCr)/(PCr + Pi) ratio compared with a control group during stimulation (p<0.05). Neither the bite-raised side masseter at 2 weeks and the contralateral side at 4 weeks showed any differences compared with the control. The muscle pH during stimulation was similar in both the control and the bite-raised groups of rats. These findings suggest that the occlusal alteration induced by unilateral bite-raising reduces the masseter energy level during mastication. (author)

  14. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    Directory of Open Access Journals (Sweden)

    Roberto Furlanetto Jr

    2017-02-01

    Full Text Available Objective: We studied the effect of resistance exercise (RE on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF. Material and methods : Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams were randomly allocated into five groups: control group (CT-Sham; n = 6; group with rheumatoid arthritis (RA; n = 6; group with rheumatoid arthritis subjected to RE (RAEX; n = 6; ovariectomy group with rheumatoid arthritis (RAOV; n = 6; and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6. After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results : The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV, but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions : LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1. However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.

  15. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  16. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review.

    Science.gov (United States)

    Loureiro, Laís Monteiro Rodrigues; Reis, Caio Eduardo Gonçalves; da Costa, Teresa Helena Macedo

    2018-01-18

    Coffee is one of the most consumed beverages in the world and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to PRISMA and seven studies were included. They explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca 2+ /calmodulin-dependent protein kinase (CaMK) phosphorylation, glycogen resynthesis rates and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta-cells, and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from the current review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whilst no detrimental effect was described. Coffee beverages should be tested as an option for athlete's glycogen recovery.

  17. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats.

    Science.gov (United States)

    Voces, J; Cabral de Oliveira, A C; Prieto, J G; Vila, L; Perez, A C; Duarte, I D G; Alvarez, A I

    2004-12-01

    Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 +/- 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  18. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats

    Directory of Open Access Journals (Sweden)

    J. Voces

    2004-12-01

    Full Text Available Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group. The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05 after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05 by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  19. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    Science.gov (United States)

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  20. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  1. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2018-04-01

    Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by

  2. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    International Nuclear Information System (INIS)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H.

    1990-01-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters

  3. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sung, Jin Young; Choi, Hyoung Chul

    2011-01-01

    Highlights: → Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. → Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. → Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. → Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. → Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  4. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  5. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  6. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.

    Science.gov (United States)

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K

    2008-06-01

    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  7. Effect of intermittent glutamine supplementation on skeletal muscle is not long-lasting in very old rats.

    Science.gov (United States)

    Meynial-Denis, D; Beaufrère, A-M; Mignon, M; Patureau Mirand, P

    2013-01-01

    Muscle is the major site for glutamine synthesis via glutamine synthetase (GS). This enzyme is increased 1.5-2 fold in 25-27-mo rats and may be a consequence of aging-induced stress. This stimulation is similar to the induction observed following a catabolic state such as glucocorticoid treatment (6 to 24 months). Although oral glutamine supply regulates the plasma glutamine level, nothing is known if this supplementation is interrupted before the experiment. Adult (8-mo) and very old (27-mo) female rats were exposed to intermittent glutamine supplementation for 50 % of their age lifetime. Treated rats received glutamine added to their drinking water and control rats water alone but the effect of glutamine supplementation was only studied 15 days after the last supplementation. Glutamine pretreatment discontinued 15 days before the experiment increased plasma glutamine to ~ 0.6 mM, a normal value in very old rats. However, it failed to decrease the up-regulated GS activity in skeletal muscle from very old rats. Our results suggest that long-term treatment with glutamine started before advanced age but discontinued 15 days before rat sacrifice is effective in increasing plasma glutamine to recover basal adult value and in maintaining plasma glutamine in very old rats, but has no long-lasting effect on the GS activity of skeletal muscle with advanced age.

  8. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    Science.gov (United States)

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  9. Response of mef2 Gene of Slow and Fast Twitch Muscles of Wistar Male Rats to One Bout of Resistance Exercise

    Directory of Open Access Journals (Sweden)

    M Fathi

    2016-11-01

    Full Text Available Introduction: Myocyte Enhancer Factor 2 (mef2 gene relates with multiple myogenic transcriptional factors that induces activation Muscle-specific genes. MEF2 contributes in muscular cells development and differentiation as well as in fibers transition in response to stimulants. Therefore, the aim of this study was to evaluate the effect of one bout of resistance exercise (RE on mef2 gene expression in fast and slow skeletal muscles of Wistar male rats. Methods: For this experimental study, 15 rats from Pasteur Institute were prepared and housed under natural conditions (temperature, light/dark (12:12 cycle, with ad libitum access to food and water and then randomly divided assigned to RE (n=10 and control groups (n=5; the RE group performed one RE session. 3 and 6 hours following, the rats were anaesthetized and sacrificed, then the soleus and Extensor digitorum longus (EDL muscles were removed. determine mef2 gene expression rate, the Quantitative Real time RT-PCR was used. Data were analyzed by one sample and independent samples t test. Results: In EDL muscle, in response to one RE session, the mef2 gene expression increased non significantly at 3 hour (p=0/093 and increased significantly (p=/008 at 6 hour after exercise, but in soleus muscle, the mef2 gene expression decreased significantly at 3 hour (p=0/01, and at 6 hour after RE session there was no observed significant change (p=0.247. Conclusion: Mef2 expression gene is differently changes in muscle fibers, which are likely associated with changes in fiber type in response to resistance exercise.

  10. Effect of carnitine supplementation on fatigue level in the gastrocnemius muscle of trained and sedentary rats

    Directory of Open Access Journals (Sweden)

    Rossana Anelice Gomez

    2012-04-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n3p324 L-carnitine, considered to be of great value in metabolic processes, plays an important role in the mitochondrial β-oxidation process. It may be used to improve athletic performance and to maintain a higher workload during exercise. This study aimed to investigate the effect of L-carnitine supplementation on muscle fatigue in sciatic nerve-gastrocnemius muscle preparations in sedentary and trained rats. The animals were divided into 4 groups: non-supplemented sedentary (NSS, supplemented sedentary (SS, non-supplemented trained (NST, and supplemented trained (ST rats. The animals were trained in daily 1-h sessions (5 days/week and received chronic oral L-carnitine supplementation (1 mg/mL for 4 weeks. Muscle fatigue was determined by supramaximal tetanic stimulation of the sciatic nerve (50 Hz. Time values for strength reduction were significantly different (p<0.05 between NSS vs. SS and NST vs. ST rats. No significant differences were observed between SS vs. ST and NST vs. NSS rats. These findings demonstrate that L-carnitine lengthen the time required for induction of muscle fatigue.

  11. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats

    International Nuclear Information System (INIS)

    Oliveira, André G.; Gomes-Marcondes, Maria Cristina C.

    2016-01-01

    Cancer-cachexia state frequently induces both fat and protein wasting, leading to death. In this way, the knowledge of the mechanism of drugs and their side effects can be a new feature to treat and to have success, contributing to a better life quality for these patients. Metformin is an oral drug used in type 2 diabetes mellitus, showing inhibitory effect on proliferation in some neoplastic cells. For this reason, we evaluated its modulatory effect on Walker-256 tumour evolution and also on protein metabolism in gastrocnemius muscle and body composition. Wistar rats received or not tumour implant and metformin treatment and were distributed into four groups, as followed: control (C), Walker 256 tumour-bearing (W), metformin-treated (M) and tumour-bearing treated with metformin (WM). Animals were weighed three times a week, and after cachexia state has been detected, the rats were euthanised and muscle and tumour excised and analysed by biochemical and molecular assays. Tumour growth promoted some deleterious effects on chemical body composition, increasing water and decreasing fat percentage, and reducing lean body mass. In muscle tissue, tumour led to a decreased protein synthesis and an increased proteolysis, showing the higher activity of the ubiquitin-proteasome pathway. On the other hand, the metformin treatment likely minimised the tumour-induced wasting state; in this way, this treatment ameliorated chemical body composition, reduced the higher activities of proteolytic enzymes and decreased the protein waste. Metformin treatment not only decreases the tumour growth but also improves the protein metabolism in gastrocnemius muscle in tumour-bearing rats

  12. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    International Nuclear Information System (INIS)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik; Kjaer, Andreas

    2009-01-01

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. 18 F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance≥1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  13. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    Science.gov (United States)

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P contraction amplitude in the SOL muscles following I/R (P muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  14. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  15. Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture

    Science.gov (United States)

    Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L.

    2006-01-01

    Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explaine their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release. PMID:16365927

  16. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats.

    Science.gov (United States)

    Russ, David W; Acksel, Cara; Boyd, Iva M; Maynard, John; McCorkle, Katherine W; Edens, Neile K; Garvey, Sean M

    2015-12-01

    This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).

  17. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Soon-Youn Choi

    Full Text Available Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4. The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3 and decreased the expression of dickkopf-related protein-1 (DKK-1 in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  18. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  19. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    Science.gov (United States)

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  20. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  1. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  2. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

    Science.gov (United States)

    Jeppesen, J.; Albers, P. H.; Rose, A. J.; Birk, J. B.; Schjerling, P.; Dzamko, N.; Steinberg, G. R.; Kiens, B.

    2011-01-01

    The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations. PMID:21297178

  3. Functional overload attenuates plantaris atrophy in tumor-bearing rats

    International Nuclear Information System (INIS)

    Otis, Jeffrey S; Lees, Simon J; Williams, Jay H

    2007-01-01

    Late stage cancer malignancies may result in severe skeletal muscle wasting, fatigue and reduced quality of life. Resistance training may attenuate these derangements in cancer patients, but how this hypertrophic response relates to normal muscle adaptations in healthy subjects is unknown. Here, we determined the effect of resistance training on muscle mass and myosin heavy chain (MHC) isoform composition in plantaris muscles from tumor-bearing (TB) rats. Age- and gender-matched Buffalo rats were used for all studies (n = 6/group). Suspensions of Morris Hepatoma MH7777 cells or normal saline were injected subcutaneously into the dorsum. Six weeks after cell implantation, muscles from TB rats were harvested, weighed and processed for ATP-independent proteasome activity assays. Once tumor-induced atrophy had been established, subgroups of TB rats underwent unilateral, functional overload (FO). Healthy, sham-operated rats served as controls. After six weeks, the extent of plantaris hypertrophy was calculated and MHC isoform compositions were determined by gel electrophoresis. Six weeks of tumor growth reduced body mass and the relative masses of gastrocnemius, plantaris, tibialis anterior, extensor digitorum longus, and diaphragm muscles (p ≤ 0.05). Percent reductions in body mass had a strong, negative correlation to final tumor size (r = -0.78). ATP-independent proteasome activity was increased in plantaris muscles from TB rats (p ≤ 0.05). In healthy rats, functional overload (FO) increased plantaris mass ~44% compared to the contralateral control muscle, and increased the relative percentage of MHC type I and decreased the relative percentage of MHC type IIb compared to the sham-operated controls (p ≤ 0.05). Importantly, plantaris mass was increased ~24% in TB-FO rats and adaptations to MHC isoform composition were consistent with normal, resistance-trained muscles. Despite significant skeletal muscle derangements due to cancer, muscle retains the capacity to

  4. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats.

    Science.gov (United States)

    Peng, Tao; Wang, Jie; Zhen, Junhui; Hu, Zhao; Yang, Xiangdong

    2014-07-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (pbenazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.

  5. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system.

    Science.gov (United States)

    Mu, Xiaodong; Peng, Hairong; Pan, Haiying; Huard, Johnny; Li, Yong

    2011-02-03

    Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo.

  6. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  7. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.

    OpenAIRE

    Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A

    1990-01-01

    1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the...

  8. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  9. Quantification of fibre type regionalisation : an analysis of lower hindlimb muscles in the rat

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Newly developed concepts and methods for the quantification of fibre type regionalisation were used for comparison between all muscles traversing the ankle of the rat lower hindlimb (n = 13). For each muscle, cross-sections from the proximodistal midlevel were stained for myofibrillar ATPase and

  10. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ronghua Wu

    2015-11-01

    Full Text Available Calpain 3 (CAPN3, also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury.

  11. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    Science.gov (United States)

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  12. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  13. Content of selected amino acids in the gastrocnemius muscle during experimental hypothyroidism in rats

    Directory of Open Access Journals (Sweden)

    Gołyński Marcin

    2016-12-01

    Full Text Available Introduction: Thyroid hormones affect protein turnover, and in the case of hypothyroidism a decrease in protein synthesis and reduced release of certain amino acids from skeletal muscles are observed. Changes in the amino acid system of skeletal muscles may be responsible for the occurrence of muscle disorders. Material and Methods: The study measured the content of selected amino acids in the gastrocnemius muscle of Wistar rats during experimental hypothyroidism induced by oral administration of methimazole at a concentration of 0.05% in drinking water for 90 d. The rats were divided into four groups: E1 (n = 6 - experimental males, E2 (n = 6 - experimental females, C1 (n = 6 - control males, and C2 (n = 6 control females. Results: A statistically significant reduction occurred in leucine, isoleucine, and 1-methylhistidine levels in males, and 1-methylhistidine in females, in comparison to the control groups. Conclusion: The hypothyroidism-induced changes in amino acid content may be responsible for the occurrence of skeletal muscle function disorders.

  14. Metabolic changes of masseter muscle in experimental unilateral bite-raised rat determined by {sup 31}P-MRS

    Energy Technology Data Exchange (ETDEWEB)

    Nishide, Naoto [Kyoto Prefectural Univ. of Medicine (Japan)

    1997-05-01

    Occlusal interference is known to alter the functional activity of masticatory muscle, but no alteration of the energy metabolism of masticatory muscle which has gone occlusal interference has been reported. The purpose of this study was to investigate the energy metabolism in rat masseter muscle during masticatory movements following unilateral bite-raising. A bite-raising splint (1 mm) was fixed on the unilateral upper molar of experimental rats, and after 2, 4 and 6 weeks, the rats were anesthetized and masticatory movements were induced by electrical stimulation applied to the masseter muscle (with a biting force of 40 g, a frequency of 5 Hz and a stimulation time of 32 min). {sup 31}P Magnetic Resonance Spectroscopy of the masseter muscle were recorded during a sequence of rest, stimulation and recovery periods, and the resonance signal area ratio of PCr and Pi ((PCr)/(PCr + Pi)) and the muscle pH were determined. After 4 and 6 weeks following the bite-raising, the masseter of the bite-raised side showed a decrease in the (PCr)/(PCr + Pi) ratio compared with a control group during stimulation (p<0.05). Neither the bite-raised side masseter at 2 weeks and the contralateral side at 4 weeks showed any differences compared with the control. The muscle pH during stimulation was similar in both the control and the bite-raised groups of rats. These findings suggest that the occlusal alteration induced by unilateral bite-raising reduces the masseter energy level during mastication. (author)

  15. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.

    Science.gov (United States)

    Nakajima, Nobuyuki; Tamaki, Tetsuro; Hirata, Maki; Soeda, Shuichi; Nitta, Masahiro; Hoshi, Akio; Terachi, Toshiro

    2017-10-01

    Postoperative damage of the urethral rhabdosphincter and nerve-vascular networks is a major complication of radical prostatectomy and generally causes incontinence and/or erectile dysfunction. The human skeletal muscle-derived stem cells, which have a synchronized reconstitution capacity of muscle-nerve-blood vessel units, were applied to this damage. Cells were enzymatically extracted from the human skeletal muscle, sorted using flow cytometry as CD34/45 (Sk-34) and CD29/34/45 (Sk-DN/29) fractions, and separately cultured/expanded in appropriate conditions within 2 weeks. Urethral damage was induced by manually removing one third of the wall of the muscle layer in nude rats. A mixture of expanded Sk-34 and Sk-DN/29 cells was applied on the damaged portion for the cell transplantation (CT) group. The same amount of media was used for the non-CT (NT) group. Urethral pressure profile was evaluated via electrical stimulation to assess functional recovery. Cell engraftments and differentiations were detected using immunohistochemistry and immunoelectron microscopy. Expression of angiogenic cytokines was also analyzed using reverse transcriptase-polymerase chain reaction and protein array. At 6 weeks after transplantation, the CT group showed a significantly higher functional recovery than the NT group (70.2% and 39.1%, respectively; P cells differentiated into skeletal muscle fibers, nerve-related Schwann cells, perineuriums, and vascular pericytes. Active paracrine angiogenic cytokines in the mixed cells were also detected with enhanced vascular formation in vivo. The transplantation of Sk-34 and Sk-DN/29 cells is potentially useful for the reconstitution of postoperative damage of the urethral rhabdosphincter and nerve-vascular networks.

  16. Effects of temporal muscle detachment and coronoidotomy on facial growth in young rats

    Directory of Open Access Journals (Sweden)

    Fernanda Engelberg Fernandes Gomes

    2012-08-01

    Full Text Available This study analyzed the effects of unilateral detachment of the temporal muscle and coronoidotomy on facial growth in young rats. Thirty one-month-old Wistar rats were distributed into three groups: detachment, coronoidotomy and sham-operated. Under general anesthesia, unilateral detachment of the temporal muscle was performed for the detachment group, unilateral coronoidotomy was performed for the coronoidotomy group, and only surgical access was performed for the sham-operated group. The animals were sacrificed at three months of age. Their soft tissues were removed, and the mandible was disarticulated. Radiographic projections-axial views of the skulls and lateral views of hemimandibles-were taken. Cephalometric evaluations were performed, and the values obtained were submitted to statistical analyses. There was a significant homolateral difference in the length of the premaxilla, height of the mandibular ramus and body, and the length of the mandible in all three groups. However, comparisons among the groups revealed no significant differences between the detachment and coronoidotomy groups for most measurements. It was concluded that both experimental detachment of the temporal muscle and coronoidotomy during the growth period in rats induced asymmetry of the mandible and affected the premaxilla.

  17. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    Science.gov (United States)

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  18. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity

    DEFF Research Database (Denmark)

    Juel; Pilegaard

    1998-01-01

    muscles, muscles of old rats and rats that had been subjected to high-intensity training, endurance training, repeated exposure to hypoxia, and hypothyroid or hyperthyroid treatments. The lactate/H+ transport capacity of red muscles was greater than that of white muscles, and this difference...... and hypothyroidism was due to a decrease in Vmax. The denervation-induced decline in lactate/H+ transport capacity resulted from both an increased Km and a reduced Vmax. The present data show that muscle type differences and most changes in the lactate/H+ transport capacity are mediated by modifications in Vmax......, which is expected to represent the number of membrane transporter molecules. Km is unaffected by most treatments and appears to be independent of fibre type....

  19. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  20. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. [Relationship between PMI and fourier transform infrared spectral changes in muscle of rats after death caused by mechanical asphyxial].

    Science.gov (United States)

    Li, Shi-ying; Shao, Yu; Li, Zheng-dong; Liu, Ning-guo; Zou, Dong-hua; Qin, Zhi-qiang; Chen, Yi-jiu; Huang, Ping

    2012-06-01

    To observe the postmortem degradation process in rat myocardium and skeletal muscle using Fourier transform infrared (FTIR) spectroscopy and to provide a new method for estimating postmortem interval (PMI). Left ventricle and skeletal muscles of rats dying of mechanical asphyxiated were sampled at different PMIs. The changes of different chemical functional group in the myocardium and skeletal muscle samples were measured by FTIR spectroscopy. The different absorbance (A) ratios of peaks were calculated and the curve estimation analysis between absorbance ratios (x) and PMI (y) were performed to establish six mathematical models. FTIR spectral absorption peak of rat myocardium and skeletal muscle showed three changes: increase, decrease and stable. The cubic model function showed the strongest correlation coefficient. The A1080/A1396 ratio of skeletal muscle showed the strongest correlation coefficient (r = 0.832) with more accurate determination of PMI. FYIR spectroscopy can be potentially used as an effective method for estimating PMI in forensic practice using myocardium and skeletal muscle.

  2. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training...... session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold......The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers...

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  4. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    International Nuclear Information System (INIS)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-01-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [ 3 H]glucose and 2-deoxy[ 14 C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats

  5. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  7. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  8. GENE RESPONSE OF THE GASTROCNEMIUS AND SOLEUS MUSCLES TO AN ACUTE AEROBIC RUN IN RATS

    Directory of Open Access Journals (Sweden)

    Michael J. McKenzie

    2011-06-01

    Full Text Available Genes can be activated or inhibited by signals within the tissues in response to an acute bout of exercise. It is unclear how a particular aerobic exercise bout may influence two muscles with similar actions to the activity. Therefore, the purposes of this investigation was to determine the gene response of selected genes involved in the "stress" response of the gastrocnemius (fast-twitch and soleus (slow-twitch muscles to a single two hour aerobic exercise bout in female Sprague-Dawley Rats at the 1 hour time point after the exercise. Exercised rats were run (n=8 for 2 hours at 20 m.min-1 and one hour after the completion of the bout had their soleus (S and gastrocnemius (G muscles removed. Age and timed matched sedentary control rats had both S and G muscles removed also. RNA was isolated from all muscles. Real-time PCR analysis was performed on the following genes: NFκB, TNFα, and Atf3. GAPDH was used as the housekeeping gene for both muscles. S muscle showed more genes altered (n = 52 vs G (n = 26. NFκB gene expression was 0.83 ± 0.14 in the exercised S but was + 1.36 ± 0.58 in the exercised G and was not significantly different between the muscles. TNFα was altered 1.30 ± 0. 34 in the exercised S and 1.36 ± 0.71 in the exercised G and was not significantly different between the muscles. The gene Atf3 was significantly altered at 4.97 ± 1.01 in the exercised S, while it was not significantly altered in the exercised G (0.70 ± 0.55. This study demonstrates that an acute bout of aerobic exercise can alter gene expression to a different extent in both the S and G muscles. It is highly likely that muscle recruitment was a factor which influenced the gene expression in theses muscles. It is interesting to note that some genes were similarly activated in these two muscles but other genes may demonstrate a varied response to the same exercise bout depending on the type of muscle

  9. The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1alpha (PGC-1alpha), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pilegaard, Henriette; Kusuhara, Keiko

    2006-01-01

    We evaluated the role of reactive oxygen species (ROS) for the contraction induced increase in expression of PGC-1alpha, HKII and UCP3 mRNA. Rat skeletal muscle cells were subjected to acute or repeated electrostimulation in the presence and absence of antioxidants. Contraction of muscle cells lead...... to an increased H2O2 formation, as measured by oxidation of H2HFF. Acute contraction of the muscle cells lead to a transient increase in PGC-1alpha and UCP3 mRNA by 172 and 65%, respectively (pantioxidants. Repeated contraction sessions induced...... a sustained elevation in PGC-1alpha and UCP3 mRNA and a transient increase in HKII (pantioxidant cocktail or with GPX+GSH. Incubation of cells for 10 days with ROS produced by xanthine oxidase/xanthine increased the level of PGC-1...

  10. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  11. Hamster thecal cells express muscle characteristics

    International Nuclear Information System (INIS)

    Self, D.A.; Schroeder, P.C.; Gown, A.M.

    1988-01-01

    Contraction of the follicular wall about the time of ovulation appears to be a coordinated event; however, the cells that mediate it remain poorly studied. We examined the theca externa cells in the wall of hamster follicles for the presence of a functional actomyosin system, both in developing follicles and in culture. We used a monoclonal antibody (HHF35) that recognizes the alpha and gamma isoelectric variants of actin normally found in muscle, but not the beta variant associated with non-muscle sources, to evaluate large preovulatory follicles for actin content and composition. Antibody staining of sectioned ovaries showed intense circumferential reactivity in the outermost wall of developing follicles. Immunoblots from two-dimensional gels of theca externa lysates demonstrated the presence of the two muscle-specific isozymes of actin. Immunofluorescence of cultured follicular cells pulse-labeled with [3H] thymidine (for autoradiographic detection of DNA replication) revealed the presence, in many dividing cells, of actin filaments aligned primarily along the longitudinal axis of the cells. In cultures exposed to the calcium ionophore A23187 (10(-4) M) for varying periods (5 min to 1 h), contraction of many individual muscle-actin-positive cells was observed. Immunofluorescence of these cells, fixed immediately after ionophore-induced contraction, revealed compaction of the actin filaments. Our findings demonstrate that the cells of the theca externa contain muscle actins from an early stage and that these cells are capable of contraction even while proliferating in subconfluent cultures. They suggest that follicular growth may include a naturally occurring developmental sequence in which a contractile cell type proliferates in the differentiated state

  12. The effect of a single dose of morphine on muscle fatigue indices in male rats

    Directory of Open Access Journals (Sweden)

    Sedigheh Amiresmaili

    2016-09-01

    Full Text Available Background and Aim: Endogenous opioids and addictive opiate drugs change many body functions. . Previous studies have referred to the effects of morphine on smooth and pulmonary muscles ., but the  effects of opioids on skeletal muscles is not known well. Thus, the current study aimed at assessing the effect of a single dose of morphine on muscle fatigue in male rats. Materials and Methods: In this experimental study, 40 male Wistar rats weighing 220-270 g were randomly divided into four equal groups: control (the mice were kept in their cages and received food and water, morphine receiving group, fatigue group (the mice in this group were kept running on  a treadmill . for120 minutes at a rate of 20 meters per minute, and morphine plus fatigue group. At the end of the experiments, blood samples were obtained from the corner of their eyes and were sent to the laboratory for measurement of muscle fatigue indexes including lactate dehydrogenase (LDH and creatine phosphokinase (CPK. Results: Administration of morphine to the fatigue group decreased running time compared with the control group (P=0.009. Furthermore, administration of morphine to the fatigue group significantly increased serum levels of LDH (P=0.009 and CPK (P=0.008. Conclusion: The present study showed that administration of a single dose of morphine in rats increases muscle fatigue biomarkers (LDH, CPK.

  13. Diabetter"T"M Reduces Post Meal Hyperglycemia Via Enhancement of Glucose Uptake Into Adipocytes and Muscles Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Mohd Hishamudin Mohd Jinal; Alqarni Bader Ayed; Shafii Khamis

    2014-01-01

    There are lots of herbal products for diabetes mellitus treatment available in local market. Most of these products are not standardized and lack of efficacy and safety data. DiaBetter"T"M is one of the herbal products that have been used for diabetes treatment. This study was carried out to determine the efficacy of DiaBetter"T"M in reducing hyperglycemia and to elucidate the mechanisms by which hyperglycemia is reduced. The results showed that DiaBetter"T"M significantly reduced post meal hyperglycemia in normal and diabetic rats, and improved glucose tolerance activity in diabetic rats particularly after 4 and 6 hours of administration. Antihyperglycemic mechanisms elucidation revealed that the DiaBetter"T"M significantly enhanced insulin-stimulated glucose uptake into adipocytes and muscle cells, with the highest magnitude of enhancement were 1.54 fold (p<0.01) and 1.46 fold (p<0.001), respectively. Molecular mechanisms that responsible for this enhancement were the increment of insulin sensitivity at cells membrane. Cytotoxic evaluation was also done and confirmed that DiaBetter"T"M was toxicologically safe against muscle and adipocytes cells. In conclusion, post-meal antihyperglycemic and glucose tolerance activity of DiaBetter"T"M was mediated through the enhancement of glucose uptake into adipocytes and muscle cells. Insulin sensitizing activity showed by DiaBetter"T"M suggests that this product has the potential to ameliorate insulin resistance condition. Therefore, it is suggested that the DiaBetter"T"M can be used as dietary adjunct for the management of type 2 diabetes mellitus which related to insulin resistance. (Author)

  14. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Science.gov (United States)

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  15. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...

  16. Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Naoki Horii

    Full Text Available Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA, a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks, or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group. Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO rats (n = 8 were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4 translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training

  17. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  18. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    Science.gov (United States)

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  19. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats

    Directory of Open Access Journals (Sweden)

    M. Ueno

    2000-12-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2 in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05. There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05 in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2 phosphorylation, to 83 ± 5% (P<0.05 in liver and to 77 ± 4% (P<0.05 in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

  20. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    Science.gov (United States)

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  1. IB4(+) nociceptors mediate persistent muscle pain induced by GDNF.

    Science.gov (United States)

    Alvarez, Pedro; Chen, Xiaojie; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2012-11-01

    Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. Once hyperalgesia subsided, injection of prostaglandin E(2) at the site induced a prolonged mechanical hyperalgesia (>72 h) compared with naïve rats (vibration increased muscle GDNF levels at 24 h, a time point where rats also exhibited marked muscle hyperalgesia. Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.

  2. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  3. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    Science.gov (United States)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  4. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  5. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  6. Recovery of prostacyclin synthesis in vascular smooth muscle cells following self-inactivation and requirement for growth factors

    International Nuclear Information System (INIS)

    Bailey, J.M.; Hla, T.T.; Pash, J.M.

    1986-01-01

    The cyclooxygenase enzyme system is a prime example of a metabolic pathway that is regulated by self inactivation. This is believed to occur in part via the irreversible reaction of the endoperoxide intermediate species with the cyclooxygenase enzyme. This inactivation and recovery of activity is similar to the inactivation observed with aspirin which irreversibly acetylates the enzyme. Self inactivation was studied in cultured rat and bovine aorta smooth muscle cells. The production of the prostanoid PGI2 was demonstrated by incubation of a monolayer of cells with 12 μM C-14 labeled arachidonic acid. Products were analyzed by thin layer chromatography and identified by their comigration with authentic standards and confirmed by gas chromatography/mass spectrometry. Preincubation of the cells for 10 minutes with arachidonic acid at concentrations as low as 1 μg/mL inactivated the cells to a second challenge with radiolabeled arachidonic acid. Recovery from self inactivation took place over a three hour time period and was similar to the recovery observed with aspirin pretreatment. Recovery was inhibited by addition of 10 μg/mL cycloheximide to the medium indicating that it involves synthesis of cyclooxygenase protein. Epidermal growth factor was identified as a serum factor responsible for the rapid recovery of cyclooxygenase activity in rat and bovine aorta smooth muscle cells

  7. Isoform-Specific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Violetta V. Kravtsova

    2015-01-01

    Full Text Available This study examines the isoform-specific effects of short-term hindlimb suspension (HS on the Na,K-ATPase in rat soleus muscle. Rats were exposed to 24–72 h of HS and we analyzed the consequences on soleus muscle mass and contractile parameters; excitability and the resting membrane potential (RMP of muscle fibers; the electrogenic activity, protein, and mRNA content of the α1 and α2 Na,K-ATPase; the functional activity and plasma membrane localization of the α2 Na,K-ATPase. Our results indicate that 24–72 h of HS specifically decreases the electrogenic activity of the Na,K-ATPase α2 isozyme and the RMP of soleus muscle fibers. This decrease occurs prior to muscle atrophy or any change in contractile parameters. The α2 mRNA and protein content increased after 24 h of HS and returned to initial levels at 72 h; however, even the increased content was not able to restore α2 enzyme activity in the disused soleus muscle. There was no change in the membrane localization of α2 Na,K-ATPase. The α1 Na,K-ATPase electrogenic activity, protein and mRNA content did not change. Our findings suggest that skeletal muscle use is absolutely required for α2 Na,K-ATPase transport activity and provide the first evidence that Na,K-ATPase alterations precede HS-induced muscle atrophy.

  8. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    Science.gov (United States)

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  9. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...... other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  10. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Directory of Open Access Journals (Sweden)

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  11. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    Science.gov (United States)

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  12. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats.

    Science.gov (United States)

    Hong, Yet Hoi; Betik, Andrew C; Premilovac, Dino; Dwyer, Renee M; Keske, Michelle A; Rattigan, Stephen; McConell, Glenn K

    2015-05-15

    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction. Copyright © 2015 the American Physiological Society.

  13. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S

    2009-01-01

    C12 skeletal muscle cells were electrically stimulated to mimic contraction. L6 myotubes and isolated rat extensor digitorum longus muscles were treated with BDNF and phosphorylation of the proteins AMP-activated protein kinase (AMPK) (Thr(172)) and acetyl coenzyme A carboxylase beta (ACCbeta) (Ser...... kinase (p44/42 Thr(202)/Tyr(204)) phosphorylation in these muscles. In addition, phosphorylation of ACCbeta was markedly elevated in the Bdnf electroporated muscles. CONCLUSIONS/INTERPRETATION: These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing...

  14. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    Science.gov (United States)

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then

  15. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  16. Efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats.

    Science.gov (United States)

    Mukaratirwa, S; Gcanga, L; Kamau, J

    2016-01-01

    Trichinellosis is a zoonotic disease caused by nematode species of the genus Trichinella. Anthelmintics targeting the intestinal adults and muscle-dwelling larvae of Trichinella spp. have been tested, with limited success. This study was aimed at determining the efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats. Forty-two Sprague-Dawley rats, with an average weight of 270 g and 180 g for males and females respectively, were infected with T. zimbabwensis larvae. Infected rats were randomly assigned to three groups which were subjected to single treatments with each of maslinic acid, fenbendazole and a combination of both on day 25 post-infection (pi), and three groups which were subjected to double treatments with each of these drugs and a combination on days 25 and 32 pi. The untreated control group received a placebo. In single-treatment groups, the efficacy of each treatment, measured by rate of reduction in muscle larvae, was significant (P0.05). We conclude that the efficacy of maslinic acid against larval stages of T. zimbabwensis in rats was comparable to that of fenbendazole, with no side-effects observed, making maslinic acid a promising anthelmintic against larval stages of Trichinella species.

  17. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    International Nuclear Information System (INIS)

    McCarthy, L.; Van Halen, R.G.; St Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-01-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 μM T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by [ 3 H]thymidine incorporation or cell number. The IC 50 for T was approximately 5 μM. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 μg/ml cholesterol or 130 μg/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo

  18. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, L.; Van Halen, R.G.; St. Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 ..mu..M T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by (/sup 3/H)thymidine incorporation or cell number. The IC/sub 50/ for T was approximately 5 ..mu..M. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 ..mu..g/ml cholesterol or 130 ..mu..g/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo.

  19. Effect of Propafenone on the Contractile Activity of Latissimus Dorsi Muscle Isolated in an Organ Chamber: Experimental Study in Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Simões

    2002-03-01

    Full Text Available OBJECTIVE: To study the effect of propafenone on the contractile function of latissimus dorsi muscle isolated from rats in an organ chamber. METHODS: We studied 20 latissimus dorsi muscles of Wistar rats and divided them into 2 groups: group I (n=10, or control group - we studied the feasibility of muscle contractility; group II (n=10, in which the contralateral muscles were grouped - we analyzed the effect of propafenone on muscle contractility. After building a muscle ring, 8 periods of sequential 2-minute baths were performed, with intervals of preprogrammed electrical stimulation using a pacemaker of 50 stimuli/min. In group II, propafenone, at the concentration of 9.8 µg/mL, was added to the bath in period 2 and withdrawn in period 4. RESULTS: In group I, no significant depression in muscle contraction occurred up to period 5 (p>0.05. In group II, a significant depression occurred in all periods, except between the last 2 periods (p0.05. CONCLUSION: Propafenone had a depressing effect on the contractile function of latissimus dorsi muscle isolated from rats and studied in an organ chamber.

  20. Effects of nutritional supplementation with l-arginine on repair of injuries due to muscle strain: experimental study on rats

    Directory of Open Access Journals (Sweden)

    Lauren Izabel Medeiros Couto

    2015-08-01

    Full Text Available ABSTRACTOBJECTIVE: To evaluate the influence of oral supplementation with arginine on regeneration of injuries due to straining of the anterior tibial muscle of rats. METHODS: Twenty-four Wistar rats of weight 492.5 ± 50.45 g were used. Injuries were induced through straining the anterior tibial muscles. The rats were separated into three groups of eight rats each. In the untreated group (UTG, after induction of injuries, the rats were observed for 24 h. In the simulation group (SG and the arginine group (AG respectively, the rats received isotonic saline solution and arginine solution via direct gavage, over a seven-day period. At the end of the period, blood samples were collected for serum evaluations of creatine kinase (CK, lactic dehydrogenase (LDH, aspartate aminotransferase (AST and C-reactive protein (CRP. The right and left anterior tibial muscles were resected for histopathological evaluations on the muscle injuries, investigating edema, hemorrhage and disorganization or morphometric alteration of the muscle fibers. The tissue repair was investigated in terms of proliferation of adipose tissue, angiogenesis and collagen fibers. The ANOVA and Student's tmethods were used and p≤ 0.05 was taken to be statistically significant. RESULTS: In the serum evaluations, the AG showed lower CK assay values and higher AST values. In the histopathological evaluation, the UTG presented edema and hemorrhage compatible with injuries due to strain; the SG presented edema and hemorrhage with proliferation of adipose tissue and collagen fibers; and the AG presented not only the findings of the SG but also, especially, intense angiogenesis. CONCLUSION: Oral supplementation with arginine did not cause any significant metabolic alterations that would contraindicate its use and it induced angiogenesis during the repair of muscles injured due to strain.

  1. Effects of extracts of denervated muscles on the morphology of cultured muscle cells

    NARCIS (Netherlands)

    Hooisma, J.; Krijger, J.de; Groot, D.M.G. de

    1981-01-01

    Previously tropic effects of extracts from whole chick embryos and from innervated muscles on cultured muscle cells were described. The present study demonstrated similar effects of extracts from 10-days denervated chick muscles. Extracts from innervated as well as from denervated muscles

  2. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    Science.gov (United States)

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo. © 2015 Japanese Society of Animal Science.

  3. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  4. An α-smooth muscle actin (acta2/αsma zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Thomas R Whitesell

    Full Text Available Mural cells of the vascular system include vascular smooth muscle cells (SMCs and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma, which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  5. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle.

    Science.gov (United States)

    Juel, C

    2016-04-01

    It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. The study used isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles, but had no effect in oxidative muscles. Spermine NONOate increased the maximal Na,K-ATPase activity by 58% (P Na,K-ATPase α-isoform. Incubation with cGMP (1 mm) increased the maximal Na,K-ATPase activity in homogenates from glycolytic muscle by 16% (P Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely, the NO/cGMP/protein kinase G signalling pathway is involved. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats

    Science.gov (United States)

    Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish

    2017-01-01

    Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067

  7. Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells

    Science.gov (United States)

    Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.

    2014-01-01

    Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload

  8. Stem Cells for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  9. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  10. Advanced glycation end products promote the proliferation and migration of primary rat vascular smooth muscle cells via the upregulation of BAG3.

    Science.gov (United States)

    Li, Cunshu; Chang, Ye; Li, Yuan; Chen, Shuang; Chen, Yintao; Ye, Ning; Dai, Dongxue; Sun, Yingxian

    2017-05-01

    The present study was aimed to investigate the role of reactive oxygen species (ROS) on advanced glycation end product (AGE)-induced proliferation and migration of vascular smooth muscle cells (VSMCs) and whether Bcl-2‑associated athanogene 3 (BAG3) is involved in the process. Primary rat VSMCs were extracted and cultured in vitro. Cell viability was detected by MTT assay and cell proliferation was detected by EdU incorporation assay. Cell migration was detected by wound healing and Transwell assays. BAG3 was detected using qPCR and western blot analysis. Transcriptional and translational inhibitors (actinomycin D and cycloheximide, respectively) were used to study the effect of AGEs on the expression of BAG3 in VSMCs. Lentiviral plasmids containing short hairpin RNA (shRNA) against rat BAG3 or control shRNA were transduced into VSMCs. Cellular ROS were detected by 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Mitochondrial membrane potential was detected by tetramethylrhodamine methyl ester (TMRE) staining. AGEs significantly increased the expression of BAG3 in a dose-and time-dependent manner. Furthermore, AGEs mainly increased the expression of BAG3 mRNA by increasing the RNA synthesis rather than inhibiting the RNA translation. BAG3 knockdown reduced the proliferation and migration of VSMCs induced by AGEs. BAG3 knockdown reduced the generation of ROS and sustained the mitochondrial membrane potential of VSMCs. Reduction of ROS production by N-acetylcysteine (NAC), a potent antioxidant, also reduced the proliferation and migration of VSMCs. On the whole, the present study demonstrated for the first time that AGEs could increase ROS production and promote the proliferation and migration of VSMCs by upregulating BAG3 expression. This study indicated that BAG3 should be considered as a potential target for the prevention and/or treatment of vascular complications of diabetes.

  11. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  12. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    Science.gov (United States)

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats.

    Science.gov (United States)

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-06-15

    Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was

  14. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  15. The muscle stem cell niche : regulation of satellite cells during regeneration

    NARCIS (Netherlands)

    Boonen, K.J.M.; Post, M.J.

    2008-01-01

    Satellite cells are considered to be adult skeletal muscle stem cells. Their ability to regenerate large muscle defects is highly dependent on their specific niche. When these cells are cultured in vitro, the loss of this niche leads to a loss of proliferative capacity and defective regeneration

  16. Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    DEFF Research Database (Denmark)

    Raciti, G A; Iadicicco, C; Ulianich, L

    2010-01-01

    Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells.......Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells....

  17. Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Kristensen, Michael; Juel, Carsten

    2004-01-01

    AIM: Sodium/bicarbonate co-transport (NBC) has been suggested to have a role in muscle pH regulation. We investigated the presence of NBC proteins in rat and human muscle samples and the fibre type distribution of the identified NBCs. METHODS AND RESULTS: Western blotting of muscle homogenates...... the T-tubules. The two NBCs localized in muscle have distinct fibre type distributions. CONCLUSIONS: Skeletal muscle possesses two variants of the sodium/bicarbonate co-transporter (NBC) isoforms, which have been called NBCe1 and NBCe2....... and sarcolemmal membranes (sarcolemmal giant vesicles) were used to screen for the presence of NBCs. Immunohistochemistry was used for the subcellular localization. The functional test revealed that approximately half of the pH recovery in sarcolemmal vesicles produced from rat muscle is mediated by bicarbonate...

  18. Coupling of albumin flux to volume flow in skin and muscles of anesthetized rats

    International Nuclear Information System (INIS)

    Renkin, E.M.; Gustafson-Sgro, M.; Sibley, L.

    1988-01-01

    Bovine serum albumin (BSA) labeled with 131 I or 125 I was injected intravenously in pentobarbital sodium-anesthetized rats, and tracer clearances into leg skin and muscles were measured over 30, 60, and 120 min. BSA labeled with the alternate tracer was used as vascular volume reference. Two minutes before injection of the tracer, a ligature was tied around one femoral vein to occlude outflow partially and raise capillary pressure in that leg. The unoccluded leg served as control. Skin and muscles of the occluded leg had variably and substantially higher water contents (delta W) than paired control tissues and slightly but consistently increased albumin clearances (CA). The delta CA/delta W, equivalent to the albumin concentration of capillary filtrate relative to plasma determined by linear regression, were as follows: leg skin 0.004 (95% confidence limits -0.001 to +0.009), muscle biceps femoris 0.005 (0.001-0.010), muscle gastrocnemius 0.011 (0.004-0.019), muscle tibialis anterior 0.016 (0.012-0.021). All these values are significantly less than 0.10, which corresponds to a reflection coefficient for serum albumin (sigma A) of 0.90. Convective coupling of albumin flux to volume flux in skin and muscles of intact, anesthetized rats is low, with sigma AS in the range 0.98 to greater than 0.99

  19. Mesenchymal Stem Cell Secretome: A Potential Tool for the Prevention of Muscle Degenerative Changes Associated With Chronic Rotator Cuff Tears.

    Science.gov (United States)

    Sevivas, Nuno; Teixeira, Fábio Gabriel; Portugal, Raquel; Araújo, Luís; Carriço, Luís Filipe; Ferreira, Nuno; Vieira da Silva, Manuel; Espregueira-Mendes, João; Anjo, Sandra; Manadas, Bruno; Sousa, Nuno; Salgado, António J

    2016-08-08

    Massive rotator cuff tears (MRCTs) are usually chronic lesions with pronounced degenerative changes, where advanced fatty degeneration and atrophy can make the tear irreparable. Human mesenchymal stem cells (hMSCs) secrete a range of growth factors and vesicular systems, known as secretome, that mediates regenerative processes in tissues undergoing degeneration. To study the effect of hMSC secretome on muscular degenerative changes and shoulder function on a rat MRCT model. Controlled laboratory study. A bilateral 2-tendon (supraspinatus and infraspinatus) section was performed to create an MRCT in a rat model. Forty-four Wistar-Han rats were randomly assigned to 6 groups: control group (sham surgery), lesion control group (MRCT), and 4 treated-lesion groups according to the site and periodicity of hMSC secretome injection: single local injection, multiple local injections, single systemic injection, and multiple systemic injections. Forelimb function was analyzed with the staircase test. Atrophy and fatty degeneration of the muscle were evaluated at 8 and 16 weeks after injury. A proteomic analysis was conducted to identify the molecules present in the hMSC secretome that can be associated with muscular degeneration prevention. When untreated for 8 weeks, the MRCT rats exhibited a significantly higher fat content (0.73% ± 0.19%) compared with rats treated with a single local injection (0.21% ± 0.04%; P muscle atrophy, 8 weeks after injury, only the single local injection group (0.0993% ± 0.0036%) presented a significantly higher muscle mass than that of the untreated MRCT group (0.0794% ± 0.0047%; P muscle regeneration, namely, pigment epithelium-derived factor and follistatin. The study data suggest that hMSC secretome effectively decreases the fatty degeneration and atrophy of the rotator cuff muscles. We describe a new approach for decreasing the characteristic muscle degeneration associated with chronic rotator cuff tears. This strategy is particularly

  20. Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4 Translocation Through AMP-Activated Protein Kinase (AMPK in the Soleus Muscle in Lean Rats

    Directory of Open Access Journals (Sweden)

    Patricia Siques

    2018-06-01

    Full Text Available Background: In chronic hypoxia (CH and short-term chronic intermittent hypoxia (CIH exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX and compared the findings.Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr group (n = 10, a CIH group (2 days hypoxia/2 days NX; n = 10 and a CH group (n = 10. Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m. Feeding (10 g daily and fasting times were accurately controlled. Measurements included food intake (every 4 days, weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA, and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30.Results: (1 Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05. (2 A moderate decrease in glycemia and plasma insulin was found. (3 Insulin sensitivity was greater in the CIH group (p < 0.05. (4 There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5 The level of activated AMPK was increased only in the CIH group (p < 0.05. (6 Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05.Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there

  1. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    Energy Technology Data Exchange (ETDEWEB)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.

  2. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    International Nuclear Information System (INIS)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-01-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-/ 14 C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism

  3. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    Science.gov (United States)

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    Science.gov (United States)

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Advancements in stem cells treatment of skeletal muscle wasting

    Directory of Open Access Journals (Sweden)

    mirella emeregalli

    2014-02-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.

  6. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Different β-adrenergic receptor density in different rat skeletal muscle fibre types

    International Nuclear Information System (INIS)

    Jensen, J.; Dahl, H.A.; Broers, O.

    1995-01-01

    The effects of adrenaline on skeletal muscle differ between fibre types. The aim of the present study was to investigate the β-adrenoceptor density, affinity and subtype in rat skeletal muscles with different fibre type composition. β-Adrenoceptors were determined in cryostat sections to avoid methodological problems with variable recovery, using the non-selective βadrenoceptor ligand [ 3 H]CGP-12177 and β 1 - and β 2 -selective cold ligands CGP 20712A and ICI 118,551. In the presence of protease inhibitors [ 3 H]CGP-12177 binding was stable, saturable, reversible, and displaceable. Scatchard analysis of binding saturation data was compatible with a single class of specific binding sites. Binding site density (B max ) was higher (P -1 ) than in adult extensor digitorum longus (4.74±0.39 fmol x mg protein -1 ), whereas the dissociation constants (K d ), 0.37±0.05 and 0.31±0.04 nM for soleus and extensor digitorum longus, respectively, were not significantly different. For young rats (5-6 weeks), B max was 11.21±0.33 and 5.45±0.11 fmol x mg protein -1 (P d was 0.27±0.02 and 0.24±0.04 nM for soleus and epitrochlearis, respectively. These results correspond to a receptor density of 2 and 1 pmol x g w.wt. -1 in muscles containing mainly type I and type II fibres, respectively. Displacement studies with CGP 20712A and ICI 118,551 were compatible with mainly β 2 -adrenoceptors, but 7-10% β 1 -adrenoceptors were present in both types of muscle. In conclusion, the receptor density is twice as high in muscles containing mainly type I muscle fibres compared to muscles containing mainly type II fibres, and this may explain some of the different effects of adrenaline between the two muscle fibre types. (au)

  8. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  9. Nuclear microscopy of rat colon epithelial cells

    International Nuclear Information System (INIS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-01-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  10. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  11. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  12. The alterations in adenosine nucleotides and lactic acid in striated muscles of rats during Rigor mortis following death with drowning or cervical dislocation.

    Science.gov (United States)

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir

    2003-01-01

    In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  13. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    Science.gov (United States)

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  14. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Science.gov (United States)

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  15. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  16. Double muscle innervation using end-to-side neurorrhaphy in rats

    Directory of Open Access Journals (Sweden)

    Elisangela Jeronymo Stipp-Brambilla

    Full Text Available CONTEXT AND OBJECTIVE: One of the techniques used for treating facial paralysis is double muscle innervation using end-to-end neurorrhaphy with sectioning of healthy nerves. The aim of this study was to evaluate whether double muscle innervation by means of end-to-side neurorrhaphy could occur, with maintenance of muscle innervation. DESIGN AND SETTING: Experimental study developed at the Experimental Research Center, Faculdade de Medicina de Botucatu, Unesp. METHODS: One hundred rats were allocated to five groups as follows: G1, control group; G2, the peroneal nerve was sectioned; G3, the tibial nerve was transected and the proximal stump was end-to-side sutured to the intact peroneal nerve; G4, 120 days after the G3 surgery, the peroneal nerve was sectioned proximally to the neurorrhaphy; G5, 120 days after the G3 surgery, the peroneal and tibial nerves were sectioned proximally to the neurorrhaphy. RESULTS: One hundred and fifty days after the surgery, G3 did not show any change in tibial muscle weight or muscle fiber diameter, but the axonal fiber diameter in the peroneal nerve distal to the neurorrhaphy had decreased. Although G4 showed atrophy of the cranial tibial muscle 30 days after sectioning the peroneal nerve, the electrophysiological test results and axonal diameter measurement confirmed that muscle reinnervation had occurred. CONCLUSION: These findings suggest that double muscle innervation did not occur through end-to-side neurorrhaphy; the tibial nerve was not able to maintain muscle innervation after the peroneal nerve had been sectioned, although muscle reinnervation was found to have occurred, 30 days after the peroneal nerve had been sectioned.

  17. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2016-06-01

    Full Text Available Objective(s: Neutrophils play an important role in ischemia/reperfusion (IR induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups: IR group, colchicine treated-IR (CO group and sham operation (SM group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD and myeloperoxidase (MPO activities, and malondialdehyde (MDA, tumor necrosis factor (TNF-α and interleukin (IL-1β levels in the muscle samples. Plasma creatinine kinase (CK and lactate dehydrogenase (LDH levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P

  18. Inhibitory effects of epigallocatechin-3-O-gallate on serum-stimulated rat aortic smooth muscle cells via nuclear factor-κB down-modulation

    International Nuclear Information System (INIS)

    Han, Dong-Wook; Lim, Hye Ryeon; Baek, Hyun Sook; Lee, Mi Hee; Lee, Seung Jin; Hyon, Suong-Hyu; Park, Jong-Chul

    2006-01-01

    The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-κB (NF-κB) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation of RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-κB/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-κB down-modulation

  19. The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats.

    Science.gov (United States)

    Chen, Yu-Ching; Lee, Shin-Da; Kuo, Cha-Hua; Ho, Low-Tone

    2011-01-01

    The skeletal muscle AMP-activated protein kinase (AMPK)-related glucose transport pathway is involved in glucose homeostasis. In this study, we examined whether obese control Zucker rats had abnormal expression of proteins in the LKB1-AMPK-AS160-GLUT4 pathway in red gastrocnemius muscle compared to that in lean (normal) control Zucker rats. We also compared the chronic training effects of exercise, hypoxia, and altitude training on this pathway in lean and obese rats. At sea level, lean and obese rats were divided into 4 groups for 6 weeks training as follows: 1) control; 2) exercise (progressive daily swimming-exercise training with comparable exercise signals between the two groups); 3) hypoxia (8 hours of daily 14% O2 exposure); and 4) exercise plus hypoxia (also called altitude training). Seven animals were used for each group. The obese rats in the control group had higher body weights, elevated fasting insulin and glucose levels, and higher baseline levels of muscle AMPK and AS160 phosphorylation compared with those of lean control rats. For obese Zucker rats in the exercise or hypoxia groups, the muscle AMPK phosphorylation level was significantly decreased compared with that of the control group. For obese Zucker rats in the altitude training group, the levels of AMPK, AS160 phosphorylation, fasting insulin, and fasting glucose were decreased concomitant with an approximate 50% increase in the muscle GLUT4 protein level compared with those of the control group. In lean rats, the altitude training efficiently lowered fasting glucose and insulin levels and increased muscle AMPK and AS160 phosphorylation as well as GLUT4 protein levels. Our results provide evidence that long-term altitude training may be a potentially effective nonpharmacological strategy for treating and preventing insulin resistance based on its effects on the skeletal muscle AMPK-AS160-GLUT4 pathway.

  20. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    Science.gov (United States)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  1. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis.

    Directory of Open Access Journals (Sweden)

    Wanming Zhao

    Full Text Available α-Smooth muscle actin (α-SMA is used as a marker for a subset of activated fibrogenic cells, myofibroblasts, which are regarded as important effector cells of tissue fibrogenesis. We address whether α-SMA-expressing myofibroblasts are detectable in fibrotic muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy (DMD, and whether the α-SMA expression correlates with the fibrogenic function of intramuscular fibrogenic cells. α-SMA immunostaining signal was not detected in collagen I (GFP-expressing cells in fibrotic muscles of ColI-GFP/mdx5cv mice, but it was readily detected in smooth muscle cells lining intramuscular blood vessel walls. α-SMA expression was detected by quantitative RT-PCR and Western blot in fibrogenic cells sorted from diaphragm and quadriceps muscles of the ColI-GFP/mdx5cv mice. Consistent with the more severe fibrosis in the ColI-GFP/mdx5cv diaphragm, the fibrogenic cells in the diaphragm exerted a stronger fibrogenic function than the fibrogenic cells in the quadriceps as gauged by their extracellular matrix gene expression. However, both gene and protein expression of α-SMA was lower in the diaphragm fibrogenic cells than in the quadriceps fibrogenic cells in the ColI-GFP/mdx5cv mice. We conclude that myofibroblasts are present in fibrotic skeletal muscles, but their expression of α-SMA is not detectable by immunostaining. The level of α-SMA expression by intramuscular fibrogenic cells does not correlate positively with the level of collagen gene expression or the severity of skeletal muscle fibrosis in the mdx5cv mice. α-SMA is not a functional marker of fibrogenic cells in skeletal muscle fibrosis associated with muscular dystrophy.

  2. Effect of aqueous extract of saffron (crocus sativus L.) against gamma radiation-induced skeletal muscles damage in rats

    International Nuclear Information System (INIS)

    El-Tahawy, N.A; Said, U.Z

    2010-01-01

    Muscular strength is important in sport as well as in daily activities. Reactive oxygen species (ROS) and oxidative damage are the most important factors in radiation-induced acute damage to muscle tissue. Saffron, obtained from dried stigmas of Crocus sativus L. (Iridaceae), is a highly valued spice, commonly used in flavouring and food colouring in different parts of the world and is known to possess the richest source of carotenoids. The present study was designed to investigate the efficacy of an aqueous extract of saffron to protect against radiation-induced oxidative damage in rat's skeletal muscle. Saffron was supplemented orally, via gavages to rats at a dose of 80 mg/ kg body wt/ day for 2 week pre- and 1 week post-exposure to 5 Gy (one shot dose) of whole body gamma-irradiation. Animals were sacrificed 1, 2 and 3 weeks post radiation exposure. The results revealed that whole body gamma-irradiation of rats induce oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances associated with significant decreases in superoxide dismutase and catalase activities. Also, radiation-induces skeletal muscles damage evidenced by significant decreases in the level of pyruvic acid, creatine phosphokinase, glutamate dehydrogenase and glucose-6-phosphate dehydrogenase activities as well as significant increases in lactic acid, total iron, and copper and calcium levels. Saffron treated-irradiated rats showed significantly less severe damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that saffron by attenuating radiation-induced oxidative stress might play a role in maintaining skeletal muscle integrity.

  3. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  4. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    Science.gov (United States)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  5. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    Science.gov (United States)

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  6. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  7. THE INFLUENCE OF DIFFERENT THYROID STATUS ON ELECTROPHYSIOLOGICAL AND MYOGRAPHICAL PARAMETERS OF SKELETAL MUSCLES CONTRACTION IN WHITE RATS.

    Science.gov (United States)

    Stanishevskaya, T I; Anosov, I P

    In experiments on white rats the character of effect of experimental hyperthyroidism was studied on the skeletal muscle (m. tibialis anterior) of white rats. It is shown that at experimental hyperthyroidism (rectal temperature of 38,5±0,10С) a muscle acquires high functional capabilities. It is shown that the latent period of generation and the time of development of positive wave “М-respones” are (-32%) and (- 22%). The latent period of shortening of muscle diminishes (- 23%) at single contraction. During experimental thyrotoxicosis (rectal temperature of 39,4±0,2 0 С) we observed physiopathological changes in the functional state of skeletal muscle: the lengthening of the latent period of generation of “М-respones” (+21%), an increase in the time of development of positive wave (+54%) and of latent period of shortening of muscle (+14%). It is concluded that in experimental hyperthyroidism and thyrotoxicosis the functional state of skeletal muscle changed in different directions.

  8. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    Science.gov (United States)

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (pmyostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. TMEM16A regulates portal vein smooth muscle cell proliferation in portal hypertension.

    Science.gov (United States)

    Zeng, Xi; Huang, Ping; Chen, Mingkai; Liu, Shiqian; Wu, Nannan; Wang, Fang; Zhang, Jing

    2018-01-01

    The aim of the present study was to elucidate the effect of transmembrane protein 16A (TMEM16A) on portal vein smooth muscle cell (PVSMC) proliferation associated with portal vein remodeling in portal hypertension (PHT). Sprague-Dawley rats were subjected to bile duct ligation to establish a rat model of liver cirrhosis and PHT. Sham-operated animals served as controls. At 8 weeks after bile duct ligation, the extent of liver fibrosis and the portal vein wall thickness were assessed using hematoxylin-eosin staining. The protein expression levels of TMEM16A, extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2) in the portal vein were detected by immunohistochemistry and western blotting. In vitro , the lentivirus vectors were constructed and transfected into PVSMCs to upregulate the expression of TMEM16A. Isolated rat primary PVSMCs were treated with a small molecule inhibitor of TMEM16A, T16A-inhA01. Cell cycle was detected by flow cytometry. The activity of TMEM16A in the portal vein isolated from bile duct ligated rats was decreased, while the expression level of p-ERK1/2 was increased. However, in vitro , upregulation of TMEM16A promoted the proliferation PVSMCs, while inhibition of TMEM16A channels inhibited the proliferation of PVSMCs. The results indicated that TMEM16A contributes to PVSMCs proliferation in vitro , but in vivo , it may be a negative regulator of cell proliferation influenced by numerous factors.

  10. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    OpenAIRE

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlyso...

  11. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.

    Science.gov (United States)

    Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A

    1990-01-01

    1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions. PMID:2268261

  12. Stem Cell Antigen-1 in Skeletal Muscle Function

    OpenAIRE

    Bernstein, Harold S.; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J.; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-01-01

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1...

  13. Combined effect of space flight and radiation on skeletal muscles of rats

    International Nuclear Information System (INIS)

    Ilyina-Kakueva, E.I.; Portugalov, V.V.

    1977-01-01

    Skeletal muscles of rats flown for 20.5 d aboard the biosatellite Cosmos-690 and irradiated with a dose of 800 rads on the 10th flight day were studied. The radiation exposure aggravated the severity of atrophic and dystrophic processes in m. soleus and atrophic process in m. gastrocnemius that developed under the conditions of weightlessness and hypokinesia. At the same time, an exposure to penetrating radiation did not affect the muscles where no flight-induced pathologies occurred. The radiation affected the pattern of reparation in those regions of the soleus muscle that developed pathology inflight, slowed down resorption of the connective tissue formed during the pathological process, and inhibited the course of the reparative process

  14. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Broniarek, Izabela; Woyda-Ploszczyca, Andrzej M; Ogrodna, Karolina; Majerczak, Joanna; Celichowski, Jan; Szkutnik, Zbigniew; Jarmuszkiewicz, Wieslawa

    2017-01-01

    We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  15. Chronic treatment with fluoxetine and sertraline prevents forced swimming test-induced hypercontractility of rat detrusor muscle.

    Science.gov (United States)

    Bilge, Sirri; Bozkurt, Ayhan; Bas, Duygu B; Aksoz, Elif; Savli, Evren; Ilkaya, Fatih; Kesim, Yuksel

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors represent important targets for the development of new treatments for detrusor overactivity and urinary incontinence. The present study was undertaken to investigate the effects of the forced swimming test (FST) on the contractile response of isolated rat detrusor muscle and to examine the effects of in vivo treatments of fluoxetine and sertraline on altered detrusor muscle contractility. Fluoxetine (20 mg/kg ip) and sertraline (10 mg/kg ip) were administered once a day for 14 days. Rats were exposed to the FST on the 15th day. After the test, detrusor muscles were removed and placed in organ baths, and the contraction responses induced by carbachol, potassium chloride (KCl) and electrical field stimulation (EFS) were recorded. The contractile responses of detrusor muscle strips to carbachol and electrical field stimulation were found to be increased at all carbachol doses and frequencies, respectively. FST also increased the contractile responses to KCl, which is used to test the differences in postreceptor-mediated contractions. The hypercontractile responses of detrusor strips to carbachol, EFS and KCl were abolished by treatment with both fluoxetine and sertraline. These treatments also decreased the immobility duration in the FST consistent with an antidepressant-like effect in this test. The results of this study provide the first evidence that FST increases contractility of the rat detrusor muscle, and this hypercontractility was abolished by chronic treatments of fluoxetine and sertraline at antidepressant doses by decreasing the postreceptor-mediated events.

  16. Estrogen supplementation failed to attenuate biochemical indices of neutrophil infiltration or damage in rat skeletal muscles following ischemia.

    Science.gov (United States)

    Tiidus, Peter M; Deller, Mirada; Bombardier, Eric; Gül, Mustafa; Liu, X Linda

    2005-01-01

    This study examined the effects of estrogen supplementation on markers of neutrophil infiltration and damage in skeletal muscle of rats following ischemia. Male and female gonad-intact rats, with or without 14 days of estrogen supplementation were subjected to two hours of hind-limb ischemia and sacrificed at 24, 48 or 72 hours post-ischemia. Control animals were sacrificed without ischemia. Plantaris and red and white gastrocneimus muscles were removed and assayed for myeloperoxidase (MPO), a marker of neutrophil infiltration, and glucose-6-phosphate dehydrogenase (G6PD) and beta-glucuronidase (betaGLU), as markers of muscle damage. Significant elevations of MPO, G6PD and betaGLU activities were observed at various time points post-ischemia. No systematic differences between genders were noted in any of the measures. Estrogen supplementation in both male and female animals failed to significantly attenuate post-ischemia increases in MPO, G6PD and betaGLU activities in any of the muscles studied and in some cases accentuated activities of some of these measures. Unlike previous findings following exercise in skeletal muscle, this study failed to demonstrate estrogen-induced attenuation of indices of neutrophil infiltration or damage in skeletal muscles of rats up to 72 hours following ischemia. This demonstrates that estrogen may not consistently attenuate neutrophil infiltration and that a number of variables including damage modality, tissue or estrogen level may influence this.

  17. Estrogen supplementation failed to attenuate biochemical indices of neutrophil infiltration or damage in rat skeletal muscles following ischemia

    Directory of Open Access Journals (Sweden)

    PETER M TIIDUS

    2005-01-01

    Full Text Available This study examined the effects of estrogen supplementation on markers of neutrophil infiltration and damage in skeletal muscle of rats following ischemia. Male and female gonad-intact rats, with or without 14 days of estrogen supplementation were subjected to two hours of hind-limb ischemia and sacrificed at 24, 48 or 72 hours post-ischemia. Control animals were sacrificed without ischemia. Plantaris and red and white gastrocneimus muscles were removed and assayed for myeloperoxidase (MPO, a marker of neutrophil infiltration, and glucose-6-phosphate dehydrogenase (G6PD and ß-glucuronidase (GLU, as markers of muscle damage. Significant elevations of MPO, G6PD and GLU activities were observed at various time points post-ischemia. No systematic differences between genders were noted in any of the measures. Estrogen supplementation in both male and female animals failed to significantly attenuate post-ischemia increases in MPO, G6PD and GLU activities in any of the muscles studied and in some cases accentuated activities of some of these measures. Unlike previous findings following exercise in skeletal muscle, this study failed to demonstrate estrogen-induced attenuation of indices of neutrophil infiltration or damage in skeletal muscles of rats up to 72 hours following ischemia. This demonstrates that estrogen may not consistently attenuate neutrophil infiltration and that a number of variables including damage modality, tissue or estrogen level may influence this.

  18. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Mao, Lizheng [Jiangsu Asialand Biomed-Technology Co. Ltd., Changzhou, Jiangsu 213164 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2016-11-15

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes

  19. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    International Nuclear Information System (INIS)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong; Mao, Lizheng; Deng, Linhong

    2016-01-01

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes a

  20. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    Science.gov (United States)

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  1. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  2. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  3. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    Science.gov (United States)

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  4. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  5. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Directory of Open Access Journals (Sweden)

    Rushendhiran Kesavan

    Full Text Available Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs, PDGF-BB (20 ng/ml induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml. The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA. Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  6. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Science.gov (United States)

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  7. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    International Nuclear Information System (INIS)

    Bhagavati, Satyakam; Xu Weimin

    2005-01-01

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells

  8. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats

    OpenAIRE

    Martinez, Paula Felippe [UNESP; Bonomo, Camila [UNESP; Guizoni, Daniele Mendes [UNESP; Oliveira Junior, Silvio Assis [UNESP; Damatto, Ricardo Luiz [UNESP; Cezar, Marcelo Diarcadia Mariano [UNESP; Lima, Aline Regina Ruiz [UNESP; Pagan, Luana Urbano [UNESP; Seiva, Fabio Rodrigues; Fernandes, Denise Castro; Laurindo, Francisco Rafael Martins; Novelli, Ethel Lourenzi Barbosa [UNESP; Matsubara, Luiz Shiguero [UNESP; Zornoff, Leonardo Antonio Mamede [UNESP; Okoshi, Katashi [UNESP

    2015-01-01

    Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI,...

  9. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  10. Effects of high levels of glucose on the steroidogenesis and the expression of adiponectin receptors in rat ovarian cells

    Directory of Open Access Journals (Sweden)

    Ramé Christelle

    2008-03-01

    Full Text Available Abstract Background Reproductive dysfunction in the diabetic female rat is associated with altered folliculogenesis and steroidogenesis. However, the molecular mechanisms involved in the reduction of steroid production have not been described. Adiponectin is an adipocytokine that has insulin-sensitizing actions including stimulation of glucose uptake in muscle and suppression of glucose production in liver. Adiponectin acts via two receptor isoforms – AdipoR1 and AdipoR2 – that are regulated by hyperglycaemia and hyperinsulinaemia in liver and muscle. We have recently identified AdipoR1 and AdipoR2 in rat ovary. However, their regulation in ovaries of diabetic female rat remains to be elucidated. Methods We incubated rat primary granulosa cells in vitro with high concentrations of glucose (5 or 10 g/l + or - FSH (10-8 M or IGF-1 (10-8 M, and we studied the ovaries of streptozotocin-induced diabetic rats (STZ in vivo. The levels of oestradiol and progesterone in culture medium and serum were measured by RIA. We used immunoblotting to assay key steroidogenesis factors (3beta HSD, p450scc, p450 aromatase, StAR, and adiponectin receptors and various elements of signalling pathways (MAPK ERK1/2 and AMPK in vivo and in vitro. We also determined cell proliferation by [3H] thymidine incorporation. Results Glucose (5 or 10 g/l impaired the in vitro production in rat granulosa cells of both progesterone and oestradiol in the basal state and in response to FSH and IGF-1 without affecting cell proliferation and viability. This was associated with substantial reductions in the amounts of 3beta HSD, p450scc, p450 aromatase and StAR proteins and MAPK ERK1/2 phosphorylation. In contrast, glucose did not affect the abundance of AdipoR1 or AdipoR2 proteins. In vivo, as expected, STZ treatment of rats caused hyperglycaemia and insulin, adiponectin and resistin deficiencies. Plasma progesterone and oestradiol levels were also reduced in STZ rats. However, the

  11. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  12. Musculus gastrocnemius tetanus kinetics in alcohol-intoxicated rats with experimentally-induced hindlimb vascular ischemia under conditions of low-frequence muscle fatigue

    Directory of Open Access Journals (Sweden)

    O. A. Melnychuk

    2014-04-01

    Full Text Available Alcohol intoxication and ischemic injury of skeletal muscles often accompany each other. It is shown that patients hospitalized with chronic alcoholism develop muscle fatigue. Skeletal muscle dysfunction in alcohol-dependent patients is caused by ethanol-associated myofibrillar atrophy and metabolic disbalance, while compression-ischemic lesions result from unconsciousness of the patient, in case of taking the critical alcohol dose. Therefore, the aim of this study is to discover typical m. gastrocnemius (cap. med. tetanic kinetics changes in alcohol intoxicated rats with experimentally induced vascular ischemia of hindlimb muscles under conditions of low-frequency progressive muscle fatigue. Experiments were carried out on 10 young male Wistar rats (149.5 ± 5.8 g kept under standard vivarium conditions and diet. The investigation was conducted in two phases: chronic (30 days and acute (3 hours experiment. All surgical procedures were carried out aseptically under general anesthesia. Ishemic m. gastrocnemius (cap. med. tetanic kinetic changes and force productivity in alcohol intoxicated rats were investigated in the isometric mode, with direct electrical stimulation. The fatigue of m. gastrocnemius (cap. med. was evaluated by three characteristic criteria: the first sag effect, the secondary force rise, the second sag effect. There have been 10 similar experiments: 5 series in each study group with 10 tetanic runs in each series. The highest amplitude of the native m. gastrocnemius (cap. med. tetanus relative to isoline was taken as 100% force response. The same pattern of m. gastrocnemius (cap. med. low-frequency fatigue development was found in both rat groups under study. It is evidenced by the absence of substantial m. gastrocnemius (cap. med. tetanus kinetics differences in alcohol intoxicated rats, compared with non-alcohol intoxicated rats during fatigue test. However, the appreciable m. gastrocnemius (cap. med. tetanic force reduction

  13. Hydrogen sulfide potentiates interleukin-1β-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg

    2006-01-01

    Hydrogen sulfide (H 2 S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H 2 S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1β (IL-1β). Although H 2 S by itself showed no effect on NO production, it augmented IL-β-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-κB. IL-1β activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H 2 S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1β-induced NF-κB activation, iNOS expression, and NO production either in the absence or presence of H 2 S. Our findings suggest that H 2 S enhances NO production and iNOS expression by potentiating IL-1β-induced NF-κB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs

  14. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways.

    Science.gov (United States)

    Wu, Ruo-ming; Sun, Yan-yan; Zhou, Ting-ting; Zhu, Zhi-yuan; Zhuang, Jing-jing; Tang, Xuan; Chen, Jing; Hu, Li-hong; Shen, Xu

    2014-10-01

    Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg(-1)·d(-1), ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.

  15. Na+-K+ pump location and translocation during muscle contraction  in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Rasmussen, Martin Krøyer; Juel, Carsten

    2008-01-01

    the translocation. Electrical stimulation and biotin labeling of rat muscle revealed a 40% and 18% increase in the amounts of the Na+-K+ pump a2 subunit and caveolin-3 (Cav-3), respectively, in the sarcolemma. Exercise induced a 36% and 19% increase in the relative amounts of the a2 subunit and Cav-3, respectively...

  16. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  17. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement.

    Directory of Open Access Journals (Sweden)

    Kerry Wilson

    2010-06-01

    Full Text Available To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications.We have demonstrated a biological microelectromechanical system (BioMEMS based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT, the time to half relaxation ((1/2RT were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and (1/2RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine.The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications.

  18. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  19. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  20. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  1. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.

    Science.gov (United States)

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.

  2. Methylglyoxal Induced Basophilic Spindle Cells with Podoplanin at the Surface of Peritoneum in Rat Peritoneal Dialysis Model

    Directory of Open Access Journals (Sweden)

    Ichiro Hirahara

    2015-01-01

    Full Text Available Peritoneal dialysis (PD is a common treatment for patients with reduced or absent renal function. Long-term PD leads to peritoneal injury with structural changes and functional decline. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis (EPS, which is a serious complication of PD. In order to carry out PD safely, it is important to define the mechanism of progression of peritoneal injury and EPS. We prepared rat models of peritoneal injury by intraperitoneal administration of glucose degradation products, such as methylglyoxal (MGO or formaldehyde (FA, chlorhexidine gluconate (CG, and talc. In rats treated with MGO, peritoneal fibrous thickening with the appearance of basophilic spindle cells with podoplanin, cytokeratin, and α-smooth muscle actin at the surface of the peritoneum was observed. These cells may have been derived from mesothelial cells by epithelial-to-mesenchymal transition. In FA- or CG-treated rats, the peritoneum was thickened, and mesothelial cells were absent at the surface of the peritoneum. The CG- or MGO-treated rats presented with a so-called abdominal cocoon. In the talc-treated rats, extensive peritoneal adhesion and peritoneal thickening were observed. MGO-induced peritoneal injury model may reflect human histopathology and be suitable to analyze the mechanism of progression of peritoneal injury and EPS.

  3. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    Science.gov (United States)

    2011-09-01

    of loss in muscle-specific force following IRI is unclear, studies in aging and sports injury models show that muscle-specific force can be reduced... antioxidant effects of carvedilol in a rat model of ischaemia-reperfusion injury. J Int Med Res 2005;33:528. 13. Asami A, Orii M, Shirasugi N, et al...Lowe DA, et al. What mechanisms con- tribute to the strength loss that occurs during and in the recov- ery from skeletal muscle injury? J Orthop Sports

  4. Digital dissection of the masticatory muscles of the naked mole-rat, Heterocephalus glaber (Mammalia, Rodentia

    Directory of Open Access Journals (Sweden)

    Philip G. Cox

    2014-06-01

    Full Text Available The naked mole-rat, Heterocephalus glaber, of the family Bathyergidae is a subterranean rodent that feeds on underground roots and tubers and digs extensive tunnel systems with its incisors. It is a highly unusual mammal with regard to its social structure, longevity, pain insensitivity and cancer resistance, all of which have made it the subject of a great deal of research in recent years. Yet, much of the basic anatomy of this species remains undocumented. In this paper, we describe the morphology of the jaw-closing musculature of the naked mole-rat, as revealed by contrast-enhanced micro-computed tomography. This technique uses an iodine stain to enable the imaging of soft tissues with microCT. The iodine-enhanced scans were used to create 3D reconstructions of the naked mole-rat masticatory muscles from which muscle masses were calculated. The jaw-closing musculature of Heterocephalus glaber is relatively very large compared to other rodents and is dominated by the superficial masseter, the deep masseter and the temporalis. The temporalis in particular is large for a rodent, covering the entirety of the braincase and much of the rear part of the orbit. The morphology of the masseter complex described here differs from two other published descriptions of bathyergid masticatory muscles, but is more similar to the arrangement seen in other rodent families. The zygomaticomandibularis (ZM muscle does not protrude through the infraorbital foramen on to the rostrum and thus the naked mole-rat should be considered protrogomorphous rather than hystricomorphous, and the morphology is consistent with secondarily lost hystricomorphy as has been previously suggested for Bathyergidae. Overall, the morphology of the masticatory musculature indicates a species with a high bite force and a wide gape–both important adaptations for a life dominated by digging with the incisors.

  5. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  6. Impact of high intensity exercise on muscle morphology in EAE rats

    DEFF Research Database (Denmark)

    Wens, I; Dalgas, U; Verboven, K

    2015-01-01

    paralysis (experiment 2, n=40), isokinetic foot extensor strength, cross sectional area (CSA) of tibialis anterior (TA), extensor digitorum longus (EDL) and soleus (SOL) and brain-derived neurotrophic factor (BDNF) levels were assessed. EAE reduced muscle fiber CSA of TA, EDL and SOL. In general, exercise......The impact of high-intensity exercise on disease progression and muscle contractile properties in experimental autoimmune encephalomyelitis (EAE) remains unclear. Control (CON) and EAE rats were divided into sedentary and exercise groups. Before onset (experiment 1, n=40) and after hindquarter...... was not able to affect CSA, whereas it delayed hindquarter paralysis peak. CON muscle work peaked and declined, while it remained stable in EAE. BDNF-responses were not affected by EAE or exercise. In conclusion, EAE affected CSA-properties of TA, EDL and SOL, which could, partly, explain the absence of peak...

  7. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    Science.gov (United States)

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all pbands were significantly lower than those at the 1st and 5th stimuli (all pbands than for non-taut bands (both pband itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  8. Neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon

    Directory of Open Access Journals (Sweden)

    Zornitsa V. Gorcheva

    2018-03-01

    Full Text Available Introduction. The role of neurotransmitter systems in the motor activity of longitudinal or circular muscles in autonomic regulation of the motility of the colon by the nervous system is unclear. The aim of the study was to investigate the neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon. Methods. Electrically-induced (2, 5 or 10 Hz, 0.8 ms, 40 V, 20 s local or descending motor responses of longitudinal and circular muscles in isolated preparations and drugs were used to define the neurotransmitters’ role in colonic motility. Results. The spontaneous activity of the distal part of preparations manifested as high-amplitude irregular contractions more expressed in the longitudinal muscles. The electrically-induced local responses differed considerably in the two muscles: in longitudinal muscle there were frequency-dependent contractions, while initial relaxation followed by contraction was observed in circular muscle. The descending motor response resembled the pattern of the local responses, but the amplitudes were significantly less expressed, as compared to the respective local responses.

  9. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    Directory of Open Access Journals (Sweden)

    Jerzy A Zoladz

    Full Text Available We studied the effects of various assay temperatures, representing hypothermia (25°C, normothermia (35°C, and hyperthermia (42°C, on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A, and acyl-CoA dehydrogenase (ACADS. We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  10. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  11. Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training

    NARCIS (Netherlands)

    Furrer, R.; Jaspers, R.T.; Baggerman, H.L.; Bravenboer, N.; Lips, P.; de Haan, A.

    2013-01-01

    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task

  12. The role of Six1 in muscle progenitor cells and the establishment of fast-twitch muscle fibres

    OpenAIRE

    Nord, Hanna

    2014-01-01

    Myogenesis is the process of skeletal muscle tissue formation where committed muscle progenitor cells differentiate into skeletal muscle fibres. Depending on the instructive cues the muscle progenitor cells receive they will differentiate into specific fibre types with different properties. The skeletal muscle fibres can be broadly classified as fast-twitch fibres or slow-twitch fibres, based on their contractile speed. However, subgroups of fast- and slow-twitch fibres with different metabol...

  13. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    Science.gov (United States)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  14. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    Science.gov (United States)

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha

  15. Metformin ameliorates diabetes but does not normalize the decreased GLUT 4 content in skeletal muscle of obese (fa/fa) Zucker rats

    DEFF Research Database (Denmark)

    Handberg, A; Kayser, L; Høyer, P E

    1993-01-01

    We studied the expression of the glucose transporter GLUT 4 in the soleus and red gastrocnemius muscles from obese, diabetic (fa/fa) Zucker rats compared to their lean littermates (Fa/-), with and without treatment with the antidiabetic drug metformin. In the untreated groups of rats, the GLUT 4...... content in a crude membrane fraction of both the soleus and the red gastrocnemius muscles were significantly lower in the obese (fa/fa) rats (3.46 +/- 0.28 vs. 6.04 +/- 0.41, p ... the same rats were confirmed by quantitative immunofluorescence microscopy, and the results were significantly correlated with the results obtained from quantitative immunoblotting (rho = 0.70, p fa/fa rats could contribute to the well-established insulin...

  16. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  17. Influence of experimental hyperthyroidism on skeletal muscle metabolism in the rat.

    Science.gov (United States)

    van Hardeveld, C; Kassenaar, A A

    1977-05-01

    In this study hind-limb perfusion was used to investigate the influence of thyroid hormones on some metabolic parameters in the skeletal muscle of the rat. Daily injection of 20 microng L-thyroxine (T4) per 100 g b. w. for a week caused a 25% increase in oxygen consumption. Further enlargement of the T4 dose had little additive effect. In the dose range 20--80 microng T4/100g b.w., no important changes occurred in lactate production or glucose consumption. Only at the highest T4 dose did the glucose consumption increase significantly. The most profound effect of T4 was on lipolysis. A daily dose of 20 microng T4/100 g b. w. gave a doubling of glycerol production rate, the maximum occuring at a dose of 40 microng T4/100 g b. w. Inactivation of the nervous system was without influence on the T4-induced increase in oxygen consumption. However, the T4-induced elevation of lipolysis disappeared after abolition of the nervous activity. This raises the possibility that the T4 effect on lipolysis in skeletal muscle is a potentiation of catecholamine effects. The T4-induced oxygen consumption increase might be dependent not on the lipolytic process but rather on other energy-consuming cell processes.

  18. Effect of triiodothyronine on the maxilla and masseter muscles of the rat stomatognathic system

    Directory of Open Access Journals (Sweden)

    M.V. Mariúba

    2011-07-01

    Full Text Available The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i osteoprotegerin (OPG and osteopontine (OPN mRNA expression in the maxilla and ii myoglobin (Mb mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g were divided into thyroidectomized (Tx and sham-operated (SO groups (N = 24/group treated with T3 or saline (0.9% for 15 days. Thyroidectomy increased OPG (~40% and OPN (~75% mRNA expression, while T3 treatment reduced OPG (~40% and OPN (~75% in Tx, and both (~50% in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.

  19. Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats.

    Science.gov (United States)

    Ha, Dong-Ho; Choi, Sunseob; Kang, Eun-Ju; Park, Hwan Tae

    2015-09-01

    To evaluate the temporal changes of diffusion tensor imaging (DTI) indices, T2 values, and visual signal intensity on various fat suppression techniques in the early state of denervated skeletal muscle in a rat model. Institutional Animal Care and Use Committee approval was obtained. Sciatic nerves of eight rats were transected for irreversible neurotmesis model. We examined normal lower leg and denervated muscles at 3 days, 1 week, and 2 weeks on a 3 Tesla MR. fractional anisotropy (FA), mean apparent diffusion coefficient (mADC), and T2 values were measured by using DTI and T2 mapping scan. We subjectively classified the signal intensity change on various fat suppression images into the following three grades: negative, suspicious, and definite change. Wilcoxon-sign rank test and Kruskal-Wallis test were used for the comparison of FA, mADC, T2 values. McNemar's test was used for comparing signal intensity change among fat suppression techniques. FA values of denervated muscles at 3 days (0.35 ± 0.06), 1 week (0.29 ± 0.04), and 2 weeks (0.34 ± 0.05) were significantly (P  0.05) change. T2 values were significantly increased at 1 week (38.11 ± 6.42 ms, P = 0.017) and markedly increased at 2 weeks (46.53 ± 5.17 ms, P = 0.012). The grade of visual signal intensity change on chemical shift selective fat saturation, STIR and IDEAL images were identical in all cases (P = 1.000). FA and T2 values can demonstrate the early temporal changes in denervated rat skeletal muscle. © 2014 Wiley Periodicals, Inc.

  20. The Effect of 8 Weeks High-intensity Interval Training on Myostatin and Follistatin Gene Expression in Gastrocnemius Muscle of the Rats

    Directory of Open Access Journals (Sweden)

    Soheil Biglari

    2018-04-01

    Full Text Available Abstract Background: The purpose of the present study is to investigate the effect of 8 weeks High-intensity Interval Training (HIIT on the expression of two muscle growth regulating genes (myostatin and follistatin in gastrocnemius muscle of healthy male rats. Materials and Methods: 16 male Wistar rats were randomly divided into two groups in the same number: control and HIIT. HIIT program was underwent 40 min each session, three sessions in a week for eight weeks. Each exercise training session consisted of 5 min warm-up and cool-down at 40-50 % VO2max, 30 min interval running including 4 min high-intensity (85-90% VO2max and 2 min active recovery (at 50-60% VO2max. Rats in control group did not do any exercise training program. 48 h after the last training session, rats` gastrocnemius muscle was extracted and the expression of myostatin and follistatin genes was determined by Real Time-PCR. For statistical data analysis, independent t-test was used. Results: The expression of myostatin was significantly reduced 68% in HIIT group in comparison with the control group (p0.05. Gastrocnemius muscle weight was significantly increased 23% in the HIIT group compared to the control group (p<0.05. Conclusion: Results indicated that HIIT lead to significant reduction in the expression of myostatin gene and increase in the weight of gastrocnemius muscle in rats.

  1. A sex-related difference in the hypertrophic versus hyperplastic response of vascular smooth muscle cells to repeated passaging in culture

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Pellicciari, C.; Bottone, M. G.; Lisá, Věra; Mareš, Vladislav

    2001-01-01

    Roč. 16, č. 3 (2001), s. 675-684 ISSN 0213-3911 R&D Projects: GA AV ČR IAA7011908 Grant - others:FAR(IT) 1998 Institutional research plan: CEZ:AV0Z5011922 Keywords : rat aortic smooth muscle cells * polyploidization * gender differences Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.859, year: 2001

  2. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  3. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  4. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  5. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  6. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  7. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    Science.gov (United States)

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  8. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  9. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P contraction-stimulated glucose uptake. Copyright © 2015 the American Physiological Society.

  10. Thyroid hormone uptake and T4 derived T3 formation in different skeletal muscle types of normal and hyperthyroid rats

    International Nuclear Information System (INIS)

    Hardeveld, C. van; Kassenaar, A.A.H.

    1978-01-01

    In this study hind-limb perfusion was used to investigate conversion of T 4 to T 3 in skeletal muscle tissue. For this purpose the rats were depleted of thyroid hormones by thyroid ablation with 0.75 mCi 131 I and were perfused 2 weeks later, when the skeletal muscle tissue consumed oxygen at a normal rate due to one subcutaneous dose of 10 μg T 3 /100 g b. w. 3 days before the perfusion experiments were started. T 4 * of high specific activity (> 2000 μCi/μg) was added to the perfusate. In the muscle (mixed type) a mean T 4 → T 3 conversion of 2% (range 0.5-3.9) was found after 120 min of perfusion. T 3 generation from T 4 in skeletal muscle did not correspond with T 3 muscle uptake. This observation makes a significant overestimation of T 3 by selective uptake of a small contamination of T 3 * in the T 4 * preparation highly improbable. In red muscle the T 4 and T 3 uptake was about 50 % higher than in white muscle. The observed Tetracsup(c) and T 3 sup(c) were significantly higher in red than in white muscle. The uptake of thyroid hormones by both muscle types was not changed in hyperthyroid rats. The Tetrac and T 3 formation from T 4 , however, was increased in red muscles of hyperthyroid rats. The results show that thyroid hormone metabolism can vary markedly depending upon the type of muscle studied and they present a basis for a better understanding of clinical and biochemical evidence for a different susceptibility of red and white muscle fibers to thyroid hormones. (Abbreviations: *= 125 I; **= 131 I; T 3 sup(c)=T 4 derived T 3 ; Tetracsup(c)=T 4 derived Tetrac) (author)

  11. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.

    Science.gov (United States)

    Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu

    2018-05-08

    The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4

  12. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways

    Science.gov (United States)

    Wu, Ruo-ming; Sun, Yan-yan; Zhou, Ting-ting; Zhu, Zhi-yuan; Zhuang, Jing-jing; Tang, Xuan; Chen, Jing; Hu, Li-hong; Shen, Xu

    2014-01-01

    Aim: Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. Methods: Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg−1·d−1, ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. Results: Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. Conclusion: Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases. PMID:25152028

  13. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  14. Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in the penile and vascular smooth muscle.

    Science.gov (United States)

    Kovanecz, I; Masouminia, M; Gelfand, R; Vernet, D; Rajfer, J; Gonzalez-Cadavid, N F

    2017-09-01

    Myostatin is present in striated myofibers but, except for myometrial cells, has not been reported within smooth muscle cells (SMC). We investigated in the rat whether myostatin is present in SMC within the penis and the vascular wall and, if so, whether it is transcriptionally expressed and associated with the loss of corporal SMC occurring in certain forms of erectile dysfunction (ED). Myostatin protein was detected by immunohistochemistry/fluorescence and western blots in the perineal striated muscles, and also in the SMC of the penile corpora, arteries and veins, and aorta. Myostatin was found in corporal SMC cultures, and its transcriptional expression (and its receptor) was shown there by DNA microarrays. Myostatin protein was measured by western blots in the penile shaft of rats subjected to bilateral cavernosal nerve resection (BCNR), that were left untreated, or treated (45 days) with muscle-derived stem cells (MDSC), or concurrent daily low-dose sildenafil. Myostatin was not increased by BCNR (compared with sham operated animals), but over expressed after treatment with MDSC. This was reduced by concurrent sildenafil. The presence of myostatin in corporal and vascular SMC, and its overexpression in the corpora by MDSC therapy, may have relevance for the stem cell treatment of corporal fibrosis and ED.

  15. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  16. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  17. Differential Effects of Long Term FTY720 Treatment on Endothelial versus Smooth Muscle Cell Signaling to S1P in Rat Mesenteric Arteries.

    Science.gov (United States)

    Hamidi Shishavan, Mahdi; Bidadkosh, Arash; Yazdani, Saleh; Lambooy, Sebastiaan; van den Born, Jacob; Buikema, Hendrik; Henning, Robert H; Deelman, Leo E

    2016-01-01

    The sphingosine-1-phosphate (S1P) analog FTY720 exerts pleiotropic effects on the cardiovascular system and causes down-regulation of S1P receptors. Myogenic constriction is an important mechanism regulating resistance vessel function and is known to be modulated by S1P. Here we investigated myogenic constriction and vascular function of mesenteric arteries of rats chronically treated with FTY720. Wistar rats received FTY720 1mg/kg/daily for six weeks. At termination, blood pressure was recorded and small mesenteric arteries collected for vascular studies in a perfusion set up. Myogenic constriction to increased intraluminal pressure was low, but a sub-threshold dose of S1P profoundly augmented myogenic constriction in arteries of both controls and animals chronically treated with FTY720. Interestingly, endothelial denudation blocked the response to S1P in arteries of FTY720-treated animals, but not in control rats. In acute experiments, presence of FTY720 significantly augmented the contractile response to S1P, an effect that was partially abolished after the inhibition of cyclooxygenase (COX-)-derived prostaglandins. FTY720 down regulated S1P1 but not S1P2 in renal resistance arteries and in cultured human endothelial cells. This study therefore demonstrates the endothelium is able to compensate for the complete loss of responsiveness of the smooth muscle layer to S1P after long term FTY720 treatment through a mechanism that most likely involves enhanced production of contractile prostaglandins by the endothelium.

  18. Gestational Undernourishment Modifies the Composition of Skeletal Muscle Transverse Tubule Membranes and the Mechanical Properties of Muscles in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Tonathiu Ramírez-Oseguera

    2013-10-01

    Full Text Available Backgroud/Aims: Skeletal muscle (SM constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4 located in the Transverse tubule membrane system (TT. The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Methods: Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL muscle. Results: We demonstrate that compared to control, GUN in the new-born produces; i decreases body weight; ii diminution in SM mass; iii decreases the formation of TT membranes; iv expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. Conclusion; These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood.

  19. Gestational undernourishment modifies the composition of skeletal muscle transverse tubule membranes and the mechanical properties of muscles in newborn rats.

    Science.gov (United States)

    Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia

    2013-01-01

    [corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel

  20. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats

    Science.gov (United States)

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-01-01

    Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats. PMID:25820551

  1. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-01-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. 14 C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of 14 C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types

  2. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Suk; Park, Seong-Wook [Department of Internal Medicine (Cardiology), Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, 138-736, Seoul (Korea); Lee, Heuiran; Kim, Sung Jin [Department of Microbiology, University of Ulsan College of Medicine, Seoul (Korea); Lee, Won Woo [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam (Korea); Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea); Yang, You-Jung; Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea)

    2004-09-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by {sup 99m}TcO{sub 4}{sup -} scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10{sup 7}, 2 x 10{sup 8} or 1 x 10{sup 9} plaque forming units (pfu)] or {beta}-galactosidase gene (Rad-CMV-LacZ 1 x 10{sup 9} pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of {sup 99m}TcO{sub 4}{sup -} (1.85 MBq). An additional two rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS underwent {sup 99m}TcO{sub 4}{sup -} scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of {sup 99m}TcO{sub 4}{sup -} and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by {sup 99m}TcO{sub 4}{sup -} scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of {sup 99m}TcO{sub 4}{sup -} was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that {sup 99m}TcO{sub 4}{sup -} scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in

  3. Skeletal muscle metabolism in hypokinetic rats

    Science.gov (United States)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  4. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  5. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  6. Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2008-05-01

    Full Text Available Exercise-induced vessel changes modulate arterial pressure (AP in male spontaneously hypertensive rats (SHR. Vascular endothelial growth factor (VEGF is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY rats, 8-9 weeks (200-250 g. Rats were allocated to daily training or remained sedentary for 3 days (N = 23 or 13 weeks (N = 23. After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis and non-locomotor skeletal muscles (temporalis were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days and (SHR = 141%, WKY = 122%, 13 weeks. SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36% simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%. In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%, without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.

  7. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats.

    Science.gov (United States)

    Scariot, Pedro P M; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S; Dos Reis, Ivan G M; Beck, Wladimir R; Gobatto, Claudio A

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home

  8. Stress Softening Behavior in the Mucosa-Submucosa and Muscle Layers in Normal and Diabetic Rat Esophagus

    DEFF Research Database (Denmark)

    Jiang, Hongbo; Liao, Donghua; Zhao, Jingbo

    2015-01-01

    Background & aims: Stress softening is a feature of mechanical preconditioning in soft tissue. Previously, we demonstrated that esophageal stress softening is reversible by muscle activation with KCl. Since the esophagus consists of muscle and mucosa-submucosa layers, the aim was to study...... the stress softening behavior in these layers in normal and diabetic rat esophagus and how diabetes affect the reversibility of esophageal stress softening.Methods: Ten Wistar rats were injected with STZ and the average blood glucose level reached 25 mmol/L after 8 weeks. Ten rats were used as the normal......M KCl was added for maximum contraction for 3min. KCl was washed out to permit relaxation and contractions were eliminated by immersion into Ca2+-free solution. After 1h rest, the tubes were exposed to five repeated ramp distensions conformed to the aforesaid two series. Stress-strain curves were used...

  9. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  10. Fresh muscle fiber fragments on a scaffold in rats-a new concept in urogynecology?

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene F

    2011-01-01

    To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair.......To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair....

  11. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.

    Science.gov (United States)

    Shamim, Baubak; Hawley, John A; Camera, Donny M

    2018-06-01

    Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.

  12. Alcohol-induced decrease in muscle protein synthesis associated with increased binding of mTOR and raptor: Comparable effects in young and mature rats

    Directory of Open Access Journals (Sweden)

    Vary Thomas C

    2009-01-01

    Full Text Available Abstract Background Acute alcohol (EtOH intoxication decreases muscle protein synthesis via inhibition of mTOR-dependent translation initiation. However, these studies have been performed in relatively young rapidly growing rats in which muscle protein accretion is more sensitive to growth factor and nutrient stimulation. Furthermore, some in vivo-produced effects of EtOH vary in an age-dependent manner. The hypothesis tested in the present study was that young rats will show a more pronounced decrement in muscle protein synthesis than older mature rats in response to acute EtOH intoxication. Methods Male F344 rats were studied at approximately 3 (young or 12 (mature months of age. Young rats were injected intraperitoneally with 75 mmol/kg of EtOH, and mature rats injected with either 75 or 90 mmol/kg EtOH. Time-matched saline-injected control rats were included for both age groups. Gastrocnemius protein synthesis and the activity of the mTOR pathway were assessed 2.5 h after EtOH using [3H]-labeled phenylalanine and the phosphorylation of various protein factors known to regulate peptide-chain initiation. Results Blood alcohol levels (BALs were lower in mature rats compared to young rats after administration of 75 mmol/kg EtOH (154 ± 23 vs 265 ± 24 mg/dL. However, injection of 90 mmol/kg EtOH in mature rats produced BALs comparable to that of young rats (281 ± 33 mg/dL. EtOH decreased muscle protein synthesis similarly in both young and high-dose EtOH-treated mature rats. The EtOH-induced changes in both groups were associated with a concomitant reduction in 4E-BP1 phosphorylation, and redistribution of eIF4E between the active eIF4E·eIF4G and inactive eIF4E·4EBP1 complex. Moreover, EtOH increased the binding of mTOR with raptor in a manner which appeared to be AMPK- and TSC-independent. In contrast, although muscle protein synthesis was unchanged in mature rats given low-dose EtOH, compared to control values, the phosphorylation of rpS6

  13. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats.

    Science.gov (United States)

    Camargo, Mariana Zingari; Siqueira, Cláudia Patrícia Cardoso Martins; Preti, Maria Carla Perozim; Nakamura, Fábio Yuzo; de Lima, Franciele Mendes; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Ramos, Solange de Paula

    2012-09-01

    The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm(2) each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.

  14. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  15. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    Science.gov (United States)

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  16. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I

    2001-06-01

    This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than

  17. Regenerative Potential of D-δ-Tocotrienol Rich Fraction on Crushed Skeletal Muscle of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bijo Elsy

    2017-06-01

    Full Text Available Background: Delayed muscle growth and regeneration of skeletal muscle in diabetics is believed to be due to diabetic myopathy because of alteration in the skeletal muscle homeostatis. Since vitamin E is a natural antioxidant and is also important for the integrity of sarcolemma, the present study was designed to explore the muscle regenerative potency of d-δ-tocotrienol-rich fraction (d-δ-TRF on crushed skeletal muscle in healthy and diabetic rats. Materials and Methods: Diabetes was induced through single subcutaneous injection of alloxan (100 mg/kg. Twenty-four albino rats were divided into four groups; healthy control, diabetic control, healthy treated, and diabetic treated. Treated groups received injections orally, daily (200 mg/kg for 3 weeks. A horizontal skin incision was made on the shaved right mid-thigh region, by splitting the fascia between gluteus maximus and tensor fascia lata, and gluteus maximus was crushed with Kocher’s forceps. Skin wound was closed with an absorbable suture. The crushed muscle changes were studied by assessing the histopathological features, histomorphological measurements, and biochemical analyses on 3rd week following induction of injury. One-way “ANOVA” followed by Tukey’s test and Student t-test were used for statistical analysis of data. Results: Results obtained through various methods indicate that the d-δ-TRF treated groups have controlled glycemic status, improved antioxidant capacity, faster revascularization, re-innervation, regeneration of myofibers, and connective tissue remodeling. Conclusion: It is, therefore, concluded that the d-δ-TRF is a beneficial nutritional adjuvant for skeletal muscles’ structural and functional recovery after crushed injury in both healthy and diabetics. [J Interdiscip Histopathol 2017; 5(2.000: 36-42

  18. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  19. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    Science.gov (United States)

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  20. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Zachařová, Gisela; Smerdu, V.

    2002-01-01

    Roč. 104, č. 4 (2002), s. 399-405 ISSN 0065-1281 R&D Projects: GA ČR GA304/00/1653 Grant - others:CZ - SI Czech-Slovenian Intergovernmental S&T Co-operation(XC) - Institutional research plan: CEZ:AV0Z5011922 Keywords : inbred Lewis rats * skeletal muscles * soleus and EDL muscles Subject RIV: FH - Neurology Impact factor: 0.867, year: 2002