WorldWideScience

Sample records for rat metatarsal bones

  1. 99mTc-MDP bone scintigraphy in the diagnosis of stress fracture of the metatarsal bones mimicking oligoarthritis

    Directory of Open Access Journals (Sweden)

    Jauković Ljiljana

    2008-01-01

    Full Text Available Background. Stress fractures are the injuries of soft tissues and bones caused by intensive and repeated stress on a bone. Repeated submaximal stress disturbs the balance between the processes of bone production and resorption that results in fracture. Case report. We presented a case of a patient with stress fracture of metatarsal bone. The patient was diagnosed and treated as having reactive oligoarthritis caused by Chlamydia trachomatis and administered antibiotics. Initial plain radiography was negative for bone fracture. Tc-99m bone scintigraphy suggested stress fracture of the second metatarsal. Plain radiography was became positive three weeks later, showing callus formation in the proximal part of the second metatarsal. Conclusion. Bone scintigraphy is a diagnostic test of choice in early diagnosis of stress fracture, and it is important to apply it timely in order to include the entire therapy and prevent complications, as well as to let a patient return to previous daily activites.

  2. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    Science.gov (United States)

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  3. Hypermobility of the first metatarsal bone in patients with Rheumatoid arthritis treated by lapidus procedure

    Directory of Open Access Journals (Sweden)

    Popelka Stanislav

    2012-08-01

    Full Text Available Abstract Background Foot deformities and related problems of the forefoot are very common in patients with rheumatoid arthritis. The laxity of the medial cuneometatarsal joint and its synovitis are important factors in the development of forefoot deformity. The impaired joint causes the first metatarsal bone to become unstable in the frontal and sagittal planes. In this retrospective study we evaluated data of patients with rheumatoid arthritis who underwent Lapidus procedure. We evaluated the role of the instability in a group of patients, focusing mainly on the clinical symptoms and X-ray signs of the instability. Methods The study group included 125 patients with rheumatoid arthritis. The indications of the Lapidus procedure were a hallux valgus deformity greater than 15 degrees and varus deformity of the first metatarsal bone with the intermetatarsal angle greater than 15 degrees on anterio-posterior weight-bearing X-ray. Results Data of 143 Lapidus procedures of 125 patients with rheumatoid arthritis, who underwent surgery between 2004 and 2010 was evaluated. Signs and symptoms of the first metatarsal bone instability was found in 92 feet (64.3% in our group. The AOFAS score was 48.6 before and 87.6 six months after the foot reconstruction. Nonunion of the medial cuneometatarsal joint arthrodesis on X-rays occurred in seven feet (4.9%. Conclusion The Lapidus procedure provides the possibility to correct the first metatarsal bone varus position and its instability, as well as providing the possibility to achieve a painless foot for walking. We recommend using the procedure as a preventive surgery in poorly symptomatic patients with rheumatoid arthritis in case of the first metatarsal bone hypermobility.

  4. Avascular necrosis of the epiphysis of the first metatarsal bone

    Energy Technology Data Exchange (ETDEWEB)

    Souverijns, G.; Peene, P.; Cleeren, P. [Department of Radiology, Virga Jesse Hospital, Hasselt (Belgium); Raes, M. [Department of Pediatrics, Virga Jesse Hospital, Hasselt (Belgium); Steenwerckx, A. [Department of Orthopaedics, Virga Jesse Hospital, Hasselt (Belgium)

    2002-06-01

    We report a case of avascular necrosis of the epiphysis of the right first metatarsal in a 6-year-old boy. Radiographs showed sclerosis, collapse and a crescent sign in the epiphysis. The diagnosis was confirmed by magnetic resonance imaging and scintigraphy. Arch support was the therapy of choice. Six months after the onset of symptoms, a definite reossification was present. To our knowledge, this is the first radiological report of avascular necrosis of the epiphysis of the first metatarsal bone in the world literature, which prompted a review of the osteochondroses and their etiology. (orig.)

  5. Avascular necrosis of the epiphysis of the first metatarsal bone

    International Nuclear Information System (INIS)

    Souverijns, G.; Peene, P.; Cleeren, P.; Raes, M.; Steenwerckx, A.

    2002-01-01

    We report a case of avascular necrosis of the epiphysis of the right first metatarsal in a 6-year-old boy. Radiographs showed sclerosis, collapse and a crescent sign in the epiphysis. The diagnosis was confirmed by magnetic resonance imaging and scintigraphy. Arch support was the therapy of choice. Six months after the onset of symptoms, a definite reossification was present. To our knowledge, this is the first radiological report of avascular necrosis of the epiphysis of the first metatarsal bone in the world literature, which prompted a review of the osteochondroses and their etiology. (orig.)

  6. Bipartite hallucal sesamoid bones: relationship with hallux valgus and metatarsal index

    Energy Technology Data Exchange (ETDEWEB)

    Munuera, Pedro V.; Dominguez, Gabriel [University of Seville, Department of Podiatrics, Seville (Spain); Centro Docente de Fisioterapia y Podologia, Departamento de Podologia, Seville (Spain); Reina, Maria; Trujillo, Piedad [Centro Docente de Fisioterapia y Podologia, Departamento de Podologia, Seville (Spain)

    2007-11-15

    The objective was to relate the incidence of the partition of the hallucal sesamoid bones to the size of the first metatarsal and the hallux valgus deformity. In a sample of 474 radiographs, the frequency of appearance of bipartite sesamoids was studied. The length and relative protrusion of the first metatarsal, and the hallux abductus angle, were measured and compared between the feet with and without sesamoid partition. The results showed that 14.6% of the feet studied had at least one partite sesamoid, that the sesamoid most frequently divided was the medial, and that unilateral partition was the most common. No difference was found in the incidence of partite sesamoids between men and women, or between left and right feet. Protrusion and length of the first metatarsal are greater in feet with partite sesamoids than in feet without this condition. A significantly higher incidence of bipartite medial sesamoid was obtained in feet with hallux valgus compared with normal feet. (orig.)

  7. Bipartite hallucal sesamoid bones: relationship with hallux valgus and metatarsal index

    International Nuclear Information System (INIS)

    Munuera, Pedro V.; Dominguez, Gabriel; Reina, Maria; Trujillo, Piedad

    2007-01-01

    The objective was to relate the incidence of the partition of the hallucal sesamoid bones to the size of the first metatarsal and the hallux valgus deformity. In a sample of 474 radiographs, the frequency of appearance of bipartite sesamoids was studied. The length and relative protrusion of the first metatarsal, and the hallux abductus angle, were measured and compared between the feet with and without sesamoid partition. The results showed that 14.6% of the feet studied had at least one partite sesamoid, that the sesamoid most frequently divided was the medial, and that unilateral partition was the most common. No difference was found in the incidence of partite sesamoids between men and women, or between left and right feet. Protrusion and length of the first metatarsal are greater in feet with partite sesamoids than in feet without this condition. A significantly higher incidence of bipartite medial sesamoid was obtained in feet with hallux valgus compared with normal feet. (orig.)

  8. Diaphyseal sequestration of the metacarpal and metatarsal bone in cattle

    International Nuclear Information System (INIS)

    Hirsbrunner, G.; Steiner, A.; Martig, J.

    1995-01-01

    Between 1990 and 1993 ten cows with diaphyseal sequestration of the metacarpal or metatarsal bone were brought to the Clinic for Food Animals and Horses, University of Bern. History, clinical and radiographic findings at admission, therapy, and clinical and radiographic short- and longterm results were evaluated retrospectively. Six animals had a history of trauma. The metatarsal bone (n = 9) was much more frequently affected than the metacarpal bone (n = 1). Lameness was slight in seven cases and intermediate in three cases. Soft tissue swelling was present in all cases, and fistula formation in eight cases. Sequestrectomy was performed in nine cases, the exuberant new bone circumferentially removed in three of these cases, and the skin primarily closed in all nine cases treated surgically. One animal with a small sequestrum, showing no fistula formation, was treated conservatively. Four to 44 months after surgery, interviews with the owners by telephone revealed that the recovery had been satisfactory in all ten cases. At the same time period, clinical and radiographic examinations of the six animals that were still alive were performed by a veterinarian additionally. Normal limb function had been restored in all six animals, although the affected limb was clearly distinctable from the unaffected contralateral limb, because of its increased diameter. From the results of this study we concluded that longterm prognosis after sequestrectomy is favourable; primary wound closure can be attempted with good success. Cosmetically promising results, however, can only be achieved, if sequestrectomy is performed early enough in the course of the disease or if the exuberant new bone is surgically removed

  9. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers

    Science.gov (United States)

    Albisetti, Walter; De Bartolomeo, Omar; Tagliabue, Lorenzo; Camerucci, Emanuela; Calori, Giorgio Maria

    2009-01-01

    Classical ballet is an art form requiring extraordinary physical activity, characterised by rigorous training. These can lead to many overuse injuries arising from repetitive minor trauma. The purpose of this paper is to report our experience in the diagnosis and treatment of stress fractures at the base of the second and third metatarsal bones in young ballet dancers. We considered 150 trainee ballet dancers from the Ballet Schools of "Teatro Alla Scala" of Milan from 2005 to 2007. Nineteen of them presented with stress fractures of the base of the metatarsal bones. We treated 18 dancers with external shockwave therapy (ESWT) and one with pulsed electromagnetic fields (EMF) and low-intensity ultrasound (US); all patients were recommended rest. In all cases good results were obtained. The best approach to metatarsal stress fractures is to diagnose them early through clinical examination and then through X-ray and MRI. ESWT gave good results, with a relatively short time of rest from the patients’ activities and a return to dancing without pain. PMID:19415273

  10. One-stage metatarsal lengthening by allograft interposition: a novel approach for congenital brachymetatarsia.

    Science.gov (United States)

    Giannini, Sandro; Faldini, Cesare; Pagkrati, Stavroula; Miscione, Maria Teresa; Luciani, Deianira

    2010-07-01

    Congenital brachymetatarsia, a shortened metatarsal bone, can be corrected surgically by callus distraction or one-stage lengthening using bone graft. We asked whether one-stage metatarsal lengthening using metatarsal homologous bone graft could improve forefoot function, lead to metatarsal healing, restore metatarsal parabola, and improve cosmetic appearance. We retrospectively reviewed 29 patients (41 feet) in whom we lengthened 50 metatarsals. Surgery consisted of a transverse proximal osteotomy of the metatarsal shaft and interposition of a metatarsal homologous bone graft (average, 13 mm long) fixed with an intramedullary Kirschner wire. Minimum followup was 3 years (mean, 5 years; range, 3-11 years). Bone union was achieved in all cases. The mean preoperative American Orthopaedic Foot and Ankle Society score was 37 points (range, 28-53 points) and the mean postoperative score was 88 points (range, 74-96 points), with an average improvement of 51 points. Radiographically, the mean gain in length was 13 mm (range, 10-15 mm), and the mean percentage increase was 23%. One-stage metatarsal lengthening using interposition of metatarsal homologous bone graft to correct congenital brachymetatarsia has low morbidity for the patient, limited complications, short recovery times, and restores forefoot anatomy. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  11. Anatomic variations in the nutrient foramina of the equine third metatarsal bone in two horses

    International Nuclear Information System (INIS)

    Godshalk, C.P.; Kneller, S.K.; Daniel, G.B.

    1985-01-01

    An unusual presentation of the nutrient foramen of the third metatarsal bone (Mt-3) is described in two horses. In the first horse, the nutrient foramen was located ectopically in the dorsolateral cortex of Mt-3. The metatarsal nutrient foramina of the second horse were in the usual plantar location, but one was atypical in configuration. Clinical signs did not appear to be associated with these findings in either horse. The possibility of misdiagnosing a fracture rather than an ectopic nutrient foramen is discussed

  12. Metatarsal fracture (acute) - aftercare

    Science.gov (United States)

    ... of your 5th metatarsal bone closest to the ankle is called a Jones fracture. This area of the bone has low blood ... Swelling, pain, numbness, or tingling in your leg, ankle, or foot that becomes worse Your leg or foot turns purple Fever

  13. The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Thewlis, Dominic [University of South Australia, Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, GPO Box 2471, Adelaide, South Australia (Australia); Archer, Jane [University of South Australia, Medical Radiation, School of Health Sciences, Adelaide (Australia)

    2016-01-15

    To investigate the reliability of a simple, efficient technique for measuring bone mineral density (BMD) in the metatarsals using dual-energy X-ray absorptiometry (DXA). BMD of the right foot of 32 trained male distance runners was measured using a DXA scanner with the foot in the plantar position. Separate regions of interest (ROI) were used to assess the BMD of each metatarsal shaft (1st-5th) for each participant. ROI analysis was repeated by the same investigator to determine within-scan intra-rater reliability and by a different investigator to determine within-scan inter-rater reliability. Repeat DXA scans were undertaken for ten participants to assess between-scan intra-rater reliability. Assessment of BMD was consistently most reliable for the first metatarsal across all domains of reliability assessed (intra-class correlation coefficient [ICC] ≥0.97; coefficient of variation [CV] ≤1.5 %; limits of agreement [LOA] ≤4.2 %). Reasonable levels of intra-rater reliability were also achieved for the second and fifth metatarsals (ICC ≥0.90; CV ≤4.2 %; LOA ≤11.9 %). Poorer levels of reliability were demonstrated for the third (ICC ≥0.64; CV ≤8.2 %; LOA ≤23.6 %) and fourth metatarsals (ICC ≥0.67; CV ≤9.6 %; LOA ≤27.5 %). BMD was greatest in the first and second metatarsals (P < 0.01). Reliable measurements of BMD were achieved for the first, second and fifth metatarsals. (orig.)

  14. The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals

    International Nuclear Information System (INIS)

    Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Thewlis, Dominic; Archer, Jane

    2016-01-01

    To investigate the reliability of a simple, efficient technique for measuring bone mineral density (BMD) in the metatarsals using dual-energy X-ray absorptiometry (DXA). BMD of the right foot of 32 trained male distance runners was measured using a DXA scanner with the foot in the plantar position. Separate regions of interest (ROI) were used to assess the BMD of each metatarsal shaft (1st-5th) for each participant. ROI analysis was repeated by the same investigator to determine within-scan intra-rater reliability and by a different investigator to determine within-scan inter-rater reliability. Repeat DXA scans were undertaken for ten participants to assess between-scan intra-rater reliability. Assessment of BMD was consistently most reliable for the first metatarsal across all domains of reliability assessed (intra-class correlation coefficient [ICC] ≥0.97; coefficient of variation [CV] ≤1.5 %; limits of agreement [LOA] ≤4.2 %). Reasonable levels of intra-rater reliability were also achieved for the second and fifth metatarsals (ICC ≥0.90; CV ≤4.2 %; LOA ≤11.9 %). Poorer levels of reliability were demonstrated for the third (ICC ≥0.64; CV ≤8.2 %; LOA ≤23.6 %) and fourth metatarsals (ICC ≥0.67; CV ≤9.6 %; LOA ≤27.5 %). BMD was greatest in the first and second metatarsals (P < 0.01). Reliable measurements of BMD were achieved for the first, second and fifth metatarsals. (orig.)

  15. The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals.

    Science.gov (United States)

    Fuller, Joel T; Archer, Jane; Buckley, Jonathan D; Tsiros, Margarita D; Thewlis, Dominic

    2016-01-01

    To investigate the reliability of a simple, efficient technique for measuring bone mineral density (BMD) in the metatarsals using dual-energy X-ray absorptiometry (DXA). BMD of the right foot of 32 trained male distance runners was measured using a DXA scanner with the foot in the plantar position. Separate regions of interest (ROI) were used to assess the BMD of each metatarsal shaft (1st-5th) for each participant. ROI analysis was repeated by the same investigator to determine within-scan intra-rater reliability and by a different investigator to determine within-scan inter-rater reliability. Repeat DXA scans were undertaken for ten participants to assess between-scan intra-rater reliability. Assessment of BMD was consistently most reliable for the first metatarsal across all domains of reliability assessed (intra-class correlation coefficient [ICC] ≥0.97; coefficient of variation [CV] ≤1.5%; limits of agreement [LOA] ≤4.2%). Reasonable levels of intra-rater reliability were also achieved for the second and fifth metatarsals (ICC ≥0.90; CV ≤4.2%; LOA ≤11.9%). Poorer levels of reliability were demonstrated for the third (ICC ≥0.64; CV ≤8.2%; LOA ≤23.6%) and fourth metatarsals (ICC ≥0.67; CV ≤9.6%; LOA ≤27.5%). BMD was greatest in the first and second metatarsals (P Reliable measurements of BMD were achieved for the first, second and fifth metatarsals.

  16. Giant cell tumor of the metatarsal bone: case report and review of the literature

    International Nuclear Information System (INIS)

    Benites Filho, Paulo R.; Escuissato, Dante L.; Gasparetto, Taisa P. Davaus; Sakamoto, Danielle; Ioshii, Sergio; Marchiori, Edson

    2007-01-01

    Giant cell tumor of bone is a rare neoplasm and account for 5% of all primary bone tumors. It is common in the knee and wrist, but rare in the small bones of the foot. The authors report a 32-year old male patient presented with a four-month history of right foot pain. Plain radiographs showed an expansive lytic lesion involving the first right metatarsal bone. Computed tomography scan demonstrated a radiolucent lesion with well-defined borders. Biopsy was performed and the histological diagnostic was giant cell tumor. The authors emphasize the correlation between the imaging and histological findings. (author)

  17. Nuclear scintigraphic evaluation of third metacarpal and metatarsal bone fractures in three horses

    International Nuclear Information System (INIS)

    Markel, M.D.; Snyder, J.R.; Hornof, W.J.; Meagher, D.M.

    1987-01-01

    Nuclear scintigraphy was used to evaluate healing of third metacarpal bone (MC III) fractures in 2 horses (horses 1 and 2) and a third metatarsal bone fracture in 1 horse (horse 3) after stabilization of each fracture with 2 broad dynamic compression plates. In horse 1, the fracture had uniform uptake of 99mTc methylene diphosphonate on days 1, 15, and 30 after surgery. The fracture healed, and the horse was discharged from the clinic on day 52. In horse 2, a 6-cm photopenic region (ie, area of low radioactivity) was seen over the diaphysis of MC III on day 3. The region persisted and became more distinct by day 32. The diaphysis of MC III sequestered, and horse 2 was euthanatized on day 44. In horse 3, vascularity was seen bridging the fracture on day 5, with a 3-cm photopenic region over the dorsal diaphysis of the third metatarsal bone. By days 18 and 32, uptake of 99mTc methylene diphosphonate in the region had increased, indicating vascularization of the site. the fracture healed, and horse 3 was discharged from the clinic on day 47. Our findings indicated that serial nuclear scintigraphy can be used to evaluate fracture vascularization after surgery in horses

  18. Effect of Weight-Bearing in Conservative and Operative Management of Fractures of the Base of the Fifth Metatarsal Bone

    Directory of Open Access Journals (Sweden)

    Jae-Yong Park

    2017-01-01

    Full Text Available Background. There is no established principle regarding weight-bearing in conservative and operative management of fifth metatarsal base fractures. Methods. We reviewed 86 patients with acute fifth metatarsal base fractures. Conservatively treated late or early weight-bearing patients were assigned to Group A or C, respectively. Operatively treated late or early weight-bearing patients were assigned to Group B or D, respectively. Results were evaluated by clinical union, bone resorption, and the American Orthopaedic Foot and Ankle Society (AOFAS and Visual Analogue Scale (VAS scores. Results. All 4 groups had bone union at a mean of 6.9 weeks (range, 5.1–15.0. There were no differences between the groups in the AOFAS and VAS scores. In the early weight-bearing groups, there were fewer cases of bone resorption, and the bone unions periods were earlier. Conclusions. Early weight-bearing may help this patient population. Moreover, conservative treatment could be an option in patients with underlying diseases.

  19. Radiographic evaluation for AVN following distal metatarsal Stoffella bunion osteotomy.

    Science.gov (United States)

    Klein, Christian; Zembsch, Alexander; Dorn, Ulrich

    2009-01-01

    Avascular necrosis of the metatarsal head, delayed bone healing and nonunion are complications that may occur after distal first metatarsal osteotomies. Intraoperative damage to the extraosseous blood supply, the location of the osteotomy and postoperative vasospasm have been cited as possible causes of such changes. We evaluated Stoffella's subcapital osteotomies which were performed at our department for the correction of moderate to severe hallux valgus deformities. Standardized radiographs of 300 feet, taken 6weeks, 3 months, and 6 months postoperatively and at the final followup were examined with regard to postoperative AVN or signs of delayed bone healing. Of 228 patients, 202 were women and 26 were men. The patients' mean age was 49 years, and the mean followup was 12 months. In 278 cases the radiographs revealed an unremarkable first metatarsal head. Seventeen cases showed diffuse or localized osteopenia or small cysts in the subchondral bone. These changes fully resolved on subsequent radiographs. The X-rays of two patients revealed progressive narrowing of the joint space, irregular contours on the surface of the joint and an abnormal bone structure. The patients subsequently developed a characteristic picture of avascular necrosis, in one case combined with nonunion. Three patients had delayed bone healing, but ultimately healed successfully. Ischemic changes in bone are known to occur after distal first metatarsal osteotomies. There is a very low incidence of postoperative perfusion problems after Stoffella;s technique, even with lateral soft tissue release.

  20. Comparative characteristics of metatarsal bones (Ossa metatarsi and finger articles (Ossa digitorum pedis seu phalanges digitorum of roe deer (Capreolus capreolus and sheep (Ovis aries in orderto determine animal species

    Directory of Open Access Journals (Sweden)

    Blagojević Miloš

    2016-01-01

    Full Text Available Metatarsal bones and finger articles of roe deer and sheep are rarely used for animal identification. In practice there are frequent cases where on a corpse the head and distal parts of the limbs are missing. That is in order to prevent the identification of the bones, by which it is easiest to determine the animal species. For identification of metatarsal bones (Ossa metatarsi as well as finger articles (Os­sa digitorum pedis seu phalanges digitorum there were used distal parts of hindlimb bones, taken from 6 roe deers and 7 sheep. Afer the separation from the soft tissues, the bones were boiled in an autoclave, and for bleaching and degreasing they were kept in 3% solution of hydrogen peroxide (H2O2. The bones were air dried, and then photographed. In roe deer, four metatarsal bones are developed: the second (Os metatarsale secundum, the third (Os metatarsale tertium, the fourth (Os metatarsale quartum and the fifth (Os metatarsale quintum. In sheep, the third (Os metatarsale tertium and the fourth (Os metatarsale quartum metatarsal bones are developed. Both in roe deer and sheep, the third and the fourth metatarsal bones are fused into one single bone - main metatarsal bone. In sheep, on dorsal and plantar side of these bones there are grooves which are more shallow and wider than in roe deer. In roe deer, hindlimbs have four fingers, and in sheep two. In roe deer there is also the difference in the number of articles on the second and fifth finger. In this animal the second and fifth finger have coalesced the first and second article (Ph1 + Ph2 and the third article(Ph3. Based on the third article of the third and fourth finger, it may be distinguished one animal from another. Margo solearis in roe deer is peaky and in sheep it is blunt. In roe deer Processus extensorius is peaky on Margo coronalis, while in shee it is blunt. In the cases when material (fresh meat, blood, hair necessary for some laboratory methods is missing, there is used

  1. Comparative characteristics of metatarsal bones (Ossa metatarsi) and finger articles (Ossa digitorum pedis seu phalanges digitorum) of roe deer (Capreolus capreolus) and sheep (Ovis aries) in orderto determine animal species

    OpenAIRE

    Blagojević Miloš; Nikolić Zora; Zorić Zoran; Ćupić-Miladinović Dejana

    2016-01-01

    Metatarsal bones and finger articles of roe deer and sheep are rarely used for animal identification. In practice there are frequent cases where on a corpse the head and distal parts of the limbs are missing. That is in order to prevent the identification of the bones, by which it is easiest to determine the animal species. For identification of metatarsal bones (Ossa metatarsi) as well as finger articles (Os­sa digitorum pedis seu phalanges digitorum) ther...

  2. Surgical management of complete diaphyseal third metacarpal and metatarsal bone fractures: Clinical outcome in 10 mature horses and 11 foals

    OpenAIRE

    Bischofberger, Andrea S; Fürst, Anton; Auer, Jörg A; Lischer, Christoph J

    2009-01-01

    Reasons for performing study: Osteosynthesis of third metacarpal (McIII) and third metatarsal (MtIII) bone fractures in horses is a surgical challenge and complications surrounding the repair are common. Retrospective studies evaluating surgical repair, complications and outcome are necessary to increase knowledge and improve success of long bone fracture repair in the horse. Objectives: To evaluate clinical findings, surgical repair, post operative complications and outcome of 10 mature h...

  3. Operative Treatment of Fifth Metatarsal Jones Fractures (Zones II and III) in the NBA.

    Science.gov (United States)

    O'Malley, Martin; DeSandis, Bridget; Allen, Answorth; Levitsky, Matthew; O'Malley, Quinn; Williams, Riley

    2016-05-01

    Proximal fractures of the fifth metatarsal (zone II and III) are common in the elite athlete and can be difficult to treat because of a tendency toward delayed union, nonunion, or refracture. The purpose of this case series was to report our experience in treating 10 NBA players, determine the healing rate, return to play, refracture rate, and role of foot type in these athletes. The records of 10 professional basketball players were retrospectively reviewed. Seven athletes underwent standard percutaneous internal fixation with bone marrow aspirate concentrate (BMAC) whereas the other 3 had open bone grafting primarily in addition to fixation and BMAC. Radiographic features evaluated included fourth-fifth intermetatarsal, fifth metatarsal lateral deviation, calcaneal pitch, and metatarsus adductus angles. Radiographic healing was observed at an overall average of 7.5 weeks and return to play was 9.8 weeks. Three athletes experienced refractures. There were no significant differences in clinical features or radiographic measurements except that the refracture group had the highest metatatarsus adductus angles. Most athletes were pes planus and 9 of 10 had a bony prominence under the fifth metatarsal styloid. This is the largest published series of operatively treated professional basketball players who exemplify a specific patient population at high risk for fifth metatarsal fracture. These players were large and possessed a unique foot type that seemed to be associated with increased risk of fifth metatarsal fracture and refracture. This foot type had forefoot metatarsus adductus and a fifth metatarsal that was curved with a prominent base. We continue to use standard internal fixation with bone marrow aspirate but advocate additional prophylactic open bone grafting in patients with high fourth-to-fifth intermetatarsal, fifth metatarsal lateral deviation, and metatarsus adductus angles as well as prominent fifth metatarsal styloids in order to improve fracture

  4. Intramedullary screw fixation with bone autografting to treat proximal fifth metatarsal metaphyseal-diaphyseal fracture in athletes: a case series

    Directory of Open Access Journals (Sweden)

    Tsukada Sachiyuki

    2012-07-01

    Full Text Available Abstract Background Delayed unions or refractures are not rare following surgical treatment for proximal fifth metatarsal metaphyseal-diaphyseal fractures. Intramedullary screw fixation with bone autografting has the potential to resolve the issue. The purpose of this study was to evaluate the result of the procedure. Methods The authors retrospectively reviewed 15 athletes who underwent surgical treatment for proximal fifth metatarsal metaphyseal-diaphyseal fracture. Surgery involved intramedullary cannulated cancellous screw fixation after curettage of the fracture site, followed by bone autografting. Postoperatively, patients remain non weight-bearing in a splint or cast for two weeks and without immobilization for an additional two weeks. Full weight-bearing was allowed six weeks postoperatively. Running was permitted after radiographic bone union, and return-to-play was approved after gradually increasing the intensity. Results All patients returned to their previous level of athletic competition. Mean times to bone union, initiation of running, and return-to-play were 8.4, 8.8, and 12.1 weeks, respectively. Although no delayed unions or refractures was observed, distal diaphyseal stress fractures at the distal tip of the screw occurred in two patients and a thermal necrosis of skin occurred in one patient. Conclusions There were no delayed unions or refractures among patients after carrying out a procedure in which bone grafts were routinely performed, combined with adequate periods of immobilization and non weight-bearing. These findings suggest that this procedure may be useful option for athletes to assuring return to competition level.

  5. Factors associated with recurrent fifth metatarsal stress fracture.

    Science.gov (United States)

    Lee, Kyung-tai; Park, Young-uk; Jegal, Hyuk; Kim, Ki-chun; Young, Ki-won; Kim, Jin-su

    2013-12-01

    Many surgeons agree that fifth metatarsal stress fractures have a tendency toward delayed union, nonunion, and possibly refracture. Difficulty healing seems to be correlated with fracture classification. However, refracture sometimes occurs after low-grade fracture, even long after apparent resolution. The records of 168 consecutive cases of fifth metatarsal stress fracture (163 patients) treated by modified tension band wiring from March 2002 to June 2011 were evaluated retrospectively. Mean length of follow-up was 23.6 months (range, 10-112 months). Forty-nine cases classified as Torg III were bone grafted initially also. All enrolled patients were elite athletes. Eleven patients experienced nonunion and 18 refracture. The 11 nonunion cases were bone grafted. The 157 patients (excluding nonunion cases) were allocated to either a refracture group or a union group. Clinical features, such as age, weight, fracture classification, time to union, and reinjury history, were compared. Radiological parameters representing cavus deformity and fifth metatarsal head protrusion were compared to evaluate the influence of structural abnormalities. Mean group weights were significantly different (P = .041), but mean ages (P = .879), fracture grades (P = .216, P = .962), and time from surgery to rehabilitation (P = .539) were similar. No significant intergroup differences were found for talocalcaneal (TC) angle (P = .470), calcaneal pitch (CP) angle (P = .847), or talo-first metatarsal (T-MT1) angle (P = .407) on lateral radiographs; for fifth metatarsal lateral deviation (MT5-LD) angle (P = .623) on anteroposterior (AP) radiographs; or for MT5-LD angle (P = .065) on the 30-degree medial oblique radiographs. However, the mean fourth-fifth intermetatarsal (IMA4-5) angle on AP radiographs was significantly greater in the refracture group, and for Torg II cases, mean weight (P = .042), IMA4-5 angle on AP radiographs (P = .014), and MT5-LD angle (P = .043) on 30-degree medial

  6. Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse

    International Nuclear Information System (INIS)

    Riggs, C.M.; Whitehouse, G.H.; Boyde, A.

    1999-01-01

    This study examined material from Thoroughbred horses, the majority of which had been in race training, for evidence of pathology in the third metacarpal (McIII) and third metatarsal (MtIII) bones which might be related to the occurrence of distal condylar fractures. Whole bone samples were studied and documented by macrophotography prior to macroradiography and computed tomographic (CT) imaging. Microradiographs were made from 100 microm thick mediolateral sections cut perpendicular to the dorsal and palmar/plantar articular surfaces of distal condylar regions of McIII and MtIII. Blocks were prepared for morphological imaging using the backscattered electron mode of scanning electron microscopy (BSE SEM). Linear defects in mineralised articular cartilage and subchondral bone were found in the palmar/plantar aspects of the condylar grooves adjacent to the sagittal ridge. These were closely related to the pattern of densification of the subchondral bone and were associated with intense focal remodelling of the immediately adjacent and subjacent bone. Parasagittal fractures of the condyles originated in similar defects. A unifying hypothesis for the aetiopathogenesis of these fractures is presented

  7. The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial

    NARCIS (Netherlands)

    Weel, Hanneke; Mallee, Wouter H.; van Dijk, C. Niek; Blankevoort, Leendert; Goedegebuure, Simon; Goslings, J. Carel; Kennedy, John G.; Kerkhoffs, Gino M. M. J.

    2015-01-01

    Fifth metatarsal (MT-V) stress fractures often exhibit delayed union and are high-risk fractures for non-union. Surgical treatment, currently considered as the gold standard, does not give optimal results, with a mean time to fracture union of 12-18 weeks. In recent studies, the use of bone marrow

  8. Plate Fixation With Autogenous Calcaneal Dowel Grafting Proximal Fourth and Fifth Metatarsal Fractures: Technique and Case Series.

    Science.gov (United States)

    Seidenstricker, Chad L; Blahous, Edward G; Bouché, Richard T; Saxena, Amol

    Metaphyseal and proximal diaphyseal fractures of the lateral column metatarsals can have problems with healing. In particular, those involving the fifth metatarsal have been associated with a high nonunion rate with nonoperative treatment. Although intramedullary screw fixation results in a high union rate, delayed healing and complications can occur. We describe an innovative technique to treat both acute and chronic injuries involving the metatarsal base from the metaphysis to the proximal diaphyseal bone of the fourth and fifth metatarsals. The surgical technique involves evacuation of sclerotic bone at the fracture site, packing the fracture site with compact cancellous bone, and plate fixation. In our preliminary results, 4 patients displayed 100% radiographic union at a mean of 4.75 (range 4 to 6) weeks with no incidence of refracture, at a mean follow-up point of 3.5 (range 1 to 5) years. The early results with our small series suggest that this technique is a useful treatment choice for metaphyseal and proximal diaphyseal fractures of the fourth and fifth metatarsals. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Multiple floating metatarsals: a unique injury

    Directory of Open Access Journals (Sweden)

    Trikha Vivek

    2013-04-01

    Full Text Available 【Abstract】Concomitant dislocation of the tar-sometatarsal and metatarsophalangeal joints of foot is an extremely rare injury. Such injuries presenting in a single or adjacent dual rays have been described in few cases previously. We describe such an injury in adjacent three metatarsals of a polytrauma patient. These injuries are likely to be missed in the initial assessment of a polytrauma patient. These patients are at risk of an overlooked diagnosis but the consequences of missing this type of injury may be Vivek Trikha*, Tarun Goyal, Amit K Agarwal quite severe. This case is presented in view of its unique-ness along with possible mechanism of injury, the sequence of reduction and follow-up. Knowledge of such injury and its proper management may be useful to the trauma surgeons. Key words: Metatarsal bones; Metatarsophalangeal joint; Wounds and injuries

  10. Structural variation of the distal condyles of the third metacarpal and third metatarsal bones in the horse

    International Nuclear Information System (INIS)

    Riggs, C.M.; Whitehouse, G.H.; Boyde, A.

    1999-01-01

    This study examined 3-dimensional (3D) distribution of sectors with contrasting density in the equine third metacarpal (McIII) and third metatarsal (MtIII) bones with a view to explaining the aetiology of distal condylar fractures. Macroradiography and computed tomographic (CT) imaging were used in the nondestructive study of bones obtained from horses, most of which were Thoroughbreds in race training. Distal condylar regions of McIII and MtIII were also studied in microradiographs of 100 mu m thick mediolateral sections cut perpendicular to the dorsal and palmar/plantar articular surfaces. Qualitative and quantitative results from all methods used (radiography, CTand microradiographic stereology) demonstrated densification (sclerosis) of subchondral bone located in the palmar/plantar regions of the medial and lateral condyles of both McIII and MtIII, Substantial density gradients between the denser condyles and the subchondral bone of the sagittal groove were shown to equate with anatomical differences in loading intensity during locomotion. It is hypothesised that such differences in bone density results in stress concentration at the palmar/plantar aspect of the condylar grooves, which may predispose to fracture

  11. Lateral Sesamoid Position Relative to the Second Metatarsal in Feet With and Without Hallux Valgus: A Prospective Study.

    Science.gov (United States)

    Geng, Xiang; Zhang, Chao; Ma, Xin; Wang, Xu; Huang, Jiazhang; Xu, Jian; Wang, Chen

    2016-01-01

    We sought to determine whether hallux valgus displaces the sesamoid bones laterally away from a stationary first metatarsal or whether the first metatarsal head is displaced medially from the stationary sesamoids, which remain in position relative to the rest of the forefoot. We reviewed weightbearing radiographs in the dorsal plantar view of 128 consecutive patients (149 feet) seen over 2 months in 2014. Of these, 82 feet (55%) had a hallux valgus angle of >15° (hallux valgus group) and 67 feet (45%) had an angle of no more than 15° (control group). We measured the absolute distances from the center of the lateral sesamoid and the first metatarsal head to the long axis of the second metatarsal. Next, the relative distances, defined as the ratio of these 2 absolute distances to the length of the second metatarsal, were calculated to adjust for foot size. Both the absolute and the relative distances from the center of the first metatarsal head to the second metatarsal differed significantly between the 2 groups and correlated positively with the hallux valgus angle and first intermetatarsal angle. However, neither the absolute nor the relative distance to the lateral sesamoid bone differed significantly between the groups, nor did they correlate with either of the 2 angles. Thus, despite medial shifting of the first metatarsal in hallux valgus, the lateral sesamoid retains its relationship to the second metatarsal in transverse plane. Its apparent lateral movement is a radiographic misinterpretation. Awareness of this misinterpretation should improve the success of corrective surgery. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Successful fifth metatarsal bulk autograft reconstruction of thermal necrosis post intramedullary fixation.

    Science.gov (United States)

    Veljkovic, Andrea; Le, Vu; Escudero, Mario; Salat, Peter; Wing, Kevin; Penner, Murray; Younger, Alastair

    2018-03-21

    Reamed intramedullary (IM) screw fixation for proximal fifth metatarsal fractures is technically challenging with potentially devastating complications if basic principles are not followed. A case of an iatrogenic fourth-degree burn after elective reamed IM screw fixation of a proximal fifth metatarsal fracture in a high-level athlete is reported. The case was complicated by postoperative osteomyelitis with third-degree soft-tissue defect. This was successfully treated with staged autologous bone graft reconstruction, tendon reconstruction, and local bi-pedicle flap coverage. The patient returned to competitive-level sports, avoiding the need for fifth ray amputation. Critical points of the IM screw technique and definitive reconstruction are discussed. Bulk autograft reconstruction is a safe and effective alternative to ray amputation in segmental defects of the fifth metatarsal.Level of evidence V.

  13. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (Zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes.

    Science.gov (United States)

    Murawski, Christopher D; Kennedy, John G

    2011-06-01

    Internal fixation is a popular first-line treatment method for proximal fifth metatarsal Jones fractures in athletes; however, nonunions and screw breakage can occur, in part because of nonspecific fixation hardware and poor blood supply. To report the results from 26 patients who underwent percutaneous internal fixation with a specialized screw system of a proximal fifth metatarsal Jones fracture (zones II and III) and bone marrow aspirate concentrate. Case series; Level of evidence, 4. Percutaneous internal fixation for a proximal fifth metatarsal Jones fracture (zones II and III) was performed on 26 athletic patients (mean age, 27.47 years; range, 18-47). All patients were competing at some level of sport and were assessed preoperatively and postoperatively using the Foot and Ankle Outcome Score and SF-12 outcome scores. The mean follow-up time was 20.62 months (range, 12-28). Of the 26 fractures, 17 were traditional zone II Jones fractures, and the remaining 9 were zone III proximal diaphyseal fractures. The mean Foot and Ankle Outcome Score significantly increased, from 51.15 points preoperatively (range, 14-69) to 90.91 at final follow-up (range, 71-100; P fracture healing on standard radiographs was 5 weeks after surgery (range, 4-24). Two patients did not return to their previous levels of sporting activity. One patient experienced a delayed union, and 1 healed but later refractured. Percutaneous internal fixation of proximal fifth metatarsal Jones fractures, with a Charlotte Carolina screw and bone marrow aspirate concentrate, provides more predictable results while permitting athletes a return to sport at their previous levels of competition, with few complications.

  14. Metatarsal lengthening by callotasis in adults with first brachymetatarsia.

    Science.gov (United States)

    Hwang, So-Min; Song, Jennifer Kim; Kim, Hui-Taek

    2012-12-01

    Brachymetatarsia is a rare clinical entity that presents a challenging problem for surgeons. One-stage lengthening with an autologous bone graft has been preferred for metatarsals that require a limited lengthening. With a gradual lengthening of metatarsals, callus distraction (callotasis) can achieve a greater length gain and a concomitant lengthening of the soft tissue. This article presents results of callotasis for adults with first brachymetatarsia. The outcomes of nine cases of first brachymetatarsia in five adult patients who underwent metatarsal lengthening by callotasis between March 1999 and February 2005 were retrospectively reviewed and analyzed. The average length gain was 16.4 mm and the average lengthening percentage was 43.7%. In addition, the average healing index was calculated as 3.8 months/cm, which was higher than that reported previously in the fourth brachymetatarsia. It was concluded that the period of bony consolidation following callotasis is longer in the first brachymetatarsia than in the fourth brachymetatarsia. Presumably, this might be because of the anatomically larger osteotomized cut surface and its weight-bearing function.

  15. Effects of footwear and stride length on metatarsal strains and failure in running.

    Science.gov (United States)

    Firminger, Colin R; Fung, Anita; Loundagin, Lindsay L; Edwards, W Brent

    2017-11-01

    The metatarsal bones of the foot are particularly susceptible to stress fracture owing to the high strains they experience during the stance phase of running. Shoe cushioning and stride length reduction represent two potential interventions to decrease metatarsal strain and thus stress fracture risk. Fourteen male recreational runners ran overground at a 5-km pace while motion capture and plantar pressure data were collected during four experimental conditions: traditional shoe at preferred and 90% preferred stride length, and minimalist shoe at preferred and 90% preferred stride length. Combined musculoskeletal - finite element modeling based on motion analysis and computed tomography data were used to quantify metatarsal strains and the probability of failure was determined using stress-life predictions. No significant interactions between footwear and stride length were observed. Running in minimalist shoes increased strains for all metatarsals by 28.7% (SD 6.4%; pRunning at 90% preferred stride length decreased strains for metatarsal 4 by 4.2% (SD 2.0%; p≤0.007), and no differences in probability of failure were observed. Significant increases in metatarsal strains and the probability of failure were observed for recreational runners acutely transitioning to minimalist shoes. Running with a 10% reduction in stride length did not appear to be a beneficial technique for reducing the risk of metatarsal stress fracture, however the increased number of loading cycles for a given distance was not detrimental either. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metatarsal Osteotomies: Complications.

    Science.gov (United States)

    Reddy, Veerabhadra Babu

    2018-03-01

    Metatarsal osteotomies can be divided into proximal and distal. The proximal osteotomies, such as the oblique, segmental, set cut, and Barouk-Rippstein-Toullec (BRT) osteotomy, all provide the ability to significantly change the position of the metatarsal head without violating the joint. These osteotomies, however, have a high rate of nonunion when done without internal fixation and can lead to transfer metatarsalgia when done without regard to the parabola of metatarsal head position. Distal osteotomies such as the Weil and Helal offer superior healing but have an increased incidence of recurrent metatarsalgia, joint stiffness, and floating toe. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Biomechanical consequences of adding plantar fascia release to metatarsal osteotomies: Changes in forefoot plantar pressures.

    Science.gov (United States)

    Aydogan, Umur; Roush, Evan P; Moore, Blake E; Andrews, Seth H; Lewis, Gregory S

    2017-04-01

    Destruction of the normal metatarsal arch by a long metatarsal is often a cause for metatarsalgia. When surgery is warranted, distal oblique, or proximal dorsiflexion osteotomies of the long metatarsal bones are commonly used. The plantar fascia has anatomical connection to all metatarsal heads. There is controversial scientific evidence on the effect of plantar fascia release on forefoot biomechanics. In this cadaveric biomechanical study, we hypothesized that plantar fascia release would augment the plantar metatarsal pressure decreasing effects of two common second metatarsal osteotomy techniques. Six matched pairs of foot and ankle specimens were mounted on a pressure mat loading platform. Two randomly assigned surgery groups, which had received either distal oblique, or proximal dorsiflexion osteotomy of the second metatarsal, were evaluated before and after plantar fasciectomy. Specimens were loaded up to a ground reaction force of 400 N at varying Achilles tendon forces. Average pressures, peak pressures, and contact areas were analyzed. Supporting our hypothesis, average pressures under the second metatarsal during 600 N Achilles load were decreased by plantar fascia release following proximal osteotomy (p plantar fascia release following modified distal osteotomy, under multiple Achilles loading conditions (p Plantar fasciotomy should not be added to distal metatarsal osteotomy in the treatment of metatarsalgia. If proximal dorsiflexion osteotomy would be preferred, plantar fasciotomy should be approached cautiously not to disturb the forefoot biomechanics. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:800-804, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study.

    Science.gov (United States)

    Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James

    2017-12-01

    Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mini-Invasive floating metatarsal osteotomy for resistant or recurrent neuropathic plantar metatarsal head ulcers.

    Science.gov (United States)

    Tamir, Eran; Finestone, Aharon S; Avisar, Erez; Agar, Gabriel

    2016-07-11

    Patients with peripheral neuropathy and pressure under a relatively plantar deviated metatarsal head frequently develop plantar foot ulcers. When conservative management with orthotics and shoes does not cure the ulcer, surgical metatarsal osteotomy may be indicated to relieve the pressure and enable the ulcer to heal. The purpose of this study is to evaluate the use of a mini-invasive floating metatarsal osteotomy in treating recalcitrant ulcers or recurrent ulcers plantar to the metatarsal heads in patients with diabetes mellitus (DM) related neuropathy. Computerized medical files of patients with diabetic neuropathy treated with an osteotomy during 2013 and 2014 were retrospectively reviewed. There were 20 osteotomies performed on 17 patients (mean age 58 years). The patients had a diagnosis of DM for a mean of 17 years. All ulcers were University of Texas grade 1A; mean ulcer age was 19 months. After 17/20 operations, the ulcer completely resolved after 6 weeks and did not recur after a mean follow-up of 11.5 months. One patient developed an early post-operative infection with osteomyelitis at the osteotomy site (proximal shaft of the fifth metatarsal) that needed debridement and IV antibiotics. In the other 19 cases, the surgical wound healed within 1 week. Asymptomatic radiological non-union developed in six cases (30 %). Mini-invasive floating metatarsal osteotomy can cure resistant and recurrent University of Texas grade 1A ulcerations plantar to the metatarsal heads in neuropathic patients.

  20. Mini-Invasive floating metatarsal osteotomy for resistant or recurrent neuropathic plantar metatarsal head ulcers

    OpenAIRE

    Tamir, Eran; Finestone, Aharon S.; Avisar, Erez; Agar, Gabriel

    2016-01-01

    Background Patients with peripheral neuropathy and pressure under a relatively plantar deviated metatarsal head frequently develop plantar foot ulcers. When conservative management with orthotics and shoes does not cure the ulcer, surgical metatarsal osteotomy may be indicated to relieve the pressure and enable the ulcer to heal. The purpose of this study is to evaluate the use of a mini-invasive floating metatarsal osteotomy in treating recalcitrant ulcers or recurrent ulcers plantar to the ...

  1. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  2. Demographics and outcome of metatarsal fractures

    NARCIS (Netherlands)

    Cakir, H.; van Vliet-Koppert, S. T.; van Lieshout, E. M. M.; de Vries, M. R.; van der Elst, M.; Schepers, T.

    2011-01-01

    Although metatarsal fractures are amongst the most common injuries of the foot, this is the first study on outcome after metatarsal fractures. All consecutive patients with metatarsal fractures treated between January 2006 and September 2008 were re-evaluated. Patients aged 16 to 75 were sent a

  3. Transfer of the second to the first metatarsal ray in a case of lawn mower injury: a case report.

    Science.gov (United States)

    Sassu, Paolo; Tsai, Tsu Min

    2009-01-01

    The medial longitudinal arch of the foot plays a major role for a physiologic transfer of the load from the heel to the forefoot during walking and running. Traumatic amputation that involve either the great toe or the whole first metatarsal bone can lead to collapse of the medial longitudinal arch, overload of the metatarsal heads, and painful callus formation. If replant of the amputated part is not possible or has failed, it is advisable to reconstruct the medial longitudinal arch in order to re-establish a functional transfer of the load in the foot. We present a case of a young lady who suffered from traumatic amputation at the distal third of the first metatarsal. Replantation failed due to the severity of the initial injury. Despite a good coverage of the defect with a lateral arm flap, the patient developed a painful plantar callus underneath the amputated stump. The adjacent second metatarsal ray was then raised as a pedicled flap including bone and soft tissues and transferred to the first ray in order to reconstruct a physiologic medial longitudinal arch. The patient had excellent functional results with no recurrence of the callus. (c) 2008 Wiley-Liss, Inc.

  4. Curative Metatarsal Bone Surgery Combined with Intralesional Administration of Recombinant Human Epidermal Growth Factor in Diabetic Neuropathic Ulceration of the Forefoot: A Prospective, Open, Uncontrolled, Nonrandomized, Observational Study

    Directory of Open Access Journals (Sweden)

    Aristides L. Garcia Herrera, MD, PhD

    2017-01-01

    Conclusions: The combination of curative metatarsal bone surgery with intralesional administration of recombinant human EGF resulted in a significant reduction in the re-epithelization time, recidivism, and development of new diabetic lesions. The safety profile was appropriate. However, more randomized, triple-blind, and placebo trials are needed to evaluate the efficacy and safety of this new therapy.

  5. Internal fixation of proximal fractures of the 2nd and 4th metacarpal and metatarsal bones using bioabsorbable screws.

    Science.gov (United States)

    Mageed, M; Steinberg, T; Drumm, N; Stubbs, N; Wegert, J; Koene, M

    2018-03-01

    Fractures involving the proximal one-third of the splint bone are relatively rare and are challenging to treat. A variety of management techniques have been reported in the literature. The aim of this retrospective case series was to describe the clinical presentation and evaluate the efficacy of bioabsorbable polylactic acid screws in internal fixation of proximal fractures of the 2nd and 4th metacarpal and metatarsal bones in horses. The medical records, diagnostic images and outcome of all horses diagnosed with a proximal fracture of the splint bones and treated with partial resection and internal fixation of the proximal stump using bioabsorbable polylactic acid screws between 2014 and 2015 were reviewed. Eight horses met the inclusion criteria. The results showed that there were no complications encountered during screw placement or postoperatively. Six horses returned to full work 3 months after the operation and two horses remained mildly lame. On follow-up radiographs 12 months postoperatively (n = 2) the screws were not completely absorbed. The screws resulted in a cone-shaped radiolucency, which was progressively replaced from the outer margins by bone sclerosis. The use of bioabsorbable screws for fixation of proximal fractures of the splint bone appears to be a safe and feasible technique and may offer several advantages over the use of traditional metallic implants. © 2018 Australian Veterinary Association.

  6. Frequency distributions of 174 fractures of the distal condyles of the third metacarpal and metatarsal bones in 167 Thoroughbred racehorses (1999-2009).

    Science.gov (United States)

    Jacklin, B D; Wright, I M

    2012-11-01

    Although fractures of the metacarpal and metatarsal condyles are the most common long-bone fractures of Thoroughbred horses in training, limited data on variations in morphology and incidence have been published. Additionally, grouped analyses of previous studies from the UK and USA would permit comparison between study groups and the creation of a substantial pool of international data. Retrospective analysis of case records of horses with fractures of the distal condyles of third metacarpal/metatarsal bones seen over the last 10 years at Newmarket Equine Hospital. The current series was compared with a prior series from the UK; pooled analyses of these, and series from the USA were also compared. One hundred and seventy-four fractures were identified in 167 racehorses. The current series contained a significantly lower proportion of medial condylar fractures than in a similar population 17 years earlier. Fractures that originated more abaxially tended to be shorter, and a significant proportion of lateral condylar fractures arose outside of the condylar groove. There was also some apparent seasonality of fractures of the lateral condyles in 2-year-old horses, but not so in older horses or those with medial condylar fractures. A substantial portion (approximately 50%) of fractures in the present series cannot be explained by unifying theories of aetiopathogenesis, which suggest that fractures usually arise within the condylar groove, as a focus of cumulative fatigue and failure of adaptation of bone. A separate aetiopathogenesis may be responsible for a proportion of condylar fractures encountered in racehorses, and further work is required to elucidate this. Changes in the number of medial condylar fractures encountered may reflect the introduction of artificial racing and training surfaces, and also may reflect changes in the age demographic of horses racing in the UK since the introduction of year-round 'all-weather' racing. © 2012 EVJ Ltd.

  7. [Ex Vivo Testing of Mechanical Properties of Canine Metacarpal/Metatarsal Bones after Simulated Implant Removal].

    Science.gov (United States)

    Srnec, R; Fedorová, P; Pěnčík, J; Vojtová, L; Sedlinská, M; Nečas, A

    2016-01-01

    PURPOSE OF THE STUDY In a long-term perspective, it is better to remove implants after fracture healing. However, subsequent full or excessive loading of an extremity may result in refracture, and the bone with holes after screw removal may present a site with predilection for this. The aim of the study was to find ways of how to decrease risk factors for refracture in such a case. This involved support to the mechanical properties of a bone during its remodelling until defects following implant removal are repaired, using a material tolerated by bone tissue and easy to apply. It also included an assessment of the mechanical properties of a bone after filling the holes in it with a newly developed biodegradable polymer-composite gel ("bone paste"). The composite also has a prospect of being used to repair bony defects produced by pathological processes. MATERIAL AND METHODS Experiments were carried out on intact weight-bearing small bones in dogs. A total of 27 specimens of metacarpal/metatarsal bones were used for ex vivo testing. They were divided into three groups: K1 (n = 9) control undamaged bones; K2 (n = 9) control bones with iatrogenic damage simulating holes left after cortical screw removal; EXP (n = 9) experimental specimens in which simulated holes in bone were filled with the biodegradable self-hardening composite. The bone specimens were subjected to three-point bending in the caudocranial direction by a force acting parallel to the direction of drilling in their middiaphyses. The value of maximum load achieved (N) and the corresponding value of a vertical displacement (mm) were recorded in each specimen, then compared and statistically evaluated. RESULTS On application of a maximum load (N), all bone specimens broke in the mid-part of their diaphyses. In group K1 the average maximum force of 595.6 ± 79.5 N was needed to break the bone; in group K2 it was 347.6 ± 58.6 N; and in group EXP it was 458.3 ± 102.7 N. The groups with damaged bones, K2 and

  8. Multiple congenital brachymetatarsia. A one-stage combined shortening and lengthening procedure without iliac bone graft.

    Science.gov (United States)

    Kim, J S; Baek, G H; Chung, M S; Yoon, P W

    2004-09-01

    We performed nine metatarsal and three proximal phalangeal lengthenings in five patients with congenital brachymetatarsia of the first and one or two other metatarsal bones, by a one-stage combined shortening and lengthening procedure using intercalcary autogenous bone grafts from adjacent shortened metatarsal bones. Instead of the isolated lengthening of the first and the other metatarsal bones, we shortened the adjacent normal metatarsal and used the excised bone to lengthen the short toes, except for the great toe, to restore the normal parabola. One skin incision was used. All the operations were performed bilaterally and the patients were followed up for a mean period of 69.5 months (29 to 107). They all regained a nearly normal parabola and were satisfied with the cosmetic results. Our technique is straightforward and produces good cosmetic results. Satisfactory, bony union is achieved, morbidity is low, and no additional surgery is required for the removal of metal implants.

  9. The first metatarsal web space: its applied anatomy and usage in tracing the first dorsal metatarsal artery in thumb reconstruction.

    Science.gov (United States)

    Xu, Yong-Qing; Li, Jun; Zhong, Shi-Zhen; Xu, Da-Chuan; Xu, Xiao-Shan; Guo, Yuan-Fa; Wang, Xin-Min; Li, Zhu-Yi; Zhu, Yue-Liang

    2004-12-01

    To clarify the anatomical relationship of the structures in the first toe webbing space for better dissection of toes in thumb reconstruction. The first dorsal metatarsal artery, the first deep transverse metatarsal ligament and the extensor expansion were observed on 42 adult cadaveric lower extremities. Clinically the method of tracing the first dorsal metatarsal artery around the space of the extensor expansion was used in 36 cases of thumb reconstruction. The distal segments of the first dorsal metatarsal artery of Gilbert types I and II were located superficially to the extensor expansion. The harvesting time of a toe was shortened from 90 minutes to 50 minutes with 100% survival of reconstructed fingers. The distal segment of the first dorsal metatarsal artery lies constantly at the superficial layer of the extensor expansion. Most of the first metatarsal arteries of Gilbert types I and II can be easily located via the combined sequential and reverse dissection around the space of the extensor expansion.

  10. Metatarsal lengthening in congenital brachymetatarsia: one-stage lengthening versus lengthening by callotasis.

    Science.gov (United States)

    Choi, I H; Chung, M S; Baek, G H; Cho, T J; Chung, C Y

    1999-01-01

    We retrospectively reviewed and compared the outcomes of 15 one-stage metatarsal lengthenings with intercalary bone graftings in 10 patients with those of nine metatarsal lengthenings by callotasis in five patients younger than 15 years. In the one-stage lengthening group, the diaphyseal osteotomy site was gradually distracted intraoperatively for 20-30 min to relax the surrounding soft tissues. In the callotasis group, lengthening was achieved with mini-Orthofix M-100. There was little difference in the outcomes between the two groups in terms of length gain, percentage increase, and complications. However, the period to achieve bony consolidation was longer in the callotasis group (2.7 months/cm) than in the one-stage lengthening group (1.5 months/cm). No case of neurovascular impairment was found in both groups.

  11. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  12. Geometry of the Proximal Phalanx of Hallux and First Metatarsal Bone to Predict Hallux Abducto Valgus: A Radiological Study.

    Science.gov (United States)

    Perez Boal, Eduardo; Becerro de Bengoa Vallejo, Ricardo; Fuentes Rodriguez, Miguel; Lopez Lopez, Daniel; Losa Iglesias, Marta Elena

    2016-01-01

    Hallux abducto valgus (HAV) is one of the most common forefoot deformities in adulthood with a variable prevalence but has been reported as high as 48%. The study proposed that HAV development involves a skeletal parameter of the first metatarsal bone and proximal phalanx hallux (PPH) to determine if the length measurements of the metatarsal and PPH can be used to infer adult HAV. All consecutive patients over 21 years of age with HAV by roentgenographic evaluation were included in a cross-sectional study. The control group included patients without HAV. The study included 160 individuals. We identified and assessed the following radiographic measurements to evaluate HAV: the distances from the medial (LDM), central (LDC), and lateral (LDL) aspects of the base to the corresponding regions of the head of the PPH. The difference between the medial and lateral aspect of PPH was also calculated. The reliability of the variables measured in 40 radiographic films show perfect reliability ranging from 0.941 to 1 with a small error ranging from 0.762 to 0. Also, there were no systematic errors between the two measurements for any variable (P > 0.05). The LDM PPH showed the highest reliability and lowest error. It is more suitable to measure the LDM PPH instead of the LDC PPH when calculating the hallux valgus angle based on our reliability results. When the differences of the medial and lateral PPH are greater, the risk for developing HAV increases.

  13. Brachymetatarsia of the Fourth Metatarsal, Lengthening Scarf Osteotomy with Bone Graft

    OpenAIRE

    Desai, Ankit; Lidder, Surjit; R. Armitage, Andrew; S. Rajaratnam, Samuel; D. Skyrme, Andrew

    2013-01-01

    A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech® screw (Biotech International, France) with the addition of two 1 cm cancellous cubes (RTI Biologics, United States). A lengthening z-plasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modifie...

  14. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  15. Barefoot-simulating footwear associated with metatarsal stress injury in 2 runners.

    Science.gov (United States)

    Giuliani, Jeffrey; Masini, Brendan; Alitz, Curtis; Owens, Brett D

    2011-07-07

    Stress-related changes and fractures in the foot are frequent in runners. However, the causative factors, including anatomic and kinematic variables, are not well defined. Footwear choice has also been implicated in contributing to injury patterns with changes in force transmission and gait analyses reported in the biomechanical literature. Despite the benefits of footwear, there has been increased interest among the running community in barefoot running with proposed benefits including a decreased rate of injury. We report 2 cases of metatarsal stress fracture in experienced runners whose only regimen change was the adoption of barefoot-simulating footwear. One was a 19-year-old runner who developed a second metatarsal stress reaction along the entire diaphysis. The second case was a 35-year-old ultra-marathon runner who developed a fracture in the second metatarsal diaphysis after 6 weeks of use of the same footwear. While both stress injuries healed without long-term effects, these injuries are alarming in that they occurred in experienced male runners without any other risk factors for stress injury to bone. The suspected cause for stress injury in these 2 patients is the change to barefoot-simulating footwear. Runners using these shoes should be cautioned on the potential need for gait alterations from a heel-strike to a midfoot-striking pattern, as well as cautioned on the symptoms of stress injury. Copyright 2011, SLACK Incorporated.

  16. External fixation to correct tarsal-metatarsal fracture in rock pigeon (Columba livia

    Directory of Open Access Journals (Sweden)

    Leandro Almeida Rui

    Full Text Available ABSTRACT Orthopedic conditions, such as bone fractures, are very common in avian medicine. External fixators have been considered the gold standard for birds, since they allow early movement of the limbs and minimal invasive surgery. Fractures in several bones have been successfully treated in pigeons. However, to the best of our knowledge, this case represents the first report of successful surgical repair of tarsal-metatarsal fracture in rock pigeon. External fixator was made with four 24G catheters, being inserted manually proximal and distal to the fracture and connected with polymerizable acrylic. Radiographic consolidation of fracture was observed 60 days post-surgery and anti-inflammatory and antibiotic protocols were successful on avoiding pain and infection during surgery and bone healing.

  17. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  18. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  19. Minimally invasive distal first metatarsal osteotomy can be an option for recurrent hallux valgus.

    Science.gov (United States)

    Magnan, Bruno; Negri, Stefano; Maluta, Tommaso; Dall'Oca, Carlo; Samaila, Elena

    2018-01-12

    Recurrence rate of surgical treatment of hallux valgus ranges in the literature from 2.7% to 16%, regardless of used procedure. In this study, long-term results of a minimally invasive distal osteotomy of the first metatarsal bone for treatment of recurrent hallux valgus are described. 32 consecutive percutaneous distal osteotomies of the first metatarsal were performed in 26 patients for treatment of recurrent hallux valgus. Primary surgery had been soft tissue procedures in 8 cases (25%), first metatarsal or phalangeal osteotomies in 19 cases (59.4%) and Keller procedures in 5 cases (15.6%). Patients were assessed with a mean follow-up of 9.8±4.3 years. All patients reported the disappearance or reduction of the pain. The mean overall AOFAS score improved from 46.9±17.8 points to 85.2±14.9 at final follow-up. The mean hallux valgus angle decreased from 26.1±9.1 to 9.7±5.4°, the intermetatarsal angle decreased from 11.5±4.5 to 6.7±4.0°. No major complications were recorded with a re-recurrence rate of 3.1% (1 case). Percutaneous distal osteotomy of the first metatarsal can be a reliable and safe surgical option in the recurrent hallux valgus with low complication rate and the advantages of a minimally invasive surgery. IV, Retrospective Case Series. Copyright © 2018 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  20. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  1. Brachymetatarsia of the fourth metatarsal, lengthening scarf osteotomy with bone graft.

    Science.gov (United States)

    Desai, Ankit; Lidder, Surjit; R Armitage, Andrew; S Rajaratnam, Samuel; D Skyrme, Andrew

    2013-01-01

    A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech(®) screw (Biotech International, France) with the addition of two 1 cm cancellous cubes (RTI Biologics, United States). A lengthening zplasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modified technique of lengthening scarf osteotomy is described for congenital brachymatatarsia. This technique allows one stage lengthening through a single incision with graft incorporation by 6 weeks.

  2. Percutaneous dorsal closing wedge osteotomy of the metatarsal neck in management of metatarsalgia.

    Science.gov (United States)

    Lui, Tun Hing

    2014-12-01

    Metatarsalgia can be caused by plantarflexion of a central metatarsal or discrepancies in the metatarsals' length. Nonsurgical management is usually sufficient to achieve satisfactory results. For those recalcitrant cases, metatarsal osteotomy is needed to relieve the pain. We describe a technique of percutaneous dorsal closing wedge osteotomy of the metatarsal to manage the recalcitrant metatarsalgia. A case series was reviewed retrospectively. From March 2010 to March 2013, percutaneous dorsal closing wedge osteotomy of the metatarsal neck has been performed in 33 patients. Thirty six feet with 63 metatarsals were operated on. Thirty two second metatarsals, 22 third metatarsals, 5 fourth metatarsals and 4 fifth metatarsals were operated on. All the osteotomy sites healed up without any transverse plane deformity. The painful callosities subsided except in one operated metatarsal. Recurrence of painful callosities occurred in 2 operated metatarsals. Transfer metatarsalgia occurred in 2 feet. Floating toe deformity occurred in 2 operated rays. There was no nerve injury noted. Two patients had delayed wound healing with serous discharge and the wounds were eventually healed up with wound dressing. Percutaneous dorsal closing wedge osteotomy of the metatarsal neck is an effective and safe surgical treatment of recalcitrant metatarsalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of transfixation casting for treatment of third metacarpal, third metatarsal, and phalangeal fractures in horses: 37 cases (1994-2004).

    Science.gov (United States)

    Lescun, Timothy B; McClure, Scott R; Ward, Michael P; Downs, Christopher; Wilson, David A; Adams, Stephen B; Hawkins, Jan F; Reinertson, Eric L

    2007-05-01

    To evaluate clinical findings, complications, and outcome of horses and foals with third metacarpal, third metatarsal, or phalangeal fractures that were treated with transfixation casting. Retrospective case series. Animals-29 adult horses and 8 foals with fractures of the third metacarpal or metatarsal bone or the proximal or middle phalanx. Medical records were reviewed, and follow-up information was obtained. Data were analyzed by use of logistic regression models for survival, fracture healing, return to intended use, pin loosening, pin hole lysis, and complications associated with pins. In 27 of 35 (77%) horses, the fracture healed and the horse survived, including 10 of 15 third metacarpal or metatarsal bone fractures, 11 of 12 proximal phalanx fractures, and 6 of 8 middle phalanx fractures. Four adult horses sustained a fracture through a pin hole. One horse sustained a pathologic unicortical fracture secondary to a pin hole infec-tion. Increasing body weight, fracture involving 2 joints, nondiaphyseal fracture location, and increasing duration until radiographic union were associated with horses not returning to their intended use. After adjusting for body weight, pin loosening was associated with di-aphyseal pin location, pin hole lysis was associated with number of days with a transfixation cast, and pin complications were associated with hand insertion of pins. Results indicated that transfixation casting can be successful in managing fractures distal to the carpus or tarsus in horses. This technique is most suitable for comminuted fractures of the proximal phalanx but can be used for third metacarpal, third metatarsal, or middle phalanx fractures, with or without internal fixation.

  4. Clinical evaluation of stress fractures using bone scintigraphy

    International Nuclear Information System (INIS)

    Furuta, Atsuhiko; Tanohata, Kazunori; Otake, Toru; Hashizume, Toshiyuki; Kobayashi, Yozi; Nakazima, Hiroyuki.

    1984-01-01

    Clinical evaluation of stress fractures were performed in 58 athletes using bone scintigraphy with sup(99m)Tc-MDP. Stress fractures of the tibia were most often seen in the males with running type sports. They occurred more often in the proximal tibia and on the right side. Stress fractures of the fibula were most often seen in females with jumping type sports, such as volley ball. They occurred more often in the distal fibula and on the right side. Tarsal bone fractures were seen most often rugby players. Metatarsal fractures occurred in the third fourth and fifth metatarsals. No lesion was seen in the first and second metatarsals. We feel that stress fractures of the femur can be differentiated from osteosarcoma by small loculated radionuclide accumulation as well as symptome, course and tomographic and CT finding. Bilateral involvement was seen in two cases in patellae and calcanei. Most of the other fractures were seen on the right side. Negative radiographs were seen in 36% of the patients and occurred most commonly in the tarsal bones excluding calcaneus. Bone scintigrams were positive in all cases and were most useful in fractures of the tarsal bones excluding calcaneus. (author)

  5. Clinical evaluation of stress fractures using bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Atsuhiko; Tanohata, Kazunori; Otake, Toru; Hashizume, Toshiyuki (Kanto Rosai Hospital, Kawasaki, Kanagawa (Japan)); Kobayashi, Yozi; Nakazima, Hiroyuki

    1984-05-01

    Clinical evaluation of stress fractures were performed in 58 athletes using bone scintigraphy with sup(99m)Tc-MDP. Stress fractures of the tibia were most often seen in the males with running type sports. They occurred more often in the proximal tibia and on the right side. Stress fractures of the fibula were most often seen in females with jumping type sports, such as volley ball. They occurred more often in the distal fibula and on the right side. Tarsal bone fractures were seen most often rugby players. Metatarsal fractures occurred in the third fourth and fifth metatarsals. No lesion was seen in the first and second metatarsals. We feel that stress fractures of the femur can be differentiated from osteosarcoma by small loculated radionuclide accumulation as well as symptoms, course and tomographic and CT findings. Bilateral involvement was seen in two cases in patellae and calcanei. Most of the other fractures were seen on the right side. Negative radiographs were seen in 36% of the patients and occurred most commonly in the tarsal bones excluding calcaneus. Bone scintigrams were positive in all cases and were most useful in fractures of the tarsal bones excluding calcaneus.

  6. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  7. Brachymetatarsia of the fourth metatarsal, lengthening scarf osteotomy with bone graft

    Directory of Open Access Journals (Sweden)

    Ankit Desai

    2013-09-01

    Full Text Available A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech® screw (Biotech International, France with the addition of two 1 cm cancellous cubes (RTI Biologics, United States. A lengthening z-plasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modified technique of lengthening scarf osteotomy is described for congenital brachymatatarsia. This technique allows one stage lengthening through a single incision with graft incorporation by 6 weeks.

  8. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    Science.gov (United States)

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  9. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  10. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  12. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  13. Salter-Harris type II metacarpal and metatarsal fracture in three foals. Treatment by minimally-invasive lag screw osteosynthesis combined with external coaptation.

    Science.gov (United States)

    Klopfenstein Bregger, Micaël D; Fürst, Anton E; Kircher, Patrick R; Kluge, Katharina; Kummer, Martin

    2016-05-18

    To describe minimally-invasive lag screw osteosynthesis combined with external coaptation for the treatment of Salter-Harris type II third metacarpal and third metatarsal bone fractures. Three foals aged two weeks to four months with a Salter-Harris type II third metacarpal or third metatarsal fracture. Surgery was carried out under general anaesthesia in lateral recumbency. After fracture reduction, the metaphyseal fragment was stabilized with two cortical screws placed in lag fashion under fluoroscopic control. A cast was applied for at least two weeks. All foals had a good outcome with complete fracture healing and return to complete soundness without any angular limb deformity. All foals had moderate transient digital hyperextension after cast removal. Internal fixation of Salter-Harris type II third metacarpal or third metatarsal fractures with two cortical screws in lag fashion, combined with external coaptation provided good stabilization and preserved the longitudinal growth potential of the injured physis.

  14. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats.

    Science.gov (United States)

    Broulík, P D; Vondrová, J; Růzicka, P; Sedlácek, R; Zíma, T

    2010-01-01

    Alcohol use has been identified as a risk factor for the development of osteoporosis. Eight male Wistar rats at two months of age were alcoho-fed (7.6 g 95 % ethanol/kg b.w. per day) to evaluate the effects of long-term administration (three months) of alcohol in drinking water. We have used a dose which is considered to be comparable to a dose of 1 liter of wine or 2.5 liters of 12(°) beer used in male adults daily. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. The bones from alcohol-fed rats were characterized by a reduction in bone density as well as in ash, calcium and phosphate content. In alcohol-fed rats the reduction in bone mineral density (10 %) was reflected by about 12 % reduction of mechanical strength of femur (158+/-5.5 vs. 178+/-3.2 N/mm(2)). Alcohol significantly altered femoral cortical thickness. In our experiment alcohol itself did not exert any antiandrogenic effect and it did not produce changes in the weight of seminal vesicles. Liver function test (GGT, ALP, AST) did not differ between alcohol-fed rats and control rats. Alcohol-induced bone loss is associated with increased bone resorption and decreased bone formation. These results document the efficacy of alcohol at the dose of 7.6 g 95 % ethanol/kg b.w. to cause bone loss and loss of bone mechanical strength in intact rats. The results of the present study may be interpreted as supporting the hypothesis of alcohol as a risk factor for osteoporosis.

  15. Lengthening of the shortened first metatarsal after Wilson's osteotomy for hallux valgus.

    Science.gov (United States)

    Singh, D; Dudkiewicz, I

    2009-12-01

    Metatarsalgia is a recognised complication following iatrogenic shortening of the first metatarsal in the management of hallux valgus. The traditional surgical treatment is by shortening osteotomies of the lesser metatarsals. We describe the results of lengthening of iatrogenic first brachymetatarsia in 16 females. A Scarf-type osteotomy was used in the first four cases and a step-cut of equal thicknesses along the axis of the first metatarsal was performed in the others. The mean follow-up was 21 months (19 to 26). Relief of metatarsalgia was obtained in the six patients in whom 10 mm of lengthening had been achieved, compared to only 50% relief in those where less than 8 mm of lengthening had been gained. One-stage step-cut lengthening osteotomy of the first metatarsal may be preferable to shortening osteotomies of the lesser metatarsals in the treatment of metatarsalgia following surgical shortening of the first metatarsal.

  16. Second hand tobacco smoke adversely affects the bone of immature rats

    Directory of Open Access Journals (Sweden)

    Rodrigo César Rosa

    Full Text Available OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness. RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01 and a decrease of 11.25% in tibia length (p<0.001. Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001, leading to a 42.8% reduction in maximum strength (p<0.001 and a 56.7% reduction in stiffness (p<0.001. CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  17. Effect of dietary soy isoflavones on bone loss in ovariectomized rats ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ovariectomized (OVX) rats. Methods: Forty-eight rats were assigned randomly to groups of OVX rats receiving soy isoflavones (20, 30, or 40 mg/kg of body weight daily), untreated OVX rats, or untreated intact rats. After 8 weeks, bone ...

  18. Bone metabolism of male rats chronically exposed to cadmium

    International Nuclear Information System (INIS)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina

    2005-01-01

    Recently, based on a female rat model of human exposure, we have reported that low-level chronic exposure to cadmium (Cd) has an injurious effect on the skeleton. The purpose of the current study was to investigate whether the exposure may also affect bone metabolism in a male rat model and to estimate the gender-related differences in the bone effect of Cd. Young male Wistar rats received drinking water containing 0, 1, 5, or 50 mg Cd/l for 12 months. The bone effect of Cd was evaluated using bone densitometry and biochemical markers of bone turnover. Renal handling of calcium (Ca) and phosphate, and serum concentrations of vitamin D metabolites, calcitonin, and parathormone were estimated as well. At treatment with 1 mg Cd/l, corresponding to the low environmental exposure in non-Cd-polluted areas, the bone mineral content (BMC) and density (BMD) at the femur and lumbar spine (L1-L5) and the total skeleton BMD did not differ compared to control. However, from the 6th month of the exposure, the Z score BMD indicated osteopenia in some animals and after 12 months the bone resorption very clearly tended to an increase. The rats' exposure corresponding to human moderate (5 mg Cd/l) and especially relatively high (50 mg Cd/l) exposure dose- and duration-dependently disturbed the processes of bone turnover and bone mass accumulation leading to formation of less dense than normal bone tissue. The effects were accompanied by changes in the serum concentration of calciotropic hormones and disorders in Ca and phosphate metabolism. It can be concluded that low environmental exposure to Cd may be only a subtle risk factor for skeletal demineralization in men. The results together with our previous findings based on an analogous model using female rats give clear evidence that males are less vulnerable to the bone effects of Cd compared to females

  19. Celecoxib does not significantly delay bone healing in a rat femoral osteotomy model: a bone histomorphometry study

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2011-12-01

    Full Text Available Jun Iwamoto1, Azusa Seki2, Yoshihiro Sato3, Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan; 2Hamri Co, Ltd, Tokyo, Japan; 3Department of Neurology, Mitate Hospital, Fukuoka, JapanBackground and objective: The objective of the present study was to determine whether celecoxib, a cyclo-oxygenase-2 inhibitor, would delay bone healing in a rat femoral osteotomy model by examining bone histomorphometry parameters.Methods: Twenty-one 6-week-old female Sprague-Dawley rats underwent a unilateral osteotomy of the femoral diaphysis followed by intramedullary wire fixation; the rats were then divided into three groups: the vehicle administration group (control, n = 8, the vitamin K2 administration (menatetrenone 30 mg/kg orally, five times a week group (positive control, n = 5, and the celecoxib administration (4 mg/kg orally, five times a week group (n = 8. After 6 weeks of treatment, the wires were removed, and a bone histomorphometric analysis was performed on the bone tissue inside the callus. The lamellar area relative to the bone area was significantly higher and the total area and woven area relative to the bone area were significantly lower in the vitamin K2 group than in the vehicle group. However, none of the structural parameters, such as the callus and bone area relative to the total area, lamellar and woven areas relative to the bone area, or the formative and resorptive parameters such as osteoclast surface, number of osteoclasts, osteoblast surface, osteoid surface, eroded surface, and bone formation rate per bone surface differed significantly between the vehicle and celecoxib groups.Conclusion: The present study implies that celecoxib may not significantly delay bone healing in a rat femoral osteotomy model based on the results of a bone histomorphometric analysis.Keywords: femoral osteotomy, bone healing, callus, rat, celecoxib

  20. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats.

    Science.gov (United States)

    Bagi, Cedo M; Edwards, Kristin; Berryman, Edwin

    2017-12-01

    Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated

  1. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  2. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    Henmi, Akiko; Nakamura, Megumi; Echigo, Seishi; Sasano, Yasuyuki

    2011-01-01

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  3. Designing a Prognostic Scoring System for Predicting the Outcomes of Proximal Fifth Metatarsal Fractures at 20 Weeks

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Tahririan

    2015-03-01

    Full Text Available Background: Fractures of the proximal fifth metatarsal bone are among the most common fractures observed in the foot and their classification and management has been subject to much discussion and disagreement. In this study, we aim to identify and quantify the effect of possible predictors of the outcome of the treatment of proximal fifth metatarsal fractures. Methods: Patients with established proximal fifth metatarsal fractures were enrolled in this prospective cohort and the outcome of their treatment was assessed using the AOFAS mid foot scale at 6 and 20 weeks. Results: 143 patients were included in the study. Our study showed that displacement, weight and type III fractures were significant independent predictors of poor outcome at 6 weeks while at 20 weeks in addition to these factors, gender and diabetes mellitus were also shown to be significant independent predictors of poor outcome. A scoring system was designed by assigning weight to these factors and it was shown to be a strong predictor of outcome at 20 weeks. Conclusion: We recommend that our scoring system would help surgeons to decide whether patients’ prognostic factors are significant enough for him/her to opt for a surgical approach to treatment rather than a conservative approach.

  4. First Metatarsal Head and Medial Eminence Widths with and Without Hallux Valgus.

    Science.gov (United States)

    Lenz, Robin C; Nagesh, Darshan; Park, Hannah K; Grady, John

    2016-09-02

    Resection of the medial eminence in hallux valgus surgery is common. True hypertrophy of the medial eminence in hallux valgus is debated. No studies have compared metatarsal head width in patients with hallux valgus and control patients. We reviewed 43 radiographs with hallux valgus and 27 without hallux valgus. We measured medial eminence width, first metatarsal head width, and first metatarsal shaft width in patients with and without radiographic hallux valgus. Medial eminence width was 1.12 mm larger in patients with hallux valgus (P hallux valgus (P hallux valgus. However, frontal plane rotation of the first metatarsal likely accounts for this difference.

  5. Estimation of body mass index from the metrics of the first metatarsal

    Science.gov (United States)

    Dunn, Tyler E.

    Estimation of the biological profile from as many skeletal elements as possible is a necessity in both forensic and bioarchaeological contexts; this includes non-standard aspects of the biological profile, such as body mass index (BMI). BMI is a measure that allows for understanding of the composition of an individual and is traditionally divided into four groups: underweight, normal weight, overweight, and obese. BMI estimation incorporates both estimation of stature and body mass. The estimation of stature from skeletal elements is commonly included into the standard biological profile but the estimation of body mass needs to be further statistically validated to be consistently included. The bones of the foot, specifically the first metatarsal, may have the ability to estimate BMI given an allometric relationship to stature and the mechanical relationship to body mass. There are two commonly used methods for stature estimation, the anatomical method and the regression method. The anatomical method takes into account all of the skeletal elements that contribute to stature while the regression method relies on the allometric relationship between a skeletal element and living stature. A correlation between the metrics of the first metatarsal and living stature has been observed, and proposed as a method for valid stature estimation from the boney foot (Byers et al., 1989). Body mass estimation from skeletal elements relies on two theoretical frameworks: the morphometric and the mechanical approaches. The morphometric approach relies on the size relationship of the individual to body mass; the basic relationship between volume, density, and weight allows for body mass estimation. The body is thought of as a cylinder, and in order to understand the volume of this cylinder the diameter is needed. A commonly used proxy for this in the human body is skeletal bi-iliac breadth from rearticulated pelvic girdle. The mechanical method of body mass estimation relies on the

  6. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  7. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  8. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  9. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  10. Study of a bridge-like bone transplantation in the mandible of rats

    International Nuclear Information System (INIS)

    Suzuki, Aizo

    1979-01-01

    A bridge-like bone transplantation using fresh auto-ribs was performed in the mandibles of 161 female rats (Donryu strain, weight 130 g) previously irradiated by means of a betatron (group B, 1000 rad; group C, 2000 rad; group D, 3000 rad). Formation of a bridge-like bone in the transplanted region was studied morphologically and the results were compared with those obtained from non-treated rats (nonirradiated and non-transplanted rats, 5), irradiated and non-transplanted rats (36), and control rats (group A: nonirradiated and transplanted rats, 30) on the 7th, 21st, 35th 49th, 63rd and 90th postoperative days (5 rats per day, totaling 90). All the rats had a favorable prognosis without suppuration or exclusion. In groups B, C, and D, depilation was noted on the skin of the mandible. In group D, incisor teeth were shorter, resulting in abnormal occlusion. Disappearance of reactive inflammation, formation of granulation tissues, resorption of transplanted bone, and new growth of bone appeared later in groups C and D than in groups A and B. New growth of bone in the recipient's was remarkably less in groups C and D than in groups A and B. Formation of a bridge-like bone was observed in all the rats in groups A and B after the 35th postoperative day. However, in groups C and D, new growth of bone from the base of the bridge was small and did not connect with the transplanted bone even on the 90th postoperative day. Consequently, a bridge-like bone was not formed. On every observation day, findings in group A were similar to those in group B, and those in group C were similar to those in group D. Irradiation with 2000 rad or 3000 rad had an effect on formation of a bridge-like bone, but irradiation with 1000 rad had no effect. (Ueda, J.)

  11. [Double Osteotomy of the First Metatarsal for Treatment of Juvenile Hallux Valgus Deformity - Our Experience].

    Science.gov (United States)

    Jochymek, J; Peterková, T

    2016-01-01

    is usually used. However, post-operative outcomes are not satisfactory in severe forms of juvenile hallux valgus in which a high proportion of recurrent deformities is probably related to the growth potential of a juvenile bone. In such cases we use the Peterson and Newman procedure of double first metatarsal osteotomy, which can correct all three components of the deformity while maintaining functional first metatarsal length. This is a great advantage of the method. Although its authors have not reported any post-operative complications, the occurrence of restricted motion in the first metatarsophalangeal joint has been described in the relevant literature. The problem was also recorded in one patient of our group. Deformities of the forefoot and big toe are frequent orthopaedic disorders in children and adolescents. The results of this study confirm that the double first metatarsal osteotomy is an effective method of surgical treatment for serious hallux valgus deformities in paediatric and adolescent patients.

  12. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  13. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.

  14. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.

    Science.gov (United States)

    Finestone, Aharon; Milgrom, Charles; Wolf, Omer; Petrov, Kaloyan; Evans, Rachel; Moran, Daniel

    2011-01-01

    The training of elite infantry recruits takes a year or more. Stress fractures are known to be endemic in their basic training and the clinical presentation of tibial, femoral, and metatarsal stress fractures are different. Stress fracture incidence during the subsequent progressively more demanding training is not known. The study hypothesis was that after an adaptation period, the incidence of stress fractures during the course of 1 year of elite infantry training would fall in spite of the increasingly demanding training. Seventy-six male elite infantry recruits were followed for the development of stress fractures during a progressively more difficult training program composed of basic training (1 to 14 weeks), advanced training (14 to 26 weeks), and unit training (26 to 52 weeks). Subjects were reviewed regularly and those with clinical suspicion of stress fracture were assessed using bone scan and X-rays. The incidence of stress fractures was 20% during basic training, 14% during advanced training and 23% during unit training. There was a statistically significant difference in the incidence of tibial and femoral stress fractures versus metatarsal stress fractures before and after the completion of phase II training at week 26 (p=0.0001). Seventy-eight percent of the stress fractures during phases I and II training were either tibial or femoral, while 91% of the stress fractures in phase III training were metatarsal. Prior participation in ball sports (p=0.02) and greater tibial length (p=0.05) were protective factors for stress fracture. The study hypothesis that after a period of soldier adaptation, the incidence of stress fractures would decrease in spite of the increasingly demanding elite infantry training was found to be true for tibial and femoral fractures after 6 months of training but not for metatarsal stress fractures. Further studies are required to understand the mechanism of this difference but physicians and others treating stress fractures

  15. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright

  16. Cola beverage consumption delays alveolar bone healing: a histometric study in rats

    Directory of Open Access Journals (Sweden)

    Juliana Mazzonetto Teófilo

    2010-06-01

    Full Text Available Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group or tap water (control group ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01. Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.

  17. Effect of Cistanches Herba Aqueous Extract on Bone Loss in Ovariectomized Rat

    Directory of Open Access Journals (Sweden)

    Zaiguo Huang

    2011-08-01

    Full Text Available To assess the ability of traditional Chinese medicine Cistanches Herba extract (CHE to prevent bone loss in the ovariectomized (OVX rat, Cistanches Herba extract (CHE was administered intragastrically to the rats. Female rats were anesthetized with pentobarbital sodium (40 mg kg−1, i.p., and their ovaries were removed bilaterally. The rats in the sham-operated group were anesthetized, laparotomized, and sutured without removing their ovaries. After 1 week of recovery from surgery, the OVX rats were randomly divided into three groups and orally treated with H2O (OVX group or CHE (100 or 200 mg kg−1 daily for 3 months. The sham-operated group (n = 8 was orally treated with H2O. After 3 months, the total body bone mineral density (BMD, bone mineral content (BMC, Bone biomechanical index, blood mineral levels and blood antioxidant enzymes activities were examined in sham-operated, ovariectomized and Cistanches Herba extract treated rats. Results showed that Cistanches Herba extract treatment significantly dose-dependently enhanced bone mineral density (BMD, bone mineral content (BMC, maximum load, displacement at maximum load, stress at maximum load, load at auto break, displacement at auto break, and stress at auto break, and blood antioxidant enzymes activities, decreased blood Ca, Zn and Cu levels compared to the OVX group. This experiment demonstrates that the administration of Cistanches Herba extract to ovariectomized rats reverses bone loss and prevents osteoporosis.

  18. [Stress reactions in bones of the foot in sport: diagnosis, assessment and therapy].

    Science.gov (United States)

    Miltner, O

    2013-06-01

    Stress reactions and stress fractures are defined as structural damage to bone caused by repetitive stress or stereotypical loading. The balance between loading and unloading of bone is disrupted in stress reactions and stress fractures through the sport-specific demands and by the exogenous or endogenous risk factors present. In sports orthopedics the localization of stress reactions and stress fractures are subdivided into high risk fractures and low risk fractures. Conventional diagnostic radiology can initially be inconclusive. With symptoms persisting over 2 weeks further diagnostics using magnetic resonance imaging (MRI) should be performed. In the area of the foot stress reactions and stress fractures can often occur bilaterally or multifocally and most commonly affect the second metatarsals followed by the third metatarsals. Fractures of the fifth metatarsal, second metatarsal base, medial malleolus as well as navicular and sesamoid fractures are high risk fractures requiring special clinical and radiological monitoring. Basically, conservative treatment using the 2-phase model is the treatment of choice. In delayed union or severe pain surgical treatment is indicated.

  19. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-01-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  20. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  1. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...... volume measurements of the recovered grafts do not differentiate between viable and dead bone. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone implanted in the back muscles of young Lewis rats. Bone formation in grafts recovered 3 weeks...... that the anatomical area of harvest is important regarding new bone formation in syngeneic bone grafts. However, the results do not support the contention that better maintenance of volume of calvarial grafts compared with iliac bone grafts is due to enhanced osteogenesis in the former....

  2. Energy Metabolism in the Bone is Associated with Histomorphometric Changes in Rats with Hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Zhuoqing Hu

    2018-04-01

    Full Text Available Background/Aims: In this study we assessed histomorphometric changes induced by thyroxine (T4 in 3-month-old hyperthyroid male rats and examined whether the potential mechanism of these changes is related to bone changes. Methods: Rats were classified as either hyperthyroid following administration of 250 µg/kg/day freshly prepared T4 by gavage for 2 months or euthyroid following administration of vehicle alone (n = 8 per group. We measured bone mineral density (BMD, bone biomechanical properties, and bone histomorphometric changes. Levels of serum indicators were also measured, and three right femurs from the two groups were selected for proteomic investigation. Results: Compared with the control rats, hyperthyroid rats showed a reduction in the fifth lumbar vertebral BMD as well as in the entire femoral BMD (p = 0.033 and 0.026, respectively. Histomorphometric analysis of the proximal tibial metaphysis showed that the percentage of the trabecular area, trabecular number, and percentage of the cortical bone area in the hyperthyroid rats significantly decreased compared with those of the control rats. Conversely, bone formation rate (per unit of bone surface and bone volume, percentage of the osteoclast perimeter, trabecular separation, and endosteal mineral apposition rate in the hyperthyroid rats significantly increased compared with the control rats (all p < 0.05. Except for stiffness (p = 0.24, all bone biomechanical properties of the femur showed a significant decreasing trend in the hyperthyroid rats versus the control rats (all p < 0.05. Serum levels of osteocalcin, alkaline phosphatase, terminal telopeptides of type β collagen, and tartrate-resistant acid phosphatase were higher in the hyperthyroid rats than in the control rats (all p < 0.05. Using isobaric tags for relative and absolute quantification (iTRAQ, the expression levels of 1,310 proteins were found to be significantly different between the hyperthyroid and control rats (711

  3. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  4. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  5. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  6. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  7. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    Science.gov (United States)

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  8. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  9. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Yuri Takamine

    Full Text Available The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21 rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18 rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11, OLETF exercise group (O-Ex; n = 10, LETO sedentary group (L-Sed; n = 9, and LETO exercise group (L-Ex; n = 9. All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age. In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  10. Effects of voluntary running exercise on bone histology in type 2 diabetic rats.

    Science.gov (United States)

    Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi

    2018-01-01

    The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.

  11. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    International Nuclear Information System (INIS)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-01-01

    The annual incidence of new cancer patients in China is about 2 million, 30–40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41 Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague–Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl 2 solution (containing 1.4 mg Ca and 5nCi 41 Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41 Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41 Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41 Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  12. Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake....... The composite implant was technically easier to use than DBM alone....

  13. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    Pinholt, E.M.; Solheim, E.; Bang, G.; Sudmann, E.

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85 Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  14. Early bone changes after incorporation of low quantities of alpha emitters in male rats

    International Nuclear Information System (INIS)

    Laengle, U.W.

    1988-09-01

    This work shows the early effects of cancergenic doses of alpha emitters in long bones of rats. The investigations were based on radiographic, morphologic, angiographic, histologic and electronmicroscopic methods. A special method for bone angiography in the rat was elaborated and a new method was developed for measurement of the femur neck-head angle. Numerous disturbances in bone growth and bone structure, in the blood supply of bone and also of the bone building cells were observed. There was a correlation between the severity of the damage and the radiation dose, the spacial distribution of the nuclide and partially the age of the rats. The bone injury due to plutonium was markedly reduced by administration of the chelating agent Zn-DTPA. (orig.) [de

  15. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    Science.gov (United States)

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-02-16

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation.

  16. Bone Densitometry of the Femoral Midshaft the Protein-Deprived Rat*

    African Journals Online (AJOL)

    rats, has shown a significant loss of total bone density in the protein-deprived group. This reduction is no greater than can be accounted for by the loss of cortical bone surface area, suggesting that while bone mass is reduced as a result of protein deprivation, the mineral composition of the residual bone is likely to be ...

  17. Effect of parathyroidectomy on bone growth and composition in the young rat

    Science.gov (United States)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  18. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  19. [The effects of strontium in drinking water on growth and development of rat bone].

    Science.gov (United States)

    Xu, F; Zhang, X; Liu, J; Fan, M

    1997-05-01

    Effects of strontium at a high level in drinking water on growth and development of rat bone were studied. The results showed that Sr2+ concentration from 5 to 500 mg/L in drinking water could increase the contents of strontium in blood serum, urine, femur, mixilla and tooth in Wistar rats exposed to Sr2+ for 12 weeks with an obvious dose-response relationship. In addition, strontium at over 50 mg/L could decrease the contents of calcium in bone, increase the contents of calcium in tooth and bone density, and decrease the levels of calcium in blood serum except female rats at the 12th week. Effects of Sr2+ on body weight, body length, AKP activity of serum, calcium content of urine and breaking load of bended femur for rats were not found. However, there are differences in the effects of strontium on growth and development of bone between male and female rats. At the 12th week the content of calcium in blood serum decreased in male rats but increased in female rats in exposed groups. At the 4th and 8th weeks, urine Hop/Cr in male rats increased but it remained normal level in female rats. Sr2+ increased the bone density of mixilla in male rats but it did not increase that of femur in female rats. It is suggested that such changes may be a result of the differences in endocritic regulation and metabolic process between two sexes.

  20. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    Science.gov (United States)

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  1. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  2. Effects of different varieties of Maca (Lepidium meyenii) on bone structure in ovariectomized rats.

    Science.gov (United States)

    Gonzales, Carla; Cárdenas-Valencia, Isaias; Leiva-Revilla, Johanna; Anza-Ramirez, Cecilia; Rubio, Julio; Gonzales, Gustavo F

    2010-01-01

    This study was designed to determine the effect of different varieties of maca (Lepidium meyenii) on bone structure in ovariectomized (OVX) rats. 36 female rats were randomly divided into 6 groups: sham and OVX rats treated with vehicle, estradiol (40 microg/kg), black, yellow or red maca (63 mg/ml) for 4 weeks. At the end of the treatment, uterine weight, femoral bone and lumbar vertebra histomorphology were assessed. Ovariectomy reduced weight, diameter and width of the femoral bone. Estradiol, black and red maca treatment reduced the effect of ovariectomy on these variables. Histological analyses revealed that estradiol, black and red maca treatments reversed the effect of ovariectomy by increasing the trabecular bone area in the second lumbar vertebra. Uterine weight was reduced in OVX rats, and estradiol but neither black nor red maca increased uterine weight. Red and black maca have protective effects on bone architecture in OVX rats without showing estrogenic effects on uterine weight. 2010 S. Karger AG, Basel.

  3. Bone turnover markers in medicamentous and physiological hyperprolactinemia in female rats

    Directory of Open Access Journals (Sweden)

    Radojković Danijela

    2014-01-01

    Full Text Available Background/Aim. There is a lack of data on the effects of prolactin on calcium metabolism and bone turnover in hyperprolactinemia of various origins. The aim of this study was to compare the influence of medicamentous and physiological hyperprolactinemia on bone turnover in female rats. Methods. Experimental animals (18 weeks old, Wistar female rats were divided as follows: the group P - 9 rats, 3 weeks pregnant; the group M3-10 rats that were intramuscularly administrated sulpirid (10 mg/kg twice daily for 3 weeks, the group M6 - 10 rats that were intramuscularly administrated with sulpirid (10 mg/kg twice daily for 6 weeks, and age matched nulliparous rats as the control group: 10 rats, 18-week-old (C1 and 7 rats, 24 weeks old (C2. Laboratory investigations included serum ionized calcium and phosphorus, urinary calcium and phosphorous excretion, osteocalcin and serum procollagen type 1 N-terminal propeptide (P1NP. Results. Experimental animals in the group P compared to the control group, displayed lower mean serum ionized calcium (0.5 ± 0.2 vs 1.12 ± 0.04 mmol/L; p < 0.001; higher mean serum phosphorus (2.42 ± 0.46 vs 2.05 ± 0.2 mmol/L; p < 0.05; increased urinary calcium (3.90 ± 0.46 vs 3.05 ± 0.58; p < 0.01 and significantly increased P1NP (489,22 ± 46,77 vs 361.9 ± 53,01 pg/mL; p < 0.001. Experimental animals in the group M3 had significantly decreased P1NP, compared to the control group. Prolongated medicamentous hyperprolactinemia (the group M6 induced increased serum ionized calcium (1.21 ± 0.03 vs 1.15 ± 0.02 mmol/L; p < 0.001; decreased serum phosphorus (1.70 ± 0.13 vs 1.89 ± 0.32 mmol/L; p < 0.001; decreased osteocalcin and P1NP. Conclusions. Physiological hyperprolactinemia does not have such harmful effect on bone metabolism as medicamentous hyperprolactinemia. Chronic medicamentous hyperprolactinemia produces lower serum levels of bone formation markers. Assessment of bone turnover markers in prolongated medicamentous

  4. Heterogeneity within the spleen colony-forming cell population in rat bone marrow

    International Nuclear Information System (INIS)

    Martens, A.C.; van Bekkum, D.W.; Hagenbeek, A.

    1986-01-01

    The pluripotent hemopoietic stem cell (HSC) of the rat can be enumerated in a spleen colony assay (SCA) in rats as well as mice. After injection of rat bone marrow into lethally irradiated mice, macroscopically visible spleen colonies (CFU-S) are found from day 6 through 14, but the number varies on consecutive days. In normal bone marrow a constant ratio of day-8 to day-12 colony numbers is observed. However, this ratio is changed after in vivo treatment of rats with cyclophosphamide, as well as after in vitro treatment of rat bone marrow with cyclophosphamide derivatives. This indicates that the CFU-S that form colonies on day 8 react differently to this treatment than the CFU-S that form colonies on day 12, and suggests heterogeneity among the CFU-S population. Posttreatment regrowth of day-8 and day-12 CFU-S is characterized by differences in population-doubling times (Td = 0.85 days vs 1.65 days). Another argument in support of the postulate of heterogeneity within the rat CFU-S population is derived from the fact that (in contrast to normal rat spleen) the spleen of leukemic rats contains high numbers of CFU-S that show a ratio of day-8 to day-12 CFU-S of 4.5, which is different than that observed for a CFU-S population in normal bone marrow (a ratio of 2.4). It is concluded that, in rat hemopoiesis, two populations of spleen colony-forming cells can be distinguished using the rat-to-mouse SCA. This indicates that mouse and rat hemopoiesis are comparable in this respect and that heterogeneity in the stem cell compartment is a general phenomenon

  5. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    Energy Technology Data Exchange (ETDEWEB)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2013-04-15

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.

  6. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    International Nuclear Information System (INIS)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan

    2013-01-01

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP

  7. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    Science.gov (United States)

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  9. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Effect of storage on osteoinductive properties of demineralized bone in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1994-01-01

    A requirement for the clinical use of demineralized bone is the possibility of storing the material without loss of its osteoinductive properties. Seventy-five 8-week-old male Wistar rats were randomly assigned to one of five groups of 15 rats each. Lyophilized demineralized allogeneic bone...... was prepared and implanted in the abdominal muscle either without prior storage (control group) or after storage for 9 or 14 months at -70 degrees C or 4 degrees C (four experimental groups). Bone formation in the implants was evaluated quantitatively 4 weeks postoperatively by measuring the strontium 85...

  11. Effects of the hexahydroxyhexane myoinositol on bone uptake of radiocalcium in rats: Effect of inositol and vitamin D2 on bone uptake of 45Ca in rats

    International Nuclear Information System (INIS)

    Angeloff, L.G.; Skoryna, S.C.; Henderson, I.W.D.

    1977-01-01

    The objective of this study was to investigate the effects of inositol and vitamin D 2 on bone uptake of 45 Ca in rats. The radioactive calcium was administered to young rats by orogastric intubation (2 μci/100 g body weight (b.wt.)) with inositol (20 mg/100 g b.wt) and/or vitamin D 2 (500 IU/100g b.wt) to normal rats. Bone uptake of 45 Ca was measured after 24 hours by standard technique. Inositol alone produced a 48% increase in calcium uptake. It is concluded that inositol significantly increases bone uptake to radioactive calcium (P>0.005). Simultaneous administration of vitamin D 2 decreases the effect of inositol considerably, while vitamin D 2 has no significant effect. (author)

  12. Idiopathic Avascular Necrosis of First Metatarsal Head in a Pediatric Patient.

    Science.gov (United States)

    Kwon, Young-Uk; Choi, Jang-Seok; Kong, Gyu-Min; Ha, Byung-Ho

    Idiopathic avascular necrosis of the first metatarsal head rarely occurs in pediatrics. The present case of avascular necrosis of the first metatarsal head occurred in a 13-year-old male who came to the clinic with a 9-month history of pain in the first metatarsophalangeal joint. Conservative treatment had been applied for 9 months, but the pain had not been relieved. Therefore, surgical treatment, including decompression and debridement, was performed in the first metatarsal head of the patient. After 6 months of follow-up monitoring, full range of motion of the first metatarsophalangeal joint was observed, and the pain had disappeared. No any other complications had developed during 18 months of follow-up monitoring. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Wnt/RANKL-mediated bone growth promoting effects of blueberries in weanling rats

    Science.gov (United States)

    We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 and 30 days beginning on PND 21. In both sexes tibial bone mineral density and content a...

  14. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  15. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Deborah Queiroz de; Neves, Ellen Gaby; Boscolo, Frab Norberto; Almeida, Solange Maria de [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Department of Oral Diagnosis. Oral Radiology Area; Ramos-Perez, Flavia Maria de Moraes [Federal University of Pernambuco, Recife, PE (Brazil). Department of Clinical and Preventive Dentistry; Marques, Marcelo Rocha [University of Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Division of Histology. Department of Morphology

    2012-07-01

    This study evaluated protection by selenium (Se) in the bone repair process in ovariectomized rats after irradiation. For such purpose, 80 ovariectomized female Wistar rats were randomly divided into 4 experimental groups: ovariectomized (Ov), Ov/Se, Ov/irradiated (Irr) and Ov/ Se/Irr. A bone defect was created on the tibia of all animals 40 days after ovariectomy. Two days after surgery, only the Ov/Se and Ov/Se/Irr rats received 0.8 mg Se/kg. Three days after surgery, only the Ov/Irr and Ov/Se/Irr rats received 10 Gy of x-rays on the lower limb region. The animals were euthanized at 7, 14, 21 and 28 days after surgery to assess the repair process, which was evaluated by analysis of trabecular bone number (Masson Trichrome) and birefringence analysis (Picrosirius). It was possible to observe a delay in the bone repair process in the ovariectomized/irradiated group and similarity between the ovariectomized, Ov/Se and Ov/Se/Irr groups. In conclusion, sodium selenite exerted a radioprotective effect in the bone repair of tibia of ovariectomized rats without toxicity. (author)

  16. Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities

    Science.gov (United States)

    Smith, Kathryn E.; Dupont, Kenneth M.; Safranski, David L.; Blair, Jeremy; Buratti, Dawn; Zeetser, Vladimir; Callahan, Ryan; Lin, Jason; Gall, Ken

    2016-01-01

    Three-dimensional (3-D) printing offers many potential advantages in designing and manufacturing plating systems for foot and ankle procedures that involve small, geometrically complex bony anatomy. Here, we describe the design and clinical use of a Ti-6Al-4V ELI bone plate (FastForward™ Bone Tether Plate, MedShape, Inc., Atlanta, GA) manufactured through 3-D printing processes. The plate protects the second metatarsal when tethering suture tape between the first and second metatarsals and is a part of a new procedure that corrects hallux valgus (bunion) deformities without relying on doing an osteotomy or fusion procedure. The surgical technique and two clinical cases describing the use of this procedure with the 3-D printed bone plate are presented within. PMID:28337049

  17. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  18. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2007-01-01

    The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of

  19. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    Science.gov (United States)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  20. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    Energy Technology Data Exchange (ETDEWEB)

    Umoh, Joseph U; Holdsworth, David W [Pre-Clinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, PO Box 5015, 100 Perth Drive, London, ON N6A 5K8 (Canada); Sampaio, Arthur V; Underhill, T Michael [Laboratory of Molecular Skeletogenesis, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC (Canada); Welch, Ian [Animal Care and Veterinary Services, University of Western Ontario, London, ON (Canada); Pitelka, Vasek; Goldberg, Harvey A [CIHR Group in Skeletal Development and Remodelling, University of Western Ontario, London, ON (Canada)], E-mail: jumoh@imaging.robarts.ca, E-mail: asampaio@interchange.ubc.ca, E-mail: tunderhi@interchange.ubc.ca, E-mail: iwelch@uwo.ca, E-mail: vasek.pitelka@schulich.uwo.ca, E-mail: hagoldbe@uwo.ca, E-mail: david.holdsworth@imaging.robarts.ca

    2009-04-07

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 {mu}m. At 6 weeks, the BMC in control animals (4.37 {+-} 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 {+-} 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r{sup 2} = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  1. Effects of amlodipine on bone metabolism in male albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Iveta Gradošová

    2011-01-01

    Full Text Available Amlodipine (dihydropyridine-type calcium channel blocker is a widely used agent for the treatment of hypertension in human and veterinary medicine but detailed information about its effects on bone metabolism are missing. Therefore, the aim of our study was to investigate the effect of amlodipine on bone metabolism in male albino Wistar rats. Amlodipine (0.3 mg/100 g body weight; gavage was administered to 8 rats for 8 weeks. Control group (n = 8 received aqua pro inj. (0.2 ml/100 g body weight; gavage. Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I and aminoterminal propeptide of procollagen type I in serum, and of bone alkaline phosphatase (BALP in both serum and bone homogenate were measured by enzyme immunoassay. We investigated the expression of bone morphogenetic protein 2 (BMP-2 in proximal tibia using Western blotting, and bone mineral density was measured by Dual-energy X-ray Absorptiometry in lumbar and caudal vertebrae and in femoral areas. Mechanical properties of the femurs were measured by three-point bending of the shaft and compression testing of the femoral neck. After 8 weeks of amlodipine administration there was a significant decrease in serum concentrations of BALP (p = 0.0009 and CTX-I (p = 0.003, and the content of BALP in bone homogenate (p = 0.026 compared to the control. In addition, Western blot analysis indicated increased BMP-2 protein concentration after amlodipine administration. Our findings suggest that amlodipine has a retarding influence on bone metabolism in rats by decreasing bone turnover, which probably in consequence increases expression of BMP-2.

  2. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment...... mass ex vivo.RESULTS: Most (90%) of the rats survived the study period (8 months); six rats died from bowel obstruction at the level of the entero-anastomosis and four had to be killed because of persistent severe diarrhoea. Vital intestinal mucosa was found in all augmented bladders. There were...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  3. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  4. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    2017-10-01

    Full Text Available The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone

  5. The effects of irradiation on the mandibular bone of rats on the low calcium diet

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Eui Whan; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1992-08-15

    The purpose of this study was to investigate the changes of morphology and structure of bone tissue in the irradiated mandibular bone in rats which were fed a low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague- Dawley strain rats weighing about 150gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the group were then subdivided into two groups when the rats reached ten-week old, 16 were assigned rats for each subdivided group, exposed to irradiation. The two irradiation groups received a single dose of 20Gy in the jaws area only and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were serially termination, both sides of the dead rats mandibular bodies were removed and fixed with 10% neutral formalin. One side of the mandibular body was radiographed with a soft X-ray apparatus. Thereafter, the obtained microradiographs were observed by a light microscope. The remaining side of the mandibular bone was further decalcified and embedded in paraffin as using the general method. The specimen ectioned and stained with hematoxylin and eosin, and Rabit Anti-Human Tumor Necrosis Factor-{alpha}, observed by a light microscope. The obtained results were as follows: 1. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of the interradicular bone and mandibular body were observed and noted from the start to finish throughout the experiment in the non-irradiated rats on the low calcium diet rather than in the non-irradiated rats on the normal diet.In microscopic observation, there were marked osteolytic changes in the center of the bone marrow. 2. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of interradicular bone and mandibular body were more marked after 7 days in the irradiated rats in the low calcium diet rather than in the non

  6. Platelet-rich plasma in bone repair of irradiated tibiae of Wistar rats

    International Nuclear Information System (INIS)

    Gumieiro, Emne Hammoud; Abrahao, Marcio; Jahn, Ricardo Schmitutz; Segretto, Helena; Alves, Maria Tereza de Seixas; Nannmark, Ulf; Granstroem, Goesta; Dib, Luciano Lauria

    2010-01-01

    Purpose: to evaluate the influence of PRP addition on bone repair of circular defects created in irradiated tibiae of rats by histometric analysis. Methods: sixty male Wistar rats had the right tibiae irradiated with 30 Gy. After 30 days monocortical defects were created and platelet-rich plasma as applied in 30 rats. In the control group defects were created but not filled. The animals were sacrificed after 4, 7, 14, 21, 56 and 84 days and the tibiae removed for histological processing. Results: there was a tendency in the PRP group to increased bone neoformation from 14-days to 84-days; in the control group increased bone neoformation was not seen after 21 days or later. Conclusion: the addition of platelet-rich plasma had a beneficial effect in the initial cellular regeneration period and enhanced bone formation in later periods when compared to control. (author)

  7. Effects of high-intensity swimming training on the bones of ovariectomized rats.

    Science.gov (United States)

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-09-01

    This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.

  8. Topical Treatment with Xiaozheng Zhitong Paste (XZP Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    Directory of Open Access Journals (Sweden)

    Yanju Bao

    2015-01-01

    Full Text Available To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05. Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all. Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.

  9. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    International Nuclear Information System (INIS)

    Rocha, Anna Silvia Setti da; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria; Manzi, Flavio Ricardo; Chicareli, Mariliani

    2009-01-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  10. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Anna Silvia Setti da [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR, (Brazil). Dept. of Physics; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Oral Diagnosis], e-mail: flaviamaria@fop.unicamp.br; Manzi, Flavio Ricardo [Pontifical Catholic University of Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil). Dept. of Stomatology; Chicareli, Mariliani [State Univ. of Maringa, PR (Brazil). Dept. of Oral Diagnosis

    2009-07-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  11. Study on {sup 41}Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hongtao; Pang, Fangfang [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang [China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Pang, Yijun [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Yang, Xianlin [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); Ruan, Xiangdong [College of Physics, Guangxi University, Nanning 530004 (China); Liu, Manjun; Xia, Chunbo [Guiin Medical University, Guilin 541004 (China)

    2015-10-15

    The annual incidence of new cancer patients in China is about 2 million, 30–40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of {sup 41}Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague–Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl{sub 2} solution (containing 1.4 mg Ca and 5nCi {sup 41}Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for {sup 41}Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of {sup 41}Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that {sup 41}Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  12. Atypical metatarsal fracture in a patient on long term bisphosphonate therapy

    Directory of Open Access Journals (Sweden)

    Pavan Pradhan

    2012-01-01

    Full Text Available A 24 years old female of cushing disease had undergone adrenelectomy. She was put on alendronate and steroid. After six and a half years she developed pathological fracture subtrochanteric femur. The patient was treated with proximal femoral nailing and the fracture united. 2 years later she developed pain right foot. She was diagnosed as transverse fracture of fifth metatarsal. We report this rare case of atypical metatarsal fracture in a patient on long term bisphosphonate therapy.

  13. Enhancement of Bone Marrow-Derived Mesenchymal Stem Cell Osteogenesis and New Bone Formation in Rats by Obtusilactone A

    Directory of Open Access Journals (Sweden)

    Yi-Hsiung Lin

    2017-11-01

    Full Text Available The natural pure compound obtusilactone A (OA was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs. OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.

  14. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2017-02-01

    Full Text Available Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2 gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1 lovastatin 11 mg/kg/day alone; (2 tocotrienol derived from annatto bean (annatto tocotrienol 60 mg/kg/day alone; (3 lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05. There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05. The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  15. Bone cell kinetics in the metaphysis of the growing long bone of the rat

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.

    1976-01-01

    The growing long bone metaphysis of rats was studied in a cell kinetic and morphometric analysis using tritiated thymidine as a tracer of cells. The results showed striking differences in the distribution and movements of osteoprogenitor and osteoblasts as compared to the osteoclasts. The results also showed a deficiency in cell production in the proliferating bone cells in the metaphysis. A new model of bone cell origin, proliferation, and movements in the metaphysis is proposed; osteoblasts and osteoprogenitor cells, the bone surface cells endemic to the metaphysis, are a continuum in adding bone forming cells and forming new bone on the calcified cartilage cores of the metaphysis. The osteoclasts, on the other hand, arise from mononuclear blood cells brought to the metaphysis through metaphyseal blood vessel spaces near the growth cartilage-metaphyseal junction

  16. Histometric study of alveolar bone healing in rats treated with the nonsteroidal anti-inflammatory drug nimesulide.

    Science.gov (United States)

    Teófilo, Juliana Mazzonetto; Giovanini, Gabriela Salgueiro; Fracon, Ricardo Nogueira; Lamano, Teresa

    2011-04-01

    There is extensive experimental and clinical evidence in the orthopedic area that prolonged use of nonselective (inhibitor of both cyclooxygenases 1 and 2) nonsteroidal anti-inflammatory drugs can hinder long bone fracture healing, spinal fusion rate, and new bone formation around implants. The purpose of the present study was to investigate whether nimesulide (Nimesulida, Medley S.A., Campinas, SP, Brazil), a preferential cyclooxygenase-2 inhibitor, can hinder alveolar bone healing, in rats. Treated rats received oral doses (5 mg/kg/rat/day) of nimesulide from the day of tooth extraction until euthanasia 2 weeks later and control rats received tap water (n = 5 per group). The volume of neoformed bone inside the alveolar socket was estimated in semiserial longitudinal histological sections by a differential point-counting method, and the significance of the difference between groups was analyzed by Student t test (P alveolar bone healing in rats.

  17. Effect on Clinical Outcome and Growth Factor Synthesis With Adjunctive Use of Pulsed Electromagnetic Fields for Fifth Metatarsal Nonunion Fracture: A Double-Blind Randomized Study.

    Science.gov (United States)

    Streit, Adam; Watson, B Collier; Granata, Jaymes D; Philbin, Terrence M; Lin, Hsuan-Ni; O'Connor, J Patrick; Lin, Sheldon

    2016-09-01

    Electromagnetic bone growth stimulators have been found to biologically enhance the bone healing environment, with upregulation of numerous growth factors. The purpose of the study was to quantify the effect, in vivo, of pulsed electromagnetic fields (PEMFs) on growth factor expression and healing time in fifth metatarsal nonunions. This was a prospective, randomized, double-blind trial of patients, cared for by 2 fellowship-trained orthopedic foot and ankle surgeons. Inclusion criteria consisted of patients between 18 and 75 years old who had been diagnosed with a fifth metatarsal delayed or nonunion, with no progressive signs of healing for a minimum of 3 months. Eight patients met inclusion criteria and were randomized to receive either an active stimulation or placebo PEMF device. Each patient then underwent an open biopsy of the fracture site and was fitted with the appropriate PEMF device. The biopsy was analyzed for messenger-ribonucleic acid (mRNA) levels using quantitative competitive reverse transcription polymerase chain reaction (QT-RT-PCR). Three weeks later, the patient underwent repeat biopsy and open reduction and internal fixation of the nonunion site. The patients were followed at 2- to 4-week intervals with serial radiographs and were graded by the number of cortices of healing. All fractures healed, with an average time to complete radiographic union of 14.7 weeks and 8.9 weeks for the inactive and active PEMF groups, respectively. A significant increase in placental growth factor (PIGF) level was found after active PEMF treatment (P = .043). Other factors trended higher following active PEMF including brain-derived neurotrophic factor (BDNF), bone morphogenetic protein (BMP) -7, and BMP-5. The adjunctive use of PEMF for fifth metatarsal fracture nonunions produced a significant increase in local placental growth factor. PEMF also produced trends toward higher levels of multiple other factors and faster average time to radiographic union

  18. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  19. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    Science.gov (United States)

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  20. A lateral approach to the repair of propagating fractures of the medial condyle of the third metacarpal and metatarsal bone in 18 racehorses.

    Science.gov (United States)

    Wright, Ian M; Smith, Matthew R W

    2009-08-01

    To report the technique, observations on fracture configurations and results of treatment by fixation lag screw following the fracture plane determined by an approach to the third metacarpal/metatarsal bone (MC3/MT3) that begins laterally over the metacarpo(metatarso)phalangeal joint and extends dorsally over the diaphysis of the bone. Case series. Thoroughbred horses (n=18) with propagating fractures of the medial condyle of MC3/MT3. Retrospective analysis of case records of horses with fractures of the medial condyle of MC3/MT3 that propagated sagittaly or in a spiral configuration into the diaphysis, repaired surgically under general anesthesia by screw fixation in lag fashion through a lateral approach with periosteal reflection. Fractures were readily identified at surgery, enabling screw fixation in lag fashion following the fracture plane. Fracture configurations varied and could be classified as sagittal and spiral fractures with fractures within each group generally following a similar course. All horses recovered relatively uneventfully from general anesthesia and surgery, and all fractures healed well. Thirteen horses returned to training; 5 subsequently raced. Repair of propagating sagittal and spiral fractures of the medial condyle of MC3/MT3 with diaphyseal involvement, through a lateral approach with periosteal reflection permits stable fixation with minimal complications. In this series there were no catastrophic failures. Fractures of the medial condyle of MC3/MT3 that propagate either sagittaly or in a spiral configuration into the diaphysis can be successfully repaired with screw fixation in lag fashion using a lateral approach with periosteal reflection.

  1. Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats.

    Science.gov (United States)

    Colli, Vilma Clemi; Okamoto, Roberta; Spritzer, Poli Mara; Dornelles, Rita Cássia Menegati

    2012-09-01

    OT was reported to be a direct regulator of bone mass in young rodents, and this anabolic effect on bone is a peripheral action of OT. The goal of this study was to investigate the peripheral action of oxytocin (OT) in the alveolar healing process in old female rats. Females Wistar rats (24-month-old) in permanent diestrus phase, received two ip (12h apart) injections of saline (NaCl 0.15M - control group) or OT (45μg/rat - treated group). Seven days later, the right maxillary incisor was extracted and analyses were performed up to 28 days of the alveolar healing process (35 days after saline or OT administration). Calcium and phosphorus plasma concentrations did not differ between the groups. The plasma biochemical bone formations markers, alkaline phosphatase (ALP) and osteocalcin were significantly higher in the treated group. Histomorphometric analyses confirmed bone formation as the treated group presented the highest mean value of post-extraction bone formation. Tartrate-resistant acid phosphatase (TRAP) was significantly reduced in the treated group indicating an anti-resorptive effect of OT. Immunohistochemistry reactions performed in order to identify the presence of osteocalcin and TRAP in the bone cells of the dental socket confirmed these outcomes. OT was found to promote bone formation and to inhibit bone resorption in old acyclic female rats during the alveolar healing process. Published by Elsevier Ltd.

  2. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  3. Bone turnover is altered in transgenic rats overexpressing the P2Y2 purinergic receptor

    DEFF Research Database (Denmark)

    Ellegaard, Maria; Agca, Cansu; Petersen, Solveig

    2017-01-01

    overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both...

  4. Preventive effects of running exercise on bones in heavy ion particle irradiated rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Iida, Haruzo; Yan, Xueming

    2002-01-01

    We examined the effects of running exercise on preventing decreases in bone mineral and tissue volume after heavy ion particle irradiation in rats. Male Wistar rats experienced whole-body irradiation by heavy ion particle beam (C-290 MeV) at doses of 0.5, 1.0, and 5.0 Gy and were divided into voluntary running groups and control groups. Rats in the running groups ran on the treadmill 15 m/mim, 90 min/day for 35 days after exposure. At the end of the experiment, a tibia was obtained from each rat for measurement of bone mineral density (BMD) and cross-sectional area, strength strain index, and bone histomorphometric analysis. The weights of muscles and concentration of serum calcium were measured. Total BMD and trabecular BMD in the metaphysis and cortical BMD of the diaphysis of tibia in the running groups increased. Bone volume and trabecular thickness increased while trabecular separation decreased in the running groups compared to those in the control groups at respective doses. However, the osteoid surface and eroded surface varied in the running groups compared to those of the respective corresponding groups. The dynamic parameters such as mineralizing surface, mineral apposition rate, and bone formation rate in the running groups were varied, probably due to the differences in radiation-induced sensitivities of bones following radiation exposure. The overall results suggest that running exercise might have a beneficial effect on preventing bone mineral loss and changes in bone structure induced by space radiation, but it is necessary to examine the optimal conditions of running exercise response to doses. (author)

  5. Therapeutic effects of radix dipsaci, pyrola herb, and cynomorium songaricum on bone metabolism of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Liu Meijie

    2012-05-01

    Full Text Available Abstract Background The objective of this study was to evaluate the effects of herbal medicines, such as Radix Dipsaci (RDD, Pyrola Herb (PHD, and Cynomorium songaricum decoction (CSD, on osteoporotic rats induced by ovariectomy (OVX. Methods OVX or sham operations were performed on 69 virgin Wistar rats that were divided into six groups: sham (sham, n = 12, OVX control group (OVX, n = 12, and OVX rats with treatments (diethylstilbestrol, E2, n = 12; RDD, n = 11, PHD, n = 11, and CSD, n = 11. Non-surgical rats served as normal control (NC, n = 12. The treatments began four weeks after surgery and lasted for 12 weeks. Bone mass and bone turnover were analyzed by histomorphometry. Levels of protein expression and mRNA of OPG and RANKL in osteoblasts (OB and bone marrow stromal cells (bMSC were evaluated by immunohistochemistry and in situ hybridization. Results Compared to NC and sham rats, trabecular bone formation was significantly reduced in OVX rats, but restored in E2-treated rats. Treatment with either RDD or PHD enhanced trabecular bone formation remarkably. No significant change of bone formation was observed in CSD-treated rats. OPG expression of protein and mRNA was reduced significantly in OB and bMSC of OVX control rats. RANKL expression of protein and mRNA was increased significantly in OB and bMSC of OVX control rats. These effects were substantially reversed (increased in OPG and decreased in RANKL by treatment with E2, RDD, or PHD in OB and bMSC of OVX rats. No significant changes in either OPG or RANKL expression were observed in OB and bMSC of OVX rats treated with CSD. Conclusions Our study showed that RDD and PHD increased bone formation by stimulating overexpression of OPG and downregulation of RANKL in OB and bMSC. This suggests that RDD and PHD may be used as alternative therapeutic agents for postmenopausal osteoporosis.

  6. Early Subchondral Bone Loss at Arthritis Onset Predicted Late Arthritis Severity in a Rat Arthritis Model.

    Science.gov (United States)

    Courbon, Guillaume; Cleret, Damien; Linossier, Marie-Thérèse; Vico, Laurence; Marotte, Hubert

    2017-06-01

    Synovitis is usually observed before loss of articular function in rheumatoid arthritis (RA). In addition to the synovium and according to the "Inside-Outside" theory, bone compartment is also involved in RA pathogenesis. Then, we investigated time dependent articular bone loss and prediction of early bone loss to late arthritis severity on the rat adjuvant-induced arthritis (AIA) model. Lewis female rats were longitudinally monitored from arthritis induction (day 0), with early (day 10) and late (day 17) steps. Trabecular and cortical microarchitecture parameters of four ankle bones were assessed by microcomputed tomography. Gene expression was determined at sacrifice. Arthritis occurred at day 10 in AIA rats. At this time, bone erosions were detected on four ankle bones, with cortical porosity increase (+67%) and trabecular alterations including bone volume fraction (BV/TV: -13%), and trabecular thickness decrease. Navicular bone assessment was the most reproducible and sensitive. Furthermore, strong correlations were observed between bone alterations at day 10 and arthritis severity or bone loss at day 17, including predictability of day 10 BV/TV to day 17 articular index (R 2  = 0.76). Finally, gene expression at day 17 confirmed massive osteoclast activation and interestingly provided insights on strong activation of bone formation inhibitor markers at the joint level. In rat AIA, bone loss was already observed at synovitis onset and was predicted late arthritis severity. Our results reinforced the key role of subchondral bone in arthritis pathogenesis, in favour to the "Inside-Outside" theory. Mechanisms of bone loss in rat AIA involved resorption activation and formation inhibition changes. J. Cell. Physiol. 232: 1318-1325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. First Metatarsal Proximal Opening Wedge Osteotomy for Correction of Hallux Valgus Deformity: Comparison of Straight versus Oblique Osteotomy

    Science.gov (United States)

    Han, Seung Hwan; Park, Eui Hyun; Jo, Joon; Koh, Yong Gon; Lee, Jin Woo; Choi, Woo Jin

    2015-01-01

    Purpose The aim of this study was to compare clinical and radiographic outcomes of proximal opening wedge osteotomy using a straight versus oblique osteotomy. Materials and Methods We retrospectively reviewed 104 consecutive first metatarsal proximal opening wedge osteotomies performed in 95 patients with hallux valgus deformity. Twenty-six feet were treated using straight metatarsal osteotomy (group A), whereas 78 feet were treated using oblique metatarsal osteotomy (group B). The hallux valgus angle (HVA), intermetatarsal angle (IMA), distal metatarsal articular angle, and distance from the first to the second metatarsal (distance) were measured for radiographic evaluation, whereas the American Orthopaedic Foot and Ankle Society (AOFAS) forefoot score was used for clinical evaluation. Results Significant corrections in the HVA, IMA, and distance from the first to the second metatarsal were obtained in both groups at the last follow-up (p<0.001). There was no difference in the mean IMA correction between the 2 groups (6.1±2.7° in group A and 6.0±2.1° in group B). However, a greater correction in the HVA and distance from the first to the second metatarsal were found in group B (HVA, 13.2±8.2°; distance, 25.1±0.2 mm) compared to group A (HVA, 20.9±7.7°; distance, 28.1±0.3 mm; p<0.001). AOFAS scores were improved in both groups. However, group B demonstrated a greater improvement relative to group A (p=0.005). Conclusion Compared with a straight first metatarsal osteotomy, an oblique first metatarsal osteotomy yielded better clinical and radiological outcomes. PMID:25837181

  8. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl......OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment......, colocystoplasty, and controls. All animals received antibiotics for 1 week after surgery; half of each group remained on oral antibiotics. Bone-related biochemistry was measured in serum and urine. Dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) were used to determine bone...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P

  9. Effects of chronic mild stress on parameters of bone assessment in adult male and female rats

    Directory of Open Access Journals (Sweden)

    Fabrício L. Valente

    Full Text Available Abstract: Osteoporosis is a multifactorial disease of high prevalence and has great impact on quality of life, because the effects on bone structure increase the risk of fractures, what may be very debilitating. Based on the observation that patients with depression have lower bone mineral density than healthy individuals, many studies have indicated that stress could be an aggravating factor for bone loss. This study evaluates the effect of a protocol of chronic mild stress (CMS on parameters of bone assessment in male and female rats. Five 5-monh-old rats of each sex underwent a schedule of stressor application for 28 days. Stressors included cold, heat, restraint, cage tilt, isolation, overnight illumination, and water and food deprivation. Five rats of each sex were kept under minimum intervention as control group. The animals were weighed at beginning and end of the period, and after euthanasia had their bones harvested. Femur, tibia and lumbar vertebrae were analyzed by bone densitometry. Biomechanical tests were performed in femoral head and diaphysis. Trabecular bone volume was obtained from histomorphometric analysis of femoral head and vertebral body, as well as of femoral midshaft cross-sectional measures. Not all parameters analyzed showed effect of CMS. However, tibial and L4 vertebral bone mineral density and cross-sectional cortical/medullar ratio of femoral shaft were lower in female rats submitted to the CMS protocol. Among male rats, the differences were significant for femoral trabecular bone volume and maximum load obtained by biomechanical test. Thus, it could be confirmed that CMS can affect the balance of bone homeostasis in rats, what may contribute to the establishment of osteopenia or osteoporosis.

  10. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  11. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  12. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats.

    Science.gov (United States)

    Zaid, Siti Sarah Mohamad; Sulaiman, Siti Amrah; Othman, Nor Hayati; Soelaiman, Ima-Nirwana; Shuid, Ahmad Nazrun; Mohamad, Norazlina; Muhamad, Norliza

    2012-07-01

    The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment. All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

  13. Automatic Detection of Calcaneal-Fifth Metatarsal Angle Using Radiograph: A Computer-Aided Diagnosis of Flat Foot for Military New Recruits in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chin-Hua Yang

    Full Text Available Flatfoot (pes planus is one of the most important physical examination items for military new recruits in Taiwan. Currently, the diagnosis of flatfoot is mainly based on radiographic examination of the calcaneal-fifth metatarsal (CA-MT5 angle, also known as the arch angle. However, manual measurement of the arch angle is time-consuming and often inconsistent between different examiners. In this study, seventy male military new recruits were studied. Lateral radiographic images of their right and left feet were obtained, and mutual information (MI registration was used to automatically calculate the arch angle. Images of two critical bones, the calcaneus and the fifth metatarsal bone, were isolated from the lateral radiographs to form reference images, and were then compared with template images to calculate the arch angle. The result of this computer-calculated arch angle was compared with manual measurement results from two radiologists, which showed that our automatic arch angle measurement method had a high consistency. In addition, this method had a high accuracy of 97% and 96% as compared with the measurements of radiologists A and B, respectively. The findings indicated that our MI registration measurement method cannot only accurately measure the CA-MT5 angle, but also saves time and reduces human error. This method can increase the consistency of arch angle measurement and has potential clinical application for the diagnosis of flatfoot.

  14. Synergistic effects of radiation and immobilization of hind limb on bone in rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Ikeda, Mizuyo; Nakamura, Mariko

    2008-01-01

    Synergistic effects of radiation (x-ray) and immobilization of hind limbs on bone in rats were examined, and the preventive effect of milk basic protein (MBP) on radiation effects was tested. One hundred and twenty female rats were divided into three large groups and then each group was divided into four small groups such as the no treatment, oral administered MBP, immobilization (IM) of hind limb, and IM+MBP groups. The rats of two large groups were exposed to a whole-body dose of 3 Gy or 6 Gy of x-ray. Half of the rats of each large group were sacrificed at 1 and 3 months, respectively. Muscle weights and bone mineral density decreased significantly in the IM groups following radiation, and bone volume in the proximal metaphysis of the tibia decreased significantly in all of the radiation groups and most in the radiation+IM group at 1 month. The bone volume recovered in all of the radiation groups except for the radiation+IM groups. The results indicated that the bone damages increased more as a result of the synergistic effects of radiation and IM than as a result of either of IM or radiation alone, and the harmful damage caused by IM was much greater than that of radiation. (author)

  15. The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Bryan D. Johnston

    2015-01-01

    Full Text Available In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed.

  16. Two Different Isomers of Vitamin E Prevent Bone Loss in Postmenopausal Osteoporosis Rat Model

    Directory of Open Access Journals (Sweden)

    Norliza Muhammad

    2012-01-01

    Full Text Available Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV and trabecular number (Tb.N and an increase in trabecular separation (Tb.S. The increase in osteoclast surface (Oc.S and osteoblast surface (Ob.S in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.

  17. High-impact exercise in rats prior to and during suspension can prevent bone loss

    International Nuclear Information System (INIS)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension

  18. High-impact exercise in rats prior to and during suspension can prevent bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Frighetto, P.D. [Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, SP (Brazil); Volpon, J.B.; Shimano, A.C. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-02-02

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  19. Biomechanical properties: effects of low-level laser therapy and Biosilicate® on tibial bone defects in osteopenic rats.

    Science.gov (United States)

    Fangel, Renan; Bossini, Paulo S; Renno, Ana Cláudia; Granito, Renata N; Wang, Charles C; Nonaka, Keico O; Driusso, Patricia; Parizotto, Nivaldo A; Oishi, Jorge

    2014-12-30

    The aim of this study was to investigate the effects of laser therapy and Biosilicate® on the biomechanical properties of bone callus in osteopenic rats. Fifty female Wistar rats were equally divided into 5 groups (n=10/group): osteopenic rats with intact tibiae (SC); osteopenic rats with unfilled and untreated tibial bone defects (OC); osteopenic rats whose bone defects were treated with Biosilicate® (B); osteopenic rats whose bone defects were treated with 830-nm laser, at 120 J/cm2 (L120) and osteopenic rats whose bone defects were treated with Biosilicate® and 830-nm laser, at 120 J/cm2 (BL120). Ovariectomy (OVX) was used to induce osteopenia. A non-critical bone defect was created on the tibia of the osteopenic animals 8 weeks after OVX. In Biosilicate® groups, bone defects were completely filled with the biomaterial. For the laser therapy, an 830-nm laser, 120 J/cm2 was used. On day 14 postsurgery, rats were euthanized, and tibiae were removed for biomechanical analysis. Maximal load and energy absorption were higher in groups B and BL120, according to the indentation test. Animals submitted to low-level laser therapy (LLLT) did not show any significant biomechanical improvement, but the association between Biosilicate® and LLLT was shown to be efficient to enhance callus biomechanical properties. Conversely, no differences were found between study groups in the bending test. Biosilicate® alone or in association with low level laser therapy improves biomechanical properties of tibial bone callus in osteopenic rats.

  20. Radiographic features that enable assessment of first metatarsal rotation: the role of pronation in hallux valgus

    Energy Technology Data Exchange (ETDEWEB)

    Eustace, S. (Dept. of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)); O' Byrne, J. (Dept. of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland)); Stack, J. (Dept. of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)); Stephens, M.M. (Dept. of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland))

    1993-04-01

    This study describes a method of detecting first metatarsal pronation on the basis of the movement of the inferior tuberosity of the base of 20 cadaveric first metatarsals at 0 , 10 , 20 and 30 pronation. On pronation, the inferior tuberosity of the base of the first metatarsal moved lateral to the mid-line axis. At 10 , the tuberosity pointed to the junction of the inner third and outer two-thirds of a line between the midpoint and lateral tubercle of the base. At 20 , it pointed to the junction of the inner two-thirds and outer third of that line. At 30 , it pointed to the outer marting of the lateral third. Using these features, the amount of first metatarsal pronation in 100 consecutive weigth-bearing views of feet was recorded and plotted against the corresponding intermetatarsal angles in those feet. Four of 43 patients with an intermetatarsal angle of less than 9 had pronation greater than 10 , 48 of 57 patients with an intermetatarsal angle greater than 9 had pronation greater than 10 (P<0.001). As intermetatarsal angles increase, the amount of first metatarsal pronation increases (r=0.69). Pronation and varus deviation of the first metatarsal are linked; both alter the tendon balance maintaining proximal phalanx alignment and lead to the development of hallux valgus. (orig.)

  1. Radiographic features that enable assessment of first metatarsal rotation: the role of pronation in hallux valgus

    International Nuclear Information System (INIS)

    Eustace, S.; O'Byrne, J.; Stack, J.; Stephens, M.M.

    1993-01-01

    This study describes a method of detecting first metatarsal pronation on the basis of the movement of the inferior tuberosity of the base of 20 cadaveric first metatarsals at 0 , 10 , 20 and 30 pronation. On pronation, the inferior tuberosity of the base of the first metatarsal moved lateral to the mid-line axis. At 10 , the tuberosity pointed to the junction of the inner third and outer two-thirds of a line between the midpoint and lateral tubercle of the base. At 20 , it pointed to the junction of the inner two-thirds and outer third of that line. At 30 , it pointed to the outer marting of the lateral third. Using these features, the amount of first metatarsal pronation in 100 consecutive weigth-bearing views of feet was recorded and plotted against the corresponding intermetatarsal angles in those feet. Four of 43 patients with an intermetatarsal angle of less than 9 had pronation greater than 10 , 48 of 57 patients with an intermetatarsal angle greater than 9 had pronation greater than 10 (P<0.001). As intermetatarsal angles increase, the amount of first metatarsal pronation increases (r=0.69). Pronation and varus deviation of the first metatarsal are linked; both alter the tendon balance maintaining proximal phalanx alignment and lead to the development of hallux valgus. (orig.)

  2. Effect of music therapy on pain behaviors in rats with bone cancer pain.

    Science.gov (United States)

    Gao, Ji; Chen, Shaoqin; Lin, Suyong; Han, Hongjing

    2016-01-01

    To investigate the effects of music therapy on the pain behaviors and survival of rats with bone cancer pain and analyze the mediating mechanism of mitogen activated protein kinase (MAPK) signal transduction pathway. Male Wistar rats aged 5-8 weeks and weighing 160-200 g were collected. The rat models of colorectal cancer bone cancer pain was successfully established. Animals were divided into experimental and control group, each with 10 rats. The animals in the observation group were given Mozart K448 sonata, sound intensity of 60 db, played the sonata once every 1 hr in the daytime, stopped playing during the night, and this cycle was kept for 2 weeks. On the other hand, rats in the control group were kept under the same environment without music. Animals in the experimental group consumed more feed and gained significant weight in comparison to the control group. The tumor volume of the experimental group was significantly smaller than that of the control group (pMusic therapy may improve the pain behaviors in rats with bone cancer pain, which might be related with low expression of p38á and p38β in the MAPK signal transduction pathway.

  3. Constitutively Elevated Blood Serotonin Is Associated with Bone Loss and Type 2 Diabetes in Rats.

    Directory of Open Access Journals (Sweden)

    Igor Erjavec

    Full Text Available Reduced peripheral serotonin (5HT in mice lacking tryptophan hydroxylase (TPH1, the rate limiting enzyme for 5HT synthesis, was reported to be anabolic to the skeleton. However, in other studies TPH1 deletion either had no bone effect or an age dependent inhibition of osteoclastic bone resorption. The role of 5HT in bone therefore remains poorly understood. To address this issue, we used selective breeding to create rat sublines with constitutively high (high-5HT and low (low-5HT platelet 5HT level (PSL and platelet 5HT uptake (PSU. High-5HT rats had decreased bone volume due to increased bone turnover characterized by increased bone formation and mineral apposition rate, increased osteoclast number and serum C-telopeptide level. Daily oral administration of the TPH1 inhibitor (LX1032 for 6 weeks reduced PSL and increased the trabecular bone volume and trabecular number of the spine and femur in high-5HT rats. High-5HT animals also developed a type 2 diabetes (T2D phenotype with increased: plasma insulin, glucose, hemoglobin A1c, body weight, visceral fat, β-cell pancreatic islets size, serum cholesterol, and decreased muscle strength. Serum calcium accretion mediated by parathyroid hormone slightly increased, whereas treatment with 1,25(OH2D3 decreased PSL. Insulin reduction was paralleled by a drop in PSL in high-5HT rats. In vitro, insulin and 5HT synergistically up-regulated osteoblast differentiation isolated from high-5HT rats, whereas TPH1 inhibition decreased the number of bone marrow-derived osteoclasts. These results suggest that constitutively elevated PSL is associated with bone loss and T2D via a homeostatic interplay between the peripheral 5HT, bone and insulin.

  4. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  5. "Repair of cranial bone defects using endochondral bone matrix gelatin in rat "

    Directory of Open Access Journals (Sweden)

    "Sobhani A

    2001-05-01

    Full Text Available Bone matrix gelatin (BMG has been used for bone induction intramuscularly and subcutaneously by many investigators since 1965. More recently, some of the researchers have used BMG particles for bone repair and reported various results. In present study for evaluation of bone induction and new bone formation in parital defects, BMG particles were used in five groups of rats. The BMG was prepared as previously described using urist method. The defects wee produced with 5 –mm diameter in pariteal bones and filled by BMG particles. No BMG was used in control group.For evaluation of new bone formation and repair, the specimens were harvested on days 7 , 14 , 21 and 28 after operation. The samples were processed histologically, stained by H& E, alizarin red S staining, and Alcian blue, and studied by a light microscope.The results are as follows:In control group: Twenty-eight days after operation a narrow rim of new bone was detectable attached to the edge of defect.In BMG groups: At day 7 after operation young chondroblast cells appeared in whole area of defect. At 14th day after operation hypertrophic chondrocytes showed by Alcian blue staining and calcified cartilage were detectable by Alizarin red S staining. The numerous trabeculae spicules, early adult osteocytes and highly proliferated red bone marrow well developed on dayd 21 . finally typic bone trabeculae with regulated osteoblast cells and some osteoclast cells were detectable at day 28 after operation. In conclusion,BMG could stimulate bone induction and new bone formation in bony defects. So, it seems that BMG could be a godd biomaterial substance for new bone inducation in bone defects

  6. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  7. Effects of 15 Gy 137Cs γ-rays radiation of rat kidneys on bone metabolism

    International Nuclear Information System (INIS)

    Gao Linfeng; Wang Hongfu; Xu Peikang; Xu Aihong; Zhu Feipeng

    2003-01-01

    The work was to observe the effects of γ-rays radiation of rat kidneys on rat bone metabolism. Ten male SD rats aged 6 months were irradiated at their kidneys with 15 Gy 137 Cs γ-rays (0.91 Gy/min) and were raised for 3 months after the radiation. On collecting 24h urine of rats they were sacrificed for serum, kidney, spine, femur and tibia exams. Results show that the γ-ray irradiation could induce the pathological injuries of renal glomeruli, tubules and mesenchyme. Comparing to the control group, significant changes were found in the irradiated group in terms of their blood urea, nitrogen creatinine, urinal β-2 microglobulin, serum Ca and P, urine Ca and P, activity of serum alkaline phosphatase, 1,25 (OH) 2 D 3 , serum PTH, urine PYD/creatinine, bone mineral density (BMD) of lumbar vertebras, mineral mass of No.4 lumbar vertebra, BMD, dehydrated weight and ash weight of right femur. Marked changes were also found in bone trabecula volume, average bone trabecula thick and the ratio of nodes/points, and rate of mineralization deposition. It was concluded that renal dysfunction and metabolic bone disease might occur with the character of accelerated bone turnover and decreased bone mass

  8. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats.

    Science.gov (United States)

    Tanaka, Yu-Ki; Yajima, Nobuyuki; Higuchi, Yusuke; Yamato, Hideyuki; Hirata, Takafumi

    2017-12-01

    Herein, we measure the Ca isotope ratios ( 44 Ca/ 42 Ca and 43 Ca/ 42 Ca) in serum and bone samples collected from rats with chronic kidney disease (CKD) or diabetes mellitus (DM). For the serum samples, the isotope ratios are lower for the CKD (δ 44 Ca/ 42 Ca serum = 0.16 ± 0.11‰; 2SD, n = 6) and the DM (δ 44 Ca/ 42 Ca serum = -0.11 ± 0.25‰; 2SD, n = 7) rats than that for the control rats (δ 44 Ca/ 42 Ca serum = 0.25 ± 0.04‰; 2SD, n = 7). Bone samples from two distinct positions of 20 rats in total, namely, the center and proximal parts of the tibial diaphysis, are subject to Ca isotope analysis. The resulting δ 44 Ca/ 42 Ca values for the bone of the proximal part are about 0.3‰ lower than that for the serum samples from the same rats. The larger isotope fractionations between the serum and bone are consistent with previously reported data for vertebrate animals (e.g., Skulan and DePaolo, 1999), which suggests the preferential incorporation of lighter Ca isotopes through bone formation. For the bones from the control and CKD rats, there were no differences in the δ 44 Ca/ 42 Ca values between the positions of the bone. In contrast, the δ 44 Ca/ 42 Ca values of the bone for the DM rats were different between the positions of the bone. Due to the lower bone turnover rate for the DM rats, the δ 44 Ca/ 42 Ca for the middle of the diaphysis can reflect the Ca isotopes in the bone formed prior to the progression of DM states. Thus, the resulting δ 44 Ca/ 42 Ca values show a clear correlation with bone mineral density (BMD). This can be due to the release of isotopically lighter Ca from the bone to the serum. In the present study, our data demonstrate that the δ 44 Ca/ 42 Ca value for serum can be used as a new biomarker for evaluating changes in bone turnover rate, followed by changes in bone volume.

  9. Influence of ferutinin on bone metabolism in ovariectomized rats. II: Role in recovering osteoporosis

    Science.gov (United States)

    Ferretti, Marzia; Bertoni, Laura; Cavani, Francesco; Zavatti, Manuela; Resca, Elisa; Carnevale, Gianluca; Benelli, Augusta; Zanoli, Paola; Palumbo, Carla

    2010-01-01

    The aim of the present investigation, which represents an extension of a previous study, was to investigate the effect of ferutinin in recovering severe osteoporosis due to estrogen deficiency after rat ovariectomy and to compare phytoestrogen effects with those of estrogens commonly used in hormone replacement therapy (HRT) by women with postmenopausal osteoporosis. The animal model used was the Sprague–Dawley ovariectomized rat. Ferutinin was orally administered (2 mg kg−1 per day) for 30 or 60 days starting from 2 months after ovariectomy (i.e. when osteoporosis was clearly evident) and its effects were compared with those of estradiol benzoate (1.5 μg per rat twice a week, subcutaneously injected) vs. vehicle-treated ovariectomized (OVX) and sham-operated (SHAM) rats. Histomorphometric analyses were performed on trabecular bone of lumbar vertebrae (4th and 5th) and distal femoral epiphysis, as well as on cortical bone of femoral diaphysis. Bone histomorphometric analyses showed that ferutinin seems to display the same effects on bone mass recorded with estradiol benzoate, thus suggesting that it could enhance the recovery of bone loss due to severe estrogen deficiency in OVX rats. On this basis, the authors propose listing ferutinin among the substances representing a potential alternative for the treatment of postmenopausal osteoporosis, which occurs as a result of estrogen deficiency. PMID:20492429

  10. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat

    OpenAIRE

    Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana

    2012-01-01

    Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was as...

  11. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats

    Directory of Open Access Journals (Sweden)

    Siti Sarah Mohamad Zaid

    2012-07-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats. METHODS: Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8: four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum. The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey. Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water, and the baseline control group was sacrificed without treatment. RESULTS: All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV, trabecular thickness (Tb.Th and trabecular number (Tb.N and a significant decrease in inter-trabecular space (Tb.Sp compared with the ovariectomized control group. The trabecular thickness (Tb.Th in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group. CONCLUSION: In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

  12. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    Science.gov (United States)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p small BMC changes in animals.

  13. Can Double Osteotomy Be a Solution for Adult Hallux Valgus Deformity With an Increased Distal Metatarsal Articular Angle?

    Science.gov (United States)

    Park, Chul Hyun; Cho, Jae Ho; Moon, Jeong Jae; Lee, Woo Chun

    2016-01-01

    No previous study has reported the results of double metatarsal osteotomy for adult hallux valgus deformity with an increased distal metatarsal articular angle (DMAA). The purpose of the present study was to evaluate the results after double metatarsal osteotomy in adult patients with incongruent hallux valgus deformity. We retrospectively reviewed 16 cases of consecutive first metatarsal double metatarsal osteotomy without lateral soft tissue release in 14 patients with symptomatic hallux valgus associated with an increased DMAA (≥15° after proximal chevron osteotomy on intraoperative radiographs). Clinical results were assessed using the American Orthopaedic Foot and Ankle Society scale and the visual analog scale. The radiographic results were assessed over time, and changes in the DMAA and the relative length of the first metatarsal were assessed by measuring each value preoperatively and at the last follow-up visit. The American Orthopaedic Foot and Ankle Society and visual analog scale scores were significantly improved after surgery. The hallux valgus angle and intermetatarsal angle were stabilized >3 months after surgery. The sesamoid position did not increase significantly beyond the immediate postoperative period. The mean DMAA was corrected from 21.6° (range 15° to 29°) preoperatively to 11.1° (range -2° to 17°) at the last follow-up visit. The mean amount of shortening of the first metatarsal after surgery was 5.5 (range 4 to 7) mm. In conclusion, double metatarsal osteotomy without lateral soft tissue release in adult hallux valgus deformity results in high postoperative recurrence and complication rates. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Surgical management of complete diaphyseal third metacarpal and metatarsal bone fractures: clinical outcome in 10 mature horses and 11 foals.

    Science.gov (United States)

    Bischofberger, A S; Fürst, A; Auer, J; Lischer, C

    2009-05-01

    Osteosynthesis of third metacarpal (McIII) and third metatarsal (MtIII) bone fractures in horses is a surgical challenge and complications surrounding the repair are common. Retrospective studies evaluating surgical repair, complications and outcome are necessary to increase knowledge and improve success of long bone fracture repair in the horse. To evaluate clinical findings, surgical repair, post operative complications and outcome of 10 mature horses and 11 foals with McIII or MtIII fractures that were treated with open reduction and internal fixation (ORIF). Medical records were reviewed and follow-up information obtained by means of radiographs and/or telephone questionnaire. Survival was achieved in 62% of the horses (3 mature/10 foals). On long-term evaluation (> 6 months) 11 horses (2 mature/9 foals) were fit for their intended activity, one mature horse had a chronic low grade lameness, and one foal was lost to follow-up because it was sold. The main fracture types were simple transverse (333%) or simple oblique (28.6%) and 71.4% of the fractures were open, 3 Type I (one mature/2 foals) and 12 type II (7 mature/5 foals). The preoperative assessment revealed inadequate emergency treatment in 10 horses (5 mature/5 foals; 47.6%). Survival rate of horses with open fractures was 12.5% (1/8) in mature and 85.7% (6/7) in foals. Post operative incisional infection (4 mature, 3 foals) was only managed successfully in 2 foals. Fracture instability related to inadequate fracture fixation technique occurred in 4 horses (all mature) and was always associated with unsuccessful outcome. Age, bodyweight and infection are strongly associated with outcome in treatment of complete McIII/MtIII fractures. Rigid fixation using plates and screws can be successful in treatment of closed or open, complete diaphyseal McIII/MtIII fractures in mature horses and foals. Instable fixation, infection and a bodyweight > 320 kg are major risk factors for unsuccessful outcome.

  15. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  16. On the reliability of archaeological rat bone for radiocarbon dating in New Zealand

    International Nuclear Information System (INIS)

    Higham, T.F.G.; Petchey, F.J.

    2000-01-01

    Holdaway and Beavan (1999) discussed the radiocarbon dating of bone of various species from the site of Hukanui Pool, Hawkes Bay. We question their conclusion that two apparently reliable rat bone gelatin determinations from the Hukanui Pool site provide support for the entire suite of rat determinations from previously dated 'natural' sites. We present evidence that contradicts their conclusion that bone material from the broad range of archaeological midden sites is generally less well-preserved than bone from 'natural' caves in New Zealand such as Hukanui Pool. We show that when dates from archaeological bone from Pleasant River and Shag River Mouth are evaluated, the state of preservation is comparable with material from the 'natural' site of Hukanui Pool, and should provide accurate and reproducible radiocarbon determinations. Our conclusion has serious implications for the acceptance of the model proposed by Holdaway (1999), because if archaeological bone is well-preserved but yields unreliable and unreproducible results, it is likely that well-preserved 'natural' bone is similarly affected. (author)

  17. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat.

    Science.gov (United States)

    Takahashi, Takahiro; Watanabe, Takehiro; Nakada, Hiroshi; Sato, Hiroki; Tanimoto, Yasuhiro; Sakae, Toshiro; Kimoto, Suguru; Mijares, Dindo; Zhang, Yu; Kawai, Yasuhiko

    2016-01-01

    The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O) and magnesium and zinc chlorides (MgCl 2 and ZnCl 2 , respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.

  18. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  19. Effect of dietary soy isoflavones on bone loss in ovariectomized rats

    African Journals Online (AJOL)

    Abstract. Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ... Keywords: Mineral elements, Alkaline phosphatase, Isoflavones, Bone loss, Notch pathway. This is an Open .... incubated for 3 h in 5% non-fat-milk blocking solution at ..... protect against osteopenia in ovariectomised rats.

  20. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  1. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  2. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Effectiveness of Russian current in bone regeneration process in rats

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Oliveira Lima

    Full Text Available Abstract Introduction: Russian current is an electric current of average frequency that is able to restore the properties of skeletal muscle at a low treatment cost. It is essential to know the effects of Russian current in bone tissue, since electromagnetic energy could be an efficient and low cost method to treat bone disorders. Objective: The aim of the study was to evaluate the effectiveness of Russian current in the consolidation of tibia fracture in adult rats. Methods: 24 adult male Albinus Wistar rats wereused. The animals were divided randomly into two groups: control group (CG, composed of 12 animals, and Intervention Group (IG consisting of 12 animals, both groups were submitted to osteotomy (proximal medial surface of the tibia. The IG underwent an electrical stimulation protocol with Russian current, while the CG did not undergo any kind of intervention. Euthanasia was performed in three animals of each group on the following days: 5, 10, 20, and 30 days of treatment. Results: The results suggested higher primary ossification, intense osteogenic activity, and increased thickness of the periosteum, characterizing more advanced ossification and a greater presence of trabecular bone marrow in rats in the group subjected to the treatment. In this way, we can assign one more beneficial effect to interventions with Russian current, for the treatment of postfracture rehabilitation. Conclusion: In both groups the bone tissue repair process occurred, but in the electrically stimulated group the osteogenesis process was more advanced.

  4. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  5. Quantification of osteolytic bone lesions in a preclinical rat trial

    Science.gov (United States)

    Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf

    2013-10-01

    In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.

  6. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    Science.gov (United States)

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Revascularisation of fresh compared with demineralised bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    2001-01-01

    Revascularisation of bone grafts is influenced by both the anatomical origin and the pre-implantation processing of the graft. We investigated the revascularisation by entrapment of 141Ce (cerium)-labelled microspheres in large, fresh and demineralised syngeneic grafts of predominantly cancellous...... (iliac bone) or cortical (tibial diaphysis) bone three weeks after heterotopic implantation in rats. The mean (SD) 141Ce deposition index (counts per minute (cpm) of mg recovered implant/cpm of mg host iliac bone) was higher in fresh iliac bone grafts, 0.98 (0.46) compared to that of demineralised iliac...... bone, 0.32 (0.20), p bone grafts, 0.51 (0.27), p = 0.007. We found no significant difference in the mean 141Ce deposition index between fresh tibial bone grafts and demineralised tibial bone grafts, 0.35 (0.42), p = 0.4, or between demineralised tibial grafts and demineralised...

  8. Reconstructive Effects of Percutaneous Electrical Stimulation Combined with GGT Composite on Large Bone Defect in Rats

    Directory of Open Access Journals (Sweden)

    Bo-Yin Yang

    2013-01-01

    Full Text Available Previous studies have shown the electromagnetic stimulation improves bone remodeling and bone healing. However, the effect of percutaneous electrical stimulation (ES was not directly explored. The purpose of this study was to evaluate effect of ES on improvement of bone repair. Twenty-four adult male Sprague-Dawley rats were used for cranial implantation. We used a composite comprising genipin cross-linked gelatin mixed with tricalcium phosphate (GGT. Bone defects of all rats were filled with the GGT composites, and the rats were assigned into six groups after operation. The first three groups underwent 4, 8, and 12 weeks of ES, and the anode was connected to the backward of the defect on the neck; the cathode was connected to the front of the defect on the head. Rats were under inhalation anesthesia during the stimulation. The other three groups only received inhalation anesthesia without ES, as control groups. All the rats were examined afterward at 4, 8, and 12 weeks. Radiographic examinations including X-ray and micro-CT showed the progressive bone regeneration in the both ES and non-ES groups. The amount of the newly formed bone increased with the time between implantation and examination in the ES and non-ES groups and was higher in the ES groups. Besides, the new bone growth trended on bilateral sides in ES groups and accumulated in U-shape in non-ES groups. The results indicated that ES could improve bone repair, and the effect is higher around the cathode.

  9. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.; Simske, S.J. [BioServe Space Technologies University of Colorado Boulder, Colorado80309-0429 (United States); Zimmerman, R.J. [Chiron Corporation 4560 Horton Street Emeryville, California94608-2916 (United States)

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}

  10. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  11. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  12. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    OpenAIRE

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2010-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: ...

  13. Primary clear cell sarcoma of bone

    International Nuclear Information System (INIS)

    Choi, J.H.; Gu, M.J.; Kim, M.J.; Bae, Y.K.; Choi, W.H.; Shin, D.S.; Cho, K.H.

    2003-01-01

    Clear cell sarcoma is a rare soft tissue sarcoma of young adults with melanocytic differentiation. It occurs predominantly in the soft tissue of extremities, typically involving tendons and aponeuroses. Primary clear cell sarcoma of bone is extremely rare. We report a case of primary clear cell sarcoma of the right first metatarsal in a 48-year-old woman and provide a literature review of the entity. (orig.)

  14. Possible Role of Garlic Oil and Parsley Extract in Ameliorating Radiation-Induced Bone Loss in Female Rats

    International Nuclear Information System (INIS)

    Ramadan, L.; El-Sabbagh, W.; Kenawy, S.

    2011-01-01

    To Investigate the possible protective effect of garlic oil and parsley extract against bone loss resulted in female virgin rats exposed to fractionated doses of gamma-radiation (1 Gy 3 times weekly for 5 weeks). Urinary calcium (U Ca), calcium to creatinine ratio (Ca/Cr), hydroxyproline and serum phosphorus were measured as bone resorption bio markers, while serum osteocalcine (OST) and serum alkaline phosphatase (ALP) were measured as bone formation bio markers. Furthermore, nitric oxide (NO) which represents the balance in bone remodeling was measured. Malondiadehyde level (MDA) as well as superoxide dismutase activity (SOD) was measured as oxidative stress bio markers. Female irradiated rats in the present study had significant increases in both bone resorption and bone formation bio markers after 6 weeks from the last exposure to gamma-radiation. Irradiated rats also had significant decreases in plasma NO indicating imbalance in bone remodeling as well as significant increase in oxidative stress bio markers. Daily treatment with garlic oil extracted in olive oil improved all measured parameters except OST level, while the vehicle used for garlic oil (extra virgin olive oil) significantly decreased bone resorption bio markers. Parsley extract induced normalization to all bone resorption and formation parameters measured in irradiated rats. Daily administration of garlic oil and parsley extract protected the bone from degeneration induced by exposure to fractionated doses of gamma radiation.

  15. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.

    Science.gov (United States)

    Prodinger, Peter M; Foehr, Peter; Bürklein, Dominik; Bissinger, Oliver; Pilge, Hakan; Kreutzer, Kilian; von Eisenhart-Rothe, Rüdiger; Tischer, Thomas

    2018-02-14

    Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat-all of which are potentially available in the experimental situation-to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. 40 paired femura, tibiae and humeri of male Wistar rats (10-38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone's length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1-3% measured by DXA and 2.5-5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R 2  = 0.94-0.99). The load-displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy

  16. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  17. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  18. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  19. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  20. Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia.

    Science.gov (United States)

    Nowak, Beata; Matuszewska, Agnieszka; Nikodem, Anna; Filipiak, Jarosław; Landwójtowicz, Marcin; Sadanowicz, Ewa; Jędrzejuk, Diana; Rzeszutko, Marta; Zduniak, Krzysztof; Piasecki, Tomasz; Kowalski, Przemysław; Dziewiszek, Wojciech; Merwid-Ląd, Anna; Trocha, Małgorzata; Sozański, Tomasz; Kwiatkowska, Joanna; Bolanowski, Marek; Szeląg, Adam

    2017-10-01

    Postmenopausal osteoporosis and osteoporotic fractures constitute an increasing problem in developing countries. Kaempferol, isolated from seeds of Cuscuta chinensis, is an active flavonoid inhibiting in vitro osteoclast activity. The aim of the presented research was an assessment of kaempferol effect on estrogen-deficiency-induced bone structure disturbances in rats. The study was performed on 24 Wistar female rats divided into 3 groups: SHAM - rats undergoing a "sham" surgery, OVX-C - control group of animals that underwent ovariectomy, OVX-K - rats undergoing ovariectomy and receiving kaempferol for 8 weeks (from day 56 to day 112). In the OVX-K group, contrary to the OVX-C one, there was no significant decrease in femoral bone mineral density (BMD). A significant increase in Young's modulus was observed in the OVX-K group compared to the OVX-C (15.33±2.51GPa vs. 11.14±1.93GPa, p<0.05). A decreased bone turnover was detected in the OVX-K group. Tissue volume ratio (BV/TV) and trabecular bone perimeter were increased in the OVX-K group compared to the OVX-C one (0.241±0.037 vs. 0.170±0.022, p<0.05 and 15.52±2.78mm vs. 9.67±3.07mm, p<0.05, respectively). Kaempferol has a beneficial influence on estrogen-deficiency-induced disturbances of bone structure in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P.

    1988-01-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which 45 Ca release from 45 Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with 45 Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke

  2. Combined Effects of Phytoestrogen Genistein and Silicon on Ovariectomy-Induced Bone Loss in Rat.

    Science.gov (United States)

    Qi, Shanshan; Zheng, Hongxing

    2017-06-01

    This study was performed to evaluate the effect of concomitant supplementation of genistein and silicon on bone mineral density and bone metabolism-related markers in ovariectomized rat. Three-month-old Sprague Dawley female rats were subjected to bilateral ovariectomy (OVX) or sham surgery, and then the OVX rats were randomly divided into four groups: OVX-GEN, OVX-Si, OVX-GEN-Si, and OVX. Genistein and silicon supplementation was started immediately after OVX and continued for 10 weeks. In the OVX-GEN group, 5 mg genistein per gram body weight was injected subcutaneously. The OVX-Si group was given soluble silicon daily in demineralized water (Si 20 mg/kg body weight/day). The OVX-GEN-Si group was given subcutaneous injections of 5 mg genistein per gram body weight, at the same time, given soluble silicon daily (Si 20 mg/kg body weight/day). The results showed that the genistein supplementation in the OVX rats significantly prevented the loss of uterus weight; however, the silicon supplementation showed no effect on the uterus weight loss. The lumbar spine and femur bone mineral density was significantly decreased after OVX surgery; however, this decrease was inhibited by the genistein and/or silicon, and the BMD of the lumbar spine and femur was the highest in the OVX-GEN-Si-treated group. Histomorphometric analyses showed that the supplementation of genistein and/or silicon restored bone volume and trabecular thickness of femoral trabecular bone in the OVX group. Besides, the treatment with genistein and silicon for 10 weeks increased the serum levels of calcium and phosphorus in the OVX rats; serum calcium and serum phosphorus in the OVX-GEN-Si group were higher than those in the OVX-GEN and OVX-Si group (P silicon decreased serum alkaline phosphatase (ALP) and osteocalcin, which were increased by ovariectomy; serum ALP and osteocalcin in the OVX-GEN-Si group were lower than those in the OVX-GEN and OVX-Si groups (P silicon have synergistic effects on

  3. Randall Selitto pressure algometry for assessment of bone-related pain in rats.

    Science.gov (United States)

    Falk, S; Ipsen, D H; Appel, C K; Ugarak, A; Durup, D; Dickenson, A H; Heegaard, A M

    2015-03-01

    Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the effect of morphine was investigated. Randall Selitto measures of cancer-induced bone pain were supplemented by von Frey testing, weight-bearing and limb use test. Contribution of cutaneous nociception to Randall Selitto measures were examined by local anaesthesia. Randall Selitto pressure algometry over the tibia resulted in reproducible withdrawal thresholds, which were dose-dependently increased by morphine. Cutaneous nociception did not contribute to Randall Selitto measures. In cancer-bearing animals, compared with sham, significant differences in pain-related behaviours were demonstrated by the Randall Selitto test on day 17 and 21 post-surgery. A difference was also demonstrated by von Frey testing, weight-bearing and limb use tests. Our results indicate that pressure applied by the Randall Selitto algometer on a region, where the bone is close to the skin, may offer a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®

  4. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    Directory of Open Access Journals (Sweden)

    Jodi A. Carlson Scholz

    2012-12-01

    Full Text Available Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH. Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.

  5. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  6. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    Science.gov (United States)

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral

  7. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  8. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Science.gov (United States)

    Liu, JunLi; Wang, YiHu; Song, ShuJun; Wang, XiJie; Qin, YaYa; Si, ShaoYan; Guo, YanChuan

    2015-01-01

    Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  9. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    JunLi Liu

    Full Text Available Collagen peptides (CPs and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8 for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg; OVX + calcium citrate (75 mg/kg. After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  10. Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1998-01-01

    Demineralized allogenic bone implanted in the subcutis or muscle of rodents causes formation of heterotopic bone by osteoinduction. The osteoinductive response may be weaker in primates than in rodents. It was suggested that the osteoinductive response of demineralized bone for clinical use could...... be enhanced by using young donors, because studies have indicated that the osteoinductive response is reduced in demineralized bone of old versus young donors. However, these findings may not represent a gradual decline in the osteoinductive property of bone matrix throughout the life span. We evaluated...... quantitatively, by uptake of strontium 85, the osteoinductive effect of demineralized bone matrix from newborn, 8-week-old (adolescent), and 8-month-old (adult) male Wistar rats implanted in the abdominal muscles of 8-week-old male Wistar rats. The osteoinductive response increased significantly with increasing...

  11. Combination of Weight-Bearing Training and Anti-MSTN Polyclonal Antibody Improve Bone Quality In Rats.

    Science.gov (United States)

    Tang, Liang; Gao, Xiaohang; Yang, Xiaoying; Zhang, Didi; Zhang, Xiaojun; Du, Haiping; Han, Yanqi; Sun, Lijun

    2016-12-01

    Weight-bearing exercise is beneficial to bone health. Myostatin (MSTN) deficiency has a positive effect on bone formation. We wondered if a combination of weight-bearing training and polyclonal antibody for MSTN (MsAb) would augment bone formation to a greater degree than single treatment. In this study, rats were randomly assigned to four groups: Control, weight-bearing training (WT), MsAb, and WT+MsAb. The trained rats ran at 15 m/min bearing with 35% of their body weight, 40 min/day (2 min of running followed by 2 min of rest), 6 days/week, for 8 weeks. The rats with MsAb were injected once a week with MsAb for 8 weeks. MicroCT analysis showed that compared with the MsAb group, WT+MsAb significantly enhanced cortical bone mineral density (BMD) (p .05), weight-bearing training significantly increased energy absorption (p weight-bearing training and MsAb have a greater positive effect on bone than treatment with either MsAb or weight-bearing training alone, suggesting that resistance training in combination with MSTN antagonists could be an effective approach for improving bone health and reducing osteoporosis risk.

  12. Effects of long-term administration of pantoprazole on bone mineral density in young male rats.

    Science.gov (United States)

    Matuszewska, Agnieszka; Nowak, Beata; Rzeszutko, Marta; Zduniak, Krzysztof; Szandruk, Marta; Jędrzejuk, Diana; Landwójtowicz, Marcin; Bolanowski, Marek; Pieśniewska, Małgorzata; Kwiatkowska, Joanna; Szeląg, Adam

    2016-10-01

    Epidemiological studies suggest that long-term administration of proton pump inhibitors (PPIs) may decrease bone mineral density (BMD) and increase the risk of osteoporotic fractures. The aim of the study was to assess the influence of pantoprazole on bone metabolism in growing rats. The experiment was carried out on twenty-four young male Wistar rats divided into two groups receiving either pantoprazole at the dose of 3mg/kg or vehicle for 12 weeks. Femoral bone mineral density (BMD) and bone histomorphometry were assessed. Serum total calcium, inorganic phosphate and markers of bone turnover were measured. In pantoprazole-treated rats a decreased BMD was detected (0.2618±0.0133g/cm(2)vs. 0.2715±0.0073g/cm(2), p<0.05). Bone histomorphometry revealed a decrease in growth plate thickness (G.Pl.RTh.) (161.0±27.8μm vs. 195.0±20.8, p<0.05) in pantoprazole-treated animals. Serum total calcium level and osteocalcin concentrations were decreased in the pantoprazole-treated group (9.62±0.55mg/dl vs. 10.15±0.38mg/dl, p<0.05 and 242.7±44.4pg/ml vs. 342.5±123.3pg/ml, p<0.05, respectively). We observed that PPIs might have a negative impact on bone formation in growing rats mainly due to their inhibitory effects on the gastric proton pump, with probable deterioration of calcium absorption and decrease in growth plate thickness. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  13. The protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulating Wnt and p38 MAPK signaling.

    Science.gov (United States)

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-12-12

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.

  14. Effect of feeding graded doses of Citrinin on clinical and teratology in female Wistar rats.

    Science.gov (United States)

    Singh, N D; Sharma, A K; Patil, R D; Rahman, S; Leishangthem, G D; Kumar, M

    2014-02-01

    Citrinin is the one of the well-known mycotoxins, which is possibly spread all over the world. The graded doses of citrinin (1, 3 and 5 ppm CIT in feed) in female Wistar rats 10 weeks prior to mating, during mating and during organogenesis resulted in resorptions and post implantation losses, decreased fetal body weights and crown-rump lengths in fetuses of all groups. Various developmental anomalies recorded in fetuses of treated rats included gross (wrist drop, curled tail, stretched forelimb, subcutaneous haematoma), skeletal (incomplete ossification of skull bones, incomplete fusion of vertebral bodies, complete and partial agenesis of sternaebrae, metacarpals, metatarsals and phalanges, fused ribs and swing out ribs) and visceral (internal and external hydrocephalus, cerebellar hypoplasia, microphthalmia, roundening of heart, contracted kidneys, dilated renal pelvis and cryptorchid testes). The results suggest that CIT has adverse effects on fetal development which may be due to the longer bioavailability of citrinin in the animals.

  15. Effect of insulin on the mitotic activity of bone marrow cells after irradiation. [Gamma radiation, rats

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1976-02-01

    A total of 236 white rats were given a whole-body gamma dose of 750 R. Part of the rats were given a subcutaneous insulin injection of 0.2 units/kg. After 10, 20, 30 min, 1, 2, 3, 5, 8, 10 and 12 hours the mitotic index was determined in both groups of rats in the bone marrow of the femur. The content of glucose and insulin in the blood was determined. The mitotic index was found to be higher on administering insulin. The use of insulin in radiation sickness intensifies the mitotic activity of bone marrow cells and stimulates the recovery of bone marrow hematopoiesis. 5 references.

  16. Efficacy comparison of Accell Evo3 and Grafton demineralized bone matrix putties against autologous bone in a rat posterolateral spine fusion model.

    Science.gov (United States)

    Brecevich, Antonio T; Kiely, Paul D; Yoon, B Victor; Nguyen, Joseph T; Cammisa, Frank P; Abjornson, Celeste

    2017-06-01

    Spinal fusion procedures are intended to stabilize the spinal column for a multitude of disorders including abnormal curvature, traumatic instability, degenerative instability, and damage from infections or tumors. As an aid in the bone healing response, bone graft materials are used to bridge joints for arthrodesis and promote unions in pseudoarthrosis. Currently, the gold standard for stabilizing fusion masses in spinal procedures involves using the osteogenic, osteoinductive, and osteoconductive properties of autologous iliac crest corticocancellous bone. However, considerable morbidity is associated with harvesting the autologous graft. Donor site complications including infection, large hematomas, and pain have been reported at rates as high as 50% (Boden and Jeffrey, 1995). Biologically, the rate of bone repair dictates the rate at which the fusion mass will unite under autologous graft conditions. The purpose of this study is to compare the quality and rate of fusion between Accell Evo3 and Grafton demineralized bone matrix (DBM), with the gold standard iliac crest bone graft (ICBG) as the control, in athymic rat posterolateral fusion. This study was a randomized, controlled study in a laboratory setting at the Hospital for Special Surgery in New York City. Blinded observations were made, which created an assessment of outcomes for successful fusions between each method. Forty-eight (48) athymic rats were used in this study and underwent posterolateral lumbar fusion. They were assessed at either 3 weeks or 9 weeks to see the rate and efficacy of fusion. Outcome measures will be the efficacy of the different bone grafts and their success rates of fusion in the rats. A comparison of the quality and rate of fusion between Accell Evo3® (DBM A) and Grafton (DBM B), with the gold standard iliac crest bone graft (ICBG) as the control, was performed using the established posterolateral intertransverse process on an athymic rat model. Materials were evaluated for

  17. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  18. Dietary phosphorus exacerbates bone loss induced by cadmium in ovariectomized rats.

    Science.gov (United States)

    Bakhshalian, Neema; Johnson, Sarah A; Hooshmand, Shirin; Feresin, Rafaela G; Elam, Marcus L; Soung, Do Y; Payton, Mark E; Arjmandi, Bahram H

    2014-12-01

    Postmenopausal bone loss can be exacerbated by environmental contaminants, including the heavy metal cadmium (Cd). We hypothesized that incorporating phosphorus (P) into the diet would lead to the chelation of Cd into P, preventing its absorption and subsequent bone loss. To test this hypothesis, we used ovariectomized rats as a model of postmenopausal osteoporosis to examine the deleterious effects of Cd on bone with and without added P. Fifty 3-month-old ovariectomized Sprague-Dawley rats were assigned to five treatment groups (n = 10 per group) for 3 months as follows: (1) control; (2) 50 ppm Cd; (3) 50 ppm Cd plus 1.2% P; (4) 200 ppm Cd; and (5) 200 ppm Cd plus 1.2% P. Cd plus P caused a significant loss of whole body (P = 0.0001 and P properties, 50 ppm Cd plus 1.2% P caused an increase in trabecular separation, whereas 200 ppm Cd plus 1.2% P caused a decrease in bone volume-to-total volume ratio, a decrease in trabecular number, and an increase in trabecular separation and structural model index. Our findings indicate that Cd exposure, along with high intake of P, may be a public health hazard with respect to bone health.

  19. Biomechanical and microstructural benefits of physical exercise associated with risedronate in bones of ovariectomized rats.

    Science.gov (United States)

    Shimano, Roberta Carminati; Macedo, Ana Paula; Falcai, Maurício José; Ervolino, Edilson; Shimano, Antônio Carlos; Issa, João Paulo Mardegan

    2014-06-01

    Several treatments have been developed aiming the prevention of bone loss. There are discussions about the best prophylactic and therapeutic procedures for osteoporosis. This study evaluated the effects of physical exercise associated with risedronate as a prophylactic and therapeutic procedure in osteopenic bones of rats submitted to ovariectomy. We used 48 Wistar rats divided into: ovariectomized or subjected to sham surgery. Ovariectomized rats were divided into the following sub-groups: OVX, 12 weeks sedentary; OVX-EX, treadmill training for 12 weeks; OVX-RA, 12 weeks with risedronate administration; and OVX-EX-RA, 12 weeks with risedronate administration and treadmill training. Rats subjected to sham surgery were divided into the following sub-groups: SH, 12 weeks sedentary; SH-EX, treadmill training for 12 weeks; SH-RA, 12 weeks with risedronate administration; and SH-EX-RA, 12 weeks with risedronate administration and training on the treadmill. The effectiveness of the treatment was evaluated in tibias using biomechanical, radiological, histomorphometric, and immunohistochemical analyses. Data were analyzed by statistical tests, with significance level of P bones of ovariectomized rats. © 2014 Wiley Periodicals, Inc.

  20. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  1. Ethylene oxide gas sterilization does not reduce the osteoinductive potential of demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1995-01-01

    It has been shown that different sterilization procedures of demineralized bone may influence its osteoinductive properties. The aim of this study was to evaluate the effect of ethylene oxide sterilization for 1, 3, and 6 hours on the osteoinductive potential of allogeneic demineralized bone...... implanted heterotopically in rats. Sixty male Wistar rats were randomly assigned to one of four groups, A through D, and four demineralized bone chips (2.8 mg) were implanted in a pouch created between the right oblique abdominal muscles in each animal. In Group A, the demineralized bone was implanted...... without prior sterilization of the material, whereas the demineralized bone implanted in Groups B, C, and D had been sterilized in ethylene oxide gas for 1, 3, or 6 hours, respectively, and aerated for 48 hours. At 4 weeks postoperatively, bone formation was evaluated quantitatively by strontium 85 uptake...

  2. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    Science.gov (United States)

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  3. Bone blood flow after spinal paralysis in the rat

    International Nuclear Information System (INIS)

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K.

    1990-01-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow

  4. Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Ghosal, J.; Chakraborty, M.; Biswas, T.; Ganguly, C.K.; Datta, A.G.

    1987-01-01

    The effect of Ep on radioactive glucose and methyl-alpha-D-glucoside transport by rat erythrocytes and bone marrow cells were studied. There is initial linearity followed by saturation kinetics of [ 14 C]glucose transport by the erythrocytes of starved and starved plus Ep-treated rats at different concentrations of glucose. Starvation caused slight inhibition of glucose transport which increased markedly on Ep administration to starved rats. Normal animals failed to show any significant change in glucose transport after Ep treatment. Methyl-alpha-D-glucoside inhibited the Ep-stimulated glucose transport significantly. Ep also stimulated the transport of radioactive methyl-alpha-D-glucoside which was competitively inhibited in presence of D-glucose. Glucose transport in erythrocytes was found to be sensitive to metabolic inhibitors like azide and DNP. A sulfhydryl reagent and ouabain also inhibited the transport process. Ep stimulated glucose and methyl-alpha-D-glucoside transport in the bone marrow cells of starved rats. The sugar analog competitively inhibited the glucose transport in bone marrow cells and vice versa

  5. Prospective analysis of a first MTP total joint replacement. Evaluation by bone mineral densitometry, pedobarography, and visual analogue score for pain

    DEFF Research Database (Denmark)

    Wetke, Eva; Zerahn, Bo; Kofoed, Hakon

    2012-01-01

    We hypothesized that a total replacement of the first metatarsophalangeal joint (MTP-1) would alter the walking pattern with medialisation of the ground reaction force (GRF) of the foot and subsequently cause an increase in bone mineral density (BMD) in the medial metatarsal bones and a decline o...

  6. TREATMENT OF BRACHIMETATARSIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    N. A. Kovalenko-Klychkova

    2014-01-01

    Full Text Available Brachimetatarsia is a malformation of one or more of the metatarsal bones, characterized by its shortening. Abnormal anatomy of the forefoot leads to the convergence of epiphyses of adjacent metatarsals, deformation of the forefeet, including the formation of hallux valgus, pain and cosmetic defects. The authors have conducted the surgical treatment (lengthening the shortened metatarsal bones in 18 female patients (28 feet, 32 metatarsal bones and determined the optimal method of surgical correction. Depending on the severity of metatarsal bone shortening 3 methods of surgical treatment were applied: in shortening of less than 1,2 cm -the slide osteotomy; in shortening up to 1.8 cm - a one-staged lengthening of metatarsal bone with autograft; more than 1.8 cm - the distraction osteosynthesis. Due to existing disorders it is advisable to perform restoration of the shortened toe length according to the type of the metatarsal parabola, inherent to the patient. The optimal method of surgical treatment is a one-staged lengthening of the shortened metatarsal bone with the use of autograft from the iliac wing borrowed by means of “window-form” method without damage to the integrity of the apophysis.

  7. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-01-01

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n = 12) to 1000 ppm lead acetate in drinking water for 90 days while control group (n = 8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ + Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.

  8. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  9. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  10. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  11. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  12. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  13. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats.

    Science.gov (United States)

    Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Linhares, Camila Rodrigues Borges; Bergamini, Mariana Lobo; Rocha, Flaviana Soares; Morais, Richarlisson Borges de; Balbi, Ana Paula Coelho; Hiraki, Karen Renata Nakamura; Dechichi, Paula

    2018-01-29

    The aim of this study was evaluate the effect of HBO on diabetic rats. Twenty rats were distributed into four groups (n = 5): Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin, and bone defects were created in both femurs in all animals. HBO therapy began immediately after surgery and was performed daily in the CH and DH groups. After 7 days, the animals were euthanized. The femurs were removed, demineralized, embedded in paraffin, and histologic images were analyzed. Qualitative histologic analyses showed more advanced stage bone regeneration in control groups (C and CH) compared with diabetic groups (D and DH). Histomorphometric analysis showed significantly increased bone neoformation in CH compared with the other groups (p  0.05). The mast cell population increased in CH compared with the other groups (C, D, and DH) (p < 0.05). The mast cell population did not differ between D and DH Groups. This study showed that HBO therapy improved early bone regeneration in diabetic rats and increased the mast cell population only in non-diabetic animals. HBO was shown to be important treatment for minimizing deleterious effects of diabetes on bone regeneration.

  14. Vitamin D insufficiency reduces the protective effect of bisphosphonate on ovariectomy-induced bone loss in rats.

    Science.gov (United States)

    Mastaglia, Silvina R; Pellegrini, Gretel G; Mandalunis, Patricia M; Gonzales Chaves, Macarena M; Friedman, Silvia M; Zeni, Susana N

    2006-10-01

    The present study was carried out to obtain an experimental model of vitamin D (vit D) insufficiency and established osteopenia (experiment 1) to then investigate whether vit D status, i.e. normal or insufficient, interferes with bone mass recovery resulting from bisphosphonate therapy (experiment 2). Rats (n = 40) underwent OVX (n = 32) or a sham operation (n = 8). The first 15 days post-surgery, all groups were kept under fluorescent tube lighting and fed a diet containing 200 IU% vit D (+D). They were then assigned during an additional 45 days to receive either +D or a diet lacking vit D (-D) and kept under 12 h light/dark cycles using fluorescent or red lighting. Serum 25HOD was significantly lower in -D rats (P < 0.0001). The type of lighting did not induce differences in 25OHD, calcium (sCa), phosphorus (sP), bone alkaline phosphatase (b-AL), CTX, bone density or histology. No osteoid was observed in undecalcified bone sections. Experiment 2 (105 days): rats were fed either +D or -D according to experiment 1 and were treated with either placebo or 16 mug olpadronate (OPD)/100 g rat/week during the last 45 days. Whereas 25HOD was significantly lower (P < 0.0001) in -D/OPD than in +D/OPD rats, no significant differences in sCa, sP, b-AL or CTX were observed. OPD prevented the loss of lumbar spine (LS) and proximal tibia (PT) BMD and the decrease in bone volume (BV/TV) (P < 0.05) and in the number of trabeculae observed in untreated rats. However, +D/OPD animals presented significantly higher values of LS BMD, PT BMD and BV/TV than -D/OPD rats (P < 0.05). No osteoid was observed in undecalcified sections of bone. In summary, this is the first experimental study to provide evidence that differences in vit D status may affect the anticatabolic response to bisphosphonate treatment. However, the molecular mechanism through which vit D insufficiency reduces the effect of the aminobisphosphonate remains to be defined.

  15. Alveolar rhabdomyosarcoma originating between the fourth and fifth metatarsal--case report and literature review.

    LENUS (Irish Health Repository)

    Bolger, J C

    2010-09-01

    We report a case of alveolar rhabdomyosarcoma arising between the fourth and fifth metatarsal. A 13-year-old boy presented to outpatients with a history of pain and swelling in the lateral aspect of his left forefoot. Plain radiographs and MRI showed a soft tissue mass displacing the fourth metatarsal. Percutaneous biopsy revealed an alveolar rhabdomyosarcoma. Staging scans showed advanced metastatic disease. The patient was treated with chemotherapy. This highly malignant lesion remains challenging to diagnose, and difficult to treat successfully.

  16. Radiological Outcome of Patients with Splay Foot Following First and Fifth Metatarsal Osteotomies Performed Simultaneously on the Same Foot

    Directory of Open Access Journals (Sweden)

    Hadi Mohammed

    2012-12-01

    Conclusion: The results suggest a very good radiological outcome in symptomatic patients following simultaneous first and fifth metatarsal osteotomies. All the angles measured postoperatively, except the distal metatarsal articular angle, showed a statistically significant reduction.

  17. Frequency of polyploid cells in the bone marrow of rats fed irradiated wheat

    International Nuclear Information System (INIS)

    George, K.P.; Chaubey, R.C.; Sundaram, K.; Gopal-Ayengar, A.R.

    1976-01-01

    Diets containing different proportions of non-irradiated or irradiated wheat were fed to Wistar rats for 1 or 6 wk. Cytological analysis of the bone marrow showed no significant difference in the frequency of polyploid cells in the rats fed non-irradiated or irradiated wheat diets, even when the treated wheat was fed to the rats within 24 hr of irradiation. (author)

  18. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  19. Effects of Bone Marrow Mesenchymal Stem Cells-Conditioned Medium on Tibial Partial Osteotomy Model of Fracture Healing in Hypothyroidism Rats

    Science.gov (United States)

    Sefati, Niloofar; Norouzian, Mohsen; Abbaszadeh, Hojjat-Allah; Abdollahifar, Mohammad-Amin; Amini, Abdollah; Bagheri, Mohammad; Aryan, Arefeh; Fadaei Fathabady, Fatemeh

    2018-03-01

    Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchyme stem cells (MSCs) secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium (CM) in hypothyroidism male rats after inducing bone defect. : In this study, 24 male rats were randomly assigned to three groups: (I) hypothyroidism+bone defect (HYPO), (II) hypothyroidism+bone defect+CM (HYPO+CM), and (III) no hypothyroidism+bone defect (control). Four weeks after surgery, the right tibia was removed, and immediately, biomechanical and histological examinations were performed. The results showed a significant reduction in bending stiffness (32.64±3.99), maximum force (14.63±1.89), high stress load (7.59±2.31), and energy absorption (12.68±2.12) at the osteotomy site in hypothyroidism rats in comparison to the control and hypothyroidism+condition medium groups (P<0.05). There was also a significant decrease in the trabecular bone volume (3.86±3.88) and the number of osteocytes (5800±859.8) at the osteotomy site in hypothyroidism rats compared to the control and hypothyroidism+condition medium groups (P<0.01 and P<0.02, respectively). The present study suggests that the use of the CM can improve the fracture regeneration and accelerates bone healing at the osteotomy site in hypothyroidism rats.

  20. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    Directory of Open Access Journals (Sweden)

    Ellen Neven

    Full Text Available The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF. In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  1. Obesity reduces bone density associated with activation of PPARγ and suppression of Wnt/β-catenin in rapidly growing male rats.

    Directory of Open Access Journals (Sweden)

    Jin-Ran Chen

    Full Text Available BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD or a chow diet (low fat diet, LFD fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life.

  2. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  3. Comparison of histomorphometry and 85Sr uptake in induced heterotopic bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by 85Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of 85Sr uptake were...... with increasing mass of implanted DBM, whereas the osteogenic index did not change....

  4. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    OpenAIRE

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those...

  5. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    OpenAIRE

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured...

  6. Tensile Properties of the Deep Transverse Metatarsal Ligament in Hallux Valgus

    Science.gov (United States)

    Abdalbary, Sahar Ahmed; Elshaarawy, Ehab A.A.; Khalid, Bahaa E.A.

    2016-01-01

    Abstract The deep transverse metatarsal ligament (DTML) connects the neighboring 2 metatarsal heads and is one of the stabilizers connecting the lateral sesamoid and second metatarsal head. In this study, we aimed to determine the tensile properties of the DTML in normal specimens and to compare these results with hallux valgus specimens. We hypothesized that the tensile properties of the DTML would be different between the 2 groups of specimens. The DTML in the first interspace was dissected from 12 fresh frozen human cadaveric specimens. Six cadavers had bilateral hallux valgus and the other 6 cadavers had normal feet. The initial length (L0) and cross-sectional area (A0) of the DTML were measured using a digital caliper, and tensile tests with load failure were performed using a material testing machine. There were significant between-groups differences in the initial length (L0) P = 0.009 and cross-sectional area (A0) of the DTML P = 0.007. There were also significant between-groups differences for maximum force (N) P = 0.004, maximum distance (mm) P = 0.005, maximum stress (N/mm2) P = 0.003, and maximum strain (%) P = 0.006. The DTML is an anatomical structure for which the tensile properties differ in hallux valgus. PMID:26937914

  7. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    Science.gov (United States)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  8. Effects of young-coconut juice on increasing mandibular cancellous bone in orchidectomized rats: Preliminary novel findings

    Directory of Open Access Journals (Sweden)

    Pranee Suwanpal

    2011-12-01

    Full Text Available Androgens play a very important role in building the skeleton in young adults and help to prevent bone loss andosteoporosis in aging men. In addition, in hypogonadism or elderly men, bone mass has been related to estrogen levels ratherthan to testosterone. Estrogen replacement therapy has therefore been proposed to prevent bone loss in males as well as infemales. Estrogen, however, has been considered to be one of the hormonal risk factors for benign prostatic hyperplasia andprostate cancer and also has other side effects. Young coconut juice (YCJ presumably containing phytoestrogen was investigatedin the present study for its possible beneficial effects on delaying osteoporosis using a male rat model, and by this totest the possibility that it might be able to replace estrogen replacement therapy without side effects. In this study, mandibularcancellous bone was used as the osteoporotic model. Using the same model, we have previously found that total cartilagethickness particularly the hypertrophic zone of mandibular condylar cartilage was thicker in the sham-operated rats receivingYCJ orally fed for a 14 day period, compared with sham, orchidectomized animal, orchidectomized rats receiving estradiolbenzoate, and orchidectomized rats receiving YCJ. The present study confirmed our former study that mandibular cancellousbone in the sham-operated rats and in the orchidectomized rats receiving YCJ orally fed for a 14–day period were thicker thanthose of the sham and orchidectomized rat groups. This study results are novel and they indicate that YCJ may have beneficialeffects in the treatment of osteoporosis in andropause men.

  9. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Bone tissue engineering for spine fusion : An experimental study on ectopic and orthotopic implants in rats

    NARCIS (Netherlands)

    van Gaalen, SM; Dhert, WJA; van den Muysenberg, A; Oner, FC; van Blitterswijk, C; Verbout, AJ; de Bruijn, J.D.

    2004-01-01

    Alternatives to the use of autologous bone as a bone graft in spine surgery are needed. The purpose of this study was to examine tissue-engineered bone constructs in comparison with control scaffolds without cells in a posterior spinal implantation model in rats. Syngeneic bone marrow cells were

  11. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Talsnes, O

    1994-01-01

    Some studies have suggested that membranous bone grafts undergo less resorption than endochondral grafts, and faster revascularization of the former has been proposed as the explanation. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone...... implanted in the back muscles of young Lewis rats. As a measure of the quantity of cancellous bone in grafts before implantation, the ratio of the total area of soft-tissue spaces to the total area of the graft was measured histomorphometrically. Revascularization in grafts 3 weeks postoperatively...... was evaluated by deposit of 141Ce-labeled microspheres. Both the quantity of cancellous bone (before implantation) and the revascularization (3 weeks postoperatively) were greater in the mandibular and iliac bone grafts than in the calvarial and tibia diaphyseal grafts. The results suggest that the anatomical...

  12. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  13. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis

    Directory of Open Access Journals (Sweden)

    Jaqueline Suemi HASSUMI

    2018-06-01

    Full Text Available Abstract Alveolar bone healing after upper incisor extraction in rats is a classical model of preclinical studies. The underlying morphometric, cellular and molecular mechanism, however, remains imprecise in a unique study. Objectives The aim of this study was therefore to characterize the alveolar bone healing after upper incisor extraction in rats by micro computed tomographic (Micro-CT, immunohistochemical and real-time polymerase chain reaction (RT-PCR analysis. Material and Methods Thirty animals (Rattus norvegicus, Albinus Wistar were divided into three groups after upper incisors extraction at 7, 14, and 28 days. Micro-CT was evaluated based on the morphometric parameters. Subsequently, the histological analyses and immunostaining of osteoprotegerin (OPG, receptor activator of nuclear kappa B ligand (RANKL and tartrate resistant acid phosphate (TRAP was performed. In addition, RT-PCR analyses of OPG, RANKL, the runt-related transcription factor 2 (RUNX2, osteocalcin (OC, osteopontin (OPN, osterix (OST and receptor activator of nuclear kappa B (RANK were performed to determine the expression of these proteins in the alveolar bone healing. Results Micro-CT: The morphometric parameters of bone volume and trabecular thickness progressively increased over time. Consequently, a gradual decrease in trabecular separation, trabecular space and total bone porosity was observed. Immunohistochemical: There were no differences statistically significant between the positive labeling for OPG, RANKL and TRAP in the different periods. RT-PCR: At 28 days, there was a significant increase in OPG expression, while RANKL expression and the RANKL/OPG ratio both decreased over time. Conclusion Micro-CT showed the newly formed bone had favorable morphometric characteristics of quality and quantity. Beyond the RUNX2, OC, OPN, OST, and RANK proteins expressed in the alveolar bone healing, OPG and RANKL activity showed to be essential for activation of basic

  14. Proximal supination osteotomy of the first metatarsal for hallux valgus.

    Science.gov (United States)

    Yasuda, Toshito; Okuda, Ryuzo; Jotoku, Tsuyoshi; Shima, Hiroaki; Hida, Takashi; Neo, Masashi

    2015-06-01

    Risk factors for hallux valgus recurrence include postoperative round-shaped lateral edge of the first metatarsal head and postoperative incomplete reduction of the sesamoids. To prevent the occurrence of such conditions, we developed a proximal supination osteotomy of the first metatarsal. Our aim was to describe this novel technique and report the outcomes in this report. Sixty-six patients (83 feet) underwent a distal soft tissue procedure combined with a proximal supination osteotomy. After the proximal crescentic osteotomy, the proximal fragment was pushed medially, and the distal fragment was abducted, and then the distal fragment of the first metatarsal was manually supinated. Outcomes were assessed using the American Orthopaedic Foot & Ankle Society (AOFAS) score and radiographic examinations. The average follow-up duration was 34 (range, 25 to 52) months. The mean AOFAS score improved significantly from 58.0 points preoperatively to 93.8 points postoperatively (P hallux valgus and intermetatarsal angle decreased significantly from 38.6 and 18.0 degrees preoperatively to 11.0 and 7.9 degrees postoperatively, respectively (both, P hallux valgus, defined as a hallux valgus angle ≥ 25 degrees. The rates of occurrence of a positive round sign and incomplete reduction of the sesamoids significantly decreased postoperatively, which may have contributed to the low hallux valgus recurrence rates. We conclude that a proximal supination osteotomy was an effective procedure for correction of hallux valgus and can achieve a low rate of hallux valgus recurrence. Level IV, retrospective case series. © The Author(s) 2015.

  15. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  16. Bone architecture analyses of rat femur with 3D microtomographics images

    International Nuclear Information System (INIS)

    Lima, I.C.B.; Lopes, R.T.; Oliveira, L.F.

    2006-01-01

    One of the great 3D micro tomography (3D-μCT) applications in the medical area is the characterization of bone architecture, especially when it is spoken in osteoporosis because, among other factors, is characterized by the deterioration of the architecture. This work shows the 3D quantification, based on stereological concepts, of the bone tissue through 3D-μCT in real time. The analyses were carried out in femur rat and the 3D visualizations helped to understand bones morphology. The results showed the potential of this computational technique to verify the capability of characterization of the internal bone structures and the importance of the threshold level in the binarization process. (author)

  17. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  18. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  19. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Mortensen, B T; Jensen, P O; Helledie, N

    1998-01-01

    The Brown Norwegian rat transplanted with promyelocytic leukaemic cells (BNML) has been used as a model for human acute myeloid leukaemia. We have previously shown that both the blood supply to the bone marrow and the metabolic rate decrease in relation to the leukaemic development in these rats....

  20. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    Science.gov (United States)

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  1. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  2. Resection of the metatarsal head for diabetic foot ulcers.

    Science.gov (United States)

    Wieman, T J; Mercke, Y K; Cerrito, P B; Taber, S W

    1998-11-01

    Diabetic foot ulceration is a worldwide health problem. Approximately 15% of the 10 million diabetic patients in the United States will develop a foot ulceration at some time in their lives. The presence of a foot ulcer in this population is extremely debilitating and dramatically increases the risk of lower extremity amputation, accounting for approximately 67,000 lost limbs each year. Additionally, the costs associated with treating foot ulcers in diabetic patients is a major expense in the overall care of this patient group. An 11-year retrospective study was conducted to evaluate 101 consecutive patients with diabetic ulcers of the forefoot who were treated using resection of the metatarsal head as the primary means of obtaining wound closure. The results indicate that 88% of the ulcers were healed by using this technique, and relatively more rapidly than would be expected when compared with historical norms. Resection of the metatarsal head is a safe and relatively inexpensive procedure that facilitates closure of the lesion, helps to control infection, and prevents countless and costly amputations.

  3. Uranium deposition in bones of Wistar rats associated with skeleton development.

    Science.gov (United States)

    Rodrigues, G; Arruda-Neto, J D T; Pereira, R M R; Kleeb, S R; Geraldo, L P; Primi, M C; Takayama, L; Rodrigues, T E; Cavalcante, G T; Genofre, G C; Semmler, R; Nogueira, G P; Fontes, E M

    2013-12-01

    Sixty female Wistar rats were submitted to a daily intake of ration doped with uranium from weaning to adulthood. Uranium in bone was quantified by the SSNTD (solid state nuclear track detection) technique, and bone mineral density (BMD) analysis performed. Uranium concentration as a function of age exhibited a sharp rise during the first week of the experiment and a drastic drop of 70% in the following weeks. Data interpretation indicates that uranium mimics calcium. Results from BMD suggest that radiation emitted by the incorporated Uranium could induce death of bone cells. © 2013 Elsevier Ltd. All rights reserved.

  4. [Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].

    Science.gov (United States)

    Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming

    2017-12-25

    To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.

  5. Extracorporeal shock wave treatment of non- or delayed union of proximal metatarsal fractures.

    Science.gov (United States)

    Alvarez, Richard G; Cincere, Brandon; Channappa, Chandra; Langerman, Richard; Schulte, Robert; Jaakkola, Juha; Melancon, Keith; Shereff, Michael; Cross, G Lee

    2011-08-01

    Nonunion or delayed union of fractures in the proximal aspect of metatarsals 1 to 4 and Zone 2 of the fifth metatarsal were treated by high energy extracorporeal shock wave treatment (ESWT) to study the safety and efficacy of this method of treatment in a FDA study of the Ossatron device. In a prospective single-arm, multi-center study, 34 fractures were treated in 32 patients (two subjects had two independent fractures) with ESWT. All fractures were at least 10 (range, 10 to 833) weeks after injury, with a median of 23 weeks. ESWT application was conducted using a protocol totaling 2,000 shocks for a total energy application of approximately 0.22 to 0.51 mJ/mm2 per treatment. The mean ESWT application time for each of the treatments was 24.6 +/- 16.6 minutes, and anesthesia time averaged 27.1 +/- 10.4 minutes. All subjects were followed for 1 year after treatment at intervals of 12 weeks, 6, 9, and 12 months. The overall success rate at the 12-week visit was 71% with low complications, significant pain improvement as well as improvement on the SF-36. The success/fail criteria was evaluated again at the 6- and 12-month followup, showing treatment success rates of 89% (23/26) and 90% (18/20), respectively. The most common adverse event was swelling in the foot, reported by five subjects (15.6%). High-energy ESWT appears to be effective and safe in patients for treatment of nonunion or a delayed healing of a proximal metatarsal, and in fifth metatarsal fractures in Zone 2.

  6. Effect of First Ray Insufficiency and Metatarsal Index on Metatarsalgia in Hallux Valgus.

    Science.gov (United States)

    Slullitel, Gaston; López, Valeria; Calvi, Juan Pablo; Seletti, Maximiliano; Bartolucci, Carla; Pinton, Gustavo

    2016-03-01

    Two concepts have been proposed to explain the etiology of metatarsalgia in hallux valgus patients: First, as the magnitude of hallux valgus increases, there is a mechanical overload of the lesser metatarsals. Second, increased relative lesser metatarsal length is a factor in the development of metatarsalgia. However, there is no current evidence that these structural factors lead to primary metatarsalgia. The purpose of the study was to evaluate the factors associated with metatarsalgia in hallux valgus patients. A cross-sectional study of 121 consecutive adult patients with non-arthritic hallux valgus was carried out. Binary logistic regression was performed to identify the effect of the clinical and demographic factors on the occurrence of metatarsalgia. One hundred twenty-one patients (184 feet) with hallux valgus were analyzed. The median weight was 65 kg (interquartile range 58-72). Metatarsalgia was present in 84 (45.6%) feet. The binary logistic regression showed that lesser toe deformity (OR 2.6, 95% CI 0.2-0.5), gastrocnemius shortening (OR 5.8, 95% CI 2.8-12.3), metatarsal index (OR 0.3, 95% CI 0.2-0.5), and weight (OR 2.5, 95% CI 1.2-5.3) were significantly associated. Metatarsalgia occurs in almost half of hallux valgus patients. It has a multifactorial etiology. Our findings contradict the common theory that both the magnitude of hallux valgus deformity and an increased length of the lesser metatarsals, by themselves, lead to primary metatarsalgia. Metatarsalgia was associated with Achilles shortening, excessive weight, and associated lesser toe deformity. These factors should be addressed in order to treat this disorder adequately. Level III, comparative series. © The Author(s) 2015.

  7. A stimulator of proliferation of spleen colony-forming cells (CFU-S) in the bone marrow of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, Z.; Milenkovic, P.; Stojanovic, N.; Lukic, M.; Kataranovski, M.

    1993-07-01

    The presence and activity of a spleen colony - forming cell (CFU-S) proliferation stimulator was investigated in rat bone marrow after irradiation. The dose dependent increase in cytosine arabinoside induced cell dealth of normal mouse bone marrow. The results demonstrate the existence of a CFU-S proliferation stimulator in rat bone marrow similar to that originally found as a macrophage product in regenarating mouse bone marrow. The CFU-S proliferation stimulator activity was not associated with the presence of interleukin - 1,2, or 6 like activities in the material tested.

  8. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  9. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  10. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  11. Uranium in bone: metabolic and autoradiographic studies in the rat

    International Nuclear Information System (INIS)

    Priest, N.D.; Haines, J.W.; Howells, G.R.; Green, D.

    1982-01-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1) Uranium is initially deposited on to all types of bone surface, but preferentially on to those that are accreting. 2) Uranium is deposited in the calcifying zones of skeletal cartilage. 3) Bone accretion results in the burial of surface deposits of uranium. 4) Bone resorption causes the removal of uranium from surfaces. 5) Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6) Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7) The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium. (author)

  12. Uranium in bone: metabolic and autoradiographic studies in the rat.

    Science.gov (United States)

    Priest, N D; Howells, G R; Green, D; Haines, J W

    1982-03-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.

  13. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  14. Unusual localizations of unicameral bone cysts and aneurysmal bone cysts: A retrospective review of 451 cases.

    Science.gov (United States)

    Aycan, Osman Emre; Çamurcu, İsmet Yalkın; Özer, Devrim; Arıkan, Yavuz; Kabukçuoğlu, Yavuz Selim

    2015-06-01

    Unicameral bone cysts (UBC) and aneurysmal bone cysts (ABC) are benign cystic lesions of bone which are easily diagnosed. However, unusual locations may lead to a false diagnosis. Therefore the aim of this retrospective study was to determine the frequency of unusual localizations. The authors studied 451 cases with histopathologically confirmed diagnosis of UBC or ABC, seen between 1981 and 2012. In the UBC group (352 cases) humerus, femur and calcaneus were found to be the most common sites, while acetabulum, scapula, scaphoid, lunatum, metacarpals, metatarsals, toe phalanges and ulna each accounted for less than 1%. In the ABC group (99 cases) the most common sites of involvement were femur, humerus and tibia, while finger phalanges, ilium, acetabulum, pubis, calcaneus, cuboid, and toe phalanges each accounted for only 1%. The differential diagnosis of cystic bone lesions should include both UBC and ABC. Pain complaints plead for the latter, except in case of fracture.

  15. Synchrotron-based XRD from rat bone of different age groups.

    Science.gov (United States)

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparing the effects of chlorhexidine and persica on alveolar bone healing following tooth extraction in rats, a randomised controlled trial.

    Science.gov (United States)

    Dorri, Mojtaba; Shahrabi, Shokufeh; Navabazam, Alireza

    2012-02-01

    Chlorhexidine is broadly prescribed by clinicians for treating extraction socket wounds; however, studies have reported adverse effects for chlorhexidine. Persica, a herbal antibacterial agent, could be an alternative for chlorhexidine. The aim of this randomised controlled trial was to investigate the effects of persica and chlorhexidine on alveolar bone healing following tooth extraction in rats. Eighteen Wistar rats were randomly allocated to three study groups: 0.2% chlorhexidine, 10% persica and controls (tap water). The rats were mouth-rinsed for 14 days. On day 8, the mandibular right first molars of all the rats were extracted. On day 21, the rats were euthanized and histological slides of their extraction sockets were prepared. The amount of new bone formation and the number of inflammatory cells in the extraction socket for each rat were recorded. Data were analysed using linear regression and Mann-Whitney tests. There was no significant difference between the control group and the intervention groups in terms of new bone formation and inflammatory cell count. The mean new bone formation was significantly higher in the persica group than in the chlorhexidine group. There was a significant association between new bone formation and inflammatory cell count in the entire sample. In conclusion, there were no significant differences between rinsing with tap water and rinsing with 0.2% chlorhexidine and 10% persica in enhancing extraction socket wound healing in rats. Extraction socket wound healing in rats was better enhanced with 10% persica than 0.2% chlorhexidine.

  17. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  18. [Austin's horizontal V-shaped sliding osteotomy of the metatarsal head [Chevron-osteotomy) in the treatment of hallux valgus].

    Science.gov (United States)

    Steinböck, G

    1996-08-01

    From 1983 to 1995, 1587 patients suffering from hallux abductovalgus were treated with the Austin bunionectomy. The operation consists of a medial exostosis removal, a V-shaped laterally directed displacement osteotomy of the metatarsal head, lateral release and medial reefing of the capsulo-ligamentous structures. Lateral transposition is facilitated by performing a sufficient lateral release consisting of dissection of the lateral metatarsophalangeal ligament and separation of the adductor tendon from the base of the phalanx and the lateral sesamoid. In the case of intermetatarsal angles greater than 15 degrees, the metatarsal-sesamoid ligament is also severed just above the lateral sesamoid. The periosteum is stripped in a limited fashion dorsally and toward the plantar, leaving its insertion at the metatarsal head intact. After this procedure, reposition of the metatarsal head onto the sesamoids is usually possible and is maintained by reconstruction of the medial metatarsal-sesamoid ligament. In the author's own research material, metatarsophalangeal angles larger than 50 degrees and intermetatarsal angles of over 20 degrees could be corrected. Pronation of the toe is usually corrected by tenotomy of the abductor tendon near the base of the phalanx. Avascular necrosis is extremely rare with a careful operative technique. In our extensive research material, four cases of AVN were recognized. Provided there is free motion of the joint (60-0-20), mild radiological signs of osteoarthritis are no contraindication for the operation. Even in the aged, good results can be achieved provided there are no trophic problems. The Austin bunionectomy has proved to be a versatile method for treating bunion problems. The possibility of transposing the metatarsal head laterally, toward the plantar, proximally and distally by altering the direction of the osteotomy, as well as tilting it medially or laterally, has made this osteotomy an invaluable tool for addressing various

  19. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat

    Directory of Open Access Journals (Sweden)

    Mouna Abdelrahman Abujazia

    2012-01-01

    Full Text Available Virgin coconut oil (VCO was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX and superoxide dismutase (SOD in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.

  20. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P smoke on bone healing may represent a new concern for implant success/failure.

  1. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats.

    Directory of Open Access Journals (Sweden)

    Zhongshuang Liu

    Full Text Available To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats.Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX and a sham-ovariectomy group (sham. Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed.Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012, but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005. A thickness and separation map showed that trabeculae of less than 100 μm increased by 46%, whereas trabeculae of more than 200 μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200 μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028 and bone volume fraction (p = 0.001 were also significantly decreased in the OVX group compared to the sham group.Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture.

  2. Early detection of Freiberg's disease by radionuclide bone imaging

    International Nuclear Information System (INIS)

    Peng Jingjing

    1993-01-01

    56 hallux valgus deformities of 28 patients were studied with radionuclide bone imaging (RNBI). Among them, 24 feet(42.85%) revealed increased uptake of radioactivity in second or third metatarsal. The ratio of radioactivity in lesion and contralateral normal site (D/N) was increased, the difference between the patient and normal groups was significant (P<0.01). The histologic study showed that there have been degenerative changes and bone cell necrosis in increased uptake area. It was concluded that RNBI was more sensitive than X ray and can be used for the early diagnosis of Freiberg's Disease

  3. Surgical management of proximal splint bone fractures in the horse

    International Nuclear Information System (INIS)

    Peterson, P.R.; Pascoe, J.R.; Wheat, J.D.

    1987-01-01

    Fractures of Metacarpal and Metatarsal II and IV (the splint bones) were treated in 283 horses over an 11 year period. In 21 cases the proximal portion of the fractured bone was stabilized with metallic implants. One or more cortical bone screws were used in 11 horses, and bone plates were applied in 11 horses. One horse received both treatments. Complications of screw fixation included bone failure, implant failure, radiographic lucency around the screws, and proliferative new bone at the ostectomy site. Only two of the horses treated with screw fixation returned to their intended use. Complications of plate fixation included partial fixation failure (backing out of screws), wound drainage, and proliferative bony response around the plate. Six of the 11 horses treated by plate fixation returned to their intended use. The authors recommend consideration of plate fixation techniques for repair of fractures in the proximal third of the splint bone

  4. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  5. Autoradiographic studies of the distribution of radium-226 in rat bone: their implications for human radiation dosimetry and toxicity

    International Nuclear Information System (INIS)

    Priest, N.D.; Haines, J.W.; Howells, G.; Green, D.

    1983-01-01

    A solution containing 226 Ra chloride was injected into young female rats via the saphenous vein. Subsequently, the distribution and retention of the 226 Ra in the skeleton was studied. The results show that 226 Ra is initially deposited in the rat femur as a volume deposit and is fairly evenly distributed throughout the bone matrix. Much of the 226 Ra initially deposited in the skeleton is lost within a few days of its administration. During the first week 226 Ra gradually accumulates at sites of bone deposition including accreting surfaces. Subsequent bone growth results in the burial of contaminated bone surfaces. Following bone resorption some of the 226 Ra released from individual bones is recycled systemically so that all skeletal components tend towards a uniform 226 Ra concentration per unit of bone mineral. Of the two models conventionally used for radiation dosimetry purposes, these results reported for rats suggest that though neither is ideal, the volume distribution model is preferable to the surface model at all times after the uptake of radium by the skeleton. (author)

  6. The bisphosphonate zoledronate prevents vertebral bone loss in mature estrogen-deficient rats as assessed by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Glatt M.

    2001-01-01

    Full Text Available The effect of long-term treatment with the bisphosphonate zoledronate on vertebral bone architecture was investigated in estrogen-deficient mature rats. 4-month-old rats were ovariectomized and development of cancellous osteopenia was assessed after 1 year. The change of bone architectural parameters was determined with a microtomographic instrument of high resolution. After 1 year of estrogen-deficiency, animals lost 55% of vertebral trabecular bone in comparison to sham operated control animals. Trabecular number (Tb.N and trabecular thickness (Tb.Th were significantly reduced in ovariectomized animals, whereas trabecular separation (Tb.Sp, bone surface to volume fraction (BS/BV and trabecular bone pattern factor (TBPf were significantly increased, indicating a loss of architectural integrity throughout the vertebral body. 3 groups of animals were treated subcutaneously with zoledronate for 1 year with 0.3, 1.5 and 7.5 microgram/kg/week to inhibit osteoclastic bone degradation. Administration started immediately after ovariectomy and treatment dose-dependently prevented the architectural bone deterioration and completely suppressed the effects of estrogen deficiency at the higher doses. The results show that microtomographic determination of static morphometric parameters can be used to quantitate the effects of drugs on vertebral bone architecture in small laboratory animals and that zoledronate is highly effective in this rat model.

  7. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    Jung, Ui-Won; Song, Kun-Young; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  8. Analysis of fractal dimensions of rat bones from film and digital images

    Science.gov (United States)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  9. Experimental study on the effect of x-irradiation in the rat bone matrix

    International Nuclear Information System (INIS)

    You, Dong Soo

    1979-01-01

    The author studied on the side effects of x-ray irradiation to the developing mandible of the gestation and period of grow the stage rats. For experimental observation, 100 rads, 200 rads, and 300 rads of x-ray were irradiated in regular order at the lower abdomen of the 8th day gestated rats. 5 weeks after conception, their offspring were sacrificed and their mandibles were extracted with intact form. All the extracted mandible were examined for their developing modes histological findings. The results were as followed; 1) In 10 -200 rads irradiated rats offsprings, their mandibles were not revealed any morphological changes except of the irregular pattern of trabeculatum. In accompany with this findings, most of all the fibroblasts and osteoclasts had their nucleus with shrunken and eccentric position. 2) In according to the increasing x-ray irradiation, marked advent of osteoclast and cortical bone remuamsorption were observed. 3) In 300 rads irradiated rats offsprings, there irregular pattern of trabeculae and widening of bone morrow cavity in their alveolar proper.

  10. Minimally Invasive Distal Metatarsal Osteotomy for Mild-to-Moderate Hallux Valgus Deformity

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Lin

    2009-08-01

    Full Text Available Minimally invasive surgery has recently been introduced for foot and ankle surgery, and hallux valgus surgery is no exception. The purpose of our study was to analyze the early results and to present our experience of minimally invasive distal metatarsal osteotomy in correcting mild-to-moderate hallux valgus deformities. Between September 2005 and December 2006, 31 consecutive patients (47 feet with mild-to-moderate hallux valgus deformities underwent minimally invasive distal metatarsal osteotomies. The clinical and radiographic outcomes were assessed. The satisfaction rate was 90.32%. The mean total American Orthopedic Foot and Ankle Society halluxmetatarsophalangeal-interphalangeal scale was 92.7 points. Complications included two (4.26% episodes of stiffness, six (12.77% episodes of pin tract infection, and one (2.13% deep infection. There were no cases with nonunion, malunion, overcorrection, transfer metatarsalgia or osteonecrosis. On weight-bearing anteroposterior foot radiographs, the mean hallux valgus angle and first intermetatarsal angle corrections were 11.8° and 6.3°, respectively, which is a statistically significant difference (p < 0.001 between the preoperative and postoperative status. Here, minimally invasive distal metatarsal osteotomy was associated with good satisfaction, functional improvement and low complication rates. This technique offers an effective, safe and simple way to treat hallux valgus with a first intermetatarsal angle less than 15°.

  11. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  12. Effect of surgical shoes on brake response time after first metatarsal osteotomy?a prospective cohort study

    OpenAIRE

    Dammerer, Dietmar; Braito, Matthias; Biedermann, Rainer; Ban, Michael; Giesinger, Johannes; Haid, Christian; Liebensteiner, Michael C.; Kaufmann, Gerhard

    2016-01-01

    Background The aim of this study is to assess patients? driving ability when wearing surgical shoes following right-sided first metatarsal osteotomy. Methods From August 2013 to August 2015, 42 consecutive patients (mean age 54.5?years) with right-sided hallux valgus deformity underwent first metatarsal osteotomy. Patients were tested for brake response time (BRT) 1?day preoperatively (control run) and at 2 and 6?weeks postoperatively. Two different types of foot orthosis were investigated. B...

  13. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    Science.gov (United States)

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  14. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Diego Pulzatto Cury

    Full Text Available Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  15. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    Science.gov (United States)

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  16. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.

    Science.gov (United States)

    Bhattarai, Govinda; Poudel, Sher Bahadur; Kook, Sung-Ho; Lee, Jeong-Chae

    2016-01-01

    Resveratrol is an antioxidant and anti-inflammatory polyphenol. Periodontitis is induced by oral pathogens, where a systemic inflammatory response accompanied by oxidative stress is the major event initiating disease. We investigated how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs). We also explored whether resveratrol protects rats against alveolar bone loss in an experimental periodontitis model. Periodontitis was induced around the first upper molar of the rats by applying ligature infused with LPS. Stimulating hGFs with 5μg/ml LPS augmented the expression of cyclooxygenase-2, matrix metalloproteinase (MMP)-2, MMP-9, and Toll-like receptor-4. LPS treatment also stimulated the production of reactive oxygen species (ROS) and the phosphorylation of several protein kinases in the cells. However, the expression of heme oxygenase-1 (HO-1) and nuclear factor-E2 related factor 2 (Nrf2) was inhibited by the addition of LPS. Resveratrol treatment almost completely inhibited all of these changes in LPS-stimulated cells. Specifically, resveratrol alone augmented HO-1 induction via Nrf2-mediated signaling. Histological and micro-CT analyses revealed that administration of resveratrol (5mg/kg body weight) improved ligature/LPS-mediated alveolar bone loss in rats. Resveratrol also attenuated the production of inflammation-related proteins, the formation of osteoclasts, and the production of circulating ROS in periodontitis rats. Furthermore, resveratrol suppressed LPS-mediated decreases in HO-1 and Nrf2 levels in the inflamed periodontal tissues. Collectively, our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in

  17. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Mechanism of donor to host tolerance in rat bone marrow chimeras

    International Nuclear Information System (INIS)

    Tutschka, P.; Schwerdtfeger, R.; Slavin, R.; Santos, G.

    1977-01-01

    Lewis rats were conditioned with cyclophosphamide and grafted with AgB incompatible bone marrow. They were examined 250 days after transplantation and demonstrated to be healthy complete chimeras. Marrow cells from these chimeras were infused into lethally irradiated ACI, Lewis and BN recipients. Graft-versus-host disease occurred only in the BN rats. Other chimeric rats were given no treatment, busulfan, CY, or total body irradiation prior to the infusion of normal ACI BM. GvHD occurred only in animals given CY or TBI. Normal Lewis rats were conditioned with TBI and given ACI BM. In addition, they received whole blood, irradiated blood, or serum from chimeric rats. GvHD developed in all animals except those given unirradiated chimeric blood. These studies suggest that suppressor cell populations, sensitive to immunosuppression, are likely the fundamental mechanism of recovery from GvHD

  19. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Lee, Kang Kyoo [Dept. of Radiation Oncology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-03-15

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  20. Alveolar bone healing process in spontaneously hypertensive rats (SHR). A radiographic densitometry study.

    Science.gov (United States)

    Manrique, Natalia; Pereira, Cassiano Costa Silva; Garcia, Lourdes Maria Gonzáles; Micaroni, Samuel; Carvalho, Antonio Augusto Ferreira de; Perri, Sílvia Helena Venturoli; Okamoto, Roberta; Sumida, Doris Hissako; Antoniali, Cristina

    2012-01-01

    Hypertension is one of the most important public health problems worldwide. If undiagnosed or untreated, this pathology represents a systemic risk factor and offers unfavorable conditions for dental treatments, especially those requiring bone healing. The purpose of this study was to demonstrate, by analysis of bone mineral density (BMD), that the alveolar bone healing process is altered in spontaneously hypertensive rats (SHRs). Wistar rats and SHRs were submitted to extraction of the upper right incisor and were euthanized 7, 14, 21, 28 and 42 days after surgery. Right maxillae were collected, radiographed and analyzed using Digora software. BMD was expressed as minimum (min), middle (med) and maximum (max) in the medium (MT) and apical (AT) thirds of the dental alveolus. The results were compared across days and groups. Wistar showed difference in med and max BMD in the MT between 7 and 28 and also between 14 and 28 days. The AT exhibited significant difference in med and min BMD between 7 and 28 days, as well as difference in min BMD between 28 and 42 days. SHRs showed lower med BMD in the MT at 28 days when compared to 21 and 42 days. Differences were observed across groups in med and min BMD at day 28 in the MT and AT; and in max BMD at 14, 21 and 42 days in the MT. These results suggest that the alveolar bone healing process is delayed in SHRs comparing with Wistar rats.

  1. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    Science.gov (United States)

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment.

    Science.gov (United States)

    Marković, Dejan; Jokanović, Vukoman; Petrović, Bojan; Perić, Tamara; Vukomanović, Biserka

    2014-05-01

    Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA) obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material's particles took place after 25 weeks. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects.

  3. Investigation of flurbiprofen genotoxicity and cytotoxicity in rat bone marrow cells.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan B

    2015-01-01

    This study was performed to investigate cytogenetic effects of NSAID flurbiprofen which was used as active ingredient in some analgesic, antipyretic and anti-inflammatory drugs. Genotoxic effect of flurbiprofen was investigated using in vivo chromosome aberration (CA) test and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) test. Also, oxidative stress potential of flurbiprofen was determined by measuring total oxidant and antioxidant level which occurred with flurbiprofen treatment in rat peripheral blood. For these purposes, rats were treated with three concentrations of flurbiprofen (29.25, 58.50 and 117 mg/kg, body weight) in single dose at two different treatment periods (12 and 24 h). According to the results, flurbiprofen did not affect chromosome aberrations in rat bone marrow cells with CA test. In RAPD-PCR test, polymorphic bands were unaffected. Also, test substance did not change total oxidant and antioxidant status (except for 58.50 and 117 mg/kg, 12 h) and therefore it did not lead to significant increase on oxidative stress (again except 58.50 and 117 mg/kg, 12 h). However, flurbiprofen reduced to mitotic indexes and these reductions were dose-dependent for 12 h treatment. In summary, flurbiprofen did not show significant genotoxic effect. But it caused cytotoxicity in rat bone marrow cells.

  4. Longitudinal as well as age-matched assessments of bone changes in the mature ovariectomized rat model

    NARCIS (Netherlands)

    Leitner, M.M.; Tami, A.E.; Montavon, P.M.; Ito, K.

    2009-01-01

    In the past, bone loss in the ovariectomized (OVX) osteoporotic rat model has been monitored using in vitro micro-computed tomography (micro-CT) to assess bone structure (bone volume/total volume, BV/TV). The purpose of this study was to assess the importance of baseline control and sham groups in

  5. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization.

    Science.gov (United States)

    Xu, Lei; Li, Zhe; Lei, Lei; Zhou, Yue-Zhu; Deng, Song-Yun; He, Yong-Bin; Ni, Guo-Xin

    2016-03-01

    This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage. © 2016 Wiley Periodicals, Inc.

  6. Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium

    International Nuclear Information System (INIS)

    Fukuda, S.; Ikeda, M.; Chiba, M.; Kaneko, K.

    2006-01-01

    The toxic effects and changes in biochemical markers related to kidney and bone in depleted uranium (DU)-injected rats were examined in order to clarify the relation between clinical biochemical markers and the degree of damage in these organs. Male Wistar rats received a single injection in the femoral muscles of 0.2, 1.0 or 2.0 mg kg -1 of DU which was dissolved in nitric acid solution adjusted to pH 3.2, for comparison with the group injected with nitric acid solution, and the control group. Urine and faeces were collected periodically over a 24 h period. Thereafter, the rats were killed at 28 d after DU injection. The body weights of the DU-injected groups decreased dose-dependently for the first 3-7 d, and then began to increase. The DU concentrations in the urine and faeces decreased rapidly within 3-7 d after DU injection. Urinary N-acetyl-β-D-glucosaminidase (NAG)/ creatinine peaked at the third day after DU injection, with a high correlation to the injected DU doses. There were high correlations among the injected DU doses, DU concentrations in the kidney and urinary NAG/ creatinine values that were obtained at 28 d, respectively. The blood urea nitrogen (BUN) and creatinine in the serum also showed a high correlation with the DU-injected doses. The results indicated that urinary NAG/creatinine, BUN and creatinine in serum were useful indicators to diagnose the renal damage by DU, as well as to estimate the DU intake and concentration in the kidney when the intake is >2 mg kg -1 DU. The total bone mineral density of the proximal metaphysis of the tibia decreased in the 2 mg kg -1 DU group. In addition, alterations of the trabecular bone structure by inhibiting bone formation and promoting bone resorption were observed by bone histo-morphometry. The bone biochemical markers osteo-calcin, tartrate-resistance acid phosphatase, pyridinoline and rat-parathyroid hormone increased in all the DU injected groups, indicating that these markers were useful as

  7. Effect of platelet-rich plasma on tendon-to-bone healing after rotator cuff repair in rats: an in vivo experimental study.

    Science.gov (United States)

    Hapa, Onur; Cakıcı, Hüsamettin; Kükner, Aysel; Aygün, Hayati; Sarkalan, Nazlı; Baysal, Gökhan

    2012-01-01

    The purpose of this experimental study was to analyze the effects of local autologous platelet-rich plasma (PRP) injection on tendon-to-bone healing in a rotator cuff repair model in rats. Rotator cuff injury was created in 68 left shoulders of rats. PRP was obtained from the blood of an additional 15 rats. The 68 rats were divided into 4 groups with 17 rats in each group; PRP group (Week 2), control group (Week 2), PRP group (Week 4), and control group (Week 4). Platelet-rich plasma or saline was injected to the repair area intraoperatively. Rats were sacrificed 2 and 4 weeks after the surgery. Histological analysis using a semiquantitative scoring was performed on 7 rats per group. Tendon integrity and increases in vascularity and inflammatory cells and the degree of new bone formation were evaluated and compared between the groups. The remaining tendons (n=10) were mechanically tested. Degree of inflammation and vascularity were less in the study group at both time intervals (protator cuff tendon-to-bone healing and enhance initial tendon-to-bone healing remodeling. This may represent a clinically important improvement in rotator cuff repair.

  8. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Science.gov (United States)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  9. [Lack of correlation between plantar arthrosis of the first metatarsal joint and sesamoids and pain in patients after hallux valgus surgery].

    Science.gov (United States)

    Villas, C; Escribano, R J; Alfonso, M

    2012-01-01

    To determine the relationship between osteoarthritis in the plantar region of the first metatarsophalangeal joint of the foot and patient pain after hallux valgus surgery. A total of 28 patients undergoing hallux valgus surgery were examined. The patients were examined for pain in the plantar region of the metatarsophalangeal joint (sesamoid bones area), by looking into their medical records and by means of palpation during the physical exam. X-rays were taken to look for metatarsophalangeal arthritis, and PASA and sesamoid displacement were measured. During the surgical procedure, the metatarsal head was macroscopically assessed for arthritis according to the ICRS Score. Of the 28 patients, 18 had no pain, 7 had mild pain (VAS 1-3) and 3 had moderate pain (VAS 4-6). Macroscopically, all the patients had some degree of plantar osteoarthritis. Only 5 patients had radiological signs of metatarsophalangeal arthritis. There was no correlation (P=.44) between pain and plantar osteoarthritis. There was a mild but non-significant correlation between PASA and osteoarthritis (P=.06). There was a weak but significant correlation between patient age and arthritis (P=.04). Osteoarthritis in the plantar aspect of the first metatarsal head does not correlate with patient symptoms or with pain intensity in patients undergoing hallux valgus surgery. Copyright © 2011 SECOT. Published by Elsevier Espana. All rights reserved.

  10. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    Science.gov (United States)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  11. Effect of Silicon Supplementation on Bone Status in Ovariectomized Rats Under Calcium-Replete Condition.

    Science.gov (United States)

    Bu, So Young; Kim, Mi-Hyun; Choi, Mi-Kyeong

    2016-05-01

    Previous studies have suggested that silicon (Si) had positive effects on bone, but such benefits from Si may be dependent on calcium status. Also, several biochemical roles of Si in osteoblastic mineralization, the regulation of gene expression related to bone matrix synthesis, and the decrease in reactive oxygen species and pro-inflammatory mediators were reported, but these effects were mostly shown in cell culture studies. Hence, we tested the effect of Si supplementation on bone status and the gene expression related to bone metabolism and inflammatory mediators in young estrogen-deficient rats under calcium-replete condition (0.5 % diet). Results showed that 15-week supplementation of both high and very high doses of Si (0.025 and 0.075 % diet, respectively) could not restore the ovariectomy (OVX)-induced decrease of bone mineral density (BMD) of vertebrae, femur, and tibia. Also, several bone biochemical markers (ALP, osteocalcin, CTx) and mRNA expression of COL-I, RANKL, IL-6, and TNF-α in femur metaphysis were not significantly changed by Si in OVX rats. However, a very high dose (0.075 %) of Si supplementation significantly increased OPG expression and decreased the ratio of RANKL/OPG in mRNA expression comparable to that of sham-control animals. Taken together, Si supplementation did not increase BMD under calcium-replete condition but the decrease in the ratio of RANKL/OPG expression to the normal level suggests the possibility of a bone health benefit of Si in estrogen deficiency-induced bone loss.

  12. Protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulation of IL-6/STAT3 signaling.

    Science.gov (United States)

    Zhang, Zhi-Guo; Chen, Yan-Jing; Xiang, Li-Hua; Pan, Jing-Hua; Wang, Zhen; Xiao, Gary Guishan; Ju, Da-Hong

    2017-11-01

    The aim of the present study was to assess the effectiveness of Rhizoma Dioscoreae extract (RDE) on preventing rat alveolar bone loss induced by ovariectomy (OVX), and to determine the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in this effect. Female Wistar rats were subjected to OVX or sham surgery. The rats that had undergone OVX were treated with RDE (RDE group), vehicle (OVX group) or 17β-estradiol subcutaneous injection (E2 group). Subsequently, bone metabolic activity was assessed by analyzing 3-D alveolar bone construction, bone mineral density, as well as the plasma biomarkers of bone turnover. The gene expression of alveolar bone in the OVX and RDE groups was evaluated by IL-6/STAT3 signaling pathway polymerase chain reaction (PCR) arrays, and differentially expressed genes were determined through reverse transcription-quantitative PCR. The inhibitory effect of RDE on alveolar bone loss in the OVX group was demonstrated in the study. In comparison with the OVX group, the RDE group exhibited 19 downregulated genes and 1 upregulated gene associated with the IL-6/STAT3 signaling pathway in alveolar bone. Thus, RDE was shown to relieve OVX-induced alveolar bone loss in rats, an effect which was likely associated with decreased abnormal bone remodeling via regulation of the IL-6/STAT3 signaling pathway.

  13. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment

    Directory of Open Access Journals (Sweden)

    Marković Dejan

    2014-01-01

    Full Text Available Background/Aim. Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. Results. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material’s particles took place after 25 weeks. Conclusion. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  14. Plantar flaps based on perforators of the plantar metatarsal/common digital arteries.

    Science.gov (United States)

    Valentin, Georgescu Alexandru; Rodica, Matei Ileana; Manuel, Llusa

    2014-09-01

    Because of the unique characteristics of its integument, the affirmation "replacing like with like" becomes more than evident in the reconstruction of defects of the ultraspecialized plantar skin. But, the paucity of local resources, and especially in the forefoot, transforms this attempt in a very challenging problem. Many techniques, including skin grafts and various types of flaps were used in the management of defects in the forefoot. We present a new useful flap in the reconstruction of skin defects in the forefoot, based on small perforator vessels originating either from the plantar metatarsal arteries or plantar common digital arteries. Starting with June 2011, this flap was performed, as plantar transposition perforator flap, plantar propeller flap, or plantar propeller perforator plus flap, in seven patients with ulcers over the plantar forefoot. During a follow-up of 7 to 17 months (mean, 9.8 months), the local evolution regarding flap integration, pain, relapse, sensitive recovery, donor site, and footwear quality was analyzed. We registered a 100% survival rate of the flaps, with delayed healing in only one case. The gait resumption was possible after 6 weeks in all cases. This new flap, based on small perforator vessels from the plantar metatarsal or common digital arteries, and which provides a good, stable, and sensory recovery, seems to be a promising method in the reconstruction of plantar skin defects over the metatarsal heads. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Impact of cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio R; Todescan, Sylvia; Shah, Adnan; Rosa, Bruno T; Tunes, Urbino da R; Cesar Neto, Joao B

    2011-11-01

    Cannabis sativa (marijuana) can interfere with bone physiopathology because of its effect on osteoblast and osteoclast activity. However, its impact on periodontal tissues is still controversial. The present study evaluates whether marijuana smoke affects bone loss (BL) on ligature-induced periodontitis in rats. Thirty male Wistar rats were used in the study. A ligature was placed around one of the mandible first molars (ligated teeth) of each animal, and they were then randomly assigned to one of two groups: control (n = 15) or marijuana smoke inhalation ([MSI] for 8 minutes per day; n = 15). Urine samples were obtained to detect the presence of tetrahydrocannabinol. After 30 days, the animals were sacrificed and decalcified sections of the furcation area were obtained and evaluated according to the following histometric parameters: bone area (BA), bone density (BD), and BL. Tetrahydrocannabinol was positive in urine samples only for the rats of the MSI group. Non-significant differences were observed for unligated teeth from both groups regarding BL, BA, and BD (P >0.05). However, intragroup analysis showed that all ligated teeth presented BL and a lower BA and BD compared to unligated teeth (P <0.05). The intergroup evaluation of the ligated teeth showed that the MSI group presented higher BL and lower BD (P <0.05) compared to ligated teeth from the control group. Considering the limitations of this animal study, cannabis smoke may impact alveolar bone by increasing BL resulting from ligature-induced periodontitis.

  16. First inter metatarsal (IM) angles in Nigerians and their relationship ...

    African Journals Online (AJOL)

    Background: No age is immune to the deformity known as Hallux valgus as it has been proven that 50% of adults developed it during adolescence, while 40% of juveniles developed it before the age of 10.5 years. Aim: To determine from radiographs the normal value of the first inter metatarsal (IM) angle and to establish if ...

  17. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.

    Science.gov (United States)

    Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud

    2017-11-01

    Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This

  18. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  19. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  20. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    Science.gov (United States)

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-08

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  1. Histological variations in myoepithelial cells and arrectores pilorum muscles among caudal, metatarsal and preorbital glands in Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884).

    Science.gov (United States)

    Ozaki, Nobuo; Suzuki, Masatsugu; Ohtaishi, Noriyuki

    2004-03-01

    The morphological characteristics of myoepithelial cells and arrectores pilorum muscles were investigated in caudal, metatarsal and preorbital glands of Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884) using immunohistochemistry for alpha-smooth muscle actin. In the metatarsal, preorbital and general skin glands, myoepithelial cell layers continuously embraced the secretory epithelium, while in the caudal gland, discontinuous myoepithelial cell rows surrounded the apocrine tubules. There was a trend that the widths of the myoepithelial cells of the caudal and preorbital glands appeared to be thinner than those of the metatarsal and general skin glands. In the metatarsal gland, the arrectores pilorum muscles were highly developed and considerably larger than those in other skin glands.

  2. Synchrotron-based XRD from rat bone of different age groups

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V., E-mail: dvrao_9@yahoo.com [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Gigante, G.E. [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Cesareo, R.; Brunetti, A. [Istituto di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari (Italy); Schiavon, N. [Hercules Laboratory, University of Evora (Portugal); Akatsuka, T.; Yuasa, T. [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata 992-8510 (Japan); Takeda, T. [Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] bone fill with varying composition (60% and 70%) and bone cream (35–48%), has been acquired with 15 keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ = 0.82666 A{sup 0}). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6{sub 3}/m with the lattice parameters of a = 9.4328 Å and c = 6.8842 Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15 kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100 μm resolution. - Highlights: • For

  3. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    Directory of Open Access Journals (Sweden)

    Yunfei Huang

    2018-05-01

    Full Text Available The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each: hindlimb unloading (HU, HU + vibration (HUV, and cage-control (CON. The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density, immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  4. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    Science.gov (United States)

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  5. Effect of Formononetin on Mechanical Properties and Chemical Composition of Bones in Rats with Ovariectomy-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ilona Kaczmarczyk-Sedlak

    2013-01-01

    Full Text Available Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol’s effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg and ovariectomized treated with formononetin (10 mg/kg. Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place. Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content. To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.

  6. Combined Treatment of Alendronate and Low-Intensity Pulsed Ultrasound (LIPUS Increases Bone Mineral Density at the Cancellous Bone Osteotomy Site in Aged Rats: A Preliminary Study.

    Directory of Open Access Journals (Sweden)

    H Aonuma

    2011-12-01

    Full Text Available Introduction: During fracture healing, alendronate encourages callus volume by inhibiting bone resorption, whereas low-intensity pulsed ultrasound (LIPUS enhances bone regeneration by promoting an anabolic response. Methods: In the present study, 9-month-old Sprague-Dawley rats, with a unilateral proximal tibial osteotomy, were treated with alendronate (daily, 1 g/kg plus sham-LIPUS (n = 14, saline plus LIPUS (20 min/day (n = 18, alendronate plus LIPUS (n = 16, or saline plus sham- LIPUS as a control (n = 13 for 4 weeks. The rats were then examined for changes in bone mineral density (BMD during metaphyseal bone repair. Results: The combined therapy signi cantly increased BMD at the osteotomy site at 4 weeks (p < 0.001 compared with the control, without affecting the contralateral, non-osteotomized tibia. Both alendronate and LIPUS alone also exerted a positive, albeit less, effect on BMD in the affected limb (p < 0.001 and p = 0.006, respectively. Conclusions: Alendronate and LIPUS cooperate to enhance BMD during metaphyseal bone healing. Keywords: LIPUS, bisphosphonate, bone mineral density.

  7. Radiographic study of the fifth metatarsal for optimal intramedullary screw fixation of Jones fracture.

    Science.gov (United States)

    Ochenjele, George; Ho, Bryant; Switaj, Paul J; Fuchs, Daniel; Goyal, Nitin; Kadakia, Anish R

    2015-03-01

    Jones fractures occur in the relatively avascular metadiaphyseal junction of the fifth metatarsal (MT), which predisposes these fractures to delayed union and nonunion. Operative treatment with intramedullary (IM) screw fixation is recommended in certain cases. Incorrect screw selection can lead to refractures, nonunion, and cortical blowout fractures. A better understanding of the anatomy of the fifth MT could aid in preoperative planning, guide screw size selection, and minimize complications. We retrospectively identified foot computed tomographic (CT) scans of 119 patients that met inclusion criteria. Using interactive 3-dimensional (3-D) models, the following measurements were calculated: MT length, "straight segment length" (distance from the base of the MT to the shaft curvature), and canal diameter. The diaphysis had a lateroplantar curvature where the medullary canal began to taper. The average straight segment length was 52 mm, and corresponded to 68% of the overall length of the MT from its proximal end. The medullary canal cross-section was elliptical rather than circular, with widest width in the sagittal plane and narrowest in coronal plane. The average coronal canal diameter at the isthmus was 5.0 mm. A coronal diameter greater than 4.5 mm at the isthmus was present in 81% of males and 74% of females. To our knowledge, this is the first anatomic description of the fifth metatarsal based on 3-D imaging. Excessive screw length could be avoided by keeping screw length less than 68% of the length of the fifth metatarsal. A greater than 4.5 mm diameter screw might be needed to provide adequate fixation for most study patients since the isthmus of the medullary canal for most were greater than 4.5 mm. Our results provide an improved understanding of the fifth metatarsal anatomy to guide screw diameter and length selection to maximize screw fixation and minimize complications. © The Author(s) 2014.

  8. Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation.

    Science.gov (United States)

    Mahajan, Vivek; Chung, Hyun Wook; Suh, Jin Soo

    2011-06-01

    Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures. Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months. Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases. The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.

  9. Quantitation of specific myeloid cells in rat bone marrow measured by in vitro /sup 35/S-sulphate incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A F; Rose, M S

    1984-08-01

    A biochemical measurement which can be used for quantitation of specific early myeloid cells in rat bone marrow has been developed. This measurement consists of a rapid, simple assay for the in vitro quantitation of /sup 35/S-sulfate incorporation into rat bone marrow cells. Incubation of bone marrow cells with /sup 35/S-sulfate led to a time-dependent increase in radioactivity obtained in perchloric acid insoluble fractions of bone marrow cell suspensions. This incorporation was inhibited by cyanide and puromycin. Autoradiography has demonstrated the radiolabel to be specifically associated with immature cells of the myeloid series. The cells most active in this respect were eosinophils. When rats were treated with endotoxin, the rate of /sup 35/S-sulfate incorporation was increased. Cell number measurements, using conventional histopathology and a Coulter Counter, demonstrated that endotoxin caused an initial release of mature granulocytes from the bone marrow. The regeneration of this mature population in the marrow was rapid, and was characterized by an increase in the number of immature cells and a concomitant increase in the rate of /sup 35/S-sulfate incorporation measured in preparations of bone marrow cells in vitro. Furthermore, this response to endotoxin has demonstrated that Coulter Counting techniques can be used to distinguish specific populations of cells (e.g. mature granulocytes) within the bone marrow.

  10. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.In this report, we show that feeding a high quality diet supplemented with blueberries (BB to pre-pubertal rats throughout development or only between postnatal day 20 (PND20 and PND34 prevented ovariectomy (OVX-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.These results indicate: 1 a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2 the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.

  11. Effects of different durations of treadmill training exercise on bone mineral density in growing rats

    Directory of Open Access Journals (Sweden)

    K Ertem

    2008-06-01

    Full Text Available In this study, we aimed to investigate the effects of different durations of treadmill training exercise (daily for 30 min and 60 min on bone mineral density (BMD in young growing rats. Training consisted of treadmill running at 5 days per week during a period of 13 weeks. The rats in 30 min and 60 min exercise groups began to training on day 63 of life and had maintained for at least a week, with a minimal progression as a guide to the rats’ training and adaptation to the treadmill. Running time was gradually increased from 15 min to 30 and 60 min per session for two exercise groups respectively. Control rats were kept in the cages at the same environmental conditions and daily inspected to control their health. At the end of 13 weeks, bone mineral densities of the bilateral tibia of all rats were measured .with dual-energy X-ray absorptiometry (DEXA (QDR 4500/W, Hologic Inc., Bedford, MA, USA and results were evaluated. There were significantly increases in BMD of right and left tibia of rats in 30 min exercise group at post-exercise period (p<0.01 for both sides when compared to the control group. BMD of right and left tibia of rats were also correlated with each other (r=0.556 and p=0.003. Otherwise, there is a positive correlation between pre- and post-exercise body weights of rats (r=0.588 and p=0.002. From our results, we concluded that subjects should perform moderate running exercise for development of bone mass and its protection during the lifelong. However, intensity and duration of performing exercise are required to put in order for every ages or actual physical conditions.

  12. Peripubertal Caffeine Exposure Impairs Longitudinal Bone Growth in Immature Male Rats in a Dose- and Time-Dependent Manner.

    Science.gov (United States)

    Choi, Yun-Young; Choi, Yuri; Kim, Jisook; Choi, Hyeonhae; Shin, Jiwon; Roh, Jaesook

    2016-01-01

    This study investigated the dose- and time-dependent effects of caffeine consumption throughout puberty in peripubertal rats. A total of 85 male SD rats were randomly divided into four groups: control and caffeine-fed groups with 20, 60, or 120 mg/kg/day through oral gavage for 10, 20, 30, or 40 days. Caffeine decreased body weight gain and food consumption in a dose- and time-dependent manner, accompanied by a reduction in muscle and body fat. In addition, it caused a shortening and lightening of leg bones and spinal column. The total height of the growth plate decreased sharply at 40 days in the controls, but not in the caffeine-fed groups, and the height of hypertrophic zone in the caffeine-fed groups was lower than in the control. Caffeine increased the height of the secondary spongiosa, whereas parameters related to bone formation, such as bone area ratio, thickness and number of trabeculae, and bone perimeter, were significantly reduced. Furthermore, serum levels of IGF-1, estradiol, and testosterone were also reduced by the dose of caffeine exposure. Our results demonstrate that caffeine consumption can dose- and time-dependently inhibit longitudinal bone growth in immature male rats, possibly by blocking the physiologic changes in body composition and hormones relevant to bone growth.

  13. Requirement of alveolar bone formation for eruption of rat molars

    Science.gov (United States)

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  14. Effects of high-intensity swimming training on the bones of ovariectomized rats

    OpenAIRE

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-01-01

    [Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17?-estradiol (OE2) and 6) ...

  15. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    Science.gov (United States)

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  16. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    Science.gov (United States)

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  18. Strontium incorporates at sites critical for bone mineralization in rats with renal failure

    International Nuclear Information System (INIS)

    Oste, Line; Verberckmoes, Steven C.; Behets, Geert J.; Dams, Geert; Bervoets, An R.; De Broe, Marc E.; D'Haese, Patrick C.; Van Hoof, Viviane O.; Bohic, Sylvain; Drakopoulos, Michael

    2007-01-01

    We previously demonstrated the development of a mineralization defect during strontium administration and its reversibility after withdrawal in rats with chronic renal failure. Recently, strontium ranelate has been introduced as a therapeutic agent for osteoporosis. However, caution has to be taken, as this bone disorder mainly develops in elderly people who may present a moderately decreased renal function. In order to assess the ultra-structural localization of strontium in bone and thereby to get a better insight into the element's systemic effects on bone, synchrotron-based x-ray micro-fluorescence was applied, which showed that after 2 weeks of strontium loading (2 g l -1 in drinking water) in rats with renal failure, concomitant with the development of impaired mineralization, the element was localized mainly at the outer edge of the mineralized bone, while after longer loading periods, a more homogeneous distribution was found. After washout, strontium was found at sites deeper within the trabeculae, while newly deposited low-strontium-containing mineral was found at the outer edges. Synchrotron x-ray micro-diffraction analysis showed that strontium is incorporated in the apatite crystal lattice through exchange with calcium. The results show that strontium is initially incorporated in bone at sites of active bone mineralization, close to the osteoid/mineralization front.Most likely, strontium binds to matrix proteins serving as crystal nucleation points and by hetero-ionic substitution with calcium within the hydroxyapatite crystals, thereby impairing further hydroxyapatite formation. After withdrawal, strontium is released from these sites, by which mineralization is restored and the previously formed strontium-containing hydroxyapatite is buried under a new layer of mineralized bone. (authors)

  19. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats.

    Science.gov (United States)

    Qi, Shanshan; Zheng, Hongxing; Chen, Chen; Jiang, Hai

    2018-05-09

    The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P  0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P control group (P control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.

  20. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  1. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    Directory of Open Access Journals (Sweden)

    Lihui Li

    Full Text Available This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1 control group, (2 sham-operated group, (3 OVX (Ovariectomy group, (4 DES-OVX (Diethylstilbestrol-OVX group, and (5 Ex-OVX (Exercise-OVX group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%, total resorption surface (TRS%, trabecular formation surface (TFS%, mineralization rate (MAR, bone cortex mineralization rate (mAR, and osteoid seam width (OSW were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2, interleukin-6 (IL-6, and cyclooxygenase-2 (Cox-2 were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2, calcitonin (CT, osteocalcin (BGP, and parathyroid hormone (PTH were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  2. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan

    International Nuclear Information System (INIS)

    Li, Jingfeng; Jin, Lin; Zhu, Shaobo; Wang, Mingbo; Xu, Shuyun

    2015-01-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP 2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP 2 /PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP 2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP 2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP 2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. (paper)

  3. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    Science.gov (United States)

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-04-26

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature.

  4. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets.

    Science.gov (United States)

    Sá, M A; Andrade, V B; Mendes, R M; Caliari, M V; Ladeira, L O; Silva, E E; Silva, G A B; Corrêa-Júnior, J D; Ferreira, A J

    2013-07-01

    We evaluated the effects of sodium hyaluronate (HY) and carbon nanotubes functionalized with HY (HY-CNT) on bone repair in the tooth sockets of diabetic rats. Diabetes was induced by streptozotocin (50 mg kg(-1) i.v.), and the sockets were divided into normal control, diabetic control, diabetic treated with HY (1%), and diabetic treated with HY-CNT (100 μg ml(-1)) groups. The sockets were analyzed according to the percentage of bone formation and the number of cell nuclei. The percentage of bone trabeculae was lower in diabetic control animals (11.16 ± 5.10% vs 41.92 ± 6.34% in normal animals) after 14 days. Treating diabetic animals with HY or HY-CNT significantly increased the percentage of neoformed trabeculae (HY: 29.43 ± 3.29%; HY-CNT: 36.90 ± 3.07%). Moreover, the sockets of diabetic animals had an increased number of cell nuclei and HY or HY-CNT reduced this parameter. Our results indicate that HY and HY-CNT restore bone repair in the tooth sockets of diabetic rats, suggesting that these biomaterials are potential adjuvant therapies for the management of diabetes. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    Koppen, A. van; Papazova, D.A.; Oosterhuis, N.R.; Gremmels, H.; Giles, R.H.; Fledderus, J.O.; Joles, J.A.; Verhaar, M.C.

    2015-01-01

    Introduction: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  6. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    van Koppen, Arianne; Papazova, Diana A.; Oosterhuis, Nynke R.; Gremmels, Hendrik; Giles, Rachel H.; Fledderus, Joost O.; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    INTRODUCTION: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  7. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Rao, J S; Rao, V H [Central Leather Research Inst., Madras (India)

    1981-01-01

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of /sup 3/H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of /sup 3/H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls.

  8. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    Science.gov (United States)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  9. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  10. Resistance training and hormone replacement increase MMP-2 activity, quality and quantity of bone in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Markus V.C Souza

    2017-12-01

    Full Text Available Abstract AIMS The aim of the present study was to investigate the influence of resistance training (RT and hormone replacement (HR on MMP-2 activity, biomechanical and physical properties bone of ovariectomized (OVX rats. METHODS Sprague-Dawley female rats were grouped into six experimental groups (n = 11 per group: sham-operated sedentary (SHAM Sed, ovariectomized sedentary (OVX Sed, sham-operated resistance training (SHAM RT, ovariectomized resistance training (OVX RT, ovariectomized sedentary hormone replacement (OVX Sed-HR, and ovariectomized resistance training hormone replacement (OVX RT-HR. HR groups received implanted silastic capsules with a 5% solution of 17β-estradiol (50 mg 17β-estradiol/ml of sunflower oil. In a 12-week RT period (27 sessions; 4-9 climbs the animals climbed a 1.1 m vertical ladder with weights attached to their tails. Biomechanical and physical bone analyses were performed using a universal testing machine, and MMP-2 activity analysis was done by zymography. RESULTS Bone density and bone mineral content was higher in the RT and HR groups. The MMP-2 activity was higher in the RT and HR groups. The biomechanical analysis (stiffness, fracture load and maximum load demonstrated better bone tissue quality in the RT associated with HR. CONCLUSION The RT alone as well as when it is associated with HR was efficient in increasing MMP-2 activity, biomechanical and biophysical properties bone of ovariectomized rats.

  11. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  12. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  13. Effects of swimming training and free mobilization on bone mineral densities of rats with the immobilization-induced osteopenia

    International Nuclear Information System (INIS)

    Karatosun, H.; Erdogan, A.; Akgun, C.; Cetin, C.; Yeldiz, M.

    2006-01-01

    To investigate the possible effects of regular swimming exercise on bone mineral density (BMD) compared with free activity after cast immobilization of rats. We carried out the study from April 2005 to June 2005 at the Department of Sports Medicine, Medical School of Suleyman Demirel University, Isparta, Turkey. The study included a total of 24 female Wistar rats. The rats were randomized to control (n = 6), swimming training (ST) n = 9, and free mobilization (FM) n = 9 groups. We measured Bone mineral densities of femur and vertebra of all rats with a total body scanner using software specifically designed for small animals, before study started and at weeks 3 and 7. Timepoints corresponded to basal, after cast removal (ACIM), and after 3 weeks of free mobilization (AFM) or swimming training (AST). We immobilized the right hindlimb of each ST and FM animal with a cast while the left hindlimbs were kept free. After 3 weeks, the casts were removed. Then we allowed the rats to move freely in their cage for one week, after which the animals in ST group started to swim for 5 days a week for 3 weeks for 30 minutes per day. The group FM rats moved freely in the cage. Bone mineral density of the femur and vertebra after cast immobilization was significantly decreased compared with both their basal and age-matched control group. After mobilization, significant increases occurred in both groups according to ACIM. Similar but milder changes were observed in free limbs femur BMD of rats. Interestingly, vertebra BMD of swimming group was also higher than its age-matched control group (p<0.05). Our study showed that swimming exercise had a significant rehabilitative effect on BMD loss associated with immobilization. Further studies are needed to investigate the effects of swimming on other bone properties. (author)

  14. Local vs. systemic administration of bisphosphonates in rat cleft bone graft: A comparative study.

    Directory of Open Access Journals (Sweden)

    Christine Hong

    Full Text Available A majority of patients with orofacial cleft deformity requires cleft repair through a bone graft. However, elevated amount of bone resorption and subsequent bone graft failure remains a significant clinical challenge. Bisphosphonates (BPs, a class of anti-resorptive drugs, may offer great promise in enhancing the clinical success of bone grafting. In this study, we compared the effects of systemic and local delivery of BPs in an intraoral bone graft model in rats. We randomly divided 34 female 20-week-old Fischer F344 Inbred rats into four groups to repair an intraoral critical-sized defect (CSD: (1 Control: CSD without graft (n = 4; (2 Graft/Saline: bone graft with systemic administration of saline 1 week post-operatively (n = 10; (3 Graft/Systemic: bone graft with systemic administration of zoledronic acid 1 week post-operatively (n = 10; and (4 Graft/Local: bone graft pre-treated with zoledronic acid (n = 10. At 6-weeks post-operatively, microCT volumetric analysis showed a significant increase in bone fraction volume (BV/TV in the Graft/Systemic (62.99 ±14.31% and Graft/Local (69.35 ±13.18% groups compared to the Graft/Saline (39.18±10.18%. Similarly, histological analysis demonstrated a significant increase in bone volume in the Graft/Systemic (78.76 ±18.00% and Graft/Local (89.95 ±4.93% groups compared to the Graft/Saline (19.74±18.89%. The local delivery approach resulted in the clinical success of bone grafts, with reduced graft resorption and enhanced osteogenesis and bony integration with defect margins while avoiding the effects of BPs on peripheral osteoclastic function. In addition, local delivery of BPs may be superior to systemic delivery with its ease of procedure as it involves simple soaking of bone graft materials in BP solution prior to graft placement into the defect. This new approach may provide convenient and promising clinical applications towards effectively managing cleft patients.

  15. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  16. Effects of low calcium plus high aluminum diet on magnesium and calcium contents in spinal cord and trabecular bone of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1998-01-01

    Current epidemiological surveys in the Western Pacific area and Kii Peninsula have suggested that low calcium (Ca), magnesium (Mg), and high aluminum (Al) and manganese (Mn) in river, soil and drinking water may be implicated in the pathogenetic process of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD). The condition of unbalanced minerals was experimentally duplicated in this study using rats. Male Wistar rats, weighing 200 g, were maintained for 60 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca diet with high Al. Magnesium concentration was determined in spinal cord and trabecular bone using inductively coupled plasma emission spectrometry (ICP) and the calcium concentration was determined using neutron activation method. In the group maintained on low Ca high Al diet, magnesium content of the spinal cord was lower than the group fed standard diet. Also, magnesium content of lumbar bone showed lower values in the unbalanced diet group fed low Ca high Al diet than those in the standard diet and low Ca diet groups. Calcium content of spinal cord was highest in rats maintained on low Ca high Al diet. Calcium content in lumbar bone of rats significantly decreased in rats maintained on the low Ca diet (group B and C) compared to rats given a standard diet (group A). Our data indicate that low Ca and high Al dietary intake influence Mg concentration in bone and central nervous system (CNS) tissues and that low Ca and high Al diet diminish Mg in bone and CNS tissues, thereby inducing loss of calcification in bone and degeneration of CNS tissues due to disturbance of the normal biological effects of Mg. (author)

  17. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Foong Kiew Ooi

    2014-12-01

    Full Text Available Little information exists about the effects of swimming exercise on bone health in ovariectomized animals with estrogen deficiency, which resembles the postmenopausal state and age-related bone loss in humans. This study investigated the effects of swimming exercise on tibia and femur bone mineral density (BMD, geometry, and microstructure in sham and ovariectomized rats. Forty 3-month-old female rats were divided into four groups: sham operated-sedentary control (Sham-control, sham operated with swimming exercise group (Sham-Swim, ovariectomy-sedentary control (OVx-control, and ovariectomy and swimming exercise (OVx-Swim groups. Swimming sessions were performed by the rats 90 minutes/day for 5 days/week for a total of 8 weeks. At the end of the study, tibial and femoral proximal volumetric total BMD, midshaft cortical volumetric BMD, cross-sectional area, and cross-sectional moment of inertia (MOI, and bone microstructural properties were measured for comparison. Data were analyzed using one-way analysis of variance (ANOVA. The Sham-Swim group exhibited significantly (p < 0.05; one-way ANOVA greater values in bone geometry parameters, that is, tibial midshaft cortical area and MOI compared to the Sham-control group. However, no significant differences were observed in these parameters between the Ovx-Swim and Ovx-control groups. There were no significant differences in femoral BMD between the Sham-Swim and Sham-control groups. Nevertheless, the Ovx-Swim group elicited significantly (p < 0.05; one-way ANOVA higher femoral proximal total BMD and improved bone microstructure compared to the Ovx-Sham group. In conclusion, the positive effects of swimming on bone properties in the ovariectomized rats in the present study may suggest that swimming as a non- or low-weight-bearing exercise may be beneficial for enhancing bone health in the postmenopausal population.

  18. Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats.

    Science.gov (United States)

    Oliveira, M R; deC Silva, A; Ferreira, S; Avelino, C C; Garcia, I R; Mariano, R C

    2015-05-01

    This study aimed to investigate the effects of platelet-rich fibrin (PRF) associated or not with Bio-Oss on bone defects in the calvaria of rats. A critical-size defect of 5-mm diameter was performed in the calvaria of 48 rats. These animals were divided into six groups of eight animals each, according to the treatment received: homogeneous clot, autogenous clot, autogenous PRF, homogeneous PRF, Bio-Oss, or Bio-Oss associated with PRF. The animals were euthanized after 30 or 60 days. Bone regeneration was evaluated by histomorphometric analysis. The highest mean percentages of new bone formation at 30 days (54.05% ± 5.78) and 60 days (63.58% ± 5.78) were observed in the Bio-Oss associated with PRF group; in particular, the percentage of new bone at 30 days was significantly higher than that of all of the other groups (P<0.01). At 60 days, the Bio-Oss associated with PRF (63.58% ± 5.78) and Bio-Oss (57.34% ± 5.78) groups had similar results, and both showed a statistical difference compared to the other groups. PRF had a positive effect on bone regeneration only when associated with Bio-Oss. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model

    Directory of Open Access Journals (Sweden)

    Seiji Shimomura

    2018-06-01

    Full Text Available We analyzed the influence of treadmill running on rheumatoid arthritis (RA joints using a collagen-induced arthritis (CIA rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old, CIA group (induced CIA at 8-weeks-old, and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV was significantly decreased in the CIA group. Marrow star volume (MSV, an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.

  20. Suture Anchor Fixation for Fifth Metatarsal Tuberosity Avulsion Fractures: A Case Series and Review of Literature.

    Science.gov (United States)

    Hong, Choon Chiet; Nag, Kushal; Yeow, Huifen; Lin, Adrian Zhigao; Tan, Ken Jin

    2018-05-17

    Fifth metatarsal tuberosity avulsion fractures are common. Despite good outcomes with nonoperative treatment, acute fractures with displacement, intra-articular involvement, comminution, or painful nonunion have been reported to benefit from early open reduction and internal fixation, especially in athletes. No consensus has been reached regarding the best surgical fixation technique. We present a case series of 4 patients with displaced fifth metatarsal tuberosity avulsion fractures and an innovative technique of fixation for the tuberosity avulsion fractures using a suture anchor. Copyright © 2018 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Characterization of xenogeneic mouse-to-rat bone marrow chimeras. I. Examination of hematologic and immunologic function

    International Nuclear Information System (INIS)

    Wade, A.C.; Luckert, P.H.; Tazume, S.; Niedbalski, J.L.; Pollard, M.

    1987-01-01

    Eighteen xenogeneic chimeric rats (survival: greater than 100 days) were established by transplanting bone marrow cells from femurs of 10 gnotobiotic CFW mice into each germfree Sprague-Dawley or Wistar rat. The erythrocytes circulating in the rats were of mouse origin as determined by hemagglutination. Hemoglobin electrophoresis, radial immunodiffusion for IgG, and assay of granulocytic neutrophils for leukocyte alkaline phosphatase verified that true chimerism was achieved. The extent of hematological and immunological reconstitution varied. In general, hematocrit levels were low to normal, white blood cell counts and differentials were within normal limits, and serum protein levels were normal. Levels of circulating IgG of each species were comparable to those of germfree rat and mouse controls. Natural killer (NK) activity was depressed, a phenomenon that may be attributable to the radiation treatment of recipients, or to failure to transfer NK cells or precursors. Mitogenic stimulation reactions were varied, but most chimeric rats demonstrated moderately depressed responses. Reactions as a whole suggested that gnotobiotic rats with xenogeneic bone marrow are incompletely reconstituted, both hematologically and immunologically. No acute graft-versus-host reaction was seen

  2. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis.

    Science.gov (United States)

    Hanada, Keigo; Furuya, Kazuyuki; Yamamoto, Noriko; Nejishima, Hiroaki; Ichikawa, Kiyonoshin; Nakamura, Tsutomu; Miyakawa, Motonori; Amano, Seiji; Sumita, Yuji; Oguro, Nao

    2003-11-01

    A novel nonsteroidal androgen receptor (AR) binder, S-40503, was successfully generated in order to develop selective androgen receptor modulators (SARMs). We evaluated the binding specificity for nuclear receptors (NRs) and osteoanabolic activities of S-40503 in comparison with a natural nonaromatizable steroid, 5alpha-dihydrotestosterone (DHT). The compound preferentially bound to AR with nanomolar affinity among NRs. When S-40503 was administrated into orchiectomized (ORX) rats for 4 weeks, bone mineral density (BMD) of femur and muscle weight of levator ani were increased as markedly as DHT, but prostate weight was not elevated over the normal at any doses tested. In contrast, DHT administration caused about 1.5-fold increase in prostate weight. The reduced virilizing activity was clearly evident from the result that 4-week treatment of normal rats with S-40503 showed no enlargement of prostate. To confirm the bone anabolic effect, S-40503 was given to ovariectomized (OVX) rats for 2 months. The compound significantly increased the BMD and biomechanical strength of femoral cortical bone, whereas estrogen, anti-bone resorptive hormone, did not. The increase in periosteal mineral apposition rate (MAR) of the femur revealed direct bone formation activity of S-40503. It was unlikely that the osteoanabolic effect of the compound was attribute to the enhancement of muscle mass, because immobilized ORX rats treated with S-40503 showed a marked increase in BMD of tibial cortical bone without any actions on the surrounding muscle tissue. Collectively, our novel compound served as a prototype for SARMs, which had unique tissue selectivity with high potency for bone formation and lower impact upon sex accessory tissues.

  3. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P.

    1991-01-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats

  4. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

    Science.gov (United States)

    Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing

    2017-06-01

    Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Anatomical variations in dorsal metatarsal arteries with surgical significance: A cadaveric study

    Directory of Open Access Journals (Sweden)

    Preeti Shivshankar Awari

    2017-01-01

    Full Text Available Introduction: Based on angiosome concept to revascularize a particular artery, the microvascular and reconstructive surgeons must know the anatomy and variations in the arteries in that specific region of the body to achieve better results. Nowadays, dorsal metatarsal artery (DMTA perforator flaps and toe grafts are becoming popular which also demand adequate information about normal anatomy and variants in these arteries for fruitful results. Materials and Methods: The authors studied normal anatomy and variations in the origin of DMTAs in 50 lower extremities of 25 embalmed cadavers. Results: The authors found many variations as the absence of DMTAs, origin of the DMTA from the deep plantar arch. The places wherever the arcuate artery was absent the lateral tarsal artery gave rise to dorsal metatarsal arteries. Conclusion: Being familiar with the incidence of anatomical variations in the origin of the DMTAs can increase vigilance in vascular and reconstructive surgeries leading to better prognosis. surgeries leading to better prognosis.

  6. Pharmacological study of the possible protective effect of certain natural products against irradiation-induced bone loss in female rats

    International Nuclear Information System (INIS)

    Elsabbagh, W.M.A.

    2007-01-01

    osteoporosis is a common human bone disease characterized by decreased bone mass and increased risk of fractures . it is associated with numerous risk factors; post menopausal oestrogen loss is the major factor. on another hand, exposure to γ -radiation may be responsible for the late reduction in bone mass following radiotherapy. research in nutrition suggests that diet can help to achieve optimal health specifically that human diet that contain macro nutrients and phytochemicals which have antioxidant and anti-inflammatory properties. the present study has been constructed to identify the effect of radiation exposure on bone, and to investigate the possible protective effect of garlic oil and parsley extract against bone loss induced in female virgin rats(180-200 g) either by ovariectomization or by exposure to γ -radiation. a pilot lest was carried first in this study on 2 groups of female virgin rats to estimate the degree of bone loss induced by exposure to fractionated doses of γ -radiation . the 1 st group's rats were normal non-irradiated and served as control normal group. in the 2 nd group, female rats were exposed to total dose of 15 Gy fractionated over 5 weeks (1 Gy 3 times weekly for 5 weeks), and measurements of urinary calcium and urinary hydroxyproline were carried out periodically after 4,8,11 and 15 weeks from the 1 st day of exposure to γ -radiation doses . the highest values were detected after 11 weeks i.e. after 6 weeks from the last exposure to γ -radiation

  7. Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates.

    Science.gov (United States)

    Nagata, Masashi; Kayanoma, Megumu; Takahashi, Takeshi; Kaneko, Tetsuo; Hara, Hiroshi

    2011-08-01

    Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.

  8. Correlative link ages between indices of bone metabolism and thyroid hormones in rats with periodontitis

    Directory of Open Access Journals (Sweden)

    Vitaliy Shcherba

    2017-12-01

    Full Text Available Introduction: It has been established that changes in the bone tissue of the jaw are present in all cases where there are at least small pathological inflammatory changes in the mucous membrane of the oral cavity. This suggests a significantly greater pathogenetic relationship between inflammatory changes in the mucosa and changes in the bone part of the periodontal disease. Despite a large number of studies, the molecular mechanisms of the influence of thyroid hormones on the bone metabolism have not been completely studied.  The aim of study: to clarify mechanisms of the periodontitis development in rats with thyroid dysfunction based on a comparative analysis of the correlations between the bone metabolism indices and the concentration of  thyroid stimulating hormone,  free thyroxine and free triiodothyronine. Material and methods: Experimental studies were conducted on male, nonliner, white rats of around 4 months of age.  The experimental animals were divided into the following groups: І – control animals;  ІІ – animals with periodontitis; ІІІ – animals with periodontitis combined with hyperthyroidism; IV – animals with periodontitis combined with hypothyroidism. Total calcium, ionized calcium, phosphorus, osteocalcin concentration and  activity of phosphatases were measured. Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r and its fidelity (p was calculated that was accordingly denoted in the tables (correlation matrices. The correlation coefficient was significant at p<0.05. Results: The conducted correlative analysis shows that there are different interconnections between the indices of calcium-phosphorus metabolism, bone formation and bone resorption with free triiodothyronine, free thyroxine and thyroid stimulating hormone, in case of the experimental periodontitis combined with thyroid dysfunction. In animals with modelled periodontitis combined with

  9. Effects of Velvet Antler with Blood on Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Ching-Chiung Wang

    2012-09-01

    Full Text Available In traditional Chinese medicine (TCM, both velvet antlers (VA and VA blood can tonify qi, essence, and marrow, nourish the blood, and invigorate bones and tendons. In TCM, the combination of VA and VA blood is believed to have superior pharmacological effects. Scientific evidence supporting the traditional therapeutic preference for redder antler is needed. The effectiveness of the combination therapy of VA middle sections (VAMs and VA blood (VAM-B was first examined in promoting proliferation of mouse osteoblastic cells (MC3T3-E1. The anti-osteoporotic activity of VAM-B (ratio of VAM:VA blood = 1:0.2 was evaluated with ovariectomized (OVX rats at a dose of 0.2 g/kg. In VAM-B-treated OVX rats, the body weight decreased 10.7%, and the strength of vertebrae and the femur respectively increased 18.1% and 15.4%, compared to the control. VAM-B treatment also recovered the estrogen-related loss of the right tibial trabecular bone microarchitecture. Alkaline phosphatase (ALP significantly decreased, but estradiol did not significantly change in serum of VAM-B-treated OVX rats. We also provide an effective strategy to enhance the anti-osteoporotic activity of VAM. In conclusion, our results provide scientific evidence supporting the traditional therapeutic preference of redder antler and indicate that VAM-B is a potential therapeutic agent for managing osteoporosis.

  10. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    Science.gov (United States)

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (Pbone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  11. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  12. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  13. Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model.

    Science.gov (United States)

    Lovati, Arianna B; Bottagisio, Marta; Maraldi, Susanna; Violatto, Martina B; Bortolin, Monica; De Vecchi, Elena; Bigini, Paolo; Drago, Lorenzo; Romanò, Carlo L

    2018-06-01

    Implant-related infections are associated with impaired bone healing and osseointegration. In vitro antiadhesive and antibacterial properties and in vivo antiinflammatory effects protecting against bone loss of various formulations of vitamin E have been demonstrated in animal models. However, to the best of our knowledge, no in vivo studies have demonstrated the synergistic activity of vitamin E in preventing bacterial adhesion to orthopaedic implants, thus supporting the bone-implant integration. The purpose of this study was to test whether a vitamin E phosphate coating on titanium implants may be able to reduce (1) the bacterial colonization of prosthetic implants and (2) bone resorption and osteomyelitis in a rat model of Staphylococcus aureus-induced implant-related infection. Twelve rats were bilaterally injected in the femurs with S aureus UAMS-1-Xen40 and implanted with uncoated or vitamin E phosphate-coated titanium Kirschner wires without local or systemic antibiotic prophylaxis. Eight rats represented the uninfected control group. A few hours after surgery, two control and three infected animals died as a result of unexpected complications. With the remaining rats, we assessed the presence of bacterial contamination with qualitative bioluminescence imaging and Gram-positive staining and with quantitative bacterial count. Bone changes in terms of resorption and osteomyelitis were quantitatively analyzed through micro-CT (bone mineral density) and semiquantitatively through histologic scoring systems. Six weeks after implantation, we found only a mild decrease in bacterial count in coated versus uncoated implants (Ti versus controls: mean difference [MD], -3.705; 95% confidence interval [CI], -4.416 to -2.994; p E-treated group compared with uncoated implants (knee joint: MD, -11.88; 95% CI, -16.100 to -7.664; p E-coated nails compared with the uncoated nails. These preliminary findings indicate that vitamin E phosphate implant coatings can exert a

  14. Fifth metatarsal fractures among male professional footballers: a potential career-ending disease

    NARCIS (Netherlands)

    Ekstrand, Jan; van Dijk, C. Niek

    2013-01-01

    There is little information about Metatarsal Five (MT-5) fractures for specific sports. To study the occurrence, the imaging characteristics, the lay-off times and healing problems of MT-5 fractures among male footballers. Sixty-four European elite teams were monitored from 2001 to 2012. x-Rays were

  15. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  16. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    Science.gov (United States)

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  17. Tensile Properties of the Deep Transverse Metatarsal Ligament in Hallux Valgus: A CONSORT-Compliant Article.

    Science.gov (United States)

    Abdalbary, Sahar Ahmed; Elshaarawy, Ehab A A; Khalid, Bahaa E A

    2016-02-01

    The deep transverse metatarsal ligament (DTML) connects the neighboring2 metatarsal heads and is one of the stabilizers connecting the lateral sesamoid and second metatarsal head. In this study, we aimed to determine the tensile properties of the DTML in normal specimens and to compare these results with hallux valgus specimens. We hypothesized that the tensile properties of the DTML would be different between the 2 groups of specimens.The DTML in the first interspace was dissected from 12 fresh frozen human cadaveric specimens. Six cadavers had bilateral hallux valgus and the other 6 cadavers had normal feet. The initial length (L0) and cross-sectional area (A0) of the DTML were measured using a digital caliper, and tensile tests with load failure were performed using a material testing machine.There were significant between-groups differences in the initial length (L0) P = 0.009 and cross-sectional area (A0) of the DTML P = 0.007. There were also significant between-groups differences for maximum force (N) P = 0.004, maximum distance (mm) P = 0.005, maximum stress (N/mm) P = 0.003, and maximum strain (%) P = 0.006.The DTML is an anatomical structure for which the tensile properties differ in hallux valgus.

  18. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  19. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

    Directory of Open Access Journals (Sweden)

    Liao Wang

    Full Text Available Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA sintered at 1200°C and two biphasic calcium phosphate (BCP ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate, sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.

  20. Regeneration of calvarial defects by a composite of bioerodible polyorthoester and demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    A study was performed to evaluate regeneration of defects in rat calvaria either unfilled or filled with a bioerodible polyorthoester only, demineralized bone only, or a composite of both. At 4 weeks, histological and radiographic studies showed that defects filled with a composite of bioerodible...... polyorthoester and demineralized bone or demineralized bone alone were bridged by bone. Unfilled defects or defects filled with polyorthoester only did not heal. The polyorthoester caused slight inflammation that subsided by 3 weeks, and only traces of the filler could be detected at 4 weeks. The polyorthoester...... provided local hemostasis when used either alone or in composites with demineralized bone. The composite implant was moldable, easily contoured, and technically easier to use than demineralized bone alone....

  1. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  2. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.

  3. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  4. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis.

    Science.gov (United States)

    Araújo, Aurigena Antunes de; Pereira, Aline de Sousa Barbosa Freitas; Medeiros, Caroline Addison Carvalho Xavier de; Brito, Gerly Anne de Castro; Leitão, Renata Ferreira de Carvalho; Araújo, Lorena de Souza; Guedes, Paulo Marcos Matta; Hiyari, Sarah; Pirih, Flávia Q; Araújo Júnior, Raimundo Fernandes de

    2017-01-01

    To evaluate the effects of metformin (Met) on inflammation, oxidative stress, and bone loss in a rat model of ligature-induced periodontitis. Male albino Wistar rats were divided randomly into five groups of twenty-one rats each, and given the following treatments for 10 days: (1) no ligature + water, (2) ligature + water, (3) ligature + 50 mg/kg Met, (4) ligature + 100 mg/kg Met, and (5) ligature + 200 mg/kg Met. Water or Met was administered orally. Maxillae were fixed and scanned using Micro-computed Tomography (μCT) to quantitate linear and bone volume/tissue volume (BV/TV) volumetric bone loss. Histopathological characteristics were assessed through immunohistochemical staining for MMP-9, COX-2, the RANKL/RANK/OPG pathway, SOD-1, and GPx-1. Additionally, confocal microscopy was used to analyze osteocalcin fluorescence. UV-VIS analysis was used to examine the levels of malondialdehyde, glutathione, IL-1β and TNF-α from gingival tissues. Quantitative RT-PCR reaction was used to gene expression of AMPK, NF-κB (p65), and Hmgb1 from gingival tissues. Significance among groups were analysed using a one-way ANOVA. A p-value of ploss after 50 mg/kg Met compared to the ligature and Met 200 mg/kg groups. The same pattern was observed volumetrically in BV/TV and decreased osteoclast number (ploss in ligature-induced periodontitis in rats.

  5. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model.

    Science.gov (United States)

    Saito, Akiko; Ooki, Akio; Nakamura, Takashi; Onodera, Shoko; Hayashi, Kamichika; Hasegawa, Daigo; Okudaira, Takahito; Watanabe, Katsuhito; Kato, Hiroshi; Onda, Takeshi; Watanabe, Akira; Kosaki, Kenjiro; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Sakamoto, Teruo; Yamaguchi, Akira; Sueishi, Kenji; Azuma, Toshifumi

    2018-01-22

    Runt-related transcription factor 2 (RUNX2) haploinsufficiency causes cleidocranial dysplasia (CCD) which is characterized by supernumerary teeth, short stature, clavicular dysplasia, and osteoporosis. At present, as a therapeutic strategy for osteoporosis, mesenchymal stem cell (MSC) transplantation therapy is performed in addition to drug therapy. However, MSC-based therapy for osteoporosis in CCD patients is difficult due to a reduction in the ability of MSCs to differentiate into osteoblasts resulting from impaired RUNX2 function. Here, we investigated whether induced pluripotent stem cells (iPSCs) properly differentiate into osteoblasts after repairing the RUNX2 mutation in iPSCs derived from CCD patients to establish normal iPSCs, and whether engraftment of osteoblasts derived from properly reverted iPSCs results in better regeneration in immunodeficient rat calvarial bone defect models. Two cases of CCD patient-derived induced pluripotent stem cells (CCD-iPSCs) were generated using retroviral vectors (OCT3/4, SOX2, KLF4, and c-MYC) or a Sendai virus SeVdp vector (KOSM302L). Reverted iPSCs were established using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-derived RNA-guided endonucleases, to correct mutations in CCD-iPSCs. The mRNA expressions of osteoblast-specific markers were analyzed using quantitative reverse-transcriptase polymerase chain reaction. iPSCs-derived osteoblasts were transplanted into rat calvarial bone defects, and bone regeneration was evaluated using microcomputed tomography analysis and histological analysis. Mutation analysis showed that both contained nonsense mutations: one at the very beginning of exon 1 and the other at the initial position of the nuclear matrix-targeting signal. The osteoblasts derived from CCD-iPSCs (CCD-OBs) expressed low levels of several osteoblast differentiation markers, and transplantation of these osteoblasts into calvarial bone defects created in rats with

  6. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    Science.gov (United States)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  7. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat.

    Science.gov (United States)

    Checa, Sara; Prendergast, Patrick J; Duda, Georg N

    2011-04-29

    Inter-species differences in regeneration exist in various levels. One aspect is the dynamics of bone regeneration and healing, e.g. small animals show a faster healing response when compared to large animals. Mechanical as well as biological factors are known to play a key role in the process. However, it remains so far unknown whether different animals follow at all comparable mechano-biological rules during tissue regeneration, and in particular during bone healing. In this study, we investigated whether differences observed in vivo in the dynamics of bone healing between rat and sheep are only due to differences in the animal size or whether these animals have a different mechano-biological response during the healing process. Histological sections from in vivo experiments were compared to in silico predictions of a mechano-biological computer model for the simulation of bone healing. Investigations showed that the healing processes in both animal models occur under significantly different levels of mechanical stimuli within the callus region, which could explain histological observations of early intramembranous ossification at the endosteal side. A species-specific adaptation of a mechano-biological model allowed a qualitative match of model predictions with histological observations. Specifically, when keeping cell activity processes at the same rate, the amount of tissue straining defining favorable mechanical conditions for the formation of bone had to be increased in the large animal model, with respect to the small animal, to achieve a qualitative agreement of model predictions with histological data. These findings illustrate that geometrical (size) differences alone cannot explain the distinctions seen in the histological appearance of secondary bone healing in sheep and rat. It can be stated that significant differences in the mechano-biological regulation of the healing process exist between these species. Future investigations should aim towards

  8. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    Science.gov (United States)

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  9. Effects of microgravity on rat bone, cartlage and connective tissues

    Science.gov (United States)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  10. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  11. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  12. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats

    Science.gov (United States)

    Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-11-01

    Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite-collagen composite) -alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union-related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.

  13. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques.

    Science.gov (United States)

    Lu, Yifan; Tang, Guanghui; Lin, Hui; Lin, Xiaojie; Jiang, Lu; Yang, Guo-Yuan; Wang, Yongting

    2017-06-01

    Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.

  14. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats.

    Science.gov (United States)

    Reis-Filho, Cláudio R; Silva, Elisângela R; Martins, Adalberto B; Pessoa, Fernanda F; Gomes, Paula V N; de Araújo, Mariana S C; Miziara, Melissa N; Alves, José B

    2012-05-01

    In this study we investigated the possible use of human demineralised dentine matrix (DHDM), obtained from the extracted teeth, as bone graft material and evaluated the expression of vascular endothelial growth factor (VEGF) induced by this material in the healing process of tooth sockets of rats. To evaluate bone regeneration and expression of VEGF induced by DHDM, thirty-two male Wistar rats weighing approximately 200 g were used. After maxillary second molar extraction, the left sockets were filled with DHDM and the right sockets were naturally filled by blood clot (control). The animals were sacrificed at 3, 7, 14 and 21 days after surgery and upper maxillaries were processed for histological, morphometric and immunohistochemical analyses. DHDM was used to evaluate the mechanical effect of bone graft material into sockets. Expression of VEGF was determined by immunohistochemistry in all groups. Our results demonstrated a significant increase in the newly formed bone tissue in sockets of 7, 14 and 21 days and a significant increase in VEGF expression at days 7 and 14 on treated sockets. Our results showed that DHDM increases the expression of VEGF and accelerates the healing process in rats tooth sockets, by stimulating bone deposition and also vessels formation. These results suggest that DHDM has osteoinductive/osteoconductive potential and may represent an efficient grafting material on guided bone regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  16. [Different strength intermittent treadmill training of growth period rats and related bone metabolism of the hormone influence].

    Science.gov (United States)

    Xie, Shun-cheng; Ma, Xue-jun; Guo, Cheng-ji; Liu, Hong-zhen

    2012-05-01

    To explore the influence of different strength intermittent treadmill training of growth period rats on the bone metabolism, so as to provide the training intensity of teenagers to set theory support. Select 70 male four weeks Wistar rats according to body weight randomly divided into seven groups (n = 10): the control group and the exercise group. According to the VO2max the exercise group was divided into 6 groups: 65%, 70%, 75%, 80%, 85% and 90% group. Nine weeks treadmill training, training six days a week, each group of training three times, each time not less than 10min, the interval was 30 min. The last movement after 24 h, took the femur and blood to measured the bone mineral density (BMD), bone mass (BMC) and alkaline phosphatase (AKP), resist tartaric acid acidic phosphatase (Str-ACP). 1. The femoral BMD (0.1393 +/- 0.0031), BMC (0.4525 +/- 0.0335) of 70% group were significantly higher than those in the control group (BMD: 0.1200 +/- 0.0095, BMC: 0.3238 +/- 0.0485) and the other sports group (65% BMD:0.1339 +/- 0.0062, BMC: 0.4058 +/- 0.0492, 75% BMD: 0.1296 +/- 0.0015, BMC: 0.3869 +/- 0.0254, 80% BMD: 0.1223 +/- 0.0082, BMC: 0.3454 +/- 0.0483, 85% BMD: 0.1250 +/- 0.0044, BMC: 0.3731 +/- 0.0381, 90% BMD: 0.1171 +/- 0.0047, BMC: 0.3051 +/- 0.0286) (P growth period rat bone mass and bone mineral density to increase obviously.

  17. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  18. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome.

    Science.gov (United States)

    Wang, Liping; Guo, Tian-Zhi; Hou, Saiyun; Wei, Tzuping; Li, Wen-Wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S

    2016-10-01

    Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve

  19. Systemic Administration of Allogeneic Mesenchymal Stem Cells Does Not Halt Osteoporotic Bone Loss in Ovariectomized Rats.

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    Full Text Available Mesenchymal stem cells (MSCs have innate ability to self-renew and immunosuppressive functions, and differentiate into various cell types. They have become a promising cell source for treating many diseases, particular for bone regeneration. Osteoporosis is a common metabolic bone disorder with elevated systemic inflammation which in turn triggers enhanced bone loss. We hypothesize that systemic infusion of MSCs may suppress the elevated inflammation in the osteoporotic subjects and slow down bone loss. The current project was to address the following two questions: (1 Will a single dose systemic administration of allogenic MSCs have any effect on osteoporotic bone loss? (2 Will multiple administration of allogenic MSCs from single or multiple donors have similar effect on osteoporotic bone loss? 18 ovariectomized (OVX rats were assigned into 3 groups: the PBS control group, MSCs group 1 (receiving 2x106 GFP-MSCs at Day 10, 46, 91 from the same donor following OVX and MSCs group 2 (receiving 2x106 GFP-MSCs from three different donors at Day 10, 46, 91. Examinations included Micro-CT, serum analysis, mechanical testing, immunofluorescence staining and bone histomorphometry analysis. Results showed that BV/TV at Day 90, 135, BMD of TV and trabecular number at Day 135 in the PBS group were significantly higher than those in the MSCs group 2, whereas trabecular spacing at Day 90, 135 was significantly smaller than that in MSCs group 2. Mechanical testing data didn't show significant difference among the three groups. In addition, the ELISA assay showed that level of Rantes in serum in MSCs group 2 was significantly higher than that of the PBS group, whereas IL-6 and IL-10 were significantly lower than those of the PBS group. Bone histomorphometry analysis showed that Oc.S/BS and Oc.N/BS in the PBS group were significant lower than those in MSCs group 2; Ob.S/BS and Ob.N/BS did not show significant difference among the three groups. The current study

  20. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    Science.gov (United States)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  1. Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain.

    Directory of Open Access Journals (Sweden)

    Louis Doré-Savard

    2010-10-01

    Full Text Available Pre-clinical bone cancer pain models mimicking the human condition are required to respond to clinical realities. Breast or prostate cancer patients coping with bone metastases experience intractable pain, which affects their quality of life. Advanced monitoring is thus required to clarify bone cancer pain mechanisms and refine treatments. In our model of rat femoral mammary carcinoma MRMT-1 cell implantation, pain onset and tumor growth were monitored for 21 days. The surgical procedure performed without arthrotomy allowed recording of incidental pain in free-moving rats. Along with the gradual development of mechanical allodynia and hyperalgesia, behavioral signs of ambulatory pain were detected at day 14 by using a dynamic weight-bearing apparatus. Osteopenia was revealed from day 14 concomitantly with disorganization of the trabecular architecture (µCT. Bone metastases were visualized as early as day 8 by MRI (T(1-Gd-DTPA before pain detection. PET (Na(18F co-registration revealed intra-osseous activity, as determined by anatomical superimposition over MRI in accordance with osteoclastic hyperactivity (TRAP staining. Pain and bone destruction were aggravated with time. Bone remodeling was accompanied by c-Fos (spinal and ATF3 (DRG neuronal activation, sustained by astrocyte (GFAP and microglia (Iba1 reactivity in lumbar spinal cord. Our animal model demonstrates the importance of simultaneously recording pain and tumor progression and will allow us to better characterize therapeutic strategies in the future.

  2. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats.

    Science.gov (United States)

    Coutel, Xavier; Olejnik, Cécile; Marchandise, Pierre; Delattre, Jérôme; Béhal, Hélène; Kerckhofs, Greet; Penel, Guillaume

    2018-01-30

    Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.

  3. UMF-synthetase activity in rat tissue extracts with the bone 4 marrow form of radiation sickness

    International Nuclear Information System (INIS)

    Levitova, E.N.; Koshcheenko, N.N.; Romantsev, E.F.

    1986-01-01

    Whole-body γ-irradiation of rats with a dose inducing bone marrow radiation syndrome caused phase organospecific chages in UMP-synthase activity. Disturbances of enzymic activity in the bone marrow and spleen well correlated with the dynamics of interphase and reproductive cell death. In brain extracts, UMP biosynthesis from orotic acid did not undergo essential changes

  4. Effect of autoclave devitalization on autograft incorporation and bone morphogenetic protein of tibia in Sprague-Dawley rats

    OpenAIRE

    Anak A.G.Y. Asmara; Achmad F. Kamal; Nurjati C. Siregar; Marcel Prasetyo

    2014-01-01

    Background: Heating process with autoclave is one of limb salvage modalities that are widely used. but the results are not satisfying, due to mechanical bone fragility. However, considering this treatment modality is widely accepted in terms of financial, religion and sociocultural aspects, we conducted a on study rats treated with resection and reconstruction with autoclave heating method to assess bone healing by sequential radiology, histopathologic osteoblasts count, and bone morphogeneti...

  5. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  6. Comparative radioprotective studies of chlorpromazine and cysteamine on rat bone development; Effect on serum and bone proteins

    Energy Technology Data Exchange (ETDEWEB)

    Abdeen, A M; Ibrahim, H A; Badawy, M; Elkholy, W M.E.

    1986-01-01

    Experiments were planned to study the radioprotective effect of chlorpromazine (CPZ) and Cysteamine (Cys), when injected separately or combined before irradiation, on some factors affecting the development of rat bone. The results obtained can be summarized as follows: (1) The body weight decreased due to gamma-irradiation. (2) The mortality rate increased after irradiation, but diminished by single or double chemical injection before irradiation. (3) The serum total protein; albumin, globulin contents and A/G ratio were significantly increased, 6 hrs. After irradiation, then declined afterwards. (4) Histochemically, a decrease in bone protein content was demonstrates after irradiation. The above irradiation effects were suppressed by injection of the radioprotective substances. Their effect seems to be cumulative. 4 fig.,3 tab.

  7. Comparison of Two Methods for the Measurement of Medial and Lateral Metapodial Bones in Karagouniko Sheep (Ovis aries, L. 1758 and Hellenic Goat (Capra hircus, L. 1758

    Directory of Open Access Journals (Sweden)

    Aris Pourlis

    2014-01-01

    Full Text Available The objective of this study was to compare the metapodial lengths of sheep and goats measured with a caliper with those measured using a 2-dimensional digital method. Complementarily, the lengths of medial and lateral metapodials in these species were compared. The limbs of 30 ewes and 30 goats were used. After preparation, the lateral and medial length of the metacarpals and metatarsals were measured twice with a caliper. Afterwards, each bone was scanned and the same lengths were digitally measured twice using commercial software. Data analysis revealed strong linear relationship between the two methods but the absolute relative deviation of the measurements with the caliper was significantly higher than those with the 2-dimensional method (P<0.05. All lengths measured with the caliper were significantly higher compared to those measured with the 2-dimensional method (P<0.05. In goats, the lateral length of both metacarpals and metatarsals was significantly higher than medial length (P<0.05; in sheep the lateral length was significantly higher compared to the medial one only in metatarsal bones (P<0.05. In conclusion, the 2-dimensional method is more accurate for the measurement of the metapodials’ length than the caliper and there is asymmetry between the medial and lateral metapodials in these species.

  8. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods.Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing.Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups.PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as

  9. Study on preventive and therapeutic effect of Chinese medicinal herbal extracts on rat with bone marrow injury induced by radiation exposure

    International Nuclear Information System (INIS)

    Guo Jun; Chen Baotian; Meng Hua; Liu Wenchao; Xie Wei; Sheng Rong

    2006-01-01

    Objective: To examine the effect of Chinese medicinal herbal extracts, Danggui (Radix angelicae sinensis), Chuanxiong (Rhizoma chuanxiong), Huangqi (Radix astragali), and Danshen (Radix salviae miltiorrhizae) on rats with bone marrow injury induced with whole-body gamma-ray exposure. Methods: Sixty male rats were randomly divided into three groups, control group, model group (irradiation only with no administration of the extracts), and drug treatment group (irradiation and administration of Chinese medicinal herbal extracts). Rats were irradiated with 6 Gy cobolt-60 gamma rays after administration of the extracts for two weeks. The number of marrow nucleate cells was counted, and VEGF and PDGF expression were measured with Western blot method on the 7th day since the irradiation. Results: Bone marrow nucleate cells and VEGF and PDGF expression in bone marrow cells in the model group were significantly lower than those in the control group (P<0.01), and these values in the drug treatment group were significantly higher than those in the model group (P<0.01 or P<0.05). Conclusion: The extracts of Chuanxiong, Danggui, Huangqi, and Danshen can be used to prevent from ration bone marrow injury in rats. (authors)

  10. Minimally invasive distal linear metatarsal osteotomy combined with selective release of lateral soft tissue for severe hallux valgus.

    Science.gov (United States)

    Seki, Hiroyuki; Suda, Yasunori; Takeshima, Kenichiro; Kokubo, Tetsuro; Ishii, Ken; Nakamura, Masaya; Matsumoto, Morio; Niki, Yasuo

    2018-03-21

    Minimally invasive techniques for hallux valgus have been widely used to treat mild to moderate hallux valgus deformities. The purpose of this study was to evaluate the clinical and radiographic outcomes of distal linear metatarsal osteotomy (DLMO), which is one of the minimally invasive techniques, for severe hallux valgus. 95 patients (141 feet) with severe hallux valgus underwent DLMOs. Lateral soft tissue release (LSTR) was performed at the same time for the cases selected by an original manual test. The satisfaction level, the Japanese Society of Surgery of the Foot (JSSF) hallux scale score, and weight-bearing radiographs of the foot were assessed preoperatively and after more than 24 months. In addition, the clinical and radiographic outcomes were compared among three groups divided by the kind of LSTR: no LSTR; manual correction; and open release through skin incision. Although the first metatarsal bone was significantly shortened, dorsiflexed, and elevated on postoperative radiographs, the rate of satisfaction was 87.2% (123/141), and the mean JSSF hallux scale score improved significantly from 60.4 (44-73) to 90.4 (65-100). The mean hallux valgus and intermetatarsal angles also improved significantly from 45.5° (40.0-60.0°) to 10.3° (-28.0-40.9°) and from 19.9° (14.0-28.7°) to 8.3° (-1.6-18.5°), respectively. Delayed union (18 feet), metatarsalgia (16 feet), recurrence (22 feet), and hallux varus (22 feet) were observed, and they were more obvious in DLMO combined with open release through a skin incision. DLMO combined selectively with LSTR is an effective procedure for correcting severe hallux valgus. However, the indication for open release with DLMO should be considered carefully. Copyright © 2018. Published by Elsevier B.V.

  11. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats

    Directory of Open Access Journals (Sweden)

    Somayeh Sadat Tavafzadeh

    2015-01-01

    Full Text Available This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise. Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.

  12. Failed Surgical Management of Acute Proximal Fifth Metatarsal (Jones) Fractures: A Retrospective Case Series and Literature Review.

    Science.gov (United States)

    Granata, Jaymes D; Berlet, Gregory C; Philbin, Terrence M; Jones, Grant; Kaeding, Christopher C; Peterson, Kyle S

    2015-12-01

    Nonunion, delayed union, and refracture after operative treatment of acute proximal fifth metatarsal fractures in athletes is uncommon. This study was a failure analysis of operatively managed acute proximal fifth metatarsal fractures in healthy athletes. We identified 149 patients who underwent operative treatment for fifth metatarsal fractures. Inclusion criteria isolated skeletally mature, athletic patients under the age of 40 with a minimum of 1-year follow-up. Patients were excluded with tuberosity fractures, fractures distal to the proximal metaphyseal-diaphyseal region of the fifth metatarsal, multiple fractures or operative procedures, fractures initially treated conservatively, and medical comorbidities/risk factors for nonunion. Fifty-five patients met the inclusion/exclusion criteria. Four (7.3%) patients required a secondary operative procedure due to refracture. The average time to refracture was 8 months. All refractures were associated with bent screws and occurred in male patients who participated in professional basketball, professional volleyball, and college football. The average time for release to progressive weight-bearing was 6 weeks. Three patients were revised to a bigger size screw and went on to union. One patient was revised to the same-sized screw and required a second revision surgery for nonunion. All failures were refractures in competitive athletes who were initially treated with small diameter solid or cannulated stainless steel screws. The failures were not associated with early postoperative weight-bearing protocol. Maximizing initial fixation stiffness may decrease the late failure rate in competitive athletes. More clinical studies are needed to better understand risk factors for failure after screw fixation in the competitive, athletic population. Prognostic, Level IV: Case series. © 2015 The Author(s).

  13. [Sustained release of recombinant human bone morphogenetic protein-2 combined with stromal vascular fraction cells in promoting posterolateral spinal fusion in rat model].

    Science.gov (United States)

    Yuan, Wei; Zheng, Jun; Qian, Jinyu; Zhou, Xiaoxiao; Wang, Minghui; Wang, Xiuhui

    2017-07-01

    To observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model. SVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson's trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining. The cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C ( P cells with bone matrix deposition, and an active osteogenic process similar to the mineralization of long bones in group D. The bone formation of group B was weaker than that of group D, and

  14. Effect of local hemostatics on bone induction in rats: a comparative study of bone wax, fibrin-collagen paste, and bioerodible polyorthoester with and without gentamicin

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    Local hemostatics for osseous tissue should preferably be absorbable and biocompatible and should not inhibit osteogenesis. The tissue response and effect on demineralized bone-induced heterotopic osteogenesis in the abdominal muscle of 120 male Wistar rats by different local hemostatics were...... evaluated by light microscopy and 85Sr uptake analyses. Non-absorbable bone wax of 88% beeswax and absorbable bovine fibrin-collagen paste both significantly inhibited osteoinduction, whereas a bioerodible polyorthoester drug delivery system with or without 4% gentamicin did not. Bone wax was not absorbed...

  15. Open wedge metatarsal osteotomy versus crescentic osteotomy to correct severe hallux valgus deformity - A prospective comparative study.

    Science.gov (United States)

    Wester, Jens Ulrik; Hamborg-Petersen, Ellen; Herold, Niels; Hansen, Palle Bo; Froekjaer, Johnny

    2016-03-01

    Different techniques of proximal osteotomies have been introduced to correct severe hallux valgus. The open wedge osteotomy is a newly introduced method for proximal osteotomy. The aim of this prospective randomized study was to compare the radiological and clinical results after operation for severe hallux valgus, comparing the open wedge osteotomy to the crescentic osteotomy which is our traditional treatment. Forty-five patients with severe hallux valgus (hallux valgus angle >35̊, and intermetatarsal angle >15̊) were included in this study. The treatment was proximal open wedge osteotomy and fixation with plate (Hemax), group 1, or operation with proximal crescentic osteotomy and fixation with a 3mm cannulated screw, group 2. The mean age was 52 years (19-71). Forty-one females and four males were included. Clinical and radiological follow-ups were performed 4 and 12 months after the operation. In group 1 the hallux valgus angle decreased from 39.0̊ to 24.1̊ after 4 months and 27.9̊ after 12 months. In group 2 the angle decreased from 38.3̊ to 21.4̊ after 4 months and 27.0̊ after 12 months. The intermetatarsal angle in group 1 was 19.0̊ preoperatively, 11.6̊ after 4 months and 12.6̊ after 12 months. In group 2 the mean intermetatarsal angle was 18.9̊ preoperatively, 12.0̊ after 4 months and 12.6̊ after 12 months. The AOFAS score improved from 59.3 to 81.5 in group 1 and from 61.8 to 84.8 in group 2 respectively measured 12 months postoperatively. The relative length of the 1 metatarsal compared to 2 metatarsal bone was 0.88 and 0.87 preoperatively and 0.88 and 0.86 for group 1 and 2 respectively measured after 12 months. Crescentic osteotomy and open wedge osteotomy improve AOFAS score and VAS scores on patients operated with severe hallux valgus. No significant difference was found in the two groups looking at the postoperative improvement of HVA and IMA measured 4 and 12 months postoperatively. The postoperative VAS score and AOFAS score were

  16. Ameliorating Effects of Bone Marrow Transplantation and Zinc Supplementation on Physiological and Immunological Changes in Gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    Ashry, O.; Soliman, M.; Mahmoud, N.; Abd Elnaby, Y.

    2015-01-01

    Purpose: The present study was carried out to determine the prophylactic impact of zinc sulphate administration to irradiated rats treated with bone marrow transplantation (BMT) as indicated by the hematological and immunologic response as well as oxidative stress. Material and methods: Rats were injected orally with zinc sulphate, 10 mg/kg body wt, daily for 2 weeks before whole body 5 Gy gamma irradiation and intravenous injection of bone marrow cells, one hour post irradiation. Results: The results revealed a significant decrease in red blood cells (RBC), white blood cells (WBC), glutathione (GSH) and zinc superoxide dismutase (Zn/SOD), splenocyte count as well as bone marrow lymphocyte count and viability of irradiated rats. Regarding immunological data: tumor necrosis factor alpha (TNF– ) and interleukin 2 (IL–2) recorded a significant decrease while interleukin 6 (IL–6) and lipid peroxidation product (MDA) in the serum and spleen were conversely elevated. Zn supplementation before irradiation and BMT and showed significant decrease of serum and tissue MDA compared to the irradiated group. Lymphocytes, bone marrow viability percentage, splenocytes percentage, IL–2, IL–6 and GSH were significantly elevated compared to irradiated group. Conclusion: Protection with Zn, enforcing significant innate response, could trigger and augment adaptive immune response by BMT which suggests its use to protect against radiation hazards. (author)

  17. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mina Eftekharzadeh

    2015-05-01

    Full Text Available Objective(s: Intracerebral injection of bone marrow stromal cells (BMSCs is being investigated as a therapeutic tool to prevent Alzheimer's disease (AD. Our aim was to investigate the effects of BMSCs by intrathecal injection in AD rat model. Materials and Methods: BMSCs were obtained from the bone marrow of Wistar rat and transplanted into AD rat model via intrathecal injection. The rat model had received an injection of β amyloid into the hippocampus for histological and immunohistochemical studies. Results: Histological examination of the brains in transplanted rats compared to controls demonstrated the migration of BrdU-labeled BMSCs from the site of delivery, confirmed the differentiation of BMSCs transplanted cells into the cholinergic neurons, and increased number of healthy and decreased number of dark neurons. Conclusion: Our results showed that BMSCs intratechal administration could be a promising method for treatment ofAlzheimer’s disease in rat model.

  18. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    Directory of Open Access Journals (Sweden)

    Shuji Oishi

    2016-09-01

    Full Text Available Intermittent hypoxia (IH recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA. Recently, we found that IH increased bone mineral density (BMD in the inter-radicular alveolar bone (reflecting enhanced osteogenesis in the mandibular first molar (M1 region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF in periodontal ligament (PDL tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT. Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP and bone morphogenetic protein-2 (BMP-2. The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

  19. Bone repair after osteotomy with diamond burs and CVD ultrasonic tips – histological study in rats

    OpenAIRE

    Matuda, Fábio S.; Pagani, Clovis; Miranda, Carolina B.; Crema, Aline A. S.; Brentel, Aline S.; Carvalho, Yasmin R.

    2010-01-01

    This study histologically evaluated the behavior of bone tissue of rats submitted to osteotomy with conventional diamond burs in high speed and a new ultrasonic diamond tips system (CVD – Chemical Vapor Deposition), at different study periods. The study was conducted on 24 Wistar rats. Osteotomy was performed on the posterior paws of each rat, with utilization of diamond burs in high speed under thorough water cooling at the right paw, and CVD tips at the left paw. Animals were killed a...

  20. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain

    Directory of Open Access Journals (Sweden)

    Ya-Qun Zhou

    2018-04-01

    Full Text Available Cancer-induced bone pain (CIBP is a frequent complication in patients suffering from bone metastases. Previous studies have demonstrated a pivotal role of reactive oxygen species (ROS in inflammatory and neuropathic pain, and ROS scavengers exhibited potent antinociceptive effect. However, the role of spinal ROS remains unclear. In this study, we investigated the analgesic effect of two ROS scavengers in a well-established CIBP model. Our results found that intraperitoneal injection of N-tert-Butyl-α-phenylnitrone (PBN, 50 and 100 mg/kg and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol, 100 and 200 mg/kg significantly suppressed the established mechanical allodynia in CIBP rats. Moreover, repeated injection of PBN and Tempol showed cumulative analgesic effect without tolerance. However, early treatment with PBN and Tempol failed to prevent the development of CIBP. Naive rats received repetitive injection of PBN and Tempol showed no significant change regarding the nociceptive responses. Finally, PBN and Tempol treatment notably suppressed the activation of spinal microglia in CIBP rats. In conclusion, ROS scavengers attenuated established CIBP by suppressing the activation of microglia in the spinal cord. Keywords: Cancer-induced bone pain, Reactive oxygen species, PBN, Tempol

  1. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  2. Effects of a Mikania laevigata extract on bone resorption and RANKL expression during experimental periodontitis in rats

    Directory of Open Access Journals (Sweden)

    Bruno B. Benatti

    2012-06-01

    Full Text Available OBJECTIVES: The Mikania laevigata extract (MLE (popularly known in Brazil as "guaco" possesses anti-inflammatory properties. In the present study we tested the effects of MLE in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying such effects. MATERIAL AND METHODS: Periodontal disease was induced by a ligature placed around the mandibular first molars of each animal. Male Wistar rats were divided into 4 groups: non-ligated animals treated with vehicle; non-ligated animals treated with MLE (10 mg/kg, daily; ligature-induced animals treated with vehicle and ligature-induced animals treated with MLE (10 mg/kg, daily. Thirty days after the induction of periodontal disease, the animals were euthanized and mandibles and gingival tissues removed for further analysis. RESULTS: Morphometric analysis of alveolar bone loss demonstrated that MLE-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-κB ligand (RANKL measured by immunohistochemistry. Moreover, gingival tissues from the MLE-treated group showed decreased neutrophil migration myeloperoxidase (MPO assay. CONCLUSIONS: These results indicate that MLE may be useful to control bone resorption during progression of experimental periodontitis in rats.

  3. The effects of a novel botanical agent on lipopolysaccharide-induced alveolar bone loss in rats.

    Science.gov (United States)

    Lee, Bo-Ah; Lee, Hwa-Sun; Jung, Young-Suk; Kim, Se-Won; Lee, Yong-Wook; Chang, Sun-Hwa; Chung, Hyun-Ju; Kim, Ok-Su; Kim, Young-Joon

    2013-08-01

    The development of host-modulatory agents with low risk of adverse effects has been needed to treat periodontitis, a chronic inflammatory disease. A botanical mixture of extracts from two natural substances, Panax notoginseng and Rehmannia glutinosa Libosch, was developed as a novel botanical agent synthesized with anti-inflammatory effect. The aim of this study is to evaluate the effects of the botanical mixture on the release of inflammatory cytokines and its inhibitory effect on lipopolysaccharide (LPS)-induced alveolar bone loss (ABL) in a rat model. Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay using human gingival fibroblast (hGF) and human periodontal ligament (hPDL) cells. Human acute monocytic leukemia cell line and hGF cells were cultured to assay tumor necrosis factor (TNF)-α and interleukin (IL)-6, respectively. Microcomputed tomography analysis and immunofluoresence analysis were performed to evaluate the efficacy of the botanical mixture to inhibit the destruction of alveolar bone and connective tissue in a rat model. The botanical mixture is cytotoxic at concentrations exceeding 2.5 mg/mL (P botanical mixture to be used in all subsequent in vitro and in vivo experiments. The botanical mixture reduced the release of TNF-α and IL-6 from human monocytic cells and hGF cells in a dose-dependent manner (P botanical mixture significantly reduced the alveolar bone loss in a rat model (P botanical mixture, matrix metalloproteinase (MMP)-9 was detected along the alveolar bone crest (ABC), but not around the gingival connective tissue, while in the group with LPS-induced ABL, pronounced expression of MMP-9 around the ABC, periodontal ligament, and gingival connective tissue was found. The botanical mixture showed a potential adjunctive effect in the treatment of periodontitis. However, the present findings are obtained in vitro and in a rat model, so further clinical study is needed

  4. The effect of a composite of polyorthoester and demineralized bone on the healing of large segmental defects of the radius in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Andersen, R

    1992-01-01

    The effect of a composite of demineralized bone mixed with polyorthoester on the healing of large segmental defects in the rat radius was studied. Sixty male Wistar rats were divided into four groups, A through D, and an osteoperiosteal diaphyseal defect of 50 per cent of the length of the bone....... The formation of bone in the defects was quantified with computer-assisted measurements of the area on radiographs. The host-tissue response was evaluated with light microscopy. Defects that had been filled with the composite of polyorthoester and demineralized bone or with demineralized bone alone showed...... regeneration of bone corresponding to 93.6 and 77.6 per cent of the area of the defect, respectively. Defects that had no implant or that had been filled with polyorthoester alone showed significantly less formation of bone. No inflammation was seen with light microscopy, and only traces of the polyorthoester...

  5. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA.

    Science.gov (United States)

    Bagi, Cedo M; Berryman, Edwin; Zakur, David E; Wilkie, Dean; Andresen, Catharine J

    2015-11-06

    Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and

  6. Protective effect of ellagic acid on healing alveolar bone after tooth extraction in rat--a histological and immunohistochemical study.

    Science.gov (United States)

    Al-Obaidi, Mazen M Jamil; Al-Bayaty, Fouad Hussain; Al Batran, Rami; Hassandarvish, Pouya; Rouhollahi, Elham

    2014-09-01

    This study has attempted to evaluate the effects of ellagic acid (EA) on alveolar bone healing after tooth extraction in rats. Twenty-four Sprague Dawley (SD) male rats (200-250g) were selected and were anaesthetised for the extraction of upper left incisor. Then, the rats were divided into two groups, comprising 12 rats each; the first group has been considered as a control group and was given only normal saline, whereas, the second group (treated group) was intragastrically administrated with EA daily once, for 28 days. Then three rats from each group had been selected on 7th, 14th, 21st, and 28th days to dissect their maxilla tissue either for histological observation and homogenisation purposes. The tissues fixed, decalcified and embedded in paraffin. Serial sections of 5μm thickness were prepared and stained with haematoxylin and eosin (H&E) for the histological study. Similar sections were taken for immunohistochemical analysis to assess osteocalcin (OSC) and osteopontin (OPN). Furthermore, Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in homogenated gingival maxilla tissue of rat by commercial kit. Based on the histological analysis we have identified that, EA treatment has induced earlier trabecular bone deposition in the treated group, resulting in more organised bone matrix on the 14th, 21st, and 28th days after tooth extraction, as against the control group. In comparison to control group, the positive labelling of OSC and OPN of the treated group have been highly expressed in the alveolar socket on 14th, and 21st days, which has indicated a the possibility of formation of new bone trabeculae at the beginning of the mineralisation process, after tooth extraction. In the EA treatment group, lipid per-oxidation (MDA) was significantly decreased (Phealing process in teeth socket of rats. Furthermore, the EA treated group showed a stronger positive immunolabelling for OSC and OPN, when compared with the control group. Copyright © 2014

  7. Modulation of Radiation Injury in Pregnant Rats by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd Rabu, M.A.

    2011-01-01

    This Work aims to point out the influence of bone marrow transplantation (BMT) in protection of irradiated pregnant rats and suppression of oxidative stress. BMT was administered to rats, 1 h post gamma irradiation at the dose level of 2 Gy given at the 7th or 14th day of gestation. Rats were examined after 20 days from gestation to detect the physiological parameters of the mother and number of implantation sites and resorption as well as length of foetuses and tails. Pregnant rats irradiated at the 7th and 14th day of gestation showed reduction in live foetuses and length of foetuses and their tails and significant decrease in erythrocytes (RBCs), leucocytes (WBCs), haemoglobin content (Hb), and hematocrit percentage (Ht). Irradiation-induced an elevation in aldosterone and a drop in calcium (Ca). Glutathione levels showed significant decreases in blood while the content of serum thiobarbituric acid reactive substance (TBARS) showed significant increases. Lipid profile exhibited an increase in the concentrations of total cholesterol (TC), triglycerides (TG) and low lipoproteins cholesterol (LDL-C) with a significant decrease in high lipoproteins cholesterol (HDL-C) in both groups. BMT to irradiated pregnant rats induced significant amelioration in radiation- induced changes. BMT was shown to be effective in reducing physiological disorders and oxidative stress in pregnant rats reflected on minimizing embryonic injuries

  8. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  9. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    Science.gov (United States)

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p periodontal disease (p periodontal disease (p periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  10. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Huddleston Slater, J. J. R.; Gielkens, P. F. M.; de Jong, J. R.; Grijpma, D. W.; Bos, R. R. M.

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a

  11. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A.C.; Huddelston Slater, J.J.R.; Gielkens, P.F.M.; de Jong, J.R.; Grijpma, Dirk W.; Bos, R.R.M.

    2012-01-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a

  12. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  13. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    Energy Technology Data Exchange (ETDEWEB)

    Moczar, E; Berenholc, S; Phan-Dinh-Tuy, B; Robert, A M

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with /sup 14/C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. /sup 14/C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones .

  14. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    International Nuclear Information System (INIS)

    Moczar, E.; Berenholc, S.; Phan-Dinh-Tuy, B.; Robert, A.M.

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with 14 C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. 14 C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones

  15. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  16. Surgical repair of propagating condylar fractures of the third metacarpal/metatarsal bones with cortical screws placed in lag fashion in 26 racehorses (2007-2015).

    Science.gov (United States)

    Moulin, N; François, I; Coté, N; Alford, C; Cleary, O; Desjardins, M R

    2018-01-19

    Despite the recommendation of plate fixation for propagating condylar fractures of the third metacarpal (McIII) or third metatarsal bone (MtIII), lag screw fixation can be a viable surgical option. To evaluate short-term outcome and long-term racing performance of horses that underwent lag screw fixation of long condylar fractures of the McIII/MtIII. Retrospective case series. Medical records, post-surgical racing performance and outcome of 26 horses with propagating fractures of the medial and/or lateral condyle of McIII/MtIII were reviewed. Medical information included were age, breed, sex, physical examination at admission, circumstances of fracture, radiographic evaluation, anaesthesia and recovery records, surgical and post-operative management, as well as complications. Outcome included racing data and information from telephone interviews. Twenty-six horses (9 Standardbreds and 17 Thoroughbreds) were admitted with a long condylar fracture of the McIII/MtIII. Fore- and hindlimbs were equally represented with the left hindlimb being more frequently involved. Most of the fractures had a spiralling component (76%) and four (15%) were comminuted. Fifteen (58%) horses raced post-surgery including nine Standardbreds (100%) and six Thoroughbreds (35%). Twelve of them were placed in at least one race and 11 won at least once. One horse sustained a severe complication in recovery. No significant difference was observed in the racing performances before and after surgery. Follow-up method and duration were not standardised and there is a low number of cases with six surgeons. Long condylar fractures can be repaired using lag fashion technique combined with a half-limb or full-limb tight cast for recovery as a good surgical alternative. Similar results to plate fixation can be expected, with a return to racing of more than 50%, and the prognosis being even better for pacers. © 2018 EVJ Ltd.

  17. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    Directory of Open Access Journals (Sweden)

    Zhiqun Qiu

    Full Text Available Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse.To elucidate the skeletal effects of multi-generational bottled water drinking in female rats.Rats continuously drank tap water (TW, bottled natural water (bNW, bottled mineralized water (bMW, or bottled purified water (bPW for three generations.The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group.Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  18. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease in bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation

  19. Characteristics of the Foot Static Alignment and the Plantar Pressure Associated with Fifth Metatarsal Stress Fracture History in Male Soccer Players: a Case-Control Study.

    Science.gov (United States)

    Matsuda, Sho; Fukubayashi, Toru; Hirose, Norikazu

    2017-12-01

    There is a large amount of information regarding risk factors for fifth metatarsal stress fractures; however, there are few studies involving large numbers of subjects. This study aimed to compare the static foot alignment and distribution of foot pressure of athletes with and without a history of fifth metatarsal stress fractures. The study participants comprised 335 collegiate male soccer players. Twenty-nine with a history of fifth metatarsal stress fractures were in the fracture group and 306 were in the control group (with subgroups as follows: 30 in the fracture foot group and 28 in the non-fracture group). We measured the foot length, arch height, weight-bearing leg-heel alignment, non-weight-bearing leg-heel alignment, forefoot angle relative to the rearfoot, forefoot angle relative to the horizontal axis, and foot pressure. The non-weight-bearing leg-heel alignment was significantly smaller and the forefoot angle relative to the rearfoot was significantly greater in the fracture foot group than in the control foot group (P = 0.049 and P = 0.038, respectively). With regard to plantar pressure, there were no significant differences among the groups. Midfield players had significantly higher rates of fifth metatarsal stress fracture in their histories, whereas defenders had significantly lower rates (chi-square = 13.2, P stress fractures according to the type of foot (kicking foot vs. pivoting foot) or the severity of ankle sprain. Playing the midfield position and having an everted rearfoot and inverted forefoot alignment were associated with fifth metatarsal stress fractures. This information may be helpful for preventing fifth metatarsal stress fracture recurrence. More detailed load evaluations and a prospective study are needed in the future.

  20. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  1. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185 ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  2. Parathyroid hormone related to bone regeneration in grafted and nongrafted tooth extraction sockets in rats.

    Science.gov (United States)

    Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro

    2013-02-01

    The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.

  3. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    Marble, G.; Valderas, R.

    1966-01-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [fr

  4. Heterotopic new bone formation causes resorption of the inductive bone matrix

    International Nuclear Information System (INIS)

    Nilsson, O.S.; Persson, P.E.; Ekelund, A.

    1990-01-01

    The bone matrix of growing rats was labeled by multiple injections of 3H-proline, and demineralized bone matrix (DBM) was prepared. The DBM was allotransplanted heterotopically into growing rats. New bone formation was induced in and around the implants. The new bone formation was accompanied by a decrease in the content of 3H; 20 and 30 days after implantation, 72% and 46%, respectively, of the activity remained in the implants. Daily injections of indomethacin (2 mg/kg) inhibited calcium uptake by about 20% at 20 and 30 days and inhibited the release of 3H from the DBM to a similar degree. Heterotopic bone induction by DBM is accompanied by matrix resorption, and inhibition of the new bone formation decreases the resorption of DBM

  5. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  6. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells

    LENUS (Irish Health Repository)

    Farrell, Eric

    2011-01-31

    Abstract Background Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients\\' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. Methods MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. Results After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. Conclusions The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of

  7. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  8. The Effects of Elk Velvet Antler Dietary Supplementation on Physical Growth and Bone Development in Growing Rats

    Directory of Open Access Journals (Sweden)

    Jiongran Chen

    2015-01-01

    Full Text Available Elk velvet antler (EVA has been used in traditional Oriental medicine for centuries to promote general health; however, little evidence for its effect on bone development is available. We investigated the effects of lifelong exposure of Wistar rats to a diet containing 10% EVA on physical growth and bone development. Measurements included weekly body weights, blood chemistry and kidney and testis/ovary indices (sacrificed at 5, 9, or 16 weeks of age, and bone traits of the femur bones by peripheral quantitative computed tomography (pQCT. Mean body weights were higher in the EVA group at 4–8 weeks in males and at 5 weeks of age in females. The kidney indices were greater in EVA dietary supplemented male rats at 5 and 16 weeks of age, in females at 16 weeks of age, and testis/ovary indices at 5 weeks of age. The femoral length was increased in both males and females at 5 weeks, and several pQCT-measured parameters had increased in EVA males and females. The activity of alkaline phosphatase (ALP increased in EVA group while the content of calcium and phosphorus did not differ among groups. Our results seem to support a role for dietary supplementation of EVA on growth and bone development in this model.

  9. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP Synthesized from Porous Foraminifera Carbonate Macrospheres

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    2013-12-01

    Full Text Available Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair.

  10. Pathological changes after bone marrow and skin allograft transplantation in rats inflicted with severe combined radiation-burn injury

    International Nuclear Information System (INIS)

    Zheng Huaien; Cheng Tianmin; Yan Yongtang

    1994-01-01

    Bone marrow and skin allografts from the same donor were transplanted to rats inflicted with 8 Gy γ-radiation combined with third degree burns of 15% body surface area within 6 hr post injury. Pathological changes of hematopoietic tissues and skin allografts were studied. All injured controls died within 7 days post injury without bone marrow regeneration; 50% of treated rats survived with living skin allografts on 50th day post injury. On days 100 and 480 post operation, grafted skin still survived well on recipients with normal ultrastructure. Epidermic cells of skin allografts proliferated on day 5, developed and repaired on day 10. Histological structure of the skin returned to normal on day 30 post operation. The regeneration of bone marrow appeared on 5th day, increased markedly on day 10, and almost completed on day 15 after bone marrow transplantation. However, the regeneration of lymphocytes in cortex of spleen and lymph nodes did not appear until day 15 of BMT. The results show that bone marrow and skin allograft transplantation at early time post injury in most severe combined radiation-burn injury have tremendous beneficial effects, and the skin allograft can survive for a long time

  11. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  12. Osteoporotic cytokines and bone metabolism on rats with induced hyperthyroidism; changes as a result of reversal to euthyroidism.

    Science.gov (United States)

    Simsek, Gönül; Karter, Yesari; Aydin, Seval; Uzun, Hafize

    2003-12-31

    Hyperthyroidism is characterized by increased bone turnover and resorptive activity. Raised levels of serum osteoporotic cytokines, such as interleukin (IL) -1beta, IL-6 and tumor necrosis factor (TNF)-alpha have been demonstrated previously in hyperthyroidism. These elevations are controversial and it is difficult to differentiate the contribution of thyroid hormones to the elevation of cytokines from that of the autoimmune inflammation in Graves' disease (GD) and follicular cell damage in thyroiditis. Therefore, we investigated the effect of thyroid hormones on serum IL-1beta, IL-6, TNF-alpha levels and bone metabolism on L-thyroxine induced hyperthyroid rats and changes in cytokine levels and bone metabolism on the same rats after reversal to euthyroidism. Rats were treated with L-thyroxine for 5 weeks (0.4 mg/ 100 g food). Plasma T3, T4, TSH and serum IL-1beta, IL-6, TNFalpha, Calcium (Ca), phosphorous (P), parathyroid hormone (PTH), alkaline phosphatase (ALP), bone alkaline phosphatase (B-ALP) levels were measured and differential leucocyte counts were made initially, at the 5th week of the experiment (hyperthyroid state) and 5 weeks after quitting the administration of L-thyroxine (euthyroid state). Significant rises in serum IL-1beta, IL-6 and TNFalpha were noted in hyperthyroidism (P hyperthyroid state while there was no correlation in euthyroid states. Ca and P levels did not differ significantly while PTH levels declined significantly in the hyperthyroid state (P hyperthyroidism (P hyperthyroid state (P metabolism in hyperthyroidism might be mediated by cytokines and the increased bone turnover in hyperthyroidism failed to decrease despite euthyroidism.

  13. SEM corrosion-casts study of the microcirculation of the flat bones in the rat.

    Science.gov (United States)

    Pannarale, L; Morini, S; D'Ubaldo, E; Gaudio, E; Marinozzi, G

    1997-04-01

    Little is known about the organization of microcirculation in flat bones in comparison with long bones. This study, therefore, helps us to determine the design of this vascular system in flat bones in relation to their structure and function. The organization of microvasculature in parietal, scapula, and ileum bones of 15 young sexually mature rats, aged 6-7 weeks, was studied by light and scanning electron microscopy (SEM) from vascular corrosion cast (vcc), a resin-cast obtained material. Our observations show that the pattern of the microcirculation in flat bones is different in the thick and thin parts of such bones. Where the bone is thinner than 0.4 mm, only periosteal and dural network exist. Larger vessels which do not form a real network connect the two tables of the bones in these regions. In thicker areas, the organization of the microvasculature is similar to that in long bones, with distinct periosteal, cortical and bone marrow networks. Moreover, in different bones, outer networks show slightly different characteristics according to the different adjacent structures (dura mater, muscles etc.). Different types of vessels were recognized by comparing their different diameter, course and endothelial imprints. The microvascular patterns of the flat bones are strongly influenced by the bone thickness. The different microvascular systems can interact both with the bone modelling and remodeling and with the variable metabolic needs, modifying the microvascular pattern and the blood flow. This is even more important in view of the reciprocal influence of the different networks within the same bone.

  14. Malformations induced by gamma irradiation combined with vitamin A administration in pregnant female albino rats and their foetuses

    International Nuclear Information System (INIS)

    Ramadan, F.L.

    2007-01-01

    In The Present investigation, oral administration of vitamin A of the therapeutic doses and double therapeutic doses (9.000 lU/kg b.wt and 18.000 IU/ kg body, wt) to female rats starting on day 1 up to day 19 of pregnancy and exposed to 3 Gy (1 Gy/3 times) whole body gamma irradiation on days 7th, 1th and 15th of gestation (dissection was preformed on day 20) caused morphological, histochemical and skeletal changes in pregnant rats and their foetuses. The congenital anomalies occurred in foetuses when pregnant rats were exposed to γ-irradiation including diminution of size and subcutaneous haemorrhage. On the other hand, miscellaneous malformations including kypophysis, exencephally, anophthalmia and deformation of ear region were designated in foetuses maternally treated with excess vitamin A. The malformations were severe when mothers were irradiated during vitamin A administration as manifested by macrocephaly and fusion of digits of the hind limb (Oligosyndactyly). The examination of the endo skeletal system of foetuses obtained from irradiated pregnant rats and treated with low or excess doses of vitamin A showed retardation in of the ossification of the skull bones and lack of ossification at the centre of vertebrae. Moreover, no ossification was observed in sternebra, metacarpals, metatarsals and phalanges. In the present study, the content of DNA exhibited significant decrease in mother irradiated and combined or not with vitamin A. The results are of great importance from the standpoint of radiation protection and drug safety

  15. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  16. Dual-energy X-ray absorptiometry underestimates in vivo lumbar spine bone mineral density in overweight rats.

    Science.gov (United States)

    Cherif, Rim; Vico, Laurence; Laroche, Norbert; Sakly, Mohsen; Attia, Nebil; Lavet, Cedric

    2018-01-01

    Dual-energy X-ray absorptiometry (DXA) is currently the most widely used technique for measuring areal bone mineral density (BMD). However, several studies have shown inaccuracy, with either overestimation or underestimation of DXA BMD measurements in the case of overweight or obese individuals. We have designed an overweight rat model based on junk food to compare the effect of obesity on in vivo and ex vivo BMD and bone mineral content measurements. Thirty-eight 6-month old male rats were given a chow diet (n = 13) or a high fat and sucrose diet (n = 25), with the calorie amount being kept the same in the two groups, for 19 weeks. L1 BMD, L1 bone mineral content, amount of abdominal fat, and amount of abdominal lean were obtained from in vivo DXA scan. Ex vivo L1 BMD was also measured. A difference between in vivo and ex vivo DXA BMD measurements (P body weight, perirenal fat, abdominal fat, and abdominal lean. Multiple linear regression analysis shows that body weight, abdominal fat, and abdominal lean were independently related to ex vivo BMD. DXA underestimated lumbar in vivo BMD in overweight rats, and this measurement error is related to body weight and abdominal fat. Therefore, caution must be used when one is interpreting BMD among overweight and obese individuals.

  17. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    Science.gov (United States)

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  18. Coupling multiscale X-ray physics and micromechanics for bone tissue composition and elasticity determination from micro-CT data, by example of femora from OVX and sham rats

    Science.gov (United States)

    Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian

    2016-05-01

    Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.

  19. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.

    Science.gov (United States)

    Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2016-09-29

    The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.

  20. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord

    Directory of Open Access Journals (Sweden)

    Guiqin Zhu

    2016-01-01

    Full Text Available Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI in rat tibia (TCI cancer pain model. Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy. Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  1. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    Science.gov (United States)

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  2. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    International Nuclear Information System (INIS)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun; Wang, Zhenming; Lu, Xiong; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2015-01-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion

  3. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China); Wang, Zhenming; Lu, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan (China); Yimin [Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Oda, Kimimitsu [Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata (Japan); Amizuka, Norio [Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Li, Minqi, E-mail: liminqi@sdu.edu.cn [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China)

    2015-04-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion.

  4. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats.

    Science.gov (United States)

    Rodrigues, Willian Caetano; Fabris, André Luís da Silva; Hassumi, Jaqueline Suemi; Gonçalves, Alaíde; Sonoda, Celso Koogi; Okamoto, Roberta

    2016-06-01

    Immunohistochemical studies and molecular biology have enabled us to identify numerous proteins that are involved in the metabolism of bone, and their encoding genes. Among these is alkaline phosphatase (ALP), an enzyme that is responsible for the initiation of mineralisation of the extracellular matrix during alveolar bone repair. To evaluate the gene expression of ALP during this process, we studied nine healthy adult male rats, which had their maxillary central incisors extracted from the right side and were randomly divided into three groups. During three experimental periods, 7 days, 14 days, and 28 days, the alveoli were curetted, the rats killed, and samples analysed by real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNAm that encodes the gene for the synthesis of ALP was expressed during the three periods analysed, but its concentration was significantly increased at 14 and 28 days compared with at 7 days. There was no significant difference between 14 and 28 days (p=0.0005). We conclude that genes related to ALP are expressed throughout the healing process and more intensively during the later periods (14 and 28 days), which coincides with the increased formation of mineralised bone. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Alveolar wound healing after implantation with a pool of commercially available bovine bone morphogenetic proteins (BMPs): a histometric study in rats.

    Science.gov (United States)

    Calixto, Romeu Felipe Elias; Teófilo, Juliana Mazzonetto; Brentegani, Luiz Guilherme; Lamano-Carvalho, Teresa Lúcia

    2007-01-01

    The capacity of a commercially available pool of bovine bone morphogenetic proteins (BMPs) to stimulate osteogenesis in the rat alveolar healing was investigated by histometric analysis. Male rats were anesthetized and had their upper incisor extracted. A pool of purified bovine BMPs adsorbed to microgranular resorbable hydroxyapatite was agglutinated with bovine collagen and saline before implantation into the alveolar socket. The implanted and control rats (n=30 per group) were sacrificed 1 to 9 weeks postoperatively, the hemi-maxillae were decalcified, processed for paraffin embedding and semi-serial longitudinal sections were obtained and stained with hematoxylin and eosin. The volume fraction of alveolar healing components was estimated by a differential point-counting method in histologic images. The results showed that in both, control and implanted rats, the alveolar healing followed the histologic pattern usually described in the literature. Quantitative data confirmed that the BMPs mixture did not stimulate new bone formation in the alveolar socket of implanted rats. These results suggest that the pool of BMPs adsorbed to hydroxyapatite and agglutinated with bovine collagen did not warrant incorporation of the osteoinductive proteins to a slow-absorption system that would allow a BMPs release rate compatible to that of new bone formation, and thus more adequate to osteoinduction.

  6. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ping-Huei Tsai

    Full Text Available BACKGROUND: There is an emerging interest in using magnetic resonance imaging (MRI T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA. However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX. MATERIALS AND METHODS: Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group. Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. RESULTS: Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001. In the ACLX group (compared to the sham and control groups, T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001, then in the anterior horn of the medial meniscus at 13 weeks (p<0.001, and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043. CONCLUSION: Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.

  7. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  8. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    Science.gov (United States)

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  9. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    Science.gov (United States)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  10. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  11. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    Science.gov (United States)

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-12-01

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evaluation of laser photobiomodulation on bone defect in the femur of osteoporotic rats: a Raman spectral study

    Science.gov (United States)

    Soares, Luiz Guilherme P.; Aciole, Jouber Mateus d. S.; Neves, Bruno Luiz R. C.; Silveira, Landulfo; Pinheiro, Antônio L. B.

    2015-03-01

    Phototherapies have shown positive effects on the bone repair process, increasing the blood supply to the injured area. The aim of this study was to assess through Raman spectroscopy, the efficacy of laser phototherapy (λ = 780 nm, P = 70 mW, CW, 20.4 J/cm2 per session, 163.2 J/cm2 per treatment) on the bone repair process of osteoporotic rats. The osteoporosis induction was achieved by ovariectomy surgery. Thirty Wistar rats were divided into 4 groups (Basal; OVX, OVX + Clot and OVX + Clot + Laser), then subdivided into 2 subgroups according to the experimental time (15 and 30 days). After the osteoporosis induction time (60 days), a bone defect with 2 mm was created with a trephine drill in the right femur in the animals of groups OVX, Clot and Clot + Laser. After surgery, the irradiation protocol was applied in the same groups on repeated sessions every 48 hours during 15 days. The samples were analyzed by Raman Spectroscopy to assess the inorganic content of phosphate and carbonated hydroxyapatite (~960 and 1070 cm-1, respectively) and organic lipids and proteins (~1454 cm-1). Statistical analysis (ANOVA, Student-T test) showed significant difference between groups Basal, OVX + Clot, and OVX + Clot + Laser for the inorganic content peaks at ~960 (p≤0.001), and ~1070 cm-1 (p≤0.001) in both periods of 15 and 30 days, however on peak at ~1450 cm-1 no differences were detected. It was concluded that the Laser phototherapy increased deposition of HA on bone repair process of osteoporotic rats.

  13. Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model

    Science.gov (United States)

    Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.

    2018-01-01

    The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807

  14. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat.

    Science.gov (United States)

    Ghanizadeh, G; Babaei, M; Naghii, Mohammad Reza; Mofid, M; Torkaman, G; Hedayati, M

    2014-04-01

    Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and fluoride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone.

  15. Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Zhao, Danqing; Zhao, Yuxi; Iqbal, Javed; Shen, Liming

    2018-07-01

    Long-term excessive intake of fluoride (F) could lead to chronic fluorosis. To explore the underlying molecular mechanisms, present study is designed to elucidate the effect of fluoride on proteome expression of bone in sodium fluoride (NaF)-treated SD rats. Hematoxylin and eosin (H&E) staining was used to determine the severity of osteofluorosis, and bone samples were submitted for iTRAQ analysis. The results showed that the cortical thickness and trabecular area of femur bone in medium- and high-dose groups were higher than in control group. Contrary to this, trabecular area was reduced in the low-dose group, indicating that the bone mass was increased in medium- and high-dose groups, and decreased in the low-dose group. Thirteen (13), 35, and 34 differentially expressed proteins were identified in low-, medium-, and high-dose group, respectively. The medium- and high-dose groups shared a more similar protein expression pattern. These proteins were mainly associated with collagen metabolism, proteoglycans (PGs), matrix metalloproteinases (MMPs), etc. The results suggested that the effect of NaF on SD rats is in a dose-dependent manner. Some key proteins found here may be involved in affecting the bone tissues and bone marrow or muscle, and account for the complex pathology and clinical symptoms of fluorosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The effect of methotrexate on the bone healing of mandibular condylar process fracture: an experimental study in rats.

    Science.gov (United States)

    Cavalcanti, Samantha Cristine Santos X B; Corrêa, Luciana; Mello, Suzana Beatriz Veríssimo; Luz, João Gualberto C

    2014-10-01

    Methotrexate (MTX) is an anti-metabolite used in rheumatology and oncology. High doses are indicated for oncological treatment, whereas low doses are indicated for chronic inflammatory diseases. This study evaluated the effect of two MTX treatment schedules on the bone healing of the temporomandibular joint fracture in rats. Seventy-five adult male Wistar rats were used to generate an experimental unilateral medially rotated condylar fracture model that allows an evaluation of bone healing and the articular structures. The animals were subdivided into three groups that each received one of the following treatments intraperitoneally: saline (1 mL/week), low-dose MTX (3 mg/kg/week) and high-dose MTX (30 mg/kg). The histological study comprised fracture site and temporomandibular joint evaluations and bone neoformation was evaluated by histomorphometric analysis. A biochemical parameter of bone formation was also assessed. When compared with saline, high-dose MTX delayed bone fracture repairs. In this latter group, after 90 days, the histological analysis revealed atrophy of the fibrocartilage and the presence of fibrous tissue in the joint space. The histomorphometric analysis revealed diminished bone neoformation. The alkaline phosphatase levels also decreased after MTX treatment. It was concluded that high-dose MTX impaired mandibular condyle repair and induced degenerative articular changes. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat.

    Science.gov (United States)

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca; Rector, R Scott; Hinton, Pamela S

    2017-12-01

    Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and

  18. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    Science.gov (United States)

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.

  19. Dynamic compression plate (DCP) fixation of propagating medial condylar fractures of the third metacarpal/metatarsal bone in 30 racehorses: retrospective analysis (1990-2005).

    Science.gov (United States)

    Goodrich, L R; Nixon, A J; Conway, J D; Morley, P S; Bladon, B M; Hogan, P M

    2014-11-01

    An in-depth review of dynamic compression plate (DCP) fixation of propagating medial condyle fractures of the third metacarpus or metatarsus has not been previously reported. To describe the technique, evaluate short-term outcome and long-term race performance of racehorses that underwent DCP fixation for repair of propagating or spiralling medial condylar fractures of the third metacarpal (McIII) or metatarsal (MtIII) bone. Retrospective case series. The surgical case records of 30 horses with propagating fractures of the medial condyle of McIII or MtIII were reviewed. Medical information included: age, breed, sex, presentation, how injury occurred (racing or training), surgical treatment and post operative complications. Racing information included: starts, top 3 placing and career earnings. Long propagating fractures of the medial condyle of Mc/tIII were identified in 23 Thoroughbred (TB) and 7 Standardbred (STB) racehorses. The fracture spiralled proximally in 22 of 30 cases (73%). Standardbreds had a higher propensity for hindlimb involvement (71%), whereas TBs tended to have more front limb involvement (61%). Twelve of 30 (40%) horses raced post surgery. Career earnings were significantly lower for TB horses with medial condylar fractures; $34,916 when compared with the national average of $60,841 (P≤0.03). Overall, horses having DCP fixation for medial condylar fractures had less starts post surgery (3.1 TBs and 5.8 STBs) compared with the national average (7 TBs and 17.3 STBs) and decreased lifetime starts 13.4 (TBs) compared with 17.3 nationally. Propagating medial condyle fractures can be repaired with plate fixation to potentially lessen the risk of catastrophic fracture destabilisation and return to racing can be expected in 40% of horses. Further prospective studies are warranted comparing lag screw fixation with DCP fixation for repair of severe medial condylar fractures of the metacarpus/metatarsus. © 2013 The Authors. Equine Veterinary Journal

  20. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep.

    Science.gov (United States)

    Wieding, Jan; Lindner, Tobias; Bergschmidt, Philipp; Bader, Rainer

    2015-04-01

    Open-porous titanium scaffolds for large segmental bone defects offer advantages like early weight-bearing and limited risk of implant failure. The objective of this experimental study was to determine the biomechanical behavior of novel open-porous titanium scaffolds with mechanical-adapted properties in vivo. Two types of the custom-made, open-porous scaffolds made of Ti6Al4V (Young's modulus: 6-8 GPa and different pore sizes) were implanted into a 20 mm segmental defect in the mid-diaphysis of the metatarsus of sheep, and were stabilized with an osteosynthesis plate. After 12 and 24 weeks postoperatively, torsional testing was performed on the implanted bone and compared to the contralateral non-treated side. Maximum torque, maximum angle, torsional stiffness, fracture energy, shear modulus and shear stress were investigated. Furthermore, bone mineral density (BMD) of the newly formed bone was determined. Mechanical loading capabilities for both scaffolds were similar and about 50% after 12 weeks (e.g., max. torque of approximately 20 Nm). A further increase after 24 weeks was found for most of the investigated parameters. Results for torsional stiffness and shear modulus as well as bone formation depended on the type of scaffold. Increased BMD after 24 weeks was found for one scaffold type but remained constant for the other one. The present data showed the capability of mechanically adapted open-porous titanium scaffolds to function as bone scaffolds for large segmental defects and the influence of the scaffold's stiffness. A further increase in the biomechanical stability can be assumed for longer observation periods of greater than six months. Copyright © 2014 Elsevier Ltd. All rights reserved.