WorldWideScience

Sample records for rat medullary dorsal

  1. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.

    Science.gov (United States)

    Bądzyńska, B; Sadowski, J

    2012-08-01

    Renal medullary blood flow (MBF) can be selectively increased by intrarenal or systemic infusion of bradykinin (Bk) in anaesthetized normotensive rats. We reproduced this effect in a number of rat models of arterial hypertension and examined whether increased perfusion of the renal medulla can cause a short-term decrease in blood pressure (BP) that is not mediated by increased renal excretion and depletion of body fluids. In uninephrectomized Sprague-Dawley rats, BP was elevated to approx. 145 mmHg by acute i.v. infusion of noradrenaline (NA) or angiotensin II (Ang II) (groups 1, 2), 2-week exposure to high-salt diet (3), high-salt diet + chronic low-dose infusion of Ang II using osmotic minipumps (4) or chronic high-dose Ang II infusion on normal diet (5). Uninephrectomized spontaneous hypertensive rats (SHR) were also examined (6,7). To selectively increase medullary perfusion, in anaesthetized rats, bradykinin was infused during 30-75 min into the renal medullary interstitium or intravenously. Bradykinin increased outer- and inner-medullary blood flow (laser-Doppler fluxes) by 10-20% in groups (1, 2), by 30-50% in groups (3, 4, 5) and approx. 20% in SHR (6, 7). The concurrent increase in total renal blood flow (Transonic probe) was < 3%. A minor (<3%) decrease in BP was seen only in rats acutely rendered hypertensive by NA or Ang II infusions; however, the decreases in BP and increases in medullary perfusion were not correlated. Thus, there was no evidence that in hypertensive rats, substantial selective increases in medullary perfusion can cause a short-term decrease in BP. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  2. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  3. HV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats.

    Science.gov (United States)

    Jin, Chunhua; Sun, Jingping; Stilphen, Carly A; Smith, Susan M E; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M; Jacob, Howard J; Lambert, Nevin A; O'Connor, Paul M

    2014-09-01

    We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (Pthick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. © 2014 American Heart Association, Inc.

  4. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis

    DEFF Research Database (Denmark)

    Elliott, Taffeta M.; Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2007-01-01

    The clawed frog Xenopus laevis produces vocalizations consisting of distinct patterns of clicks. This study provides the first description of spontaneous, pure-tone and communication-signal evoked discharge properties of auditory nerve (n.VIII) fibers and dorsal medullary nucleus (DMN) cells...... in an obligatorily aquatic anuran. Responses of 297 n.VIII and 253 DMN units are analyzed for spontaneous rates (SR), frequency tuning, rate-intensity functions, and firing rate adaptation, with a view to how these basic characteristics shape responses to recorded call stimuli. Response properties generally resemble......Hz with approximately 500 Hz in 3 dB bandwidth. SRs range from 0 to 80 (n.VIII) and 0 to 73 spikes/s (DMN). Nerve and DMN units of all CFs follow click rates in natural calls,

  5. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne

    2013-01-01

    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilatera......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...... in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia....

  6. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  7. Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts

    Directory of Open Access Journals (Sweden)

    Lara Bieler

    2018-02-01

    The functional relevance of the dorsal CST in locomotion of rats is not as prominent as compared to in humans and thus challenging the motor execution is mandatory to reliably investigate CST function. A detailed analysis of voluntary walking using the CatWalk XT is not adequate to detect deficits following dorsal CST lesion in rats.

  8. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  9. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  10. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study.

    Science.gov (United States)

    Takuma, S

    2001-07-06

    To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents

  11. Adult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior.

    Science.gov (United States)

    Ho, Y C; Wang, S

    2010-11-24

    Clinical and preclinical studies suggest that the hippocampus has a role in the pathophysiology of major depression. In the learned helplessness (LH) animal model of depression after inescapable shocks (ISs) animals that display LH behavior have reduced cell proliferation in the hippocampus; this effect can be reversed by antidepressant treatment. Using this model, we compared rats that displayed LH behavior and rats that did not show LH behavior (NoLH) after ISs to determine whether reduced hippocampal cell proliferation is associated with the manifestation of LH behavior or is a general response to stress. Specifically, we examined cell proliferation, neurogenesis, and synaptic function in dorsal and ventral hippocampus of LH and NoLH animals and control rats that were not shocked. The LH rats had showed reduced cell proliferation, neurogenesis, and synaptic transmission in the dorsal hippocampus, whereas no changes were seen in the ventral hippocampus. These changes were not observed in the NoLH animals. In a group of NoLH rats that received the same amount of electrical shock as the LH rats to control for the unequal shocks received in these two groups, we observed changes in Ki-67(+) cells associated with acute stress. We conclude that reduced hippocampal cell proliferation and neurogenesis are associated with the manifestation of LH behavior and that the dorsal hippocampus is the most affected area. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Expression of interleukin-1 beta in rat dorsal root ganglia

    NARCIS (Netherlands)

    Copray, JCVM; Mantingh, [No Value; Brouwer, N; Biber, K; Kust, BM; Liem, RSB; Huitinga, [No Value; Tilders, FJH; Van Dam, AM; Boddeke, HWGM

    2001-01-01

    The expression of interleukin-lp was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in Situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1 beta mRNA: about 80% of these DRG neurons

  13. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Liu Dongjuan

    2012-11-01

    Full Text Available Abstract Introduction Post-traumatic stress disorder (PTSD is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS. The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM. Levels of Cytochrome c (Cyt-C was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM. The change of thiamine monophosphatase (TMP levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated

  14. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    Science.gov (United States)

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    Science.gov (United States)

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Dietary fat level affecting histochemical radiosensitivity in dorsal aorta in rats

    International Nuclear Information System (INIS)

    Yousri, R.M.; Roushdy, H.M.; EL-Malkh, N.M.; Ashry, M.A.; Soliman, S.M.

    1988-01-01

    The present work has been conducted to investigate the effect of dietary fat status and/or cumulative whole body gamma radiation exposures up to 15 Gy the histochemical pattern of the dorsal aortas of male albino rats. Experimental animals were fed on either fat-rich or fat-free diet and the observations compared with those fed normal fat diet. The histochemical investigations has been confined to the concentration levels of mucopolysaccharide substance and total lipids. The dorsal aorta normal fat group showed higher content of PAS-positive material in the first two layers of the aorta wall in comparison with decreased amount of collagen fibers was shown in fat-rich group

  17. LOCUS-COERULEUS PROJECTIONS TO THE DORSAL MOTOR VAGUS NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    TERHORST, GJ; TOES, GJ; VANWILLIGEN, JD

    1991-01-01

    The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris

  18. Thyroid cancer - medullary carcinoma

    Science.gov (United States)

    Thyroid - medullary carcinoma; Cancer - thyroid (medullary carcinoma); MTC; Thyroid nodule - medullary ... in children and adults. Unlike other types of thyroid cancer, MTC is less likely to be caused by ...

  19. Vascular endothelial growth factor signaling is necessary for expansion of medullary microvessels during postnatal kidney development

    DEFF Research Database (Denmark)

    Robdrup Tinning, Anne; Jensen, Boye L; Johnsen, Iben

    2016-01-01

    Postnatal inhibition or deletion of angiotensin II (ANG II) AT1 receptors impairs renal medullary mircrovascular development through a mechanism that may include vascular endothelial growth factor (VEGF). The present study was designed to test if VEGF/VEGF receptor signaling is necessary....... In human fetal kidney tissue, immature vascular bundles appeared early in the third trimester (GA27-28) and expanded in size until term. Rat pups treated with the VEGF receptor-2 (VEGFR2) inhibitor vandetanib (100 mg·kg(-1)·day(-1)) from P7 to P12 or P10 to P16 displayed growth retardation and proteinuria...... for the development of the renal medullary microcirculation. Endothelial cell-specific immunolabeling of kidney sections from rats showed immature vascular bundles at postnatal day (P) 10 with subsequent expansion of bundles until P21. Medullary VEGF protein abundance coincided with vasa recta bundle formation...

  20. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  1. Ondine's Curse in a Patient with Unilateral Medullary and Bilateral Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Hui-Tzu Ho

    2005-11-01

    Full Text Available Central sleep apnea (CSA, also known as Ondine's curse (OC, is a phenomenon characterized by episodes of repeated apnea during sleep due to disorders of the central nervous system. We report a patient with CSA/OC due to right dorsolateral medullary and bilateral cerebellar infarctions that occurred in the clinical setting of right vertebral artery stenosis. Polysomnography (PSG showed repeated episodes of absence of nasal cannula flow accompanying cessation of thoracic and abdominal respiratory movements and a decline in blood oxygen saturation. The duration of apnea was as long as 12 seconds. Brain magnetic resonance (MR images showed acute infarctions involving the right dorsolateral medulla, bilateral cerebellar vermis and paramedian cerebellar hemispheres. MR angiography showed nonvisualization of the right vertebral artery. Transcranial Doppler sonography showed a high resistance flow profile in the right vertebral artery and normal flow patterns in the basilar artery and left vertebral artery. These findings suggest that the medullary and bilateral cerebellar infarcts were caused by stenosis/pseudo-occlusion of the right vertebral artery. Reduced respiratory afferent inputs to the dorsal respiratory group of medullary neurons, the nucleus tractus solitarius and reduced “automatic” components of the respiratory drive may play a role in the development of CSA/OC.

  2. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    Science.gov (United States)

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  3. Early ultrastructural changes in the dorsal mucosa of rat tongue after irradiation, with special reference to the microvasculature

    International Nuclear Information System (INIS)

    Obinata, Ken-ichi; Ohshima, Hayato; Ito, Jusuke; Takano, Yoshiro.

    1997-01-01

    To clarify the acute effects of irradiation on the ultrastructural conformation of the dorsal mucosa of the rat tongue, with special reference to the changes in microvasculature. The proboscis of seventy rats were irradiated. The animals were then perfusion-fixed, followed by India ink-injection or resin casting at 3 to 7 days after irradiation. The bulk, frozen sections, or plastic embedded sections of the treated rat tongues were examined by light and electron microscopy. In the dorsal epithelium of the rat tongue, multi-nucleated cells appeared in the basal layer at 3 days after irradiation. At day 5, the thickness of the epithelial layer and connective tissue papillae decreased dramatically, concomitant with the shortening of the capillary loops. At day 7, lingual papillae and connective tissue papillae disappeared, leaving dissociated epithelial cells and numerous neutrophils migrating throughout the tissue. Subepithelial blood vessels displayed drastic dilation with a number of neutrophils adhering to the endothelial surface, but without ultrastructural abnormalities in its cellular components. Early changes in the dorsal mucosa of the irradiated rat tongue were limited to the basal epithelial cells, leading to a total disruption of the epithelial layer. Atrophic changes of the capillary loops is due to the loss of the connective tissue papillae. Dilation and conformational changes of the subepithelial capillaries appear to result from the inflammatory reaction, taking place secondarily to the loss of the epithelial barrier of the irradiated tongue. A difference in radiosensitivity among the epithelial, endothelial, and mesenchymal cell components of the rat tongue in vivo is suggested. (author)

  4. [Disseminated metastatic tumor at dorsal surface of medulla oblongata presenting intractable hiccups. A case report].

    Science.gov (United States)

    Arishima, Hidetaka; Kikuta, Ken-ichirou

    2011-04-01

    We report the case of disseminated metastatic tumor at dorsal surface of medulla oblongata presenting intractable hiccups. A 73-year-old man has a history of for metastatic lung tumor of the left tempral lobe. Although 3 surgeries and 4 radiotherapies were performed in the last 8 years, residual tumor grew slowly. He presented with intractable hiccups. His hiccups continued for 30 minutes, sometimes for 3 hours with obstruction of eating. Contrast-enhanced Magnetic resonance (MR) imaging demonstrated the dissemination of metastatic lung tumor at dorsal surface of medulla oblongata and ventral surface of midbrain. Some literatures reported the patients with intractable hiccups caused by dorsal medullary lesions. Therefore, we thought that the small disseminated tumor at dorsal surface of medulla oblongata caused the hiccups. Evaluation of dorsal medullay area by MR imaging is important to reveal the cause of intractable hiccups.

  5. Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration.

    Science.gov (United States)

    Plaas, Mario; Seppa, Kadri; Reimets, Riin; Jagomäe, Toomas; Toots, Maarja; Koppel, Tuuliki; Vallisoo, Tuuli; Nigul, Mait; Heinla, Indrek; Meier, Riho; Kaasik, Allen; Piirsoo, Andres; Hickey, Miriam A; Terasmaa, Anton; Vasar, Eero

    2017-08-31

    Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.

  6. The effect of collagenase on nerve conduction velocity of dorsal root ganglion in rats

    International Nuclear Information System (INIS)

    Zhuang Wenquan; Li Heping; Yang Jianyong; Chen Wei; Huang Yonghui; Guo Wenbo

    2006-01-01

    Objective: To study the functional effects of collagenase on dorsal root ganglion (DRG) in rats by evoked potential conduction velocity measurement. Methods: A total of 57 male healthy Sprague-Dawley rats were randomized into 7 groups: normal group, acute collagenase group, subacute collagenase group, chronic collagenase group, acute pseudo-operation group, subacute pseudo-operation group, chronic pseudo-operation group. 1200 units of collagenase was reconstituted in 4 ml isotonic saline prior for the experimental application. The left fifth lumbar DRG was exposed in each rat and followed by 1 ml collagenase solution (300 units) dropping on the exposed DRG in collagenase groups; and similarly 1 ml isotonic saline was applied to each of the exposed DRG in pseudo-operation groups. the effects of collagenase on nerve conduction velocity (NCV) were analyzed 1 hour, 1 week or 1 month after the procedure. The statistical analysis was carried out by software SPSS11.0. Results: The differences of NCV measured by evoked potential method between all groups including the normal group, collagenase groups, and pseudo-operation groups were not significant (P>0.05). Conclusion: The Neuroelectricity physiologic function of dorsal root ganglion and nerve would not be damaged by collagenase used in therapeutic concentration. (authors)

  7. Effect of topically applied minoxidil on the survival of rat dorsal skin flap.

    Science.gov (United States)

    Gümüş, Nazım; Odemiş, Yusuf; Yılmaz, Sarper; Tuncer, Ersin

    2012-12-01

    Flap necrosis still is a challenging problem in reconstructive surgery that results in irreversible tissue loss. This study evaluated the effect of topically applied minoxidil on angiogenesis and survival of a caudally based dorsal rat skin flap. For this study, 24 male Wistar rats were randomly divided into three groups of eight each. A caudally based dorsal skin flap with the dimensions of 9 × 3 cm was raised. After elevation of the flaps, they were sutured back into their initial positions. In group 1 (control group), 1 ml of isotonic saline was applied topically to the flaps of all the animals for 14 days. In group 2, minoxidil solution was spread uniformly over the flap surface for 7 days after the flap elevation. In group 3, minoxidil solution was applied topically to the flap surface during a 14-day period. On day 7 after the flap elevation, the rats were killed. The average area of flap survival was determined for each rat. Subdermal vascular architecture and angiogenesis were evaluated under a light microscope after two full-thickness skin biopsy specimens had been obtained from the midline of the flaps. The lowest flap survival rate was observed in group 1, and no difference was observed between groups 1 and 2. Compared with groups 1 and 2, group 3 had a significantly increased percentage of flap survival (P minoxidil is vasodilation and that prolonged use before flap elevation leads to angiogenesis, increasing flap viability. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Karina H. Solís

    2017-12-01

    Full Text Available Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2 and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon

  9. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  10. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  11. [Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats].

    Science.gov (United States)

    Wang, Jin-Rong; Wang, Yong-Zhi; Dong, Fu-Hui; Zhong, Hong-Gang; Wang, De-Long; Wang, Xuan

    2010-09-01

    To study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife. Sustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software. SP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P DRG in the experiment group were significantly reduced compared with the control group (P DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).

  12. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    Science.gov (United States)

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P CFA group at 25 h and 3rd day post-injection (P CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  13. Comparative study on the 3H-thymidine index of dorsal epidermis, buccal mucosa, and seminal vesicles in senile male rats

    International Nuclear Information System (INIS)

    Hornstein, O.P.; Schell, H.

    1975-01-01

    To supplement previous investigations on endogenous fluctuations of DNA synthesis in male rat dorsal epidermis, buccal mucosa and seminal vesicle epithelium from birth to sexual maturity, the labelling indices (L.I.) of these tissues in senile male rats from the same breed, studied under analogous experimental conditions, were evaluated as well as compared to the data obtained from rats in puberal and early mature age. In the dorsal epidermis and buccal mucosa of the old animals the medium L.I. were found to be at about the same level as those measured after puberty. In the aged seminal vesicle epithelium the medium L.I. was found to be decreased. The maintenance of epidermal and buccal DNA synthesis in senile rats as well as the results of previous studies with male rats subjected to castration or long-term administration of cyproteron acetate furnish evidence that a deficiency of testosteron does not diminish the rate of DNA synthesis in epidermis and buccal mucosa. However, from the decreased L.I. in seminal vesicle epithelium a reduced blood level or stimulating capacity, respectively, of testosteron in senile rats can be concluded. Furhtermore, withdrawal of testosteron by orchidectomy or administration of cyproteron acetate is appropriate to suppress significantly the proliferative activity of seminal vesicles epithelium. (orig.) [de

  14. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Peter J Clark

    Full Text Available Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress. Impaired escape behavior is a result of stress-sensitized serotonin (5-HT neuron activity in the dorsal raphe (DRN and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS and lateral (DLS dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.

  15. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  16. Intracerebroventricular Administration of Amyloid β-protein Oligomers Selectively Increases Dorsal Hippocampal Dialysate Glutamate Levels in the Awake Rat

    Directory of Open Access Journals (Sweden)

    Sean D. O’Shea

    2008-11-01

    Full Text Available Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv injections with brain microdialysis technology in the fully conscious rat to assess the effects of icv administered SDS-stable low-n Aβ oligomers (principally dimers and trimers on excitatory and inhibitory amino acid transmission in the ipsilateral dorsal hippocampus. Microdialysis was employed to assess the effect of icv administration of Aβ monomers and Aβ oligomers on dialysate glutamate, aspartate and GABA levels in the dorsal hippocampus. Administration of Aβ oligomers was associated with a +183% increase (p<0.0001 vs. Aβ monomer-injected control in dorsal hippocampal glutamate levels which was still increasing at the end of the experiment (260 min, whereas aspartate and GABA levels were unaffected throughout. These findings demonstrate that icv administration and microdialysis technology can be successfully combined in the awake rat and suggests that altered dorsal hippocampal glutamate transmission may be a useful target for pharmacological intervention in Alzheimer’s Disease.

  17. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  18. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    Science.gov (United States)

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  19. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    Science.gov (United States)

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  20. Dorsal hippocampus is necessary for visual categorization in rats.

    Science.gov (United States)

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for

  1. Polidocanol injection for chemical delay and its effect on the survival of rat dorsal skin flaps.

    Science.gov (United States)

    Menevşe, Gülsüm Tetik; TeomanTellioglu, Ali; Altuntas, Nurgül; Cömert, Ayhan; Tekdemir, Ibrahim

    2014-06-01

    Surgical delay is an invasive method requiring a two-stage surgical procedure. Hence, methods that may serve as an alternative to surgical delay have become the focus of interest of research studies. From a conceptual view, any technique that interrupts the blood flow along the edges of a proposed flap will render the flap ischemic and induce a delay phenomenon. Polidocanol (Aethoxysklerol(®)-Kreussler) was initially used as a local anesthetic. Nowadays, it has been used as a sclerosing agent to treat telangiectasias and varicose veins. The aim of this experimental study was to investigate the effects of polidocanol injected around the periphery of a random flap as a sclerosing agent on flap delay and survival in a random flap model. A preliminary histopathologic study was performed on two rats to evaluate the sclerosing effect and distribution of polidocanol injection. After the preliminary study, the main study was carried out with three groups: group 1: dorsal flap (n = 10); group 2: dorsal flap + surgical delay (n = 10), group 3: dorsal flap + chemical delay (n = 10). Tissue samples obtained from the flap and injection area revealed destruction of intradermal vessels. The area affected with sclerosis was limited to 0.1 cm beyond the injection site. Mean viable flap areas were 52.1 ± 4.38% (44.0-58.2) in group 1, 64.8 ± 8.92% (57.2-89.2) in group 2, and 71.8 ± 5.18% (64.0-84.0) in group 3. A statistically highly significant difference was found between the surgical delay and chemical delay groups versus the group without delay (p injection around the dorsal flap in the rat is a safe and easy method for nonsurgical delay. The results have shown a flap survival benefit that is superior to controls and equivalent to surgical delay. The clinical application of polidocanol, already in clinical practice for occlusal of telangiectasias, for surgical delay appears feasible. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons

  2. Adrenal medullary hyperplasia. Hyperplasia-pheochromocytoma sequence.

    Science.gov (United States)

    Kurihara, K; Mizuseki, K; Kondo, T; Ohoka, H; Mannami, M; Kawai, K

    1990-09-01

    We present a case of unilateral adrenal medullary hyperplasia in a 63-year-old woman with clinical signs and symptoms of pheochromocytoma unassociated with multiple endocrine neoplasia. The surgically removed adrenal gland revealed diffuse medullary hyperplasia with multiple micronodules measuring up to 2 mm. The micronodules were composed of enlarged chromaffin cells with atypia, histologically similar to those of pheochromocytoma, forming small solid alveolar patterns separated by a fibrovascular stroma. Removal of the hyperplastic adrenal gland resulted in disappearance of paroxysmal nocturnal hypertension and palpitation. These results suggest that diffuse and nodular medullary hyperplasia is the precursor of pheochromocytoma.

  3. Upregulation of the dorsal raphe nucleus-prefrontal cortex serotonin system by chronic treatment with escitalopram in hyposerotonergic Wistar-Kyoto rats

    NARCIS (Netherlands)

    Yamada, Makiko; Kawahara, Yukie; Kaneko, Fumi; Kishikawa, Yuki; Sotogaku, Naoki; Poppinga, Wilfred J.; Folgering, Joost H. A.; Dremencov, Eliyahu; Kawahara, Hiroshi; Nishi, Akinori

    Wistar-Kyoto (WKY) rats are sensitive to chronic stressors and exhibit depression-like behavior. Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons projecting to the prefrontal cortex (PFC) comprise the important neurocircuitry underlying the pathophysiology of depression. To evaluate the DRN-PFC

  4. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  5. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  7. Primary medullary hemorrhage in a patient with coagulopathy due to alcoholic cirrhosis: A case report.

    Science.gov (United States)

    Shen, Guangxun; Gao, Yu; Lee, Kwee-Yum; Nan, Guangxian

    2018-04-01

    Mild-to-moderate alcoholic cirrhosis of the liver is related to spontaneous intracerebral hemorrhage (ICH). In terms of spontaneous brainstem hemorrhage, pontine is considered as the most common site in contrast to medulla oblongata where the hemorrhage is rarely seen. This rare primary medullary hemorrhage has been attributed so far to vascular malformation (VM), anticoagulants, hypertension, hemorrhagic transformation, and other undetermined factors. Herein, we describe a 53-year-old patient with 35-year history of alcohol abuse was admitted for acute-onset isolated hemianesthesia on the right side. He was normotensive on admission. A neurological examination revealed isolated hemihypoaesthesia on the right side. He had no history of hypertension, and viral hepatitis, and nil use of anticoagulants. Brain computed tomography (CT) image demonstrated hemorrhagic lesion in dorsal and medial medulla oblongata which was ruptured into the fourth ventricle. Brain magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA) demonstrated no evidence of VM. The laboratory tests implied liver dysfunction, thrombocytopenia, and coagulation disorders. Abdominal ultrasound, and CT image showed a small, and nodular liver with splenomegaly, suggestive of moderate alcoholic cirrhosis. Liver protection therapy and the management of coagulation disorders. After 14 days, he was discharged with mild hemianesthesia but with more improved parameters in laboratory tests. At the 6-month follow-up, brain MRI, MRA, and non-contrast MRI showed no significant findings except for a malacic lesion. We conclude that the patient had alcoholic cirrhosis with coagulopathy, and this may have resulted in primary medullary hemorrhage. This is a first case to report alcoholic cirrhosis as etiology of primary medullary hemorrhage.

  8. OCTREOTIDE FOR MEDULLARY-THYROID CARCINOMA ASSOCIATED DIARRHEA

    NARCIS (Netherlands)

    SMID, WM; DULLAART, RPF

    Medullary thyroid carcinoma associated diarrhoea can be disabling. A 75-yr-old man with metastatic medullary thyroid carcinoma and refractory diarrhoea is described. Subcutaneous administration of the somatostatin analogue, octreotide, 100-mu-g thrice daily, resulted in a sustained improvement in

  9. MEDULLARY THYROID CARCINOMA

    Directory of Open Access Journals (Sweden)

    V. S. Medvedev

    2013-01-01

    Full Text Available Medullary thyroid carcinoma belongs to orphan diseases affecting a small part of the population. Multicenter trials are required to elaborate a diagnostic algorithm, to define treatment policy, and to predict an outcome.

  10. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats.

    Science.gov (United States)

    Schulman, Ivonne Hernandez; Zhou, Ming-Sheng; Treuer, Adriana V; Chadipiralla, Kiranmai; Hare, Joshua M; Raij, Leopoldo

    2010-01-01

    The susceptibility to fibrosis and progression of renal disease is mitigated by inhibition of the renin-angiotensin system (RAS). We hypothesized that activation of the intrarenal RAS predisposes to renal fibrosis in aging. Intrarenal expression of angiotensin II type 1 (AT(1)R), type 2 (AT(2)R), and (pro)renin receptors, ACE and ACE-2, as well as pro- and antioxidant enzymes were measured in 3-month-old (young), 14-month-old (middle-aged), and 24-month-old (old) male Sprague-Dawley rats. Old rats manifested glomerulosclerosis and severe tubulointerstitial fibrosis with increased fibronectin and TGF-β expression (7-fold). AT(1)R /AT(2)R ratios were increased in middle-aged (cortical 1.6-fold, medullary 5-fold) and old rats (cortical 2-fold, medullary 4-fold). Similarly, (pro)renin receptor expression was increased in middle-aged (cortical 2-fold, medullary 3-fold) and old (cortical 5-fold, medullary 3-fold) rats. Cortical ACE was increased (+35%) in old rats, whereas ACE-2 was decreased (-50%) in middle-aged and old rats. NADPH oxidase activity was increased (2-fold), whereas antioxidant capacity and expression of the mitochondrial enzyme manganese superoxide dismutase (cortical -40%, medullary -53%) and medullary endothelial nitric oxide synthase (-48%) were decreased in old rats. Age-related intrarenal activation of the RAS preceded the development of severe renal fibrosis, suggesting that it contributes to the increased susceptibility to renal injury observed in the elderly. Copyright © 2010 S. Karger AG, Basel.

  11. EXPRESSION OF CALCIUM-BINDING PROTEINS IN THE NEUROTROPHIN-3-DEPENDENT SUBPOPULATION OF RAT EMBRYONIC DORSAL-ROOT GANGLION-CELLS IN CULTURE

    NARCIS (Netherlands)

    COPRAY, JCVM; MANTINGHOTTER, IJ; BROUWER, N

    1994-01-01

    In this study we have examined the calcium-binding protein expression in rat embryonic (E16) dorsal root ganglia (DRG) neurons in vitro in the presence of neurotrophin-3 (NT-3). A comparison was made with the expression of calcium-binding proteins in DRG subpopulations that depended in vitro on

  12. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  13. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    Science.gov (United States)

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  14. Chronic Stress Triggers Expression of Immediate Early Genes and Differentially Affects the Expression of AMPA and NMDA Subunits in Dorsal and Ventral Hippocampus of Rats

    Directory of Open Access Journals (Sweden)

    Anibal Pacheco

    2017-08-01

    Full Text Available Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA and N-methyl-D-aspartate (NMDA receptor subunits in dorsal and ventral hippocampus (VH. Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH. By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.

  15. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    Science.gov (United States)

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  16. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Jun

    2012-07-01

    Full Text Available Abstract Background Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2-chemokine C-C motif receptor 2 (CCR2 signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. Methods The inferior alveolar nerve and mental nerve transection (IAMNT was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP, and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. Results IAMNT induced persistent (>21 days heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 μg significantly attenuated IAMNT-induced heat hyperalgesia. Conclusion The data suggest that CCL2-CCR

  17. Medullary Thyroid Carcinoma Program | Center for Cancer Research

    Science.gov (United States)

    Medullary Thyroid Carcinoma Program Multiple endocrine neoplasia (MEN) types 2A and 2B are rare genetic diseases, which lead to the development of medullary thyroid cancer, usually in childhood. Surgery is the only standard treatment.

  18. The effects of capsaicin and acidity on currents generated by noxious heat in cultured neonatal rat dorsal root ganglion neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Orkand, R. K.; Vyklický st., Ladislav

    2001-01-01

    Roč. 533, č. 3 (2001), s. 717-728 ISSN 0022-3751 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : capsaicin * dorsal root ganglion neurones * neonatal rat Subject RIV: FH - Neurology Impact factor: 4.476, year: 2001

  19. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    Science.gov (United States)

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  20. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    Science.gov (United States)

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (PDRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (Pdorsal root ganglia.

  1. Intraoperative neurophysiology of the conus medullaris and cauda equina.

    Science.gov (United States)

    Kothbauer, Karl F; Deletis, Vedran

    2010-02-01

    Intraoperative neurophysiological techniques are becoming routine tools for neurosurgical practice. Procedures affecting the lumbosacral nervous system are frequent in adult and pediatric neurosurgery. This review provides an overview of the techniques utilized in cauda and conus operations. Two basic methodologies of intraoperative neurophysiological testing are utilized during surgery in the lumbosacral spinal canal. Mapping techniques help identify functional neural structures, namely, nerve roots and their respective spinal levels. Monitoring is referred to as the technology to continuously assess the functional integrity of pathways and reflex circuits. For mapping direct electrical stimulation of a structure within the surgical field and recording at a distant site, usually a muscle is the most commonly used setup. Sensory nerve roots or spinal cord areas can be mapped by stimulation of a distant sensory nerve or skin area and recording from a structure within the surgical field. Continuous monitoring of the motor system is done with motor evoked potentials. These are evoked by transcranial electrical stimulation and recorded from lower extremity and sphincter muscles. Presence or absence of muscle responses are the monitored parameters. To monitor the sensory pathways, sensory potentials evoked by tibial, peroneal, or pudendal nerve stimulation and recorded from the dorsal columns with a spinal electrode or as cortical responses from scalp electrodes are used. Amplitudes and latencies of these responses are measured for interpretation. The bulbocavernosus reflex, with stimulation of the pudendal nerve and recording from the external anal sphincter, is used for continuous monitoring of the reflex circuitry. The presence of absence of this response is the pertinent parameter monitored. Stimulation of individual dorsal nerve roots is used to identify those segments that generate spastic activity and which may be cut during selective dorsal rhizotomy

  2. [Expressions of neuropathic pain-related proteins in the spinal cord dorsal horn in rats with bilateral chronic constriction injury].

    Science.gov (United States)

    Shen, Le; Li, Xu; Wang, Hai-tang; Yu, Xue-rong; Huang, Yu-guang

    2013-12-01

    To evaluate the pain-related behavioral changes in rats with bilateral chronic constriction injury(bCCI)and identify the expressions of neuropathic pain-related proteins. The bCCI models were established by ligating the sciatic nerves in female Sprague Dawley rats. Both mechanical hyperalgesia and cold hyperalgesia were evaluated through electronic von Frey and acetone method. Liquid chromatography-mass spectrometry/mass spectrometry was applied to characterize the differentially expressed proteins. Both mechanical withdrawal threshold and cold hyperalgesia threshold decreased significantly on the postoperative day 7 and 14, when compared with na ve or sham rats(P <0.05). Twenty five differentially expressed proteins associated with bilateral CCI were discovered, with eighteen of them were upregulated and seven of them downregulated. The bCCT rats have remarkably decreased mechanical and cold hyperalgesia thresholds. Twenty five neuropathic pain-related proteins are found in the spinal cord dorsal horn.

  3. Caffeine in the milk prevents respiratory disorders caused by in utero caffeine exposure in rats.

    Science.gov (United States)

    Bodineau, Laurence; Saadani-Makki, Fadoua; Jullien, Hugues; Frugière, Alain

    2006-01-25

    Consequences of postnatal caffeine exposure by the milk on ponto-medullary respiratory disturbances observed following an in utero caffeine exposure were analysed. Ponto-medullary-spinal cord preparations from newborn rats exposed to caffeine during gestation but not after the birth display an increase in respiratory frequency and an exaggeration of the hypoxic respiratory depression compared to not treated preparations. These data suggest that tachypneic and apneic episodes encountered in human newborns whose mother consumed caffeine during pregnancy are due in large part to central effect of caffeine at the ponto-medullary level. Both baseline respiratory frequency increase and emphasis of hypoxic respiratory depression are not encountered if rat dams consumed caffeine during nursing. Our hypothesis is that newborn rats exposed to caffeine during gestation but not after the birth would be in withdrawal situation whereas, when caffeine is present in drinking fluid of lactating dams, it goes down the milk and is able to prevent ponto-medullary respiratory disturbances.

  4. The unique organization of filamentous actin in the medullary canal of the medulla oblongata.

    Science.gov (United States)

    Tan, Bai-Hong; Guo, Chun-Yan; Xiong, Tian-Qing; Chen, Ling-Meng; Li, Yan-Chao

    2017-04-01

    In the central canal, F-actin is predominantly localized in the apical region, forming a ring-like structure around the circumference of the lumen. However, an exception is found in the medulla oblongata, where the apical F-actin becomes interrupted in the ventral aspect of the canal. To clarify the precise localization of F-actin, the fluorescence signals for F-actin were converted to the peroxidase/DAB reaction products in this study by a phalloidin-based ultrastructural technique, which demonstrated that F-actin is located mainly in the microvilli and terminal webs in the ependymocytes. It is because the ventrally oriented ependymocytes do not possess well-developed microvilli or terminal web that led to a discontinuous labeling of F-actin in the medullary canal. Since spinal motions can change the shape and size of the central canal, we next examined the cytoskeletons in the medullary canal in both rats and monkeys, because these two kinds of animals show different kinematics at the atlanto-occipital articulation. Our results first demonstrated that the apical F-actin in the medullary canal is differently organized in the animals with different head-neck kinemics, which suggests that the mechanic stretching of spinal motions is capable of inducing F-actin reorganization and the subsequent cell-shape changes in the central canal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  6. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    Science.gov (United States)

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    Science.gov (United States)

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were

  8. Disinhibition by propranolol and chlordiazepoxide of nonrewarded lever-pressing in the rat is unaffected by dorsal noradrenergic bundle lesion.

    Science.gov (United States)

    Salmon, P; Tsaltas, E; Gray, J A

    1989-03-01

    Ten male Sprague-Dawley rats received 6-hydroxydopamine-induced lesions of the dorsal noradrenergic bundle and 10 others underwent control operations. The lesion depleted levels of noradrenaline in the hippocampus to 2% of those in the controls. All rats were then trained for 16 sessions to lever-press in a Skinner box on a variable interval 18 sec schedule of food-reinforcement, then for 42 days on a successive discrimination between periods of variable interval (VI 18 sec) food-reinforcement and periods of extinction. This report describes the effects of chlordiazepoxide (CDP; 5 mg/kg) and propranolol (5 and 10 mg/kg) injected intraperitoneally in both groups on modified ABBA designs after this training. Both drugs increased the response rates in extinction periods. The effect of propranolol was similar at each dose and smaller than that of CDP. Although CDP and propranolol (5 mg/kg) increased variable interval response rates also, this could not account for the effect on extinction response rates. Responding did not differ between the lesioned and control animals and the effects of drugs were similar in each group. It is unlikely that CDP or propranolol release nonrewarded responding by disrupting transmission in the dorsal noradrenergic bundle.

  9. Re-thinking the role of the dorsal striatum in egocentric/response strategy.

    Science.gov (United States)

    Botreau, Fanny; Gisquet-Verrier, Pascale

    2010-01-01

    Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS) in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water-maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  10. Spinal cord stimulation of dorsal columns in a rat model of neuropathic pain: evidence for a segmental spinal mechanism of pain relief.

    Science.gov (United States)

    Smits, H; van Kleef, M; Joosten, E A

    2012-01-01

    Although spinal cord stimulation (SCS) of the dorsal columns is an established method for treating chronic neuropathic pain, patients still suffer from a substantial level of pain. From a clinical perspective it is known that the location of the SCS is of pivotal importance, thereby suggesting a segmental spinal mode of action. However, experimental studies suggest that SCS acts also through the modulation of supraspinal mechanisms, which might suggest that the location is unimportant. Here we investigated the effect of the rostrocaudal location of SCS stimulation and the effectiveness of pain relief in a rat model of chronic neuropathic pain. Adult male rats (n=45) were submitted to a partial ligation of the sciatic nerve. The majority of animals developed tactile hypersensitivity in the nerve lesioned paw. All allodynic rats were submitted to SCS (n=33) for 30 minutes (f=50 Hz; pulse width 0.2 ms). In one group (n=16) the electrodes were located at the level where the injured sciatic nerve afferents enter the spinal cord (T13), and in a second group (n=17) the electrodes were positioned at more rostral levels (T11) as verified by X-ray. A repositioning experiment of electrodes from T12 to T13 was performed in 2 animals. Our data demonstrate that SCS of the dorsal columns at the level where the injured fibers enter the spinal cord dorsal horn result in a much better pain-relieving effect than SCS at more rostral levels. From this we conclude that SCS in treatment of neuropathic pain acts through a segmental spinal site of action. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Effect of dorsal hippocampal lesion compared to dorsal hippocampal blockade by atropine on reference memory in vision deprived rats.

    Science.gov (United States)

    Dhume, R A; Noronha, A; Nagwekar, M D; Mascarenhas, J F

    1989-10-01

    In order to study the primacy of the hippocampus in place learning function 24 male adult albino rats were hippocampally-lesioned in dorsal hippocampus involving fornical damage (group I); sham operated for comparison with group I (group II); cannulated for instillation of atropine sulphate in the same loci as group I (group III); and cannulated for instillation of saline which served as control for group III (group IV). All the animals were enucleated and their reference memory (long-term memory) was tested, using open 4-arm radial maze. There was loss of reference memory in groups I and III. However, hippocampally-lesioned animals, showed recovery of reference memory deficit within a short period of 10 days or so. Whereas atropinized animals showed persistent reference memory deficit as long as the instillation effect continued. The mechanism involved in the recovery of reference memory in hippocampally-lesioned animals and persistent deficit of reference memory in atropinized animals has been postulated to explain the primacy of hippocampus in the place learning function under normal conditions.

  12. Recovery of Dysphagia in Lateral Medullary Stroke

    Directory of Open Access Journals (Sweden)

    Hitesh Gupta

    2014-01-01

    Full Text Available Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function.

  13. Recovery of Dysphagia in lateral medullary stroke.

    Science.gov (United States)

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function.

  14. Recovery of Dysphagia in Lateral Medullary Stroke

    Science.gov (United States)

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function. PMID:25045555

  15. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  16. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress.

    Science.gov (United States)

    Zhang, Yu-Yu; Cao, Guo-Hong; Zhu, Wen-Xing; Cui, Xi-Yun; Ai, Hong-Bin

    2009-06-30

    Restraint water-immersion stress (RWIS) of rats induces vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the dorsal vagal complex (DVC) and the nucleus ambiguous (NA) in rats. Male Wistar rats were exposed to RWIS for 0, 30, 60, 120, or 180 min. Then, a c-Fos immunoperoxidase technique was utilized to assess neuronal activation. Resumptively, c-Fos expression in DVC and NA peaked at 60 min of stress, subsequently decreased gradually with increasing durations of RWIS. Interestingly, the most intense c-Fos expression was observed in the dorsal motor nucleus of the vagus (DMV) during the stress, followed by NA, nucleus of solitary tract (NTS) and area postrema (AP). The peak of c-Fos expression in caudal DMV appeared at 120 min of the stress, slower than that in rostral and intermediate DMV. The c-Fos expression in intermediate and caudal NTS was significantly more intense than that in rostral NTS. These results indicate that the neuronal hyperactivity of DMV, NA, NTS and AP, the primary center that control gastric functions, especially DMV and NA, may play an important role in the disorders of gastric motility and secretion induced by RWIS.

  17. Histology study on the dorsal root ganglia of rats with 125I seed brachytherapy at intervertebral foramen

    International Nuclear Information System (INIS)

    Zhang Wenyi; Wang Huixing; Ding Yanqiu; Qu Ximei; Wang Liqin; Liu Zhongchao; Cui Songye; Jiao Ling

    2012-01-01

    Objective: To investigate the effect of the histological changes on rat dorsal root ganglia (DRG) after 125 I seed brachytherapy.Methods Twelve adult male Sprague-Dawley rats (150-180 g each) were randomly divided into 6 groups, 125 I seeds with different activities of 0 (Titanium shell), 14.8, 18.5, 22.2, 25.9 and 29.6 MBq were implanted to 6 groups of rats respectively and the behavioral changes of rats were observed. The rats were killed in different periods after implantation,the morphological changes in DRG and surrounding muscle tissue were observed with an Olympus BX51 optical microscope and then the irradiation doses were estimated. Results: After 125 I seed implantation, the movement function of rats was not affected and the weight of rats gained after 7 days. After the titanium shell implantation, very few mild swelling was induced in neuroganglion cells that still had clear nucleolus and normal cytoplasm. At 14 days after 18.5 MBq seed implantation, cell swelling was more serious and cell dehydrating, nuclear condensation and nuclear fragmentation appeared after 30 days. At 60 days after 29.6 MBq of seed implantation, nuclear dissolution and cytoplasmic shrinkage were induced in a large number of cells.In general, the severity of fibrosis was aggravated with the time post-irradiation and the dose in the muscles around the ganglion. Conclusions: After 125 I seed implantation,the injury degree of DRG tissue is dose-dependent, and the 125 I seed irradiation would have analgesic effect on releasing intractable pain. (authors)

  18. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    Science.gov (United States)

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  19. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    Science.gov (United States)

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. © 2015 International Society for Neurochemistry.

  20. Neutron radiography of osteopetrotic rat

    International Nuclear Information System (INIS)

    Graf, B.; Renard, G.; Le Gall, J.; Laporte, A.

    1983-01-01

    The osteopetrotic disease is characterized by bone and cartilage tissue coexistence in the medullary space of long bones. The authors have studied ''congenital osteopetrosis'' of ''op'' rats. Comparing radiography, neutrography and histology, the evolution of the ''osteopetrotic disease'' and the healing of the ill rats by a single injection of bone marrow from normal animals is shown. (Auth.)

  1. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  2. Quantification of deep medullary veins at 7 T brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kuijf, Hugo J.; Viergever, Max A.; Vincken, Koen L. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Bouvy, Willem H.; Razoux Schultz, Tom B.; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-10-15

    Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Five participants were scanned twice, to assess the robustness and reproducibility of manual and automated vein detection. Additionally, the method was evaluated on 24 participants to demonstrate its application. Deep medullary veins were assessed within an automatically created region-of-interest around the lateral ventricles, defined such that all veins must intersect it. A combination of vesselness, tubular tracking, and hysteresis thresholding located individual veins, which were quantified by counting and computing (3-D) density maps. Visual assessment was time-consuming (2 h/scan), with an intra-/inter-observer agreement on absolute vein count of ICC = 0.76 and 0.60, respectively. The automated vein detection showed excellent inter-scan reproducibility before (ICC = 0.79) and after (ICC = 0.88) visually censoring false positives. It had a positive predictive value of 71.6 %. Imaging at 7 T allows visualization and quantification of deep medullary veins. The presented method offers fast and reliable automated assessment of deep medullary veins. (orig.)

  3. Comparison of mammographic and sonographic findings in typical and atypical medullary carcinomas of the breast

    International Nuclear Information System (INIS)

    Yilmaz, E.; Lebe, B.; Balci, P.; Sal, S.; Canda, T.

    2002-01-01

    AIM: The aim of this study was to describe the contribution of mammographic and sonographic findings to the discrimination of typical and atypical histopathologic groups of medullary carcinomas of the breast. MATERIALS AND METHODS: Imaging findings were retrospectively assessed in 33 women with medullary carcinomas (15 typical medullary carcinomas and 18 atypical medullary carcinomas) identified during pre-operative mammography. Twenty-nine of these women also had ultrasound and these findings were reviewed. RESULTS: Mammography showed a well circumscribed mass in 10 of the 15 (67%) typical medullary carcinomas and in four of the 17 (24%) atypical medullary carcinomas (P < 0.02). One small tumour in a woman with atypical medullary carcinoma was missed on mammography and was shown only on sonography. Sonographically, an irregular margin surrounding the whole mass or part of it was seen in three out of 14 (21%) patients with typical medullary carcinoma and in nine out of 15 (60%) patients with atypical medullary carcinomas (P < 0.05). Posterior acoustic shadowing was more often observed in the typical medullary carcinoma group than in atypical medullary carcinoma and the difference was found to be statistically significant (P < 0.05). None of the other mammographic and sonographic findings were sufficiently characteristic to allow for a differentiation between two groups. CONCLUSION: When typical medullary carcinomas were compared with atypical medullary carcinomas according to imaging features, they tended to be well circumscribed masses on both mammography and sonography, and a posterior acoustic shadow was not found on sonography. However, the imaging findings in these two subgroups often resembled each other and histopathology will always be required to confirm the diagnosis. Yilmaz, E. et al. (2002)

  4. Comparison of mammographic and sonographic findings in typical and atypical medullary carcinomas of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, E.; Lebe, B.; Balci, P.; Sal, S.; Canda, T

    2002-07-01

    AIM: The aim of this study was to describe the contribution of mammographic and sonographic findings to the discrimination of typical and atypical histopathologic groups of medullary carcinomas of the breast. MATERIALS AND METHODS: Imaging findings were retrospectively assessed in 33 women with medullary carcinomas (15 typical medullary carcinomas and 18 atypical medullary carcinomas) identified during pre-operative mammography. Twenty-nine of these women also had ultrasound and these findings were reviewed. RESULTS: Mammography showed a well circumscribed mass in 10 of the 15 (67%) typical medullary carcinomas and in four of the 17 (24%) atypical medullary carcinomas (P < 0.02). One small tumour in a woman with atypical medullary carcinoma was missed on mammography and was shown only on sonography. Sonographically, an irregular margin surrounding the whole mass or part of it was seen in three out of 14 (21%) patients with typical medullary carcinoma and in nine out of 15 (60%) patients with atypical medullary carcinomas (P < 0.05). Posterior acoustic shadowing was more often observed in the typical medullary carcinoma group than in atypical medullary carcinoma and the difference was found to be statistically significant (P < 0.05). None of the other mammographic and sonographic findings were sufficiently characteristic to allow for a differentiation between two groups. CONCLUSION: When typical medullary carcinomas were compared with atypical medullary carcinomas according to imaging features, they tended to be well circumscribed masses on both mammography and sonography, and a posterior acoustic shadow was not found on sonography. However, the imaging findings in these two subgroups often resembled each other and histopathology will always be required to confirm the diagnosis. Yilmaz, E. et al. (2002)

  5. Clinical study of 12 cases of medullary carcinoma of the breast

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Sasaki, Kenichi; Yamamoto, Masaaki; Higaki, Nagato; Nakamura, Yukio

    2006-01-01

    Medullary carcinoma of the breast is a rare type breast cancer, and shows peculiar clinical features. In a series of 460 cases of breast cancer operated on at the hospital from 1975 to 2004, twelve (2.6%) cases were diagnosed as medullary carcinoma of the breast by postoperative pathological study. When the specimens from the twelve tumors were reevaluated according to the Ridolfi's subtype classification, six tumors were classified into typical medullary carcinoma (TMC) and the remaining six tumors into atypical medullary carcinoma (AMC). On mammography these tumors were visualized as homogeneously enhancing oval masses without calcification and the boundary was comparatively well-defined. US demonstrated well-defied masses with a heterogeneous, hypoechoic texture and with reinforcement of posterior echoes. The rate of lymph node metastasis was 33.3% in medullary carcinomas which was not significantly different from that of infiltrative ductal carcinomas experienced during the same period. The rate of a positivity of a hormone receptor was 8.3% in medullary carcinomas which was low in predominance in comparison with that of infiltrative ductal carcinomas. The positive rate for a HER2/neu (above2+) by the IHC method was 58%. An average observation period is 11 years, and all patients are alive. (author)

  6. PPARa and PPAR¿ coactivation rapidly induces Egr-1 in the nuclei of the dorsal and ventral urinary bladder and kidney pelvis urothelium of rats

    DEFF Research Database (Denmark)

    Egerod, Frederikke Lihme; Svendsen, Jette Eldrup; Hinley, Jennifer

    2009-01-01

    in the dorsal and ventral bladder urothelium, arguing against involvement of urinary solids. Egr-1 induction sometimes occurred in a localized fashion, indicating physiological microheterogeneity in the urothelium. The rapid kinetics supported that Egr-1 induction occurred as a result of pharmacological...... activation of PPAR alpha and PPAR gamma, which are coexpressed at high levels in the rat urothelium. Finally, our demonstration of a nuclear localization supports that the Egr-1 induced by PPAR alpha and PPAR gamma coactivation in the rat urothelium may be biologically active....

  7. Introduction to European comments on "Medullary Thyroid Cancer

    DEFF Research Database (Denmark)

    Jarzab, Barbara; Feldt-Rasmussen, Ulla

    2013-01-01

    Guest Editors of Thyroid Research supplement devoted to medullary thyroid cancer present the history on how the discussion about "Medullary Thyroid Cancer: management guidelines of the American Thyroid Association" was initiated and subsequently widely commented before and during European Thyroid...... Association - Cancer Research Network Meeting in Lisbon. It is explained why it has been decided to publish the manuscripts within the supplement - to document voices from the discussion and popularize them....

  8. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  9. Lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy.

    Science.gov (United States)

    Li, Xiaodi; Wang, Yuzhou

    2014-04-01

    Here, we present a rare case of a lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy. In this case, we proved Opalski's hypothesis by diffusion tensor tractography that ipsilateral hemiparesis in a medullary infarction is due to the involvement of the decussated corticospinal tract. We found that the clinical triad of ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy, which had been regarded as a variant of medial medullary syndrome, turned out to be caused by lateral lower medullary infarction. Therefore, this clinical triad does not imply the involvement of the anteromedial part of medulla oblongata, when it is hard to distinguish a massive lateral medullary infarction from a hemimedullary infarction merely from MR images. At last, we suggest that hyperreflexia and Babinski's sign may not be indispensable to the diagnosis of Opalski's syndrome and we propose that "hemimedullary infarction with ipsilateral hemiparesis" is intrinsically a variant of lateral medullary infarction.

  10. Medullary carcinoma of the thyroid - an unusual case of hyalinizing ...

    African Journals Online (AJOL)

    Medullary thyroid carcinoma is a neoplasm occurring in sporadic and familial patterns. A rare variant of medullary thyroid carcinoma shows microscopic features similar to hyalinizing trabecular adenoma of thyroid. Detection of this variant requires a high index of suspicion and immunohistochemical confirmation by ...

  11. Medullary breast carcinoma: anatomo-radiological correlation

    International Nuclear Information System (INIS)

    Matheus, Valeria Soares; Canella, Ellyete de Oliveira; Djahjah, Maria Celia Resende; Koch, Hilton Augusto; Kestelman, Fabiola Procaci

    2008-01-01

    To evaluate radiological findings in patients submitted to surgical treatment for medullary breast cancer at Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ, Brazil, correlating them with histological results. A retrospective descriptive study was developed with patients submitted to surgery at INCa, in the period from January 1997 to December 2006, for identifying the presence of medullary breast carcinoma and analyzing radiological findings. Among 21,287 patients diagnosed with carcinoma, 76 (0.357%) had typical medullary breast carcinoma. The age range of these patients was 32-81 years (mean = 59.1 years). Mammography demonstrated lesions in 19 of these patients, 17 (89.5%) of them with masses, and 2 with focal asymmetry. Among the patients with masses, 15 (88.1%) presented with high density and 2 (11.9%) with isodensity. Twelve patients presented sonographic findings, 11 (91.6%) of them with hypoechoic masses, and one with an anechoic mass with areas of cystic degeneration. Nodular mass was the predominant radiological finding (89.5%), 88.1% of them corresponding to masses with high density and circumscribed margins. Despite the radiological characteristics of benignity, a solid, fast growing, highly dense mass with circumscribed margins should be further investigated to confirm the diagnosis. (author)

  12. Medullary breast carcinoma: anatomo-radiological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Matheus, Valeria Soares; Canella, Ellyete de Oliveira; Djahjah, Maria Celia Resende; Koch, Hilton Augusto [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Kestelman, Fabiola Procaci [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil)]. E-mail: msavaleria@yahoo.com

    2008-11-15

    To evaluate radiological findings in patients submitted to surgical treatment for medullary breast cancer at Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ, Brazil, correlating them with histological results. A retrospective descriptive study was developed with patients submitted to surgery at INCa, in the period from January 1997 to December 2006, for identifying the presence of medullary breast carcinoma and analyzing radiological findings. Among 21,287 patients diagnosed with carcinoma, 76 (0.357%) had typical medullary breast carcinoma. The age range of these patients was 32-81 years (mean = 59.1 years). Mammography demonstrated lesions in 19 of these patients, 17 (89.5%) of them with masses, and 2 with focal asymmetry. Among the patients with masses, 15 (88.1%) presented with high density and 2 (11.9%) with isodensity. Twelve patients presented sonographic findings, 11 (91.6%) of them with hypoechoic masses, and one with an anechoic mass with areas of cystic degeneration. Nodular mass was the predominant radiological finding (89.5%), 88.1% of them corresponding to masses with high density and circumscribed margins. Despite the radiological characteristics of benignity, a solid, fast growing, highly dense mass with circumscribed margins should be further investigated to confirm the diagnosis. (author)

  13. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  14. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  15. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus

    OpenAIRE

    Valdizán, Elsa M.; Castro, Elena; Pazos, Ángel

    2009-01-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal r...

  16. The role of the anterodorsal thalami nuclei in the regulation of adrenal medullary function, beta-adrenergic cardiac receptors and anxiety responses in maternally deprived rats under stressful conditions.

    Science.gov (United States)

    Suárez, M M; Rivarola, M A; Molina, S M; Levin, G M; Enders, J; Paglini, P

    2004-09-01

    Maternal separation can interfere with growth and development of the brain and represents a significant risk factor for adult psychopathology. In rodents, prolonged separation from the mother affects the behavioral and endocrine responses to stress for the lifetime of the animal. Limbic structures such as the anterodorsal thalamic nuclei (ADTN) play an important role in the control of neuroendocrine and sympathetic-adrenal function. In view of these findings we hypothesized that the function of the ADTN may be affected in an animal model of maternal deprivation. To test this hypothesis female rats were isolated 4.5 h daily, during the first 3 weeks of life and tested as adults. We evaluated plasma epinephrine (E) and norepinephrine (NE), cardiac adrenoreceptors and anxiety responses after maternal deprivation and variable chronic stress (VCS) in ADTN-lesioned rats. Thirty days after ADTN lesion, in non-maternally deprived rats basal plasma NE concentration was greater and cardiac beta-adrenoreceptor density was lower than that in the sham-lesioned group. Maternal deprivation induced a significant increase in basal plasma NE concentration, which was greater in lesioned rats, and cardiac beta-adrenoreceptor density was decreased in lesioned rats. After VCS plasma catecholamine concentration was much greater in non-maternally deprived rats than in maternally-deprived rats; cardiac beta-adrenoreceptor density was decreased by VCS in both maternally-deprived and non-deprived rats, but more so in non-deprived rats, and further decreased by the ADTN lesion. In the plus maze test, the number of open arm entries was greater in the maternally deprived and in the stressed rats. Thus, sympathetic-adrenal medullary activation produced by VCS was much greater in non-deprived rats, and was linked to a down regulation of myocardial beta-adrenoceptors. The ADTN are not responsible for the reduced catecholamine responses to stress in maternally-deprived rats. Maternal deprivation or

  17. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  18. MR imaging of medullary streaks in osteosclerosis: a case report

    International Nuclear Information System (INIS)

    Lee, Hak Soo; Joo, Kyung Bin; Park, Tae Soo; Song, Ho Taek; Kim, Yong Soo; Park, Dong Woo; Park, Choong Ki

    2000-01-01

    We present a case of medullary sclerosis of the appendicular skeleton in a patient with chronic renal insufficiency for whom MR imaging findings were characteristic. T1- and T2-weighted MR images showed multiple vertical lines (medullary streaks) of low signal intensity in the metaphyses and diaphyses of the distal femur and proximal tibia

  19. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    Directory of Open Access Journals (Sweden)

    Sara ePalm

    2014-07-01

    Full Text Available Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.

  20. Changes of medullary hemopoiesis produced by chronic exposure to tritium oxide and external γ-radiation

    International Nuclear Information System (INIS)

    Murzina, L.D.; Muksinova, K.N.

    1982-01-01

    A comparative study of a chronic effect of tritium oxide ( 3 HOH) and external γ-radiation by 137 Cs on medullary hemopoiesis was conducted in experiments on Wistar rats. 3 HOH was administered for 3mos., 37x10 4 Bk per lg per of body mass daily (the absorbed dose 10.8 Gy), external irradiation was given in correlated values of dose rates and integral doses. Bone marrow depopulation was 1.9 times as deeper in rats exposed to 3 HOH as compared to that in irradiated rats. This difference is caused by early and stable inhibition of erythropoiesis with the administration of the radionuclide. The integral index showing the injuring effect of tritium on erythropoiesis was 4 times as high as compared to that of external γ-irradiation by 137 Cs. The time course of value of the proliferative pool of bone marrow granulocytes with the exposure to 2 types of radiation was monotypic. Differences in maturing and functioning granulocytic pools were marked in early time of the experiment

  1. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    Science.gov (United States)

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Medullary cystic disease of the kidney: report of a case diagnosed by ultrasonography and computed tomography examinations

    International Nuclear Information System (INIS)

    Carvalho, Tarcisio Nunes; Araujo Junior, Cyrillo Rodrigues de; Fraguas Filho, Sergio Roberto; Costa, Marlos Augusto Bittencourt; Teixeira, Kim-Ir-Sen Santos; Ribeiro, Flavia Aparecida de Souza

    2003-01-01

    The terms medullary cystic disease, juvenile nephronophthisis or medullary cystic disease complex refer to a group of similar diseases in which the basic pathological abnormality is progressive renal tubular atrophy with secondary glomerular sclerosis and medullary cystic formation. Medullary cystic disease is an important cause of renal failure in adolescent patients. Imaging methods play a primary role in the diagnosis of these diseases. Cysts are characteristically seen in the renal medulla and cortico medullary junction whereas kidneys may be of normal to small size. In this article we present the ultrasonography and computed tomography findings of a female adolescent patient with characteristic clinical picture of medullary cystic disease. (author)

  3. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    Science.gov (United States)

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  4. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats.

    Science.gov (United States)

    Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna

    2018-06-01

    The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure

  5. The subacute damage of the dorsal root ganglion induced by collagenase in rats: a study on the ultrastructure of neurons

    International Nuclear Information System (INIS)

    Li Heping; Zhuang Wenquan; Yang Jianyong; Chen Wei

    2005-01-01

    Objective: To study the effects of collagenase on the ultrastructure of dorsal root ganglion (DRG) in rats. The safety of collagenase on nerve tissue was investigated. Additionally, the safety of percutaneous collagenase chemonucleolysis (PCCN) on nerve tissue was evaluated. Methods: In total 27 male, healthy SD rats were enrolled. All rats were randomized into 3 groups: normal group (9 rats), subacute damage of collagenase group (9 rats), subacute intervention-analogue group (9 rats). The left L5 DRG was exposed in each rat. One milliliter of the collagenase solution (300 units) was carefully applied to the exposed DRG in collagenase group, and one milliliter of the isotonic saline was applied to the exposed DRG in intervention-analogue group. The morphology of the DRG under electron microscope were analyzed 7-9 days after the procedures. Results: The types, number, and morphology of cells; the membrane of neutrons; the nerve fibers and blood vessels in DRG had not been changed in all groups observed under optic microscope. The difference of the ultrastructure of neutrons in DRG among the normal groups, intervention-analogue group and collagenase group was significant: 1) The eccentric nucleolus were revealed; 2) Swelling mitochondria and absence of mitochondria crests and vesicles. Cytoclasis and apoptosis of neutrons had not been observed under electron microscope. Conclusion: The collagenase used in PCCN dose have a certain damage to the neutreons in DRG. In the procedure of PCCN, the volume and dosage of collagenase should be carefully selected and the intervention should be precisely performed by experienced hands. (authors)

  6. Recurrent intramedullary epidermoid cyst of conus medullaris.

    LENUS (Irish Health Repository)

    Fleming, Christina

    2011-01-01

    Spinal intramedullary epidermoid cyst is a rare condition. Recurrent epidermoid cyst in the spine cord is known to occur. The authors describe a case of recurrent conus medullaris epidermoid cyst in a 24-year-old female. She initially presented at 7 years of age with bladder disturbance in the form of diurnal enuresis and recurrent urinary tract infection. MRI lumbar spine revealed a 4 cm conus medullaris epidermoid cyst. Since the initial presentation, the cyst had recurred seven times in the same location and she underwent surgical intervention in the form of exploration and debulking. This benign condition, owing to its anatomical location, has posed a surgical and overall management challenge. This occurrence is better managed in a tertiary-care centre requiring multi-disciplinary treatment approach.

  7. Influence of Bisphosphonate Treatment on Medullary Macrophages and Osteoclasts: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Natalia Daniela Escudero

    2012-01-01

    Full Text Available Nitrogen-containing bisphosphonates are widely used for treating diverse bone pathologies. They are anticatabolic drugs that act on osteoclasts inhibiting bone resorption. It remains unknown whether the mechanism of action is by decreasing osteoclast number, impairing osteoclast function, or whether they continue to effectively inhibit bone resorption despite the increase in osteoclast number. There is increasing evidence that bisphosphonates also act on bone marrow cells like macrophages and monocytes. The present work sought to evaluate the dynamics of preosteoclast fusion and possible changes in medullary macrophage number in bisphosphonate-treated animals. Healthy female Wistar rats received olpadronate, alendronate, or vehicle during 5 weeks, and 5-bromo-2-deoxyuridine (BrdU on day 7, 28, or 34 of the experiment. Histomorphometric studies were performed to study femurs and evaluate: number of nuclei per osteoclast (N.Nu/Oc; number of BrdU-positive nuclei (N.Nu BrdU+/Oc; percentage of BrdU-positive nuclei per osteoclast (%Nu.BrdU+/Oc; medullary macrophage number (mac/mm2 and correlation between N.Nu/Oc and mac/mm2. Results showed bisphosphonate-treated animals exhibited increased N.Nu/Oc, caused by an increase in preosteoclast fusion rate and evidenced by higher N.Nu BrdU+/Oc, and significantly decreased mac/mm2. Considering the common origin of osteoclasts and macrophages, the increased demand for precursors of the osteoclast lineage may occur at the expense of macrophage lineage precursors.

  8. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.

    1987-01-01

    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  9. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  10. [Effects of intrathecal administration of AM22-52 on mechanical allodynia and CCL2 expression in DRG in bone cancer rats].

    Science.gov (United States)

    Chen, Ya-Juan; Huo, Yuan-Hui; Hong, Yanguo

    2017-02-25

    The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia medullary cavity of Sprague Dawley rats. The selective AM receptor antagonist AM 22-52 was administered intrathecally on 15 d after the inoculation. Quantitative real-time PCR was used to detect mRNA level of CC chemokine ligand 2 (CCL2) in dorsal root ganglion (DRG). Double immunofluorescence staining was used to analyze the localizations of CCL2 and AM in DRG of normal rats. The results showed that, from 6 to15 d after the inoculation, the animals showed significant reduction in the mechanical pain threshold in the ipsilateral hindpaw, companied by the decline in bone density of tibia bone. The expression of CCL2 mRNA in DRG of BCP rats was increased by 3 folds (P DRG neurons. These results suggest that AM may play a role in the pathogenesis of BCP. The increased AM bioactivity up-regulates CCL2 expression in DRG, which may contribute to the induction of pain hypersensitivity in bone cancer.

  11. Characteristics of intraoperative abnormal hemodynamics during resection of an intra-fourth ventricular tumor located on the dorsal medulla oblongata.

    Science.gov (United States)

    Ideguchi, Makoto; Kajiwara, Koji; Yoshikawa, Koichi; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Suzuki, Michiyasu

    2013-01-01

    Abnormal hemodynamics during extirpation of a para-medulla oblongata (MO) tumor is common and may be associated with direct vagal stimulation of the medullary circuit. However, resection of tumors on the dorsal MO may also induce hemodynamic instability without direct vagal stimulus. The objective of this study was to examine the characteristics of hemodynamic instability unrelated to vagal stimulus during dissection of an intra-fourth ventricular tumor with attachment to the dorsal MO. A retrospective analysis was performed in 13 patients. Abnormal hemodynamics were defined as a > 20% change from the means of the intraoperative mean arterial pressure (MAP) and heart rate (HR). Relationships of intraoperative hemodynamics were evaluated with various parameters, including the volume of the MO. Six patients (46.2%) had intraoperative hypertension during separation of the tumor bulk from the dorsal MO. The maximum MAP and HR in these patients were significantly greater than those in patients with normal hemodynamics (116.0 ± 18.0 mmHg versus 85.6 ± 6.5 mmHg; 124.3 ± 22.8 bpm versus 90.5 ± 14.7 bpm). All six cases with abnormal hemodynamics showed hemodynamic fluctuation during separation of the tumor bulk from the dorsal MO. The preoperative volume of the MO in these patients was 1.11 cc less than that in patients with normal hemodynamics, but the volume after tumor resection was similar in the two groups (5.23 cc and 5.12 cc). This suggests that the MO was compressed by the conglutinate tumor bulk, with resultant fluctuation of hemodynamics. Recognition of and preparation for this phenomenon are important for surgery on a tumor located on the dorsal MO.

  12. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  13. Intramedullary tuberculoma: A case report

    International Nuclear Information System (INIS)

    Maamar, M.; El Quessar, A.; El Fatemi, N.; El Hassani, My R.; Chakir, N.; Jiddane, M.

    2007-01-01

    Study design: We report a case of intra-medullary tuberculoma in a 22 year-old man with progressive paraparesis and sphincter dysfunction. Objectives: To present a case of intra-medullary tuberculosis and to describe the MRI's contribution to the diagnosis. Summary of background data: Intra-medullary spinal tuberculoma is a rare form of central nervous system tuberculosis. The subject and diagnosis methods: The patient, a 22 year-old man, presented with an intra-medullary tuberculoma of the dorsal spinal cord diagnosed after 6 month history of progressive paraparesis and sphincter dysfunction. MRI visualized ring enhancement of the intra-medullary dorsal lesion. Results: Total resection of the intra-medullary mass was performed through a posterior myelotomy. Histological examination revealed a granulomatous necrosis with caseum. The patient was treated with four anti-tuberculosis drugs in association with corticotherapy. The paraparesis and sphincter dysfunction improved. Conclusions: Intra-medullary spinal tuberculoma is rare, but must be considered in the differential diagnosis of spinal cord compression

  14. Pressor response to L-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons.

    Science.gov (United States)

    Takemoto, Yumi

    2013-03-01

    The sulfur-containing non-essential amino acid L-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to L-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected D-cysteine produced no cardiovascular changes, while L-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of L-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of L-cysteine-injected rats than those injected with D-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of L-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of L-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

  15. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Geun-Woo; Kim, Min-Ji; Yang, Kui-Ye; Kim, Seong-Taek; Bae, Yong-Cheol

    2015-01-01

    We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions. PMID:26170739

  16. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

    Science.gov (United States)

    Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

    1999-01-01

    We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

  17. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus.

    Science.gov (United States)

    Kusano, E; Braun-Werness, J L; Vick, D J; Keller, M J; Dousa, T P

    1983-10-01

    To determine vasopressin (VP)-potentiating effect of chlorpropamide (CPMD), we studied the effect of CPMD in vivo and in vitro in kidneys and in specific tubule segments of rats with hypothalamic diabetes insipidus, homozygotes of the Brattleboro strain (DI rats). Rats on ad lib. water intake were treated with CPMD (20 mg/100 g body wt s.c. daily) for 7 d. While on ad lib. water intake, the urine flow, urine osmolality, urinary excretion of Na +, K +, creatinine, or total solute excretion did not change. However, corticopapillary gradient of solutes was significantly increased in CPMD-treated rats. Higher tissue osmolality was due to significantly increased concentration of Na +, and to a lesser degree urea, in the medulla and papilla of CPMD-treated rats. Consequently, the osmotic gradient between urine and papillary tissue of CPMD-treated rats (delta = 385 +/- 47 mosM) was significantly (P less than 0.001) higher compared with controls (delta = 150 +/- 26 mosM). Minimum urine osmolality after water loading was higher in CPMD-treated DI rats than in controls. Oxidation of [14C]lactate to 14CO2 coupled to NaCl cotransport was measured in thick medullary ascending limb of Henle's loop (MAL) microdissected from control and CPMD-treated rats. The rate of 14CO2 production was higher (delta + 113% +/- 20; P less than 0.01) in CPMD-treated MAL compared with controls, but 14CO2 production in the presence of 10(-3) M furosemide did not differ between MAL from control and from CPMD-treated rats. These observations suggest that CPMD treatment enhances NaCl transport in MAL. Cyclic AMP metabolism was analyzed in microdissected MAL and in medullary collecting tubule (MCT). MCT from control and from CPMD-treated rats did not differ in the basal or VP-stimulated accumulated of cAMP. The increase in cAMP content elicited by 10(-6) M VP in MAL from CPMD-treated rats (delta + 12.0 +/- 1.8 fmol cAMP/mm) was significantly (P less than 0.02) higher compared with MAL from control rats

  18. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    Science.gov (United States)

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contribution of the dorsal noradrenergic bundle to the effect of amphetamine on acetylcholine turnover

    International Nuclear Information System (INIS)

    Robinson, S.E.

    1986-01-01

    In order to determine the contribution of the noradrenergic projections of the locus coeruleus to the action of amphetamine on cholinergic neurons in several areas of the brain, the dorsal noradrenergic bundle was selectively lesioned by injection of the neurotoxin 6-hydroxydopamine. The bundles of Equithesin-anesthetized male rats were lesioned bilaterally by stereotaxically-placed injections of 6-OHDA. The animals were killed in the microwave and constant rate infusion with phosphoryl ( 2 H 9 )-choline was begun. Levels of ACh and choline and TR /SUB ACh/ were determined by a mass fragmentographic technique. Rats not exhibiting the proper decrease in NE were excluded from all data calculations. It is shown that noradrenergic neurons travelling in the dorsal noradrenergic bundle do not exert a tonic action on cholinergic neurons in the cortex, hippocampus or hypothalamus

  20. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia.

    Science.gov (United States)

    Kusuyama, Kazuki; Tachibana, Toshiya; Yamanaka, Hiroki; Okubo, Masamichi; Yoshiya, Shinichi; Noguchi, Koichi

    2018-01-31

    Spinal cord injury (SCI) commonly results not only in motor paralysis but also in the emergence of neuropathic pain (NeuP), both of which can impair the quality of life for patients with SCI. In the clinical field, it is well known that pregabalin, which binds to the voltage-gated calcium channel alpha-2-delta-1 (α 2 δ-1) subunit has therapeutic effects on NeuP after SCI. A previous study has demonstrated that SCI increased α 2 δ-1 in the L4-L6 dorsal spinal cord of SCI rats by Western blot analysis and that the increase of α 2 δ-1 was correlated with tactile allodynia of the hind paw. However, the detailed feature of an increase in α 2 δ-1 protein in the spinal dorsal horn and the mechanism of pregabalin effect on SCI-induced NeuP have not been fully examined. This study aimed to examine the detailed distribution of α 2 δ-1 expression in the lumbar spinal cord after thoracic SCI in rats and the correlation of the therapeutic effect of pregabalin in SCI rats. Male Sprague-Dawley rats underwent thoracic (T10) spinal cord contusion injury using the IH impactor device. Spinal cord injury rats received pregabalin (30 mg/kg) once a day for 2 weeks over a 4-week period after SCI. The mechanical threshold in the rat hind paw was measured over 4 weeks. Alpha-2-delta-1 expression in the lumbar spinal cord and in the dorsal root ganglion (DRG) was analyzed using immunohistochemistry and in situ hybridization histochemistry. A significant reduction of the withdrawal threshold of mechanical stimuli to the hind paw was observed for 2 weeks and continued at least 4 weeks after SCI. In the control rats, expression of α 2 δ-1 immunoreactivity was detected mainly in laminae I and II in the lumbar dorsal horn. Thoracic SCI significantly increased α 2 δ-1 immunoreactivity in laminae I and II in the lumbar dorsal horn 4 weeks after SCI; however, thoracic SCI did not affect the expression of α 2 δ-1 mRNA in the L4 and L5 DRGs. Meanwhile, the signal intensity of α 2

  1. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhenwei; Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Wu Yongchao, E-mail: wuyongchao@hotmail.com [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Song Yulin; Wu Bin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China)

    2009-08-31

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  2. Neurobrucellosis presenting as an intra-medullary spinal cord abscess

    Directory of Open Access Journals (Sweden)

    Patil Chidanand S

    2005-09-01

    Full Text Available Abstract Background Of the diverse presentation of neurobrucellosis, intra-medullary spinal cord abscess is extremely rare. Only four other cases have been reported so far. We present a case of spinal cord intra-medullary abscess due to Brucella melitensis. Case presentation A forty-year-old female presented with progressive weakness of both lower limb with urinary incontinence of 6 months duration. She was febrile. Neurological examination revealed flaccid areflexic paraplegia with T10 below sensory impairment including perianal region. An intramedullary mass was diagnosed on Magnetic Resonance Image (MRI scan extending from T12 to L2. At surgery, a large abscess was encountered at the conus medullaris, from which Brucella melitensis was grown on culture. She was started on streptomycin and doxycycline for 1 month, followed by rifampicin and doxycycline for 1 month. At 2-year follow-up, she had recovered only partially and continued to have impaired bladder function. Conclusion Neurobrucellosis, if not treated early, can result in severe neurological morbidity and sequale, which may be irreversible. Hence it is important to consider the possibility of neurobrucellosis in endemic region and treat aggressively.

  3. Somatostatin Receptor Scintigraphy in Medullary Thyroid Cancer

    NARCIS (Netherlands)

    van der Horst-Schrivers, Anouk N. A.; Brouwers, Adrienne; Links, Thera; Hubalewska‐Dydejczyk, Alicja; Signore, Alberto; de Jong, Marion; Dierckx, Rudi A.; Buscombe, John; Van de Wiele, Christophe

    2015-01-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor originating from the calcitonin‐secreting C cells. Surgery, consisting of a total thyroidectomy and an extensive lymph node dissection, is the only effective treatment in MTC; however, metastases are frequently found in the regional cervical

  4. A 9 years boy with MEN-2B variant of medullary thyroid carcinoma.

    Science.gov (United States)

    Sattar, M A; Hadi, H I; Ekramuddoula, F M; Hasanuzzaman, S M

    2013-04-01

    To highlight a rare disease like multiple endocrine neoplasia (MEN)-2B variant of medullary thyroid carcinoma and to optimize the management option in such cases, we present a nine year old boy with thyroid swelling, cervical lymphadenopathy and thick lips. His calcitonin level was raised. Investigation's results of the boy were as following fine needle aspiration cytology (FNAC) was medullary carcinoma of thyroid, preoperative calcitonin was >2000pg/ml, post operative histopathological report was medullary carcinoma. Total thyroidectomy with aggressive initial neck surgery may reduce the recurrence and increase better prognosis and survival rate. Calcitonin is used as diagnostic and follow-up marker.

  5. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    Technetium-99m methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan intake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the ''extended pattern of uptake'' beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogenous uptake on the scan

  6. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    /sup 99m/Tc methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan uptake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the extended pattern of uptake beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogeneous uptake on the scan

  7. Schwannosis induced medullary compression in VACTERL syndrome.

    LENUS (Irish Health Repository)

    Treacy, A

    2011-10-21

    A 7-year-old boy with a history of VACTERL syndrome was found collapsed in bed. MRI had shown basilar invagination of the skull base and narrowing of the foramen magnum. Angulation, swelling and abnormal high signal at the cervicomedullary junction were felt to be secondary to compression of the medulla. Neuropathologic examination showed bilateral replacement of the medullary tegmentum by an irregularly circumscribed cellular lesion which was composed of elongated GFAP\\/S 100-positive cells with spindled nuclei and minimal atypia. The pathologic findings were interpreted as intramedullary schwannosis with mass effect. Schwannosis, is observed in traumatized spinal cords where its presence may represent attempted, albeit aberrant, repair by inwardly migrating Schwann cells ofperipheral origin. In our view the compressive effect of the basilar invagination on this boy\\'s medulla was of sufficient magnitude to have caused tumoral medullary schwannosis with resultant intermittent respiratory compromise leading to reflex anoxic seizures.

  8. Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study

    Directory of Open Access Journals (Sweden)

    Taojing Zhang

    2017-01-01

    Full Text Available Tang-luo-ning (TLN is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN. In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ and divided into model, alpha lipoic acid (ALA, and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.

  9. Defense reaction induced by a metabotropic glutamate receptor agonist microinjected into the dorsal periaqueductal gray of rats

    Directory of Open Access Journals (Sweden)

    M.L. Molchanov

    1999-12-01

    Full Text Available The behavioral effects of trans-(±-1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD, a metabotropic glutamate receptor (mGluR agonist, or 0.9% (w/v saline, injected into the dorsal periaqueductal gray (DPAG, was investigated. Male Wistar rats showed defense reactions characterized by jumps toward the top edges of the cages (saline = 0 vs t-ACPD = 6.0, medians P<0.05 and gallops (saline = 0 vs t-ACPD = 10.0, medians P<0.05 during the 60-s period after the beginning of the injection. In another experiment animals were placed inside an open arena for 5 min immediately after injection. Their behavior was recorded by a video camera and a computer program analyzed the videotapes. Eleven of fifteen rats injected with t-ACPD showed a short-lasting (about 1 min flight reaction. No saline-treated animal showed this reaction (P<0.0005, chi-square test. The drug induced an increase in turning behavior (P = 0.002, MANOVA and a decrease in the number of rearings (P<0.001, MANOVA and grooming episodes (P<0.001, MANOVA. These results suggest that mGluRs play a role in the control of defense reactions in the DPAG.

  10. Study on the Mechanism Underlying the Regulation of the NMDA Receptor Pathway in Spinal Dorsal Horns of Visceral Hypersensitivity Rats by Moxibustion

    Directory of Open Access Journals (Sweden)

    L. D. Wang

    2016-01-01

    Full Text Available Visceral hypersensitivity is enhanced in irritable bowel syndrome (IBS patients. Treatment of IBS visceral pain by moxibustion methods has a long history and rich clinical experience. In the clinic, moxibustion on the Tianshu (ST25 and Shangjuxu (ST37 acupoints can effectively treat bowel disease with visceral pain and diarrhea symptoms. To investigate the regulatory function of moxibustion on the Tianshu (ST25 and Shangjuxu (ST37 acupoints on spinal cord NR1, NR2B, and PKCε protein and mRNA expression in irritable bowel syndrome (IBS visceral hypersensitivity rats, we did some research. In the study, we found that moxibustion effectively relieved the IBS visceral hyperalgesia status of rats. Analgesic effect of moxibustion was similar to intrathecal injection of Ro 25-6981. The expression of NR1, NR2B, and PKCε in the spinal dorsal horns of IBS visceral hyperalgesia rats increased. Moxibustion on the Tianshu and Shangjuxu acupoints might inhibit the visceral hypersensitivity, simultaneously decreasing the expression of NR1, NR2B, and PKCε in spinal cord of IBS visceral hyperalgesia rats. Based on the above experimental results, we hypothesized NR1, NR2B, and PKCε of spinal cord could play an important role in moxibustion inhibiting the process of central sensitization and visceral hyperalgesia state.

  11. Is thyroidectomy necessary in RET mutations carriers of the familial medullary thyroid carcinoma syndrome?

    DEFF Research Database (Denmark)

    Hansen, H S; Torring, H; Godballe, C

    2000-01-01

    BACKGROUND: The results and consequences of genetic testing in a family with familial medullary thyroid carcinoma (FMTC) are described. METHODS: In the screening of relatives, serum calcitonin is replaced by RET mutation analysis that was performed in families suspected of hereditary medullary th...

  12. VAC Therapy Direct to the Medullary Cavity for Chronic Tibial Osteomyelitis.

    Science.gov (United States)

    Miyamura, Satoshi; Tsuji, Shigeyoshi; Iwai, Takao; Hamada, Masayuki

    2016-06-01

    Vacuum-assisted wound closure (VAC) is useful for difficult wound beds, although sites where bleeding or infection is expected are usually regarded as problematic for this therapy. This report outlines the treatment of chronic tibial osteomyelitis (Cierny- Mader type III) due to mixed infection with Nocardia spp and Bacteroi- des fragilis by postoperative VAC therapy direct to the medullary cavity, followed by wound coverage with a gastrocnemius myocutaneous skin flap. A 64-year-old man developed chronic left tibial os- teomyelitis after a work injury. The nonviable tissues were debrided, including a sequestrum. Nocardia spp and B. fragilis were isolated from surgical bone specimens, and chronic tibial osteomyelitis due to mixed infection was diagnosed. Postoperatively, VAC therapy was performed directly to the open medullary cavity of the tibia and sub- sequently covered the residual soft tissue defect with a gastrocnemius myocutaneous flap. The authors could not find any English literature on VAC therapy direct to the medullary cavity combined with transplantation of a myocutaneous flap for osteomyelitis. Nocardia spp can cause a variety of infections, among which osteomyelitis occupies a relatively small percentage. This case raises the possibil- ity of treating chronic tibial osteomyelitis caused by mixed infection with Nocardia spp and B. fragilis by applying postoperative VAC ther- apy directly to the medullary cavity and covering the residual wound with a gastrocnemius myocutaneous flap.

  13. Cholera toxin B subunit labeling in lamina II of spinal cord dorsal horn following chronic inflammation in rats.

    Science.gov (United States)

    Ma, Qing Ping; Tian, Li

    2002-07-26

    We have investigated the effect of inflammation on the labeling pattern of cholera toxin B subunit (CTB)-conjugated horseradish peroxidase, an A-fiber marker, by an intra-sciatic nerve injection of the tracer. Following chronic inflammation in one hind paw in rats, there was substantial CTB labeling in lamina II of the spinal dorsal horn, which is normally absent. However, there was no change in the labeling pattern of wheat germ agglutinin or fluoride resistant acid phosphatase/thiamine monophosphatase, two C-fiber markers. The CTB labeling in lamina II after peripheral nerve injury has been interpreted as central sprouting of A-fibers or uptake of the tracer by injured C-fibers. Our results suggest that chronic inflammation and nerve injury may share some common mechanisms in generating allodynia and hyperalgesia.

  14. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  15. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    Science.gov (United States)

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  16. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K+–Cl− cotransporter-2 in the spinal dorsal horn in rats

    Directory of Open Access Journals (Sweden)

    Dai S

    2018-05-01

    Full Text Available Shuhong Dai,1 Yu Qi,1 Jie Fu,1 Na Li,1 Xu Zhang,1 Juan Zhang,2 Wei Zhang,2 Haijun Xu,1 Hai Zhou,1 Zhengliang Ma2 1Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China; 2The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China Background: Dexmedetomidine (DEX could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF. In addition, KCC2-induced shift in neuronal Cl- homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP. Methods: PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR. Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. Results: In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. Conclusion: The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF

  17. Successful intraosseous infusion in the critically ill patient does not require a medullary cavity.

    LENUS (Irish Health Repository)

    McCarthy, Gerard

    2012-02-03

    OBJECTIVES: To demonstrate that successful intraosseous infusion in critically ill patients does not require bone that contains a medullary cavity. DESIGN: Infusion of methyl green dye via standard intraosseous needles into bones without medullary cavity-in this case calcaneus and radial styloid-in cadaveric specimens. SETTING: University department of anatomy. PARTICIPANTS: Two adult cadaveric specimens. MAIN OUTCOME MEASURES: Observation of methyl green dye in peripheral veins of the limb in which the intraosseous infusion was performed. RESULTS: Methyl green dye was observed in peripheral veins of the chosen limb in five out of eight intraosseous infusions into bones without medullary cavity-calcaneus and radial styloid. CONCLUSIONS: Successful intraosseous infusion does not always require injection into a bone with a medullary cavity. Practitioners attempting intraosseous access on critically ill patients in the emergency department or prehospital setting need not restrict themselves to such bones. Calcaneus and radial styloid are both an acceptable alternative to traditional recommended sites.

  18. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    Science.gov (United States)

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–17%), yet had opposite effects on renal blood flow and urine flow. Changes in bladder urine Po2 during these stimuli correlated strongly with changes in medullary Po2 (within-rabbit r2 = 0.87–0.90). Differences in the Po2 of saline infused into the ureter close to the kidney could be detected in the bladder, although this was diminished at lesser ureteric flow. Diffusion of oxygen across the wall of the bladder was very slow, so it was not considered in the computational model. The model predicts Po2 in the pelvic ureter (presumed to reflect medullary Po2) from known values of bladder urine Po2, urine flow, and arterial Po2. Simulations suggest that, across a physiological range of urine flow in anesthetized rabbits (0.1–0.5 ml/min for a single kidney), a change in bladder urine Po2 explains 10–50% of the change in pelvic urine/medullary Po2. Thus, it is possible to infer changes in medullary Po2 from changes in urinary Po2, so urinary Po2 may have utility as a real-time biomarker of risk of acute kidney injury. PMID:27385734

  19. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    OpenAIRE

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.; Evans, Roger G.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–1...

  20. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  1. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2012-05-01

    Full Text Available Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4 treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5μg T4/100 g body weight (BW treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.

  2. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow

    Directory of Open Access Journals (Sweden)

    S.I Gomez

    2008-02-01

    Full Text Available This study was undertaken in anesthetized dogs to evaluate the relative participation of prostaglandins (PGs and nitric oxide (NO in the maintenance of total renal blood flow (TRBF, and renal medullary blood flow (RMBF. It was hypothesized that the inhibition of NO should impair cortical and medullary circulation because of the synthesis of this compound in the endothelial cells of these two territories. In contrast, under normal conditions of perfusion pressure PG synthesis is confined to the renal medulla. Hence PG inhibition should predominantly impair the medullary circulation. The initial administration of 25 µM kg-1 min-1 NG-nitro-L-arginine methyl ester produced a significant 26% decrease in TRBF and a concomitant 34% fall in RMBF, while the subsequent inhibition of PGs with 5 mg/kg meclofenamate further reduced TRBF by 33% and RMBF by 89%. In contrast, the initial administration of meclofenamate failed to change TRBF, while decreasing RMBF by 49%. The subsequent blockade of NO decreased TRBF by 35% without further altering RMBF. These results indicate that initial PG synthesis inhibition predominantly alters the medullary circulation, whereas NO inhibition decreases both cortical and medullary flow. This latter change induced by NO renders cortical and RMBF susceptible to a further decrease by PG inhibition. However, the decrease in medullary circulation produced by NO inhibition is not further enhanced by subsequent PG inhibition.

  3. Acute reductions in blood flow restricted to the dorsomedial medulla induce a pressor response in rats.

    Science.gov (United States)

    Waki, Hidefumi; Bhuiyan, Mohammad E R; Gouraud, Sabine S; Takagishi, Miwa; Hatada, Atsutoshi; Kohsaka, Akira; Paton, Julian F R; Maeda, Masanobu

    2011-08-01

    The brainstem nucleus of the solitary tract (nucleus tractus solitarii, NTS) is a pivotal region for regulating the set-point of arterial pressure, the mechanisms of which are not fully understood. Based on evidence that the NTS exhibits O2-sensing mechanisms, we examined whether a localized disturbance of blood supply, resulting in hypoxia in the NTS, would lead to an acute increase in arterial pressure. Male Wistar rats were used. Cardiovascular parameters were measured before and after specific branches of superficial dorsal medullary veins were occluded; we assumed these were drainage vessels from the NTS and would produce stagnant hypoxia. Hypoxyprobe-1, a marker for detecting cellular hypoxia in the post-mortem tissue, was used to reveal whether vessel occlusion induced hypoxia within the NTS. Following vessel occlusion, blood flow in the dorsal surface of the medulla oblongata including the NTS region showed an approximately 60% decrease and was associated with hypoxia in neurons located predominantly in the caudal part of the NTS as revealed using hypoxyprobe-1. Arterial pressure increased and this response was pronounced significantly in both magnitude and duration when baroreceptor reflex afferents were sectioned. These results suggest that localized hypoxia in the NTS increases arterial pressure. We suggest this represents a protective mechanism whereby the elevated systemic pressure is a compensatory mechanism to enhance cerebral perfusion. Whether this physiological mechanism has any relevance to neurogenic hypertension is discussed.

  4. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord

    Directory of Open Access Journals (Sweden)

    Guiqin Zhu

    2016-01-01

    Full Text Available Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI in rat tibia (TCI cancer pain model. Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy. Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  5. GABAergic Neurons of the Rat Dorsal Hippocampus Express Muscarinic Acetylcholine Receptors

    NARCIS (Netherlands)

    van der Zee, E.A.; Luiten, P.G.M.

    1993-01-01

    The expression of muscarinic acetylcholine receptors (mAChRs) in glutamic acid decarboxylase (GAD)-positive cells in the different strata of CA1, CA3, and the dentate gyrus (DG) of the dorsal hippocampus is examined by way of quantitative immunofluorescent double labeling employing M35, the

  6. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36.

    Science.gov (United States)

    Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza

    2018-04-01

    Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Science.gov (United States)

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  8. Electrolytic Lesions of the Dorsal Hippocampus Disrupt Renewal of Conditional Fear after Extinction

    Science.gov (United States)

    Ji, Jinzhao; Maren, Stephen

    2005-01-01

    There is a growing body of evidence that the hippocampus is critical for context-dependent memory retrieval. In the present study, we used Pavlovian fear conditioning in rats to examine the role of the dorsal hippocampus (DH) in the context-specific expression of fear memory after extinction (i.e., renewal). Pre-training electrolytic lesions of…

  9. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Anderson, Patrick N; Verhaagen, J

    We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site

  10. Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus.

    Science.gov (United States)

    Hernández-López, F; Rodríguez-Landa, J F; Puga-Olguín, A; Germán-Ponciano, L J; Rivadeneyra-Domínguez, E; Bernal-Morales, B

    Stereotactic surgery is used to place electrodes or cannulas in the brain in order to study the function of several brain structures in preclinical research. The hippocampus has been extensively studied with this methodology due to its involvement in a wide range of neurological, cognitive, emotional, and affective disorders. However, the effects of stereotactic surgery on coordination and motor activity should be evaluated in order to determine whether this surgical procedure causes any neurological alterations that may bias the results of studies incorporating this technique. We evaluated the effects of stereotactic surgery and implantation of a cannula into the hippocampus of female Wistar rats on the motor activity, forced swim, and rotarod tests. The stage of the oestrous cycle was included in the statistical analysis. Stereotactic surgery had no impact on any of the motor activity variables assessed in the open field (squares crossed, time spent in grooming, and rearing), forced swim (turning behaviour, lateral swimming, latency to first immobility, and time spent immobile), and rotarod (latency to fall) tests, compared with intact rats. Regardless of surgical manipulation, rats in the metestrus and diestrus stages crossed a greater number of squares and displayed longer immobility times than those in the proestrus and estrus stages. Stereotactic surgery for cannula placement in the dorsal hippocampus does not affect coordination and motor activity in rats. We can therefore conclude that this procedure has no neurological complications that may interfere in the interpretation of results of studies applying this technique. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    International Nuclear Information System (INIS)

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr.

    1987-01-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of [ 3 H]prazosin, [ 3 H]rauwolscine, and [ 125 I]iodocyanopindolol were used to quantitate α 1 -, α 2 -, and β-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B max , per milligram membrane protein) for α 1 -, and α 2 -, and β-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K D ) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine

  12. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Dorsal bundle lesions do not affect latent inhibition of conditioned suppression.

    Science.gov (United States)

    Tsaltas, E; Preston, G C; Rawlins, J N; Winocur, G; Gray, J A

    1984-01-01

    Three experiments are reported which examine the effects of lesions of the dorsal ascending noradrenergic bundle (DB) on latent inhibition using a conditioned suppression procedure in rats. In none of the experiments did the DB lesion have any effect, despite changes in the extent of latent inhibition and in the control procedures used to assess it. The results are discussed in relation to the attentional theory of DB function.

  14. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    Science.gov (United States)

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  15. Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in dorsal nerve of the penis and its implication on erectile function: an experimental study using albino rats.

    Science.gov (United States)

    Seppan, Prakash; Muhammed, Ibrahim; Mohanraj, Karthik Ganesh; Lakshmanan, Ganesh; Premavathy, Dinesh; Muthu, Sakthi Jothi; Wungmarong Shimray, Khayinmi; Sathyanathan, Sathya Bharathy

    2018-02-15

    To study the effect of ethanolic seed extract of Mucuna pruriens on damaged dorsal nerve of the penis (DNP) in aged rat in relation to penile erection. The rats were divided into four groups Young (3 months), Aged (24 - 28 months), Aged + M. pruriens, and Young + M. pruriens (200 mg/kg b.w/60 days) and were subjected to the hypophysial - gonadal axis, nerve conduction velocity (NCV), and penile reflex. DNP sections were stained with nitric oxide synthase (nNOS), nicotinamide adenine dinucleotide phosphate (NaDPH) diaphorase, androgen receptor (AR), and osmium tetroxide. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining, electron microscopy(EM) and histometric analyses were done. Significant disturbance in hypophysial - gonadal axis was noted in aged rat. With reduced number of myelinated fibers, diameter, vacuolization, indentation of the myelin sheath, and degeneration. nNOS and its cofactor (NaDPH diaphorase) were reduced in aged rat DNP. NCV was slow in aged rats and concomitant poor penile reflex was also noted. AR showed reduced expression in aged rat DNP when compared to young and control groups. TUNEL positive cells were increased in aged rat DNP. These pathological changes were remarkably reduced or recovered in M. pruriens treated aged rats. The results indicate a multi-factorial therapeutic activity in penile innervations towards sustaining the penile erection in the presence of the extract in aged rats and justifying the claim of traditional usage.

  16. Wallenberg's lateral medullary syndrome: diffusion-weighted imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, O.; Calli, C.; Yunten, N.; Kocaman, A.; Sirin, H. [Ege Univ., Izmir (Turkey). Dept. of Radiology

    2004-02-01

    To investigate the efficacy of diffusion-weighted imaging in patients with Wallenberg's lateral medullary syndrome. Thirteen patients with Wallenberg's lateral medullary syndrome were examined with conventional and echoplanar diffusion-weighted magnetic resonance (MR) imaging in a 1.5 T magnetic resonance unit. MR examinations were obtained in the acute or subacute stage of clinical syndrome, and diffusion-weighted imaging (DWI) was considered to be positive for infarction when an increase in signal was seen on b = 1000 s/mm2 images in the posterolateral medullary localization. DWIs were positive in 12 patients in the acute or subacute stages of this clinical syndrome. A false-negative result was obtained in only one patient examined within the first day, 10 h after onset of the symptoms. In the visual evaluation of the DWI, the contrast between normal and infarcted brainstem area was better in the high b-value images than in the apparent diffusion coefficient map images. DWI is a valuable technique for examining patients presenting with the signs and symptoms of Wallenberg's syndrome and high b-value images can provide complementary data to T2-weighted images. However, because most of our case group were in either the acute or subacute stage, true sensitivity of the method in the hyperacute stage of the syndrome remains unclear.

  17. Medullary thyroid cancer: RET testing of an archival material

    DEFF Research Database (Denmark)

    Godballe, Christian; Jørgensen, Gita; Gerdes, Anne-Marie Axø

    2010-01-01

    Medullary thyroid carcinoma (MTC) might be sporadic (75%) or hereditary (25%). Until the mid nineties the diagnosis of hereditary MTC was based on family history, clinical evaluation, histological detection of C-cell hyperplasia and tumor multifocality. Patients and families with hereditary MTC...

  18. Medullary thyroid cancer: RET testing of an archival material

    DEFF Research Database (Denmark)

    Godballe, Christian; Jørgensen, Gita; Gerdes, Anne-Marie

    2009-01-01

    Medullary thyroid carcinoma (MTC) might be sporadic (75%) or hereditary (25%). Until the mid nineties the diagnosis of hereditary MTC was based on family history, clinical evaluation, histological detection of C-cell hyperplasia and tumor multifocality. Patients and families with hereditary MTC...

  19. Lumbar dorsal ramus syndrome.

    Science.gov (United States)

    Bogduk, N

    1980-11-15

    Low back pain, referred pain in the lower limbs, and spasm of the back, gluteal, and hamstring muscles are clinical features which can be induced in normal volunteers by stimulating structures which are innervated by the lumbar dorsal rami. Conversely, they can be relieved in certain patients by selective interruption of conduction along dorsal rami. These facts permit the definition of a lumbar dorsal ramus syndrome, which can be distinguished from the intervertebral disc syndrome and other forms of low back pain. The distinguishing feature is that, in lumbar dorsal ramus syndrome, all the clinical features are exclusively mediated by dorsal rami and do not arise from nerve-root compression. The pathophysiology, pathology, and treatment of this syndrome are described. Recognition of this syndrome, and its treatment with relatively minor procedures, can obviate the need for major surgery which might otherwise be undertaken.

  20. Proximal Tubular Injury in Medullary Rays Is an Early Sign of Acute Tacrolimus Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Diane Cosner

    2015-01-01

    Full Text Available Tacrolimus (FK506 is one of the principal immunosuppressive agents used after solid organ transplantations to prevent allograft rejection. Chronic renal injury induced by tacrolimus is characterized by linear fibrosis in the medullary rays; however, the early morphologic findings of acute tacrolimus nephrotoxicity are not well characterized. Kidney injury molecule-1 (KIM-1 is a specific injury biomarker that has been proven to be useful in the diagnosis of mild to severe acute tubular injury on renal biopsies. This study was motivated by a patient with acute kidney injury associated with elevated serum tacrolimus levels in whom KIM-1 staining was present only in proximal tubules located in the medullary rays in the setting of otherwise normal light, immunofluorescent, and electron microscopy. We subsequently evaluated KIM-1 expression in 45 protocol and 39 indicated renal transplant biopsies to determine whether higher serum levels of tacrolimus were associated with acute segment specific injury to the proximal tubule, as reflected by KIM-1 staining in the proximal tubules of the cortical medullary rays. The data suggest that tacrolimus toxicity preferentially affects proximal tubules in medullary rays and that this targeted injury is a precursor lesion for the linear fibrosis seen in chronic tacrolimus toxicity.

  1. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  2. DORSAL ROOT REGENERATION INTO TRANSPLANTS OF DORSAL OR VENTRAL HALF OF EMBRYONIC SPINAL CORD

    OpenAIRE

    Ohta, Tohru; Itoh, Yasunobu; Tessler, Alan; Mizoi, Kazuo

    2009-01-01

    Adult cut dorsal root axons regenerate into the transplants of embryonic spinal cord (ESC) and form functional synapses within the transplants. It is unknown whether the growth is specific to transplants of dorsal half of ESC, a normal target of most dorsal root axons, or whether it is due to properties shared by transplants of ventral half of ESC. We used calcitonin gene-related peptide (CGRP) immunohistochemistry to label to the subpopulations of regenerated adult dorsal root axons, quantit...

  3. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making.

    Science.gov (United States)

    Schumacher, Anett; Vlassov, Ekaterina; Ito, Rutsuko

    2016-04-01

    The resolution of an approach-avoidance conflict induced by ambivalent information involves the appraisal of the incentive value of the outcomes and associated stimuli to orchestrate an appropriate behavioral response. Much research has been directed at delineating the neural circuitry underlying approach motivation and avoidance motivation separately. Very little research, however, has examined the neural substrates engaged at the point of decision making when opposing incentive motivations are experienced simultaneously. We hereby examine the role of the dorsal and ventral hippocampus (HPC) in a novel approach-avoidance decision making paradigm, revisiting a once popular theory of HPC function, which posited the HPC to be the driving force of a behavioral inhibition system that is activated in situations of imminent threat. Rats received pre-training excitotoxic lesions of the dorsal or ventral HPC, and were trained to associate different non-spatial cues with appetitive, aversive and neutral outcomes in three separate arms of the radial maze. On the final day of testing, a state of approach-avoidance conflict was induced by simultaneously presenting two cues of opposite valences, and comparing the time the rats spent interacting with the superimposed 'conflict' cue, and the neutral cue. The ventral HPC-lesioned group showed significant preference for the conflict cue over the neutral cue, compared to the dorsal HPC-lesioned, and control groups. Thus, we provide evidence that the ventral, but not dorsal HPC, is a crucial component of the neural circuitry concerned with exerting inhibitory control over approach tendencies under circumstances in which motivational conflict is experienced. © 2015 Wiley Periodicals, Inc.

  4. 5,7-DHT lesion of the dorsal raphe nuclei impairs object recognition but not affective behavior and corticosterone response to stressor in the rat.

    Science.gov (United States)

    Lieben, Cindy K J; Steinbusch, Harry W M; Blokland, Arjan

    2006-04-03

    Previous studies with acute tryptophan depletion, leading to transient central 5-HT reductions, showed no effects on affective behavior but impaired object memory. In the present study, the behavioral effects of a 5,7-dihydroxytryptamine (5,7-DHT) lesion in the dorsal raphe were evaluated in animal models of anxiety (open field test), depression (forced swimming test), behavioral inhibition (discrete fixed interval test) and cognition (object recognition task). The corticosterone response to a stress condition was examined at several intervals after 5,7-DHT treatment. The substantial reduction in neuronal 5-HT markers in the dorsal raphe did not affect anxiety-related, depressive-like or impulsive behavior. Compared to the SHAM group, the lesioned rats showed a lower response latency to obtain a reward, indicating a quick and accurate reaction to a stimulus. No differences were found in the progressive ratio test for food motivation. A marked impairment in object recognition was found. The 5,7-DHT treatment did not affect the corticosterone response to a stressful situation. Overall, these results corroborate studies with acute tryptophan depletion suggesting a role of 5-HT in object memory, but not affective behavior.

  5. Corticotropin-releasing Factor in the Rat Dorsal Raphe Nucleus Promotes Different Forms of Behavioral Flexibility Depending on Social Stress History.

    Science.gov (United States)

    Snyder, Kevin P; Hill-Smith, Tiffany E; Lucki, Irwin; Valentino, Rita J

    2015-10-01

    The stress-related neuropeptide, corticotropin-releasing factor (CRF) regulates the dorsal raphe nucleus-serotonin (DRN-5-HT) system during stress and this may underlie affective and cognitive dysfunctions that characterize stress-related psychiatric disorders. CRF acts on both CRF1 and CRF2 receptor subtypes in the DRN that exert opposing inhibitory and excitatory effects on DRN-5-HT neuronal activity and 5-HT forebrain release, respectively. The current study first assessed the cognitive effects of intra-DRN microinfusion of CRF or the selective CRF2 agonist, urocortin II in stress-naive rats on performance of an operant strategy set-shifting task that is mediated by the medial prefrontal cortex (mPFC). CRF (30 ng) facilitated strategy set-shifting performance, whereas higher doses of CRF and urocortin II that would interact with CRF2 were without effect, consistent with a CRF1-mediated action. This dose decreased 5-HT extracellular levels in the mPFC, further supporting a role for CRF1. The effects of CRF were then assessed in rats exposed to repeated social stress using the resident-intruder model. Repeated social stress shifted the CRF effect from facilitation of strategy set shifting to facilitation of reversal learning and this was most prominent in a subpopulation of rats that resist defeat. Notably, in this subpopulation of rats 5-HT neuronal responses to CRF have been demonstrated to shift from CRF1-mediated inhibition to CRF2-mediated excitation. Because 5-HT facilitates reversal learning, the present results suggest that stress-induced changes in the cellular effects of CRF in the DRN translate to changes in cognitive effects of CRF. Together, the results underscore the potential for stress history to shift cognitive processing through changes in CRF neurotransmission in the DRN and the association of this effect with coping strategy.

  6. Lateral medullary infarction with cardiovascular autonomic dysfunction: an unusual presentation with review of the literature.

    Science.gov (United States)

    Huynh, Tridu R; Decker, Barbara; Fries, Timothy J; Tunguturi, Ajay

    2018-01-24

    We report an unusual case of lateral medullary infarction presenting with orthostatic hypotension with pre-syncope without vertigo or Horner's syndrome. Case report with review of the literature. A 67-year-old man presented with pre-syncope and ataxia without vertigo. Initial brain CT and MRI were normal. Neurological evaluation revealed right-beating nystagmus with left gaze, vertical binocular diplopia, right upper-extremity dysmetria, truncal ataxia with right axial lateropulsion, and right-facial and lower extremity hypoesthesia. Bedside blood pressure measurements disclosed orthostatic hypotension. He had normal sinus rhythm on telemetry and normal ejection fraction on echocardiogram. A repeat brain MRI disclosed an acute right dorsolateral medullary infarct. Autonomic testing showed reduced heart rate variability during paced deep breathing, attenuated late phase II and phase IV overshoot on Valsalva maneuver, and a fall of 25 mmHg of blood pressure at the end of a 10-min head-up tilt with no significant change in heart rate. These results were consistent with impaired sympathetic and parasympathetic cardiovascular reflexes. He was discharged to acute rehabilitation a week later with residual right dysmetria and ataxia. Lateral medullary infarctions are usually reported as partial presentations of classical lateral medullary syndrome with accompanying unusual symptoms ranging from trigeminal neuralgias to hiccups. Pre-syncope from orthostatic hypotension is a rare presentation. In the first 3-4 days, absence of early DWI MRI findings is possible in small, dorsolateral medullary infarcts with sensory disturbances. Physicians should be aware of this presentation, as early diagnosis and optimal therapy are associated with good prognosis.

  7. Acquisition and extinction of continuously and partially reinforced running in rats with lesions of the dorsal noradrenergic bundle.

    Science.gov (United States)

    Owen, S; Boarder, M R; Gray, J A; Fillenz, M

    1982-05-01

    Local injection of 6-hydroxydopamine was used to selectively destroy the dorsal ascending noradrenergic bundle (DB) in rats. Two lesion procedures were used, differing in the extent of depletion of forebrain noradrenaline they produced (greater than 90% or 77%). In Experiments 1-3 the rats were run in a straight alley for food reward on continuous (CR) or partial (PR) reinforcement schedules. The smaller lesion reduced and the larger lesion eliminated the partial reinforcement acquisition effect (i.e. the faster start and run speeds produced by PR during training) and the partial reinforcement extinction effect (PREE, i.e. the greater resistance to extinction produced by PR training); these changes were due to altered performance only in the PR condition. Abolition of the PREE by the larger DB lesion occurred with 50 acquisition trials, but with 100 trials the lesion had no effect. In Experiment 4 rats were run in a double runway with food reward on CR in the second goal box, and on CR, PR or without reinforcement in the first. The larger lesion again eliminated the PREE in the first runway, but did not block the frustration effect in the second runway (i.e. the faster speeds observed in the PR condition after non-reward than after reward in the first goal box). These results are consistent with the hypothesis that DB lesions alter behavioural responses to signals of non-reward, but not to non-reward itself. They cannot be predicted from two other hypotheses: that the DB mediates responses to reward or that it subserves selective attention. Since septal and hippocampal, but not amygdalar, lesions have been reported to produced similar behavioural changes, it is proposed that the critical DB projection for the effects observed in these experiments is to the septo-hippocampal system.

  8. Dynamic computed tomography (CT) in the rat kidney and application to acute renal failure models

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Saito, Tadashi; Ishii, Hirofumi; Bansho, Junichi; Koyama, Yukinori; Tobita, Akira

    1995-01-01

    Renal dynamic CT scanning is suitable for determining the excretion of contrast medium in the cortex and medulla of the kidney, which is valuable for understanding the pathogenesis of disease processes in various conditions. This form of scanning would be convenient for use, if a method of application to the rat kidney were available. Therefore, we developed a method of applying renal dynamic CT to rats and evaluated the cortical and medullary curves, e.g., the corticomedullary junction time which is correlated to creatinine clearance, in various rat models of acute renal failure. The rat was placed in a 10deg oblique position and a bilateral hilar slice was obtained before and 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 and 180 sec after administering 0.5 ml of contrast medium using Somatom DR. The width of the slice was 4 mm and the scan time was 3 sec. The corticomedullary junction time in normal rats was 23.0±10.5 sec, the peak value of the cortical curve was 286.3±76.7 Hounsfield Unit (HU) and the peak value of the medullary curve was 390.1±66.2 HU. Corticomedullary junction time after exposure of the kidney was prolonged compared to that of the unexposed kidney. In rats with acute renal failure, the excretion pattern of contrast medium was similar in both the glycerol- and HgCl2-induced acute renal failure models. The peak values of the cortical curve were maintained three hours after a clamp was placed at the hilar region of the kidney for one hour, and the peak values of the medullary curve were maintained during the administration of 10μg/kg/min of angiotensin II. Dynamic CT curves in the acute renal failure models examined were slightly different from those in human acute renal failure. These results suggest that rats do not provide an ideal model for human acute renal failure. However, the application of dynamic CT to the rat kidney models was valuable for estimating the pathogenesis of various human kidney diseases. (author)

  9. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  10. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    Science.gov (United States)

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  11. Frequency of Cushing's syndrome due to ACTH-secreting adrenal medullary lesions: a retrospective study over 10 years from a single center.

    Science.gov (United States)

    Falhammar, Henrik; Calissendorff, Jan; Höybye, Charlotte

    2017-01-01

    Cushing's syndrome due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions has occasionally been described. We retrospectively reviewed all 164 cases of Cushing's syndrome and 77 cases of pheochromocytomas during 10 years. Of all cases with Cushing's syndrome, only two cases (1.2 %) were due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions (one case of pheochromocytoma and one case of adrenal medullary hyperplasia). Of all pheochromocytomas only the above-mentioned case (1.3 %) also gave rise to an ectopic adrenocorticotropic hormone syndrome. The clinical presentation of adrenocorticotropic hormone-secreting pheochromocytoma and adrenal medullary hyperplasia can be anything from mild to dramatic. These are rare conditions important to bear in mind in the workup of a patient with Cushing's syndrome or with pheochromocytoma. The identification of ectopic adrenocorticotropic hormone secretion from adrenal medullary lesions can be life-saving.

  12. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    Science.gov (United States)

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Recovery of Dysphagia in Lateral Medullary Stroke

    OpenAIRE

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia...

  14. The potential value of somatostatin receptor scintigraphy in medullary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, U.; Bihl, H. (Katharinenhospital, Stuttgart (Germany). Dept. of Nuclear Medicine); Frank-Raue, K.; Raue, F. (Heidelberg Univ. (Germany). Dept. of Internal Medicine); Sautter-Bihl, M.L.; Buhr, H.J. (Staedt. Klinikum, Karlsruhe (Germany). Dept. of Radiooncology and Nuclear Medicine); Guzman, G. (Katherinenhospital, Stuttgart (Germany). Dept. of Nuclear Medicine Inst. de Neurocirugia, Investigationes Cerebrales ' Dr Asenjo' Santiago (Chile). Dept. de Medicina Nuclear)

    1993-06-01

    In a prospective study, ten patients with recurrent medullary thyroid carcinoma (markedly elevated calcitonin levels) were investigated by means of somatostatin receptor scintigraphy (SRS) with [sup 111]In-pentetreotide. Scintigraphically, 30 sites of pathological uptake were found, mostly located in the neck and upper mediastinum. So far, 18 suspected tumour sites underwent histological examination and 14 of them could be verified as metastases of medullary thyroid carcinoma (MTC). The remaining four putative tumour lesions turned out to be false positive scintigraphic findings caused by chronic inflammation and somatostatin receptor positive tumours other than MTC. We conclude that SRS is a promising imaging modality for localization of MTC recurrence and may thus make a contribution to better management of this patient group. (Author).

  15. The potential value of somatostatin receptor scintigraphy in medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Doerr, U.; Bihl, H.; Frank-Raue, K.; Raue, F.; Sautter-Bihl, M.L.; Buhr, H.J.; Guzman, G.; Inst. de Neurocirugia, Investigationes Cerebrales 'Dr Asenjo' Santiago

    1993-01-01

    In a prospective study, ten patients with recurrent medullary thyroid carcinoma (markedly elevated calcitonin levels) were investigated by means of somatostatin receptor scintigraphy (SRS) with 111 In-pentetreotide. Scintigraphically, 30 sites of pathological uptake were found, mostly located in the neck and upper mediastinum. So far, 18 suspected tumour sites underwent histological examination and 14 of them could be verified as metastases of medullary thyroid carcinoma (MTC). The remaining four putative tumour lesions turned out to be false positive scintigraphic findings caused by chronic inflammation and somatostatin receptor positive tumours other than MTC. We conclude that SRS is a promising imaging modality for localization of MTC recurrence and may thus make a contribution to better management of this patient group. (Author)

  16. Bittersweet: Real-Time, Dynamic Changes in Blood Glucose Levels during an Acute Ozone Exposure in Rats

    Science.gov (United States)

    In humans and rats, acute exposures to ozone have been shown to activate the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axes to induce multi-organ metabolic alterations including impaired glucose homeostasis. These findings have largely been gleaned from on...

  17. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Mathiasen, Helle; Hansen, A B

    1994-01-01

    Urinary acidification ability, acid-base status and urinary excretion of calcium and citrate were evaluated in 10 women with bilateral medullary sponge kidney (MSK) and in 10 healthy women. Patients with MSK had higher fasting urine pH compared to normal controls (p ... in the mechanism of hypercalciuria and hypocitraturia in patients with medullary sponge kidney.(ABSTRACT TRUNCATED AT 250 WORDS)...

  18. Biochemical markers in the follow-up of medullary thyroid cancer

    NARCIS (Netherlands)

    de Groot, Jan Willem B.; Kema, Ido P.; Breukelman, Henk; van der Veer, Eveline; Wiggers, Theo; Plukker, John T. M.; Wolffenbuttel, Bruce H. R.; Links, Thera P.

    2006-01-01

    Medullary thyroid cancer (MTC) shares biochemical features with other neuroendocrine tumors but the particular characteristics are largely unexplored. We investigated the biochemical neuroendocrine profile of MTC and whether specific markers could be useful in follow-up. In addition to the standard

  19. Long-lasting pathological consequences of overexpression-induced α-synuclein spreading in the rat brain.

    Science.gov (United States)

    Rusconi, Raffaella; Ulusoy, Ayse; Aboutalebi, Helia; Di Monte, Donato A

    2018-04-01

    Increased expression of α-synuclein can initiate its long-distance brain transfer, representing a potential mechanism for pathology spreading in age-related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression-induced α-synuclein transfer were assessed over a 1-year period after injection of viral vectors carrying human α-synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long-lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression-induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α-synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression-induced spreading, even if temporary, causes long-lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α-synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation. © 2018 The Authors. Aging Cell published by the Anatomical Society and

  20. Sildenafil reduces polyuria in rats with lithium-induced NDI.

    Science.gov (United States)

    Sanches, Talita Rojas; Volpini, Rildo Aparecido; Massola Shimizu, Maria H; Bragança, Ana Carolina de; Oshiro-Monreal, Fabíola; Seguro, Antonio Carlos; Andrade, Lúcia

    2012-01-01

    Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; α-, β-, and γ-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, γ-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.

  1. Microsatellite instability in medullary carcinoma of the colon

    Directory of Open Access Journals (Sweden)

    Mario Martinotti

    2017-03-01

    Full Text Available Medullary carcinoma (MC of the large intestine is a relatively new histological type of adenocarcinoma characterized by poor glandular differentiation and an intraepithelial lymphocytic infiltrate. MC can be associated to a defective mechanism for DNA mismatch repair, caused by the so-called microsatellite instability (MSI. We present the case of a 44 years old Caucasian woman, who referred to the Emergency Room with symptoms mimicking an acute appendicitis. Computed tomography and colonoscopy demonstrated an ulcerated and stenotic lesion of the caecum without signs of metastasis and peritoneal carcinosis. Patient underwent a laparoscopic right colectomy. The final pathologic findings provided the diagnosis of medullary carcinoma with MSI. Patient then underwent adjuvant chemotherapy according to the FOLFOX- 4 protocol (association of 5-Fluorouracil, Leucovorin, and Oxaliplatin for twelve cycles. At two-years follow-up, patient is disease free. MC in association with MSI is a non-frequent tumor of the colon characterized by a better prognosis compared to other types of poorly differentiated adenocarcinoma. In the observed case, 24 months after the surgical operation, the patient is in good health and there is no evidence of metastasis or relapse.

  2. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.

    Science.gov (United States)

    Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P

    1991-12-01

    The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat

  3. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  4. MR imaging of medullary compression due to vertebral metastases

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Maldague, B.; Cornelis, G.; Malghem, J.; Demeure, R.

    1987-01-01

    A prospective study was performed to assess the value of MR imaging for demonstrating medullary compression due to vertebral metastases in cancer patients clinically suspected of presenting with that complication. Twenty-five consecutive unselected patients were studied, and the MR imaging findings were confirmed by myelography, CT, and/or surgical and autopsy findings for each patient. The MR examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5-T. MR imaging demonstrated the metastases (single or multiple) mainly on T1- weighted images (TR = 0.45 sec and TE = 20 msec). Soft-tissue tumoral mass and/or deformity of a vertebral body secondary to metastasis, compressing the spinal cord, was equally demonstrated on T1- and heavily T2-weighted images (TR = 1.65 sec and TE = 100 msec). In the sagittal plane, MR imaging demonstrated the exact level of the compression (one or multiple levels) and its full extent. In conclusion, MR is the first imaging modality for studying cancer patients with clinically suspected medullary compression and obviates the need for more invasive procedures

  5. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    International Nuclear Information System (INIS)

    Camplesi, M. Jr.; Bortoli, V.C. de; Paula Soares, V. de; Nogueira, R.L.; Zangrossi, H. Jr.

    2012-01-01

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety

  6. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    Energy Technology Data Exchange (ETDEWEB)

    Camplesi, M. Jr. [Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO (Brazil); Bortoli, V.C. de [Departamento de Ciências da Saúde, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, ES (Brazil); Paula Soares, V. de [Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Nogueira, R.L. [Laboratório de Psicologia Comparada, Universidade Estácio de Sá, Rio de Janeiro, RJ (Brazil); Zangrossi, H. Jr. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-08-03

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA{sub A} receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

  7. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy.

    Science.gov (United States)

    Feng, Chengcheng; Xu, Lijuan; Guo, Shiyun; Chen, Qian; Shen, Yuguo; Zang, Deng; Ma, Li

    2018-01-01

    WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC- β 3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC- β 3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC- β 3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC- β 3 mRNA and protein expression in the diabetic DRG of DPN rats.

  8. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Chengcheng Feng

    2018-01-01

    Full Text Available WenTong HuoXue Cream (WTHX-Cream has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN. This study investigated the gene and protein expression of the pain-related molecule PLC-β3 in the dorsal root ganglion (DRG of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats and DPN model (78 rats groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC-β3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC-β3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC-β3 mRNA and protein expression in the diabetic DRG of DPN rats.

  9. Lateral medullary syndrome after a scorpion sting

    Directory of Open Access Journals (Sweden)

    Vineeth Varghese Thomas

    2017-01-01

    Full Text Available Scorpion bites are a common problem in Southern parts of India. The sting of Mesobuthus tamulus belonging to the Buthidae family is known for being fatal. The toxidrome of scorpion sting is known for its effect on the cardiovascular system, and there have been rare reports of cerebrovascular accidents as well. We describe a case of lateral medullary syndrome secondary to scorpion sting. As per the knowledge of the authors, this is the first case report of the same.

  10. Superficial dorsal horn neurons with double spike activity in the rat.

    Science.gov (United States)

    Rojas-Piloni, Gerardo; Dickenson, Anthony H; Condés-Lara, Miguel

    2007-05-29

    Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.

  11. Epidermoid cyst of the conus medullaris: atypical MRI and angiographic features

    International Nuclear Information System (INIS)

    Debray, M.P.; Gaston, A.

    1996-01-01

    We report a 50-year-old man with an epidermoid cyst of the conus medullaris which showed a nodular gadolinium enhancement on MRI and a blush on angiography. These radiological features are compared with pathological examination. (orig.)

  12. Is renal medullary carcinoma the seventh nephropathy in sickle cell ...

    African Journals Online (AJOL)

    Introduction: Previous studies had enlisted renal medullary carcinoma (RMC) as the seventh nephropathy in sickle cell disease (SCD). Clinical experience has contradicted this claim and this study is targeted at refuting or supporting this assumption. Objective: To estimate the prevalence of RMC and describe other renal ...

  13. Cysticercosis of conus medullaris: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Saurabh K Verma

    2014-01-01

    Full Text Available "Neurocysticercosis" - involvement of the central nervous system (CNS by taenia solium, is one of the most common parasitic diseases of the CNS. However, spinal involvement by neurocysticercosis is uncommon. Spinal intramedullary cysticercosis involving the conus medullaris is an uncommon clinical condition, which may mimic an intramedullary tumor and can lead to irreversible neurological deficits if untreated. Here, we report a 31-year-old male patient with cysticercosis in the conus medullaris of the spinal cord. Magnetic resonance imaging revealed a well-defined round intramedullary lesion at D12-L1 vertebral levels, which was homogeneously hypointense on T1WI and hyperintense on T2WI with peripheral edema. Since the patient had progressive neurological deficits, surgery was performed to decompress the spinal cord. Histopathology examination of the removed lesion proved it to be cysticercosis. In this report, we also discuss the principles of diagnosis and treatment of intramedullary cysticercosis in combination with literature review.

  14. Neurotoxic Doses of Chronic Methamphetamine  Trigger Retrotransposition of the Identifier Element  in Rat Dorsal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Anna Moszczynska

    2017-03-01

    Full Text Available Short interspersed elements (SINEs are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH trigger retrotransposition of the identifier (ID element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague‐Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next‐generation sequencing (NGS were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG‐2 site. Both METH regimens were associated with increased intensities in poly(A‐binding protein 1 (PABP1, a SINE regulatory protein‐like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis.

  15. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age

    Science.gov (United States)

    Galbavy, William; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J.

    2015-01-01

    Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not

  16. Kidney Involvement in Systemic Calcitonin Amyloidosis Associated With Medullary Thyroid Carcinoma

    NARCIS (Netherlands)

    Koopman, Timco; Niedlich-den Herder, Cindy; Stegeman, Coen A.; Links, Thera P.; Bijzet, Johan; Hazenberg, Bouke P. C.; Diepstra, Arjan

    A 52-year-old woman with widely disseminated medullary thyroid carcinoma developed nephrotic syndrome and slowly decreasing kidney function. A kidney biopsy was performed to differentiate between malignancy-associated membranous glomerulopathy and tyrosine kinase inhibitor-induced focal segmental

  17. Chronic intermittent hypoxia promotes expression of 3-mercaptopyruvate sulfurtransferase in adult rat medulla oblongata.

    Science.gov (United States)

    Li, Mingqiang; Nie, Lihong; Hu, Yajie; Yan, Xiang; Xue, Lian; Chen, Li; Zhou, Hua; Zheng, Yu

    2013-12-01

    The present experiments were carried out to investigate the expression of 3-mercaptopyruvate sulfurtransferase (3MST) in medulla oblongata of rats and effects of chronic intermittent hypoxia (CIH) on its expression. Sprague Dawley adult rats were randomly divided into two groups, including control (Con) group and CIH group. The endogenous production of hydrogen sulfide (H2S) in medulla oblongata tissue homogenates was measured using the methylene blue assay method, 3MST mRNA and protein expression were analyzed by RT-PCR and Western blotting, respectively, and the expression of 3MST in the neurons of respiratory-related nuclei in medulla oblongata of rats was investigated with immunohistochemical technique. CIH elevated the endogenous H2S production in rat medulla oblongata (Pmedulla oblongata of rats and CIH promoted their expression (P<0.01). Immunohistochemical staining indicated that 3MST existed in the neurons of pre-Bötzinger complex (pre-BötC), hypoglossal nucleus (12N), ambiguous nucleus (Amb), facial nucleus (FN) and nucleus tractus solitarius (NTS) in the animals and the mean optical densities of 3MST-positive neurons in the pre-BötC, 12N and Amb, but not in FN and NTS, were significantly increased in CIH group (P<0.05). In conclusion, 3MST exists in the neurons of medullary respiratory nuclei and its expression can be up-regulated by CIH in adult rat, suggesting that 3MST-H2S pathway may be involved in regulation of respiration and protection on medullary respiratory centers from injury induced by CIH. © 2013.

  18. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats

    Science.gov (United States)

    Sun, Yi-Ning; Luo, Jin-Yan; Rao, Zhi-Ren; Lan, Li; Duan, Li

    2005-01-01

    AIM: To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them. METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS); control group (n = 16), saline was administered intra-luminally. After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP), Fos and GFAP/Fos immunohistochemistry. RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae I-II) of dorsal horn, intermediolateral nucleus (laminae V), posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae IX). Fos-IR (Fos-immunoreactive) neurons were mainly distributed in the deeper laminae of the spinal cord (laminae III-IV, V-VI). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8, 29.2±6.5, 24.1±5.6, P0.05). CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons. With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced. PMID:16097052

  19. Nodular Graves' disease with medullary thyroid cancer.

    Science.gov (United States)

    Khan, Shoukat Hussain; Rather, Tanveer Ahmed; Makhdoomi, Rumana; Malik, Dharmender

    2015-01-01

    Co-existence of thyroid nodules with Graves' disease has been reported in various studies. 10-15% of such nodules harbor thyroid cancer with papillary thyroid cancer being the commonest. Medullary thyroid cancer (MTC) in nodules associated with Graves' disease is rare. On literature survey, we came across 11 such cases reported so far. We report a 62-year-old female with Graves' disease who also had a thyroid nodule that on fine-needle aspiration cytology and the subsequent postthyroidectomy histopathological examination was reported to be MTC.

  20. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    OpenAIRE

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D. K.; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as ...

  1. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots.

    Science.gov (United States)

    Lees, G.

    1996-01-01

    1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551

  2. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    Science.gov (United States)

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  3. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  5. The Effect of Dorsal Hippocampal α2-Adrenegic Receptors on WIN55,212-2 State-Dependent Memory of Passive Avoidance

    Directory of Open Access Journals (Sweden)

    Zarrindast M.R.

    2010-09-01

    Full Text Available Background and Objectives: Cannabinoids are a class of psychoactive compounds that produce a wide array of effects in a large number of species. In the present study, the effects of bilateral intra-CA1 injections of an α2-adrenergic receptor agents, on WIN55,212-2 state-dependent learning were examined in adult male Wistar rats. Methods: The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-down type inhibitory avoidance task, and tested 24h after training to measure step-down latency.Results: Post-training intra-CA1 injection of WIN55,212-2 (0.25 and 0.5µg/rat induced impairment of memory retention. Amnesia produced by post-training WIN55,212-2 (0.5µg/rat was reversed by pre-test administration of the same dose of WIN55,212-2 that is due to a state-dependent effect. Pre-test intra-CA1 injection of clonidine (0.5 and 0.75µg/rat, intra-CA1 improved post-training WIN55,212-2 (0.5µg/rat, intra-CA1-induced retrieval impairment, while pre-test intra-CA1 injection of yohimbine (1µg/rat, intra-CA1 2min before the administration of WIN55,212-2 (0.5µg/rat, intra-CA1 inhibited WIN55,212-2 state-dependent memory. Conclusion: These results suggest that α2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in Win55,212-2-induced amnesia and WIN55,212-2 state-dependent memory.

  6. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  7. The central responsiveness of the acute cerveau isolé rat.

    Science.gov (United States)

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  8. Medullary carcinoma of the thyroid

    International Nuclear Information System (INIS)

    Samuel, A.M.; Pradhan, S.A.; D'Cruz, A.; Shah, D.H.

    1999-01-01

    Medullary thyroid carcinoma is a biologically distinct form of thyroid cancer and accounts for 5-10% of all thyroid neoplasms. Twenty percent of MTC can occur in a familial setting either by itself or as part of the multiple endocrine neoplasm syndromes. A disciplined approach is necessary in the work-up of these patients to rule out coexistent endocrine tumors (pheochromocytomas and parathyroid). Cacitonin is a sensitive tumor marker secreted by MTC that is of prognostic value and important in the follow-up of patients. Surgery is the mainstay of treatment with a total thyroidectomy and centre compartment clearance being the minimum for patients without cervical adenopathy. Radiotherapy has a limited role and is only indicated as a palliative measure in patients with advanced/metastatic disease not amenable to surgery

  9. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model

    Directory of Open Access Journals (Sweden)

    Li Q

    2016-12-01

    Full Text Available Qian Li,1,* Cheng-Hao Guo,2,* Mohammed Ali Chowdhury,1 Tao-Li Dai,1 Wei Han,1,3 1Department of Gastroenterology, Qilu Hospital of Shandong University, 2Department of Pathology, Medical School of Shandong University, 3Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: The transient receptor potential ankyrin-1 (TRPA1 channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH and persistent post-inflammatory visceral hypersensitivity.Methods: We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS or vehicle (n=12 per group. Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry.Results: Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (P<0.05, which corresponded to a lower nociceptive threshold. Expression of TRPA1 in the SDH (especially in the substantia gelatinosa and the colon was significantly greater in the TNBS-treated group than in controls (P<0.05. In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023, and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041.Conclusion: Our results indicate

  10. Radiographic Outcomes of Dorsal Distraction Distal Radius Plating for Fractures With Dorsal Marginal Impaction.

    Science.gov (United States)

    Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A

    2017-04-01

    The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.

  11. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain.

    Science.gov (United States)

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J W; Li, Junfa; Fang, Li

    2007-04-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.

  12. Screening for sporadic or familial medullary thyroid carcinoma. Scintiscan s and radio-immunotherapy

    International Nuclear Information System (INIS)

    Rhmer, V.; Murat, A.

    2000-01-01

    The screening for sporadic medullary thyroid carcinoma relies upon calcitoninemia level, basal or during pentagastrine stimulation test. MEN2 are associated with nearly the third of medullary thyroid carcinoma. In these cases, prognosis of thyroid carcinoma is mainly driven by the tumor status at the time of surgery. Up to date, diagnosis relies upon the genetic screening. Prophylactic thyroidectomy indication may take account of calcitoninemia. Most of the molecules that have been suggested for scintiscan lack of accuracy and large use cannot be recommended. Promising results have been obtained with monoclonal antibodies anti-CEA, particularly with dual targeting antiCEA antiDTPA. This last technique may also be used for radio-guided surgery. Its use for radio-immunotherapy is under investigation. (authors)

  13. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states.

    Science.gov (United States)

    Boroujerdi, Amin; Zeng, Jun; Sharp, Kelli; Kim, Donghyun; Steward, Oswald; Luo, Z David

    2011-03-01

    Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Ca(v)α2δ-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Ca(v)α2δ-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Ca(v)α2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Ca(v)α2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)α2δ-1 protein upregulation by intrathecal Ca(v)α2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)α2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)α2δ-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  15. Vandetanib in advanced medullary thyroid cancer: review of adverse event management strategies

    DEFF Research Database (Denmark)

    Grande, Enrique; Kreissl, Michael C; Filetti, Sebastiano

    2013-01-01

    Vandetanib has recently demonstrated clinically meaningful benefits in patients with unresectable, locally advanced or metastatic medullary thyroid cancer (MTC). Given the potential for long-term vandetanib therapy in this setting, in addition to treatment for disease-related symptoms, effective...

  16. Medullary and papillary carcinoma of the thyroid gland occurring as a collision tumor with lymph node metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Sadat Alavi Mehr

    2011-12-01

    Full Text Available Abstract Introduction Papillary thyroid carcinoma and medullary thyroid carcinoma are two different thyroid neoplasia. The simultaneous occurrence of medullary thyroid carcinoma and papillary thyroid carcinoma as a collison tumor with metastases from both lesions in the regional lymph nodes is a rare phenomenon. Case presentation A 32-year-old Iranian man presented with a fixed anterior neck mass. Ultrasonography revealed two separate thyroid nodules as well as a suspicious neck mass that appeared to be a metastatic lesion. The results of thyroid function tests were normal, but the preoperative calcitonin serum value was elevated. Our patient underwent a total thyroidectomy with neck exploration. Two separate and ill-defined solid lesions grossly in the right lobe were noticed. Histological and immunohistochemical studies of these lesions suggested the presence of medullary thyroid carcinoma and papillary thyroid carcinoma. The lymph nodes isolated from a neck dissection specimen showed metastases from both lesions. Conclusions The concomitant occurrence of papillary thyroid carcinoma and medullary thyroid carcinoma and the exact diagnosis of this uncommon event are important. The treatment strategy should be reconsidered in such cases, and genetic screening to exclude multiple endocrine neoplasia 2 syndromes should be performed. For papillary thyroid carcinoma, radioiodine therapy and thyroid-stimulating hormone suppressive therapy are performed. However, the treatment of medullary thyroid carcinoma is mostly radical surgery with no effective adjuvant therapy.

  17. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells

    International Nuclear Information System (INIS)

    Miao, Xue-Rong; Gao, Xiao-Fei; Wu, Jing-Xiang; Lu, Zhi-Jie; Huang, Zhang-Xiang; Li, Xiao-Qing; He, Cheng; Yu, Wei-Feng

    2010-01-01

    Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. These

  18. Renal cortical and medullary blood flow during modest saline loading in humans

    DEFF Research Database (Denmark)

    Damkjær, M; Vafaee, M; Braad, P E

    2012-01-01

    Renal medullary blood flow (RMBF) is considered an important element of sodium homeostasis, but the experimental evidence is incongruent. Studies in anaesthetized animals generally support the concept in contrast to measurements in conscious animals. We hypothesized that saline-induced natriuresis...

  19. Unusual metastasis of medullary thyroid carcinoma to the breast: A cytological and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Parul Tanwar

    2018-01-01

    Full Text Available Breast metastases are a relatively rare condition and account for approximately 0.5–2% of all breast tumors. Recognition of metastatic tumors in the breast is important because it would prevent unnecessary mutilating surgery and would lead to appropriate treatment of the primary tumor. Breast metastases from medullary thyroid cancer (MTC are very rare with only 21 reported cases in the literature. Some MTCs mimic primary invasive lobular carcinoma of the breast histopathologically and radiologically, making the distinction between the two diagnostically challenging. We present the case of a 45-year-old female presenting with a lump breast, which was later found out to be metastasis from medullary carcinoma thyroid.

  20. Dorsal onlay (Barbagli technique) versus dorsal inlay (Asopa technique) buccal mucosal graft urethroplasty for anterior urethral stricture: a prospective randomized study.

    Science.gov (United States)

    Aldaqadossi, Hussein; El Gamal, Samir; El-Nadey, Mohamed; El Gamal, Osama; Radwan, Mohamed; Gaber, Mohamed

    2014-02-01

    To compare both the dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa for the management of long anterior urethral stricture. From January 2010 to May 2012, a total of 47 patients with long anterior urethral strictures were randomized into two groups. The first group included 25 patients who were managed by dorsal onlay buccal mucosal graft urethroplasty. The second group included 22 patients who were managed by dorsal inlay buccal mucosal graft urethroplasty. Different clinical parameters, postoperative complications and success rates were compared between both groups. The overall success rate in the dorsal onlay group was 88%, whereas in the dorsal inlay group the success rate was 86.4% during the follow-up period. The mean operative time was significantly longer in the dorsal onlay urethroplasty group (205 ± 19.63 min) than in the dorsal inlay urethroplasty group (128 ± 4.9 min, P-value <0.0001). The average blood loss was significantly higher in the dorsal onlay urethroplasty group (228 ± 5.32 mL) than in the dorsal inlay urethroplasty group (105 ± 12.05 mL, P-value <0.0001). The dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa buccal mucosal graft urethroplasty provide similar success rates. The Asopa technique is easy to carry out, provides shorter operative time and less blood loss, and it is associated with fewer complications for anterior urethral stricture repair. © 2013 The Japanese Urological Association.

  1. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    Science.gov (United States)

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (Pmedulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla. © 2016 John Wiley & Sons Australia, Ltd.

  2. Correlation of diffusion-weighted MRI and gross anatomy of rat kidneys

    International Nuclear Information System (INIS)

    Chen Rongfeng; Wu Xiaomei; Chen Xiaoyan; Deng Yu; Li Xinchun; He Jianxun; Li Huiming

    2011-01-01

    Objective: To investigate the feasibility and accuracy of diffusion-weighted MRI in differentiating the cortico-medullary layers of rat kidneys. Methods: Twelve rats underwent MRI using a 1.5 Tesla system including DWI of various b-values, T1WI and T 2 WI sequences. The MR characteristics and thickness of renal cortico-medullary layers compared to those of the gross anatomical layers. Results: On the longitudinal anatomical sections of the kidneys, four parenchymal layers of cortex (CO), the outer (OS) and inner (IS) stripes of the outer medulla (OM), the inner medulla (IM) and renal pelvis could be clearly recognized. The numbers of layers visible on MRI varied with different pulse sequences. Single layers of cortex and medulla were visible on T 1 WI. CO, OM and IM were delineated on T 2 WI. CO, OS, IS and IM were clearly identified on DWI and ADC maps. DWI was significantly superior to T 1 WI and T 2 WI for displaying the renal parenchymal layers (P 0.05) from the measurements on DWI (CO: 1.39±0.15 mm, OS: 1.01±0.17 mm, IS: 1.11±0.19 mm, IM: 1.06±0.10 mm). Different b-values of DWI did not show significant difference in depiction of the parenchyma (P>0.05). Conclusion: Four parenchymal layers shown on DWI correlated well with gross anatomical structure and may be used in imaging study of rat kidneys. (authors)

  3. [Effects of intrauterine cigarette smoking exposure on expression of 3-mercaptopyruvate sulfurtransferase in medulla oblongata of neonatal rats].

    Science.gov (United States)

    Nie, Li-Hong; Hu, Ya-Jie; Li, Xian-Ke; Xue, Lian; Jia, Qing-Yi; Yang, Yi-Wen; Zheng, Yu

    2013-07-01

    To investigate the expression of 3-mercaptopyruvate sulfurtransferase (3MST) in medulla oblongata of neonatal rats and effects of intrauterine cigarette exposure on its expression. Sprague Dawley pregnant rats were randomly divided into 2 groups, control group and cigarette smoke exposure group (n = 8). 3MST mRNA and protein expression in medulla oblongata of neonatal rats were analysed by RT-PCR and Western blot, respectively, and the expression of 3MST in the neurons of respiratory-related nuclei in medulla oblongata of neonatal rats was investigated with immunohistochemical technique. The RT-PCR and Western blot analyses showed that 3MST mRNA and protein were expressed in the medulla oblogata of neonatal rats and intrauterine cigarette exposure promoted their expression (P < 0.05). Immunohistochemical staining indicated that 3MST existed in the neurons of pre-Bötzinger complex (pre-BötC), hypoglossal nucleus (12N), ambiguous nucleus (Amb), facial nucleus (FN) and nucleus tractus solitarius (NTS) in control group of the animals and the mean optical densities of 3MST-positive neurons in the pre-BötC, 12N, Amb and FN, but not NTS, were significantly increased in cigarette smoke exposure group (P < 0.05). 3MST exists in the neurons of medullary respiratory nuclei of neonatal rats and its expression can be up-regulated by intrauterine cigarette exposure, suggesting that the 3MST-H2S pathway may be involved in protection of medullary respiratory centers against injury induced by intrauterine cigarette exposure.

  4. Expression profile of vesicular nucleotide transporter (VNUT, SLC17A9) in subpopulations of rat dorsal root ganglion neurons.

    Science.gov (United States)

    Nishida, Kentaro; Nomura, Yuka; Kawamori, Kanako; Moriyama, Yoshinori; Nagasawa, Kazuki

    2014-09-05

    ATP plays an important role in the signal transduction between sensory neurons and satellite cells in dorsal root ganglia (DRGs). In primary cultured DRG neurons, ATP is known to be stored in lysosomes via a vesicular nucleotide transporter (VNUT), and to be released into the intercellular space through exocytosis. DRGs consist of large-, medium- and small-sized neurons, which play different roles in sensory transmission, but there is no information on the expression profiles of VNUT in DRG subpopulations. Here, we obtained detailed expression profiles of VNUT in isolated rat DRG tissues. On immunohistochemical analysis, VNUT was found in DRG neurons, and was predominantly expressed by the small- and medium-sized DRG ones, as judged upon visual inspection, and this was compatible with the finding that the number of VNUT-positive DRG neurons in IB4-positive cells was greater than that in NF200-positive ones. These results suggest that VNUT play a role in ATP accumulation in DRG neurons, especially in small- and medium-sized ones, and might be involved in ATP-mediated nociceptive signaling in DRGs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  6. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  7. Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats

    Science.gov (United States)

    Rizzo, Francesca; Boeckers, Tobias; Schulze, Ulrike

    2018-01-01

    Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype. PMID:29698507

  8. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  9. Cortico-medullary continuity in bizarre parosteal osteochondromatous proliferation mimicking osteochondroma on imaging

    International Nuclear Information System (INIS)

    Rybak, Leon D.; Abramovici, Luigia; Steiner, German C.; Kenan, Samuel; Posner, Martin A.; Bonar, Fiona

    2007-01-01

    Bizarre parosteal osteochondromatous proliferation (BPOP), or Nora's lesion, is an unusual surface-based lesion of bone found most commonly in the hands and feet. In the original description of the lesion and in all publications that followed, one of the key imaging characteristics used to define this entity was the lack of cortico-medullary continuity with the underlying bone. The authors present 4 unique cases of pathologically proven BPOP in which cortico-medullary continuity with the underlying bone was demonstrated on imaging. It is believed that florid reactive periostitis, BPOP and turret osteochondroma may reflect points along the same continuum with trauma the likely inciting event. The authors suggest that, given this continuum, it may be possible to have BPOP lesions demonstrating overlapping imaging features with osteochondroma. If this is the case, strict adherence to the standard imaging criterion of lack of continuity between the lesion and the underlying bone may lead to misdiagnosis of these unusual cases of BPOP as osteochondromas. (orig.)

  10. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    OpenAIRE

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2?cm, range 1.5?5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture...

  11. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559

    Science.gov (United States)

    2011-01-01

    Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain. PMID:21816108

  12. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat.

    Science.gov (United States)

    Borges-Aguiar, Ana Cristina; Schauffer, Luana Zanoni; de Kloet, Edo Ronald; Schenberg, Luiz Carlos

    2018-05-15

    The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The influence of age on positions of the conus medullaris, Tuffier's line, dural sac, and sacrococcygeal membrane in infants, children, adolescents, and young adults.

    Science.gov (United States)

    Jung, Ji-Yun; Kim, Eun-Hee; Song, In-Kyung; Lee, Ji-Hyun; Kim, Hee-Soo; Kim, Jin-Tae

    2016-12-01

    The purpose of this study was to analyze the distances between the conus medullaris and the Tuffier's line, and between the dural sac and the sacrococcygeal membrane (SCM) in the same pediatric population. Spinal magnetic resonance images and simple X-ray images of 350 patients aged from 1 month to 20 years were reviewed. Positions of the conus medullaris, Tuffier's line, the dural sac, and the SCM were identified. Each position was recorded in relation to the corresponding vertebral body segments. The distances between the conus medullaris and Tuffier's line, and between the dural sac and the SCM, were measured and then assessed according to age using an analysis of variance and a linear regression analysis. The median levels of the conus medullaris and Tuffier's line were in the lower third of L1 [the first lumbar vertebral body] and the middle third of L5, respectively. The levels of the conus medullaris and Tuffier's line were lower in younger populations. The distance between the conus medullaris and Tuffier's line ranged from 1.5 to 4.75 vertebral body height. However, a narrow range of 1.5-2.5 vertebral height was observed only in children younger than 2 years. The level of the dural sac did not differ greatly by age, but the upper limit of the SCM was lower in older populations. The distance between the dural sac and the upper limit of the SCM increased with age. In children, there is a distance of 1.5-4.75 vertebral body height between the conus medullaris and the Tuffier's line. However, these distances were narrower among younger populations. The distance between the dural sac and the upper limit of the SCM increased with age. © 2016 John Wiley & Sons Ltd.

  14. The effects of dorsal bundle lesions on serial and trace conditioning.

    Science.gov (United States)

    Tsaltas, E; Preston, G C; Gray, J A

    1983-12-01

    The performance of rats with neurotoxic lesions of the dorsal ascending noradrenergic bundle (DB) was compared with that of sham-operated control animals under two behavioural conditions. Animals with DB lesions were slower than controls to acquire a classically-conditioned emotional response (conditioned suppression) with a trace interval interposed between the clicker conditioned stimulus (CS) and the shock reinforcer. However, if the latter half of the trace interval was filled by a second stimulus, a light, the DB-lesioned animals acquired conditioned suppression to the clicker faster than did controls under the same conditions. These results are discussed in terms of the attentional theory of DB function.

  15. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Zhang AL

    2017-02-01

    Full Text Available Ailiang Zhang, Kun Wang, Lianghua Ding, Xinnan Bao, Xuan Wang, Xubin Qiu, Jinbo Liu Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China Abstract: Lumbar disc herniation (LDH is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP was implanted in the left L5 dorsal root ganglion (DRG to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC, caspase-1, interleukin (IL-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. Keywords: pain, NLRP3, NF-κB, dorsal root ganglion, nucleus pulposus

  16. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  17. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    2013-01-01

    Full Text Available Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6–24 months. Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  18. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach.

    Science.gov (United States)

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D K; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6-24 months). Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  19. The role of hemosorption detoxication in the modification of medullary hemoroisis caused by acute irradiation injury

    International Nuclear Information System (INIS)

    Nikolaev, V.G.; Rodionova, N.K.; Petrenko, S.V.; Bychkova, N.P.; Pinchouk, L.B.

    2003-01-01

    Using the model of a medullar form of acute radiation disease in dogs, we have shown that early detoxification through extracorporal hemosorption in various modifications is of high efficiency. On the basis of results of experimental research, a high efficiency of detoxification therapy of the medullary form of acute radiation diseases is established. It is revealed that the toxicity of liquid media of the body is reduced after the application of various modifications of extracorporal extracorporal hemosorption. The main indicators of the efficiency of these methods are the considerable relief of the medullary syndrome severity, lower level of clinical symptoms, and high survival rate of animals

  20. Tyrosine Hydroxylase (TH)- and Aromatic-L-Amino Acid Decarboxylase (AADC)-Immunoreactive Neurons of the Common Marmoset (Callithrix jacchus) Brain: An Immunohistochemical Analysis

    Science.gov (United States)

    Karasawa, Nobuyuki; Hayashi, Motoharu; Yamada, Keiki; Nagatsu, Ikuko; Iwasa, Mineo; Takeuchi, Terumi; Uematsu, Mitsutoshi; Watanabe, Kazuko; Onozuka, Minoru

    2007-01-01

    From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC). TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents. PMID:17653300

  1. Renal cortical and medullary blood flow responses to altered NO availability in humans

    DEFF Research Database (Denmark)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L

    2010-01-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were......-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which...... the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans....

  2. [3H]AVP binding to rat renal tubular receptors during long-term treatment with an antagonist of arginine vasopressin

    International Nuclear Information System (INIS)

    Mah, S.C.; Whitebread, S.E.; De Gasparo, M.; Hofbauer, K.G.

    1988-01-01

    The interaction of an antagonist of arginine vasopressin (AVP), d(CH2)5-D-Tyr(Et)VAVP, with renal tubular V2 receptors were studied in medullary membrane preparations from kidneys of Sprague-Dawley and Brattleboro rats. In both rat strains, V2 receptors had comparable KD and Bmax values for binding of [3H]AVP. In vitro studies revealed that the V2-antagonist was more potent than cold AVP in displacing [3H]AVP. In vivo treatment of Sprague-Dawley rats with the antagonist over one week resulted only in a transient state of diabetes insipidus (DI). No specific [3H]AVP binding was detectable throughout the period of administration. Chronic treatment of Brattleboro rats resulted in a complete normalization of water intake. This agonistic effect was also associated with undetectable [3H]AVP binding. After stopping the infusion of d(CH2)5-D-Tyr(Et)VAVP, Bmax values tended to rise but had still not reached base line values after 6 days. In contrast, the chronic infusion of AVP in Brattleboro rats resulted in a reduction in water intake which was accompanied by a decreased Bmax. [3H]AVP binding remained detectable during the entire treatment period. Thereafter Bmax was restored to base line values within 2 days of stopping the infusion. These results suggest that d(CH2)5-D-Tyr(Et)VAVP has a high affinity for V2 receptors in both Sprague-Dawley and Brattleboro rats. Its rate of dissociation from the receptor appears to be much slower than that of AVP. In Brattleboro rats, the binding of d(CH2)5-D-Tyr(Et)VAVP leads to an antidiuretic response. In Sprague-Dawley rats, a transient diuretic response is followed by a progressive normalization in water intake. This occurs despite persistent and complete blockade of renal medullary V2 receptors

  3. Diagnosis of medullary thyroid cancer and prognostic factors of disease aggressiveness

    Directory of Open Access Journals (Sweden)

    D O Gazizova

    2013-12-01

    Full Text Available In the study were enrolled 137 patients with medullary thyroid cancer (MTC. Low 35%-sensitivity of FNAC and high accuracy of basal calcitonin in MTC diagnostics were found. Mutation analysis of the RET pro- tooncogene in familial and sporadic MTC, RAS -gene in sporadic MTC were done. The correlation between type of the mutation and disease aggressiveness was found.

  4. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    Science.gov (United States)

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  5. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    Science.gov (United States)

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  6. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    Science.gov (United States)

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  7. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  8. Prominent deep medullary veins: a predictive biomarker for stroke risk from transient ischemic attack?

    Science.gov (United States)

    Duan, Yang; Xu, Zhihua; Li, Hongyi; Cai, Xiaonan; Chang, Cancan; Yang, Benqiang

    2018-05-01

    Background Deep medullary veins (DMVs) are a biomarker of severity and prognosis in patients with acute cerebral infarction. However, their clinical significance remains unclear in patients with transient ischemic attack (TIA). Purpose To determine whether prominent deep medullary veins (PDMVs) are a predictive biomarker for stroke risk after TIA. Material and Methods Clinical and imaging data of 49 patients with TIA and 49 sex- and age-matched controls were studied. PDMVs were defined as DMVs with a score of 3 (TDMVs) or asymmetric DMVs (ADMVs), and the relationship between PDMVs and clinical features was analyzed. The DMV score based on susceptibility weighted imaging (SWI) ranged from 0 (not visible) to 3 (very prominent) and was calculated for both hemispheres separately. A different score in each hemisphere was defined as ADMVs and an equal score was defined as symmetric DMVs. The asymmetry and score of DMVs were compared between the two groups and with respect to the time from TIA onset to imaging analysis. Results Agreement between neuroradiologists for the DMV asymmetry/score on SWI was excellent. The frequency of ADMVs and TDMVs was significantly higher in patients with TIA than controls ( P  0.05); PDMVs were not correlated with age, blood pressure, or diabetes. However, PDMVs were associated with the ABCD2 score (≥4), clinical symptoms, and duration of TIA (≥10 min). Conclusion Prominent deep medullary veins is a predictive biomarker for the risk of stroke in many patients having suffered from TIA.

  9. Personal authentication through dorsal hand vein patterns

    Science.gov (United States)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  10. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion.

    Science.gov (United States)

    Moreno, Carol; Llinás, María T; Rodriguez, Francisca; Moreno, Juan M; Salazar, F Javier

    2016-03-01

    Regulation of medullary blood flow (MBF) is essential in maintaining renal function and blood pressure. However, it is unknown whether outer MBF (OMBF) and papillary blood flow (PBF) are regulated independently when extracellular volume (ECV) is enhanced. The aim of this study was to determine whether OMBF and PBF are differently regulated and whether there is an interaction between nitric oxide (NO), prostaglandins (PGs) and angiotensin II (Ang II) in regulating OMBF and PBF when ECV is enhanced. To achieve these goals, OMBF and PBF were measured by laser-Doppler in volume-expanded rats treated with a cyclooxygenase inhibitor (meclofenamate, 3 mg/kg) and/or a NO synthesis inhibitor (L-nitro-arginine methyl ester (L-NAME), 3 μg/kg/min) and/or Ang II (10 ng/kg/min). OMBF was unchanged by NO or PGs synthesis inhibition but decreased by 36 % (P blood flows to the outer medulla and renal papilla are differently regulated and showing that there is a complex interaction between NO, PGs and Ang II in regulating OMBF and PBF when ECV is enhanced.

  11. Effectiveness of Neuromuscular Electrical Stimulation on Patients With Dysphagia With Medullary Infarction.

    Science.gov (United States)

    Zhang, Ming; Tao, Tao; Zhang, Zhao-Bo; Zhu, Xiao; Fan, Wen-Guo; Pu, Li-Jun; Chu, Lei; Yue, Shou-Wei

    2016-03-01

    To evaluate and compare the effects of neuromuscular electrical stimulation (NMES) acting on the sensory input or motor muscle in treating patients with dysphagia with medullary infarction. Prospective randomized controlled study. Department of physical medicine and rehabilitation. Patients with dysphagia with medullary infarction (N=82). Participants were randomized over 3 intervention groups: traditional swallowing therapy, sensory approach combined with traditional swallowing therapy, and motor approach combined with traditional swallowing therapy. Electrical stimulation sessions were for 20 minutes, twice a day, for 5d/wk, over a 4-week period. Swallowing function was evaluated by the water swallow test and Standardized Swallowing Assessment, oral intake was evaluated by the Functional Oral Intake Scale, quality of life was evaluated by the Swallowing-Related Quality of Life (SWAL-QOL) Scale, and cognition was evaluated by the Mini-Mental State Examination (MMSE). There were no statistically significant differences between the groups in age, sex, duration, MMSE score, or severity of the swallowing disorder (P>.05). All groups showed improved swallowing function (P≤.01); the sensory approach combined with traditional swallowing therapy group showed significantly greater improvement than the other 2 groups, and the motor approach combined with traditional swallowing therapy group showed greater improvement than the traditional swallowing therapy group (Ptherapy and motor approach combined with traditional swallowing therapy groups than in the traditional swallowing therapy group, and the sensory approach combined with traditional swallowing therapy and motor approach combined with traditional swallowing therapy groups showed statistically significant differences (P=.04). NMES that targets either sensory input or motor muscle coupled with traditional therapy is conducive to recovery from dysphagia and improves quality of life for patients with dysphagia with

  12. Neuroradiological evaluation of dorsal cyst malformations

    International Nuclear Information System (INIS)

    Utsunomiya, Hidetsuna; Hayashi, Takashi; Hashimoto, Takeo; Matsuishi, Toyojiro; Okudera, Toshio.

    1988-01-01

    We discussed six cases with dorsal cyst malformations listing their neuroradiological observations and proposed to differentiate between the holosphere and hemisphere as defined by Yokota (1984). The cases were divided into holospheric and hemispheric groups depending on the continuity of their frontal lobe midlines. Cases 1, 2 and 3 were placed in the holospheric group because of their unseparated frontal lobe sbeneath the partially formed anterior interhemispheric fissures. Cases 4, 5 and 6 were grouped in the hemisphere due to the completion of the interhemispheric fissures. There has been a tendency in recent years for most cases of cerebral malformations having an endogenous dorsal cyst with monoventricular configuration to be diagnosed as holoprosencephaly. However, we believe that only patients who have a dorsal cyst in the holospheric brain should be included, and the others in the hemispheric brain, which is capable of completing hemispheric cleavage, should not. Therefore, we emphasize the importance of correctly identifying the holospheric state in the dorsal cyst malformations for diagnosing holoprosencephaly. (author)

  13. Bilateral Medial Medullary Stroke: A Challenge in Early Diagnosis

    Directory of Open Access Journals (Sweden)

    Amir M. Torabi

    2013-01-01

    Full Text Available Bilateral medial medullary stroke is a very rare type of stroke, with catastrophic consequences. Early diagnosis is crucial. Here, I present a young patient with acute vertigo, progressive generalized weakness, dysarthria, and respiratory failure, who initially was misdiagnosed with acute vestibular syndrome. Initial brain magnetic resonance imaging (MRI that was done in the acute phase was read as normal. Other possibilities were excluded by lumbar puncture and MRI of cervical spine. MR of C-spine showed lesion at medial medulla; therefore a second MRI of brain was requested, showed characteristic “heart appearance” shape at diffusion weighted (DWI, and confirmed bilateral medial medullary stroke. Retrospectively, a vague-defined hyperintense linear DWI signal at midline was noted in the first brain MRI. Because of the symmetric and midline pattern of this abnormal signal and similarity to an artifact, some radiologists or neurologists may miss this type of stroke. Radiologists and neurologists must recognize clinical and MRI findings of this rare type of stroke, which early treatment could make a difference in patient outcome. The abnormal DWI signal in early stages of this type of stroke may not be a typical “heart appearance” shape, and other variants such as small dot or linear DWI signal at midline must be recognized as early signs of stroke. Also, MRI of cervical spine may be helpful if there is attention to brainstem as well.

  14. Medullary sponge kidney and isolated hemihyperplasia

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2014-01-01

    Full Text Available The term hemihyperplasia refers to an enlargement of body parts beyond the normal asymmetry. Hemihyperplasia can be isolated or associated with various well-described malformation syndromes. Medullary sponge kidney (MSK has been described with isolated and syndromic hemihyperplasia; the actual prevalence is not known The hemi hypertrophy can be so subtle that it may be easily overlooked. MSK need not be limited to the side of hemihyperplasia - most often it is bilateral. Around 33 cases has been reported from different parts of the world of which 15 cases are isolated hemi hyperplasia (IHH, the remaining occurring in the context of various malformation syndromes So far only one case has been reported from India. We report a case of IHH involving right side of the body, recurrent renal stones, incomplete distal renal tubular acidosis hypercalciuria and imaging showing bilateral MSKs.

  15. The Locus Coeruleus–Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yun-Fei Lü

    2017-09-01

    Full Text Available Empathy for pain (vicariously felt pain, an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD in pain to a naïve cagemate observer (CO after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO after dyadic social interaction with a non-cagemate demonstrator (NCD in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE and increased neuronal activity in the locus coeruleus (LC in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG. Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous

  16. Neurokinin-1 receptor blocker CP-99 994 improved emesis induced by cisplatin via regulating the activity of gastric distention responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in rats.

    Science.gov (United States)

    Sun, X; Xu, L; Guo, F; Luo, W; Gao, S; Luan, X

    2017-10-01

    Nowadays, chemotherapy induced nausea and vomiting (CINV) is still common in patients with cancer. It was reported that substance P mediated CINV via neurokinin-1 (NK 1 ) receptor and antagonists of NK 1 receptor has been proved useful for treating CINV but the mechanism are not fully understood. This study aimed to examine the role of NK 1 receptor blocker, CP-99 994, when administrated into dorsal motor nucleus of vagus (DMNV), on the cisplatin-induced emesis in rats and the possible mechanism. Rats' kaolin intake, food intake, and bodyweight were recorded every day; gastric contraction activity was recorded in conscious rats through a force transducer implanted into the stomach; gastric emptying was monitored using the phenol red method; single unit extracellular firing in the DMNV were recorded. DMNV microinjection of CP-99 994 reduced the changes of increased kaolin consumption and suppressed food intake in cisplatin-treated rats; enhanced the gastric contraction activity dose-dependently in control and cisplatin-treated rats but enhanced gastric emptying only in cisplatin-treated rats; reduced the firing rate of gastric distention inhibited (GD-I) neurons but increased the firing rate of GD excited (GD-E) neurons in the DMNV. The effects of CP-99 994 on gastric motility and neuronal activity were stronger in cisplatin-treated rats than those of control rats. Our results suggested that CP-99 994 could improve emesis induced by cisplatin by regulating gastric motility and gastric related neuronal activity in the DMNV. © 2017 John Wiley & Sons Ltd.

  17. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  18. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  19. The effects of intracranial administration of hallucinogens on operant behavior in the rat. I. Lysergic acid diethylamide.

    Science.gov (United States)

    Mokler, D J; Stoudt, K W; Sherman, L C; Rech, R H

    1986-10-01

    Lysergic acid diethylamide (LSD) was infused in one microliter volumes into discrete brain regions of rats trained to press a bar for food reinforcement. The sites were chosen as major areas of the brain 5-hydroxytryptamine (5HT) system: the dorsal and median raphe nuclei, dorsal hippocampus, lateral habenular nuclei, and the prefrontal cortex. Following training in a fixed ratio-40 (FR-40) operant behavior rats were implanted for the lateral habenular nuclei, dorsal hippocampus and the prefrontal cortex. Following recovery from surgery, LSD (8.6 to 86 micrograms) or vehicle was infused immediately before a daily operant session. Infusion of vehicle was inactive. LSD produced a dose-dependent decrease in reinforcements and an increase in 10-sec periods of non-responding (pause intervals). LSD was significantly more potent when infused into the dorsal raphe nucleus than following intracerebroventricular (ICV) administration, whereas LSD was less potent when infused into the median raphe, lateral habenula or dorsal hippocampus. ED50s for increases in pause intervals were 9, 13, 23, 25, and 54 micrograms for infusion into the dorsal raphe, prefrontal cortex, dorsal hippocampus, median raphe, and lateral habenular nuclei, respectively. The ED50 for ICV administration in a previous study was 15 micrograms. The ED50 of LSD placed into the prefrontal cortex did not differ significantly from that of the ICV infusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Bilateral Medial Medullary Infarction with Nondominant Vertebral Artery Occlusion.

    Science.gov (United States)

    Zhang, Lei; Zhang, Gui-lian; Du, Ju-mei; Ma, Zhu-lin

    2015-09-01

    Bilateral medial medullary infarction (MMI) is a rare stroke subtype. Here, we report a case with bilateral MMI caused by nondominant vertebral artery occlusion confirmed by brain digital subtraction angiography and magnetic resonance imaging basi-parallel-anatomical-scanning. We highlight that anterior spinal arteries could originate from a unilateral vertebral artery (VA). Radiologists and neurologists should pay attention to the nondominant VA as bilateral MMI may be induced by occlusion of nondominant VA that supplies the bilateral anteromedial territories of the medulla. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Suramin affects capsaicin responses and capsaicin-noxious heat interactions in rat dorsal root ganglia neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Vyklický st., Ladislav; Orkand, R. K.

    2002-01-01

    Roč. 51, č. 2 (2002), s. 193-198 ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : dorsal root ganglia neurones * vanilloid receptor * capsaicin-noxious heat Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  2. Protective action of tetramethylpyrazine on the medulla oblongata in rats with chronic hypoxia.

    Science.gov (United States)

    Ding, Yan; Hou, Xuefei; Chen, Li; Li, Hui; Tang, Yuhong; Zhou, Hua; Zhao, Shu; Zheng, Yu

    2013-01-01

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii Frantchat (Chuan Xiong), plays an important role in neuroprotection. However, the protective effect of TMP on the medulla oblongata, the most important region of the brain for cardiovascular and respiratory control, during chronic hypoxia remains unclear. In this study, we examined the neuroprotective effect of TMP on the medulla oblongata after chronic hypoxic injury in rats. Male Sprague-Dawley rats were randomly divided into four groups: control group, TMP group, chronic hypoxia group, and chronic hypoxia+TMP group. Rats were exposed to hypoxia (10% (v/v) O₂) or normoxia for 6 h daily for 14 days. TMP (80 mg/kg) or vehicle (saline) was injected intraperitoneally 30 min before experimentation. Loss of neurons in the pre-Bötzinger complex, the nucleus ambiguus, the nucleus tractus solitarius, the hypoglossal nucleus and the facial nucleus were evaluated by Nissl staining. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured, and apoptosis was monitored using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The level of Bcl-2 mRNA and Bax mRNA was quantitatively measured by RT-PCR analysis. TMP protected Nissl bodies of neurons from injury in all nuclei observed, and reduced the loss of neurons in the nucleus ambiguus, the nucleus tractus solitarius, and the hypoglossal nucleus in rats subjected to chronic hypoxia. TMP upregulated SOD activity and inhibited the increase in MDA content in the medulla oblongata of hypoxic rats. In addition, TMP decreased the rate of apoptosis index (the percentage of apoptotic cells against the total number of cells) in all medullary structures examined, excepting the nucleus ambiguus and inhibited the decrease in Bcl-2 mRNA levels in the medulla oblongata following hypoxia. Our findings indicate that TMP may protect the medullary structures that are involved in

  3. Bilateral paramedian medullary infarction presenting subacute tetraplegia 14 years after irradiation for suprapharyngeal cancer. A case report

    International Nuclear Information System (INIS)

    Doi, Hikaru; Shigeto, Hiroshi; Kawano, Yuji; Ohyagi, Yasumasa; Kira, Jun-ichi

    2007-01-01

    A 52-year-old man presenting with progressive tetraplegia and dysesthsia over a period of 2 weeks was initially diagnosed as cervical myelitis. However, MRI taken 10 days later revealed bilateral paramedian medullary infarction. CT angiography showed calcification of bilateral vertebral arteries located within the field irradiated for superior pharyngeal cancer 14 years previously. Radiation therapy can facilitate atherosclerotic changes and the incidences of cerebral infarction increase after head and neck irradiation. Clinicians need to be aware that bilateral paramedian medullary infarction can occur after irradiation of the head and neck. Clinical manifestations can be similar to cervical myelitis with subacute progressive course. (author)

  4. Extramedullary plasmacytoma of thyroid - a mimicker of medullary carcinoma at fine needle aspiration cytology: A case report

    Directory of Open Access Journals (Sweden)

    Vidya Bhat

    2014-01-01

    Full Text Available A rare case of extra medullary plasmacytoma (EMP of thyroid gland in a 60 year old male, occurring against a background of Hashimoto′s thyroiditis is reported. The fine needle aspiration cytology (FNAC initially done as an outpatient procedure, showed atypical epithelial cells on a background of amyloid. Considering these findings we gave a diagnosis of medullary carcinoma. Histology of the total thyroidectomy specimen showed an extensive infiltration of neoplastic plasma cells against a background of Hashimoto′s thyroiditis, with a bizarre Hurthle cell change. Immunohistochemistry on the histology sections confirmed the diagnosis of solitary plasmacytoma of thyroid against a background of Hashimoto′s thyroiditis.

  5. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    Science.gov (United States)

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  6. Imaging of renal medullary carcinoma in children and young adults: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Jesse K.; Khanna, Geetika [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Mullen, Elizabeth A. [Children' s Hospital Boston/Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA (United States); Cajaiba, Mariana M.; Perlman, Elizabeth J. [Northwestern University Feinberg School of Medicine, Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children' s Hospital of Chicago, Chicago, IL (United States); Smith, Ethan A. [University of Michigan Health System, Section of Pediatric Radiology, C. S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); Servaes, Sabah [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Geller, James I. [University of Cincinnati, Division of Pediatric Oncology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Ehrlich, Peter F. [University of Michigan Health System, Section of Pediatric Surgery, C. S. Mott Children' s Hospital, Department of Surgery, Ann Arbor, MI (United States); Cost, Nicholas G. [University of Colorado School of Medicine, Division of Urology, Department of Surgery, Aurora, CO (United States); Dome, Jeffrey S. [Children' s National Medical Center, Division of Pediatric Oncology, Washington, DC (United States); Fernandez, Conrad V. [Dalhousie University and IWK Health Centre, Department of Pediatrics, Halifax, NS (Canada)

    2017-11-15

    Renal medullary carcinoma is a rare renal malignancy of childhood. There are no large series describing the imaging appearance of renal medullary carcinoma in children. To characterize the clinical and imaging features of pediatric renal medullary carcinoma at initial presentation. We retrospectively analyzed images of 25 pediatric patients with renal medullary carcinoma enrolled in the Children's Oncology Group renal tumors classification, biology and banking study (AREN03B2) from March 2006 to August 2016. Imaging findings of the primary mass, and patterns of locoregional and distant spread were evaluated in correlation with pathological and surgical findings. Median age at presentation was 13 years (range: 6-21 years), with a male predominance (3.2:1). The overall stage of disease at initial presentation was stage 1 in 1, stage 2 in 2 and stage 4 in 22. Maximum diameter of the primary renal mass ranged from 1.6 to 10.3 cm (mean: 6.6 cm) with a slight right side predilection (1.5:1). Enlarged (>1 cm short axis) retroperitoneal lymph nodes were identified at initial staging in 20/25 (80%) cases, 10 of which were histologically confirmed while the others did not undergo surgical sampling. Enlarged lymph nodes were also identified in the mediastinum (14/25; 56%) and supraclavicular regions (4/25; 16%). Metastatic disease was present in the lungs in 19/25 (76%) and liver in 6/25 (24%). The pattern of lung metastases was pulmonary lymphangitic carcinomatosis: 10 cases (9 bilateral, 1 unilateral), pulmonary nodules with indistinct margins: 6 cases, pulmonary nodules with distinct margins: 2 cases, while 1 case had pulmonary nodules with both indistinct and distinct margins. Pulmonary lymphangitic carcinomatosis was pathologically confirmed in 4/10 cases. All cases with pulmonary lymphangitic carcinomatosis had associated enlarged mediastinal lymph nodes. Renal medullary carcinoma in children and young adults presents at an advanced local and distant stage in the

  7. Imaging of renal medullary carcinoma in children and young adults: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Sandberg, Jesse K.; Khanna, Geetika; Mullen, Elizabeth A.; Cajaiba, Mariana M.; Perlman, Elizabeth J.; Smith, Ethan A.; Servaes, Sabah; Geller, James I.; Ehrlich, Peter F.; Cost, Nicholas G.; Dome, Jeffrey S.; Fernandez, Conrad V.

    2017-01-01

    Renal medullary carcinoma is a rare renal malignancy of childhood. There are no large series describing the imaging appearance of renal medullary carcinoma in children. To characterize the clinical and imaging features of pediatric renal medullary carcinoma at initial presentation. We retrospectively analyzed images of 25 pediatric patients with renal medullary carcinoma enrolled in the Children's Oncology Group renal tumors classification, biology and banking study (AREN03B2) from March 2006 to August 2016. Imaging findings of the primary mass, and patterns of locoregional and distant spread were evaluated in correlation with pathological and surgical findings. Median age at presentation was 13 years (range: 6-21 years), with a male predominance (3.2:1). The overall stage of disease at initial presentation was stage 1 in 1, stage 2 in 2 and stage 4 in 22. Maximum diameter of the primary renal mass ranged from 1.6 to 10.3 cm (mean: 6.6 cm) with a slight right side predilection (1.5:1). Enlarged (>1 cm short axis) retroperitoneal lymph nodes were identified at initial staging in 20/25 (80%) cases, 10 of which were histologically confirmed while the others did not undergo surgical sampling. Enlarged lymph nodes were also identified in the mediastinum (14/25; 56%) and supraclavicular regions (4/25; 16%). Metastatic disease was present in the lungs in 19/25 (76%) and liver in 6/25 (24%). The pattern of lung metastases was pulmonary lymphangitic carcinomatosis: 10 cases (9 bilateral, 1 unilateral), pulmonary nodules with indistinct margins: 6 cases, pulmonary nodules with distinct margins: 2 cases, while 1 case had pulmonary nodules with both indistinct and distinct margins. Pulmonary lymphangitic carcinomatosis was pathologically confirmed in 4/10 cases. All cases with pulmonary lymphangitic carcinomatosis had associated enlarged mediastinal lymph nodes. Renal medullary carcinoma in children and young adults presents at an advanced local and distant stage in the

  8. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    Science.gov (United States)

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury.

    Science.gov (United States)

    Weisshaar, Christine L; Dong, Ling; Bowman, Alex S; Perez, Federico M; Guarino, Benjamin B; Sweitzer, Sarah M; Winkelstein, Beth A

    2010-12-01

    There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal and glial activation in an adolescent model of mechanical facet joint injury. A bilateral C6-C7 facet joint distraction was imposed in an adolescent rat and biomechanical metrics were measured during injury. Following injury, forepaw mechanical hyperalgesia was measured, and protein kinase C-epsilon (PKCɛ) and metabotropic glutamate receptor-5 (mGluR5) expression in the dorsal root ganglion and markers of spinal glial activation were assessed. Joint distraction induced significant mechanical hyperalgesia during the 7 days post-injury (p capsule during injury were 32.8 ± 12.9%, which were consistent with the strains associated with comparable degrees of hypersensitivity in the adult rat. These results suggest that adolescents may have a lower tissue tolerance to induce pain and associated nociceptive response than do adults.

  10. Sunscreen Use on the Dorsal Hands at the Beach

    International Nuclear Information System (INIS)

    Warren, D. B.; Hobbs, J. B.; Jr, R. F. W.; Riahi, R. R.

    2013-01-01

    Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate responded understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49%) applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, ρ=0.04 ). Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (ρ=0.001 ). Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands.

  11. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  12. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    Science.gov (United States)

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  13. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Guang-Yi Bai

    2014-12-01

    Full Text Available Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg. Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily. Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro was greatly attenuated in the ICA II-treated group (p < 0.01. ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes.

  14. Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle.

    Science.gov (United States)

    Liu, Yia-Ping; Huang, Teng-Shun; Tung, Che-Se; Lin, Chen-Cheng

    2015-01-02

    Atomoxetine, a noradrenaline reuptake inhibitor (NRI), which is a non-stimulating medicine that is used for the treatment of patients with attention deficit hyperactivity disorder (ADHD), has been found to be effective in reducing behavioral impulsivity in rodents, but its efficacy in a dorsal noradrenergic ascending bundle (DNAB)-lesioned condition has not been examined. The present study aimed to investigate the effects of DNAB lesions on attention and impulsive control in the five-choice serial reaction time task (5-CSRTT) in rats treated with atomoxetine. The drug-induced changes in noradrenaline efflux in the medial prefrontal cortex were also measured. 5-CSRTT-trained rats were included in one of the following groups: N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)/Atomoxetine, Sham/Atomoxetine, DSP-4/Saline, or Sham/Saline. Acute atomoxetine (0.3 mg/kg) was administered 14 days after the DSP-4 regime. The behavioral testing included manipulations of the inter-trial interval (ITI), stimulation duration and food satiety. In vivo microdialysis of the noradrenaline efflux in the medial prefrontal cortex and the expression of the noradrenaline transporter (NAT) in the DNAB areas were examined. Atomoxetine reduced impulsivity and perseveration in the long-ITI condition with no effects on any other variables. This phenomenon was not influenced by DSP-4 pre-treatment. The DNAB-lesioned rats had lower noradrenaline efflux in the medial prefrontal cortex. DSP-4 caused no change in NAT expression in the DNAB areas. These findings suggested that noradrenaline reuptake may not be exclusively responsible for the atomoxetine effects in adjusting impulsivity. The role of DNAB should also be considered, particularly in conditions requiring greater behavioral inhibition. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus.

    Science.gov (United States)

    Chawla, M K; Sutherland, V L; Olson, K; McNaughton, B L; Barnes, C A

    2018-02-01

    Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis. © 2017 Wiley Periodicals, Inc.

  16. Catecholamine secretion by chemical hypoxia in guinea-pig, but not rat, adrenal medullary cells: differences in mitochondria.

    Science.gov (United States)

    Harada, K; Endo, Y; Warashina, A; Inoue, M

    2015-08-20

    The effects of mitochondrial inhibitors (CN(-), a complex IV inhibitor and CCCP, protonophore) on catecholamine (CA) secretion and mitochondrial function were explored functionally and biochemically in rat and guinea-pig adrenal chromaffin cells. Guinea-pig chromaffin cells conspicuously secreted CA in response to CN(-) or CCCP, but rat cells showed a little, if any, secretory response to either of them. The resting metabolic rates in rat adrenal medullae did not differ from those in guinea-pig adrenal medullae. On the other hand, the time course of depolarization of the mitochondrial membrane potential (ΔΨm) in guinea-pig chromaffin cells in response to CN(-) was slower than that in rat chromaffin cells, and this difference was abolished by oligomycin, an F1F0-ATPase inhibitor. The extent of CCCP-induced decrease in cellular ATP in guinea-pig chromaffin cells, which was indirectly measured using a Mg(2+) indicator, was smaller than that in rat chromaffin cells. Relative expression levels of F1F0-ATPase inhibitor factor in guinea-pig adrenal medullae were smaller than in rat adrenal medullae, and the opposite was true for F1F0-ATPase α subunit. The present results indicate that guinea-pig chromaffin cells secrete more CA in response to a mitochondrial inhibitor than rat chromaffin cells and this higher susceptibility in the former is accounted for by a larger extent of reversed operation of F1F0-ATPase with the consequent decrease in ATP under conditions where ΔΨm is depolarized. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Agenesis of the dorsal pancreas

    Science.gov (United States)

    Schnedl, Wolfgang J; Piswanger-Soelkner, Claudia; Wallner, Sandra J; Krause, Robert; Lipp, Rainer W

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al (World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal pancreas in humans. Agenesis of the dorsal pancreas, a rare congenital pancreatic malformation, is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation, hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families, more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease. PMID:19140241

  18. Emergent properties during dorsal closure in Drosophila morphogenesis

    International Nuclear Information System (INIS)

    Peralta, X G; Toyama, Y; Edwards, G S; Kiehart, D P

    2008-01-01

    Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics

  19. The role of serotoninergic neurons in rats agressive behaviour.

    Science.gov (United States)

    Czlonkowski, A; Kostowski, W; Markowska, L; Markiewicz, L; Wiśniewska, I

    1975-10-01

    Lesions of the dorsal and medial raphe nuclei that caused a marked decrease of the 5-HT level in the forebrain induced in groupped rats intraspecies aggressiveness but failed to increase mouse-killing behaviour. In rats isolated for 3 weeks lesions of the raphe nuclei did not change behaviour of "killers" and natural "non-killers". The role of 5-HT in mechanism of the aggressive behaviour is discussed.

  20. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    Science.gov (United States)

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  1. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  2. Structural and molecular alterations of primary afferent fibres in the spinal dorsal horn in vincristine-induced neuropathy in rat.

    Science.gov (United States)

    Thibault, Karine; Rivals, Isabelle; M'Dahoma, Saïd; Dubacq, Sophie; Pezet, Sophie; Calvino, Bernard

    2013-11-01

    Vincristine is one of the most common anti-cancer drug therapies administered for the treatment of many types of cancer. Its dose-limiting side effect is the emergence of peripheral neuropathy, resulting in chronic neuropathic pain in many patients. This study sought to understand the mechanisms underlying the development of neuropathic pain by vincristine-induced neurotoxicity. We focused on signs of functional changes and revealed that deep layers of the spinal cord (III-IV) experience increased neuronal activity both in the absence of peripheral stimulation and, as a result of tactile mechanical stimulations. These laminae and superficial laminae I-II were also subject to structural changes as evidenced by an increase in immunoreactivity of Piccolo, a marker of active presynaptic elements. Further investigations performed, using DNA microarray technology, describe a large number of genes differentially expressed in dorsal root ganglions and in the spinal dorsal horn after vincristine treatment. Our study describes an important list of genes differentially regulated by vincristine treatment that will be useful for future studies and brings forward evidence for molecular and anatomical modifications of large diameter sensory neurons terminating in deep dorsal horn laminae, which could participate in the development of tactile allodynia.

  3. Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury.

    Science.gov (United States)

    Zvarova, K; Murray, E; Vizzard, M A

    2004-08-02

    Alterations in the expression of the neuropeptide galanin were examined in micturition reflex pathways 6 weeks after complete spinal cord transection (T8). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (4) the lateral collateral pathway in lumbosacral spinal segments. Densitometry analysis demonstrated significant increases (P < or = 0.001) in galanin immunoreactivity (IR) in these regions of the S1 spinal cord after spinal cord injury (SCI). Changes in galanin-IR were not observed at the L4-L6 segments except for an increase in galanin-IR in the dorsal commissure in the L4 segment. In contrast, decreases in galanin-IR were observed in the L1 segment. The number of galanin-IR cells increased (P < or = 0.001) in the L1 and S1 dorsal root ganglia (DRG) after SCI. In all DRG examined (L1, L2, L6, and S1), the percentage of bladder afferent cells expressing galanin-IR significantly increased (4-19-fold) after chronic SCI. In contrast, galanin expression in nerve fibers in the urinary bladder detrusor and urothelium was decreased or eliminated after SCI. Expression of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was altered in the spinal cord after SCI. A significant increase in BDNF expression was present in spinal cord segments after SCI. In contrast, NGF expression was only increased in the spinal segments adjacent and rostral to the transection site (T7-T8), whereas spinal segments (T13-L1; L6-S1), distal to the transection site exhibited decreased NGF expression. Changes in galanin expression in micturition pathways after SCI may be mediated by changing neurotrophic factor expression, particularly BDNF. These changes may contribute to

  4. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    International Nuclear Information System (INIS)

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [ 3 H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  5. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P.

    Science.gov (United States)

    Smith, Ewan St John; Blass, Gregory R C; Lewin, Gary R; Park, Thomas J

    2010-05-24

    Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  6. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P

    Directory of Open Access Journals (Sweden)

    Lewin Gary R

    2010-05-01

    Full Text Available Abstract Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  7. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  8. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct

    DEFF Research Database (Denmark)

    Odgaard, Elvin V. P.; Prætorius, Helle; Leipziger, Jens Georg

    2009-01-01

    is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow...

  9. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain.

    Science.gov (United States)

    Meng, Bo; Shen, Lu-Lu; Shi, Xiao-Ting; Gong, Yong-Sheng; Fan, Xiao-Fang; Li, Jun; Cao, Hong

    2015-09-25

    Type 2 diabetic mellitus (T2DM) has reached pandemic status and shows no signs of abatement. Diabetic neuropathic pain (DNP) is generally considered to be one of the most common complications of T2DM, which is also recognized as one of the most difficult types of pain to treat. As one kind of peripheral neuropathic pain, DNP manifests typical chronic neuralgia symptoms, including hyperalgesia, allodynia, autotomy, and so on. The injured dorsal root ganglion (DRG) is considered as the first stage of the sensory pathway impairment, whose neurons display increased frequency of action potential generation and increased spontaneous activities. These are mainly due to the changed properties of voltage-gated sodium channels (VGSCs) and the increased sodium currents, especially TTX-R sodium currents. Curcumin, one of the most important phytochemicals from turmeric, has been demonstrated to effectively prevent and/or ameliorate diabetic mellitus and its complications including DNP. The present study demonstrates that the TTX-R sodium currents of small-sized DRG neurons isolated from DNP rats are significantly increased. Such abnormality can be efficaciously ameliorated by curcumin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

    Directory of Open Access Journals (Sweden)

    Marchand Fabien

    2011-11-01

    Full Text Available Abstract Background Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP, a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. Results Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs following formalin administration. In addition, Complete Freund's Adjuvant (CFA-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. Conclusions These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.

  11. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn ?

    OpenAIRE

    Polg?r, Erika; Sardella, Thomas C.P.; Tiong, Sheena Y.X.; Locke, Samantha; Watanabe, Masahiko; Todd, Andrew J.

    2013-01-01

    In order to understand how nociceptive information is processed in the spinal dorsal horn we need to unravel the complex synaptic circuits involving interneurons, which constitute the vast majority of the neurons in laminae I?III. The main limitation has been the difficulty in defining functional populations among these cells. We have recently identified 4 non-overlapping classes of inhibitory interneuron, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase ...

  12. Diaphyseal medullary stenosis (sclerosis) with bone malignancy (malignant fibrous histiocytoma): hardcastle syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Norton, K.I. [Department of Radiology, Box 1234, Mount Sinai Hospital and Mount Sinai School of Medicine, City University of New York, One Gustave L. Levy Place, New York, NY 10029-6574 (United States)]|[Department of Pediatrics, Mount Sinai Hospital, New York, New York (United States); Wagreich, J.M. [Department of Radiology, Box 1234, Mount Sinai Hospital and Mount Sinai School of Medicine, City University of New York, One Gustave L. Levy Place, New York, NY 10029-6574 (United States); Granowetter, L. [Division of Pediatric Hematology-Oncology, Mount Sinai Hospital New York, New York (United States); Martignetti, J.A. [Department of Pediatrics, Mount Sinai Hospital, New York, New York (United States)

    1996-09-01

    Hardcastle syndrome is a rare, autosomally dominant inherited skeletal dysplasia, characterized by diaphyseal sclerosis, medullary stenosis, pathological fractures, bony infarction, and malignant transformation. A 19-year-old proband is presented and discussed, adding a fourth family to the world literature. Radiographic screening of family members is suggested from puberty onward. Thallium scanning is proposed as a more tumor-sensitive screening agent in affected individuals. (orig.). With 2 figs.

  13. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  14. Identification of Driving ALK Fusion Genes and Genomic Landscape of Medullary Thyroid Cancer.

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-08-01

    Full Text Available The genetic landscape of medullary thyroid cancer (MTC is not yet fully understood, although some oncogenic mutations have been identified. To explore genetic profiles of MTCs, formalin-fixed, paraffin-embedded tumor tissues from MTC patients were assayed on the Ion AmpliSeq Cancer Panel v2. Eighty-four sporadic MTC samples and 36 paired normal thyroid tissues were successfully sequenced. We discovered 101 hotspot mutations in 18 genes in the 84 MTC tissue samples. The most common mutation was in the ret proto-oncogene, which occurred in 47 cases followed by mutations in genes encoding Harvey rat sarcoma viral oncogene homolog (N = 14, serine/threonine kinase 11 (N = 11, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (N = 6, mutL homolog 1 (N = 4, Kiesten rat sarcoma viral oncogene homolog (N = 3 and MET proto-oncogene (N = 3. We also evaluated anaplastic lymphoma kinase (ALK rearrangement by immunohistochemistry and break-apart fluorescence in situ hybridization (FISH. Two of 98 screened cases were positive for ALK FISH. To identify the genomic breakpoint and 5' fusion partner of ALK, customized targeted cancer panel sequencing was performed using DNA from tumor samples of the two patients. Glutamine:fructose-6-phosphate transaminase 1 (GFPT1-ALK and echinoderm microtubule-associated protein-like 4 (EML4-ALK fusions were identified. Additional PCR analysis, followed by Sanger sequencing, confirmed the GFPT1-ALK fusion, indicating that the fusion is a result of intra-chromosomal translocation or deletion. Notably, a metastatic MTC case harboring the EML4-ALK fusion showed a dramatic response to an ALK inhibitor, crizotinib. In conclusion, we found several genetic mutations in MTC and are the first to identify ALK fusions in MTC. Our results suggest that the EML4-ALK fusion in MTC may be a potential driver mutation and a valid target of ALK inhibitors. Furthermore, the GFPT1-ALK fusion may be a potential candidate for molecular

  15. A resected case of medullary carcinoma of the ascending colon followed by infarction of the greater omentum mimicking anastomotic leakage

    Directory of Open Access Journals (Sweden)

    Masaki Wakasugi

    Full Text Available Introduction: Medullary carcinoma is a rare type of colorectal adenocarcinoma, and omental infarction is a rare cause of acute abdomen. Presentation of case: A 72-year-old woman underwent single-incision laparoscopic right hemicolectomy for ascending colon cancer. Pathological examination showed a medullary carcinoma (MC of T4aN0M0 Stage IIB. Her postoperative course was uneventful, and she was discharged on postoperative day (POD 6. From POD 7, she suffered from fever, and she returned to the hospital on POD 9. Plain computed tomography showed free air beside the anastomotic site around the elevated density of fat tissue and gallbladder wall thickening with a gallstone. Suspecting anastomotic leakage with acute cholecystitis, probe laparotomy was performed. Intraoperative observation confirmed omental infarction with acute cholecystitis, and no leakage was found at the anastomotic site. Therefore, the necrotic part of the greater omentum was resected, and cholecystectomy was performed. She has remained well, with no evidence of recurrent cancer during the 12 months of follow-up without chemotherapy after the surgery for MC of the ascending colon. Discussion: MC should be distinguished from other more aggressive, non-glandular tumors of the colon because MC appears to have a better survival outcome than undifferentiated colon adenocarcinoma. Omental infarction should be considered in the differential diagnosis of acute abdomen after surgery. Conclusion: A rare case of medullary carcinoma of the ascending colon followed by infarction of the greater omentum mimicking anastomotic leakage is presented. Keywords: Medullary carcinoma, Colon cancer, Omental infarction, Omental torsion

  16. Direct effects of endogenous pyrogen on medullary temperature-responsive neurons in rabbits.

    Science.gov (United States)

    Sakata, Y; Morimoto, A; Takase, Y; Murakami, N

    1981-01-01

    The effect of endogenous pyrogen (E.P.) injected directly into the tissue near the recording site were examined on the activities of the medullary temperature-responsive (TR) neurons in rabbits anesthetized with urethane. Endogenous pyrogen prepared from rabbit's whole blood was administered by a fine glass cannula (100-200 micrometer in diameter) in a fluid volume of 1 to 4 microliter. The cannula was fixed to the manipulator in parallel with a microelectrode and their tips were less than 0.05 mm apart. In rabbits with the intact preoptic/anterior hypothalamic (PO/AH) region, 4 warm-responsive neurons out of 7 were inhibited and 6 cold-responsive neuron out of 7 were excited by the direct administration of the E.P. In rabbits with lesions of the PO/AH, 5 warm-responsive neurons out of 9 were inhibited and 6 cold-responsive neurons out of 8 were facilitated by E.P. Antipyretics administered locally after the E.P. antagonized the pyretic effect, causing a return of the discharge of TR neuron to the control rate within 2.4 +/- 1.2 (mean +/- S.D.) min. The medullary TR neuron itself has the ability to respond to the E.P. and contributes to the development of fever.

  17. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert

    Subramanian HH, Holstege G. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo. J Neurophysiol 105: 2852-2862, 2011. First published March 30, 2011; doi:10.1152/jn.00168.2011.-Studies on brain stem respiratory neurons suggest that eupnea consists of

  18. Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats

    DEFF Research Database (Denmark)

    Tingskov, Stine Julie; Hu, Shan; Frøkiær, Jorgen

    2018-01-01

    of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations...... on renal water homeostasis. Rats were treated for 14 days with lithium and TAM treatment was initiated one week after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which was ameliorated by TAM. Consistent with this, TAM attenuated downregulation...... of AQP2 and increased phosphorylation of the cAMP responsive element binding protein (CREB), which induced AQP2 expression, in freshly isolated inner medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated dose-dependently polyuria, impaired urine...

  19. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    plasma lithium concentration of 1.0 mmol/L. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker PCNA protein abundances in cortex...... concentration capacity and diminished outer medullary volume. Histological sections of nephrectomy samples and a biopsy from 3 long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β- and pGSK-3β......It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, thick ascending limb...

  20. Upregulation of EMMPRIN (OX47 in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR, and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  1. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Morphological characteristics of renal artery and kidney in rats.

    Science.gov (United States)

    Yoldas, Atilla; Dayan, Mustafa Orhun

    2014-01-01

    The gross anatomy and morphometry of the kidney and renal arteries were studied in the strains of laboratory rat: Sprague-Dawley (Sp) and Wistar (W) rats. Total of 106 three-dimensional endocasts of the intrarenal arteries of kidney that were prepared using standard injection-corrosion techniques were examined. A single renal artery was observed in 100% of the cases. The renal arteries were divided into a dorsal and a ventral branch. The dorsal and ventral branches were divided into two branches, the cranial and caudal branch. Renal arteries were classified into types I and II, depending on the cranial and caudal branches and their made of branching. The present study also showed that the right kidney was slightly heavier than the left one and that the kidney of the male was generally larger than that of the female. The mean live weights of the Sprague-Dawley and Wistar rats were found to be 258.26 ± 5.9 and 182.4 ± 19.05 g, respectively. The kidney weights were significantly correlated (P kidney weights were not found significantly correlated (P > 0.01) with the length of renal arteries.

  3. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    Science.gov (United States)

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  4. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  5. Effect of electroacupuncture on thermal pain threshold and expression of calcitonin-gene related peptide, substance P and γ-aminobutyric acid in the cervical dorsal root ganglion of rats with incisional neck pain.

    Science.gov (United States)

    Qiao, Li-Na; Liu, Jun-Ling; Tan, Lian-Hong; Yang, Hai-Long; Zhai, Xu; Yang, Yong-Sheng

    2017-08-01

    Acupuncture therapy effectively reduces post-surgical pain, but its mechanism of action remains unclear. The aim of this study was to investigate whether expression of γ-aminobutyric acid (GABA) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) in the primary sensory neurons of cervical dorsal root ganglia (DRG) are involved in electroacupuncture (EA)-induced analgesia in a rat model of incisional neck pain. The pain model was established by making a longitudinal midline neck incision in 60 rats. Another 15 rats underwent sham surgery (normal group). Post-incision, 15 rats remained untreated (model group) and 45 rats underwent EA (frequency 2/100 Hz, intensity 1 mA) at bilateral LI18, LI4-PC6 or ST36-GB34 (n=15 each) for 30 min at 4 hours, 24 hours, and 48 hours post-surgery, followed by thermal pain threshold (PT) measurement. 30 min later, the rats were euthanased and cervical (C3-6) DRGs removed for measurement of immunoreactivity and mRNA expression of SP/CGRP and the GABAergic neuronal marker glutamic acid decarboxylase 67 (GAD67). Thermal PT was significantly lower in the model group versus the normal group and increased in the LI18 and LI4-PC6 groups but not the ST36-GB34 group compared with the model group. Additionally, EA at LI18 and LI4-PC6 markedly suppressed neck incision-induced upregulation of mRNA/protein expression of SP/CGRP, and upregulated mRNA/protein expression of GAD67 in the DRGs of C3-6 segments. EA at LI18/LI4-PC6 increases PT in rats with incisional neck pain, which is likely related to downregulation of pronociceptive mediators SP/CGRP and upregulation of the inhibitory transmitter GABA in the primary sensory neurons of cervical DRGs. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  7. P2X₇ receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia.

    Science.gov (United States)

    Liu, Shuangmei; Shi, Qingming; Zhu, Qicheng; Zou, Ting; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Wu, Qin; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Lv, Qiulan; Zou, Lifang; Zhang, Xi; Ying, Mofeng; Li, Guodong; Liang, Shangdong

    2015-06-01

    Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.

  8. Closing the medullary canal after retrograde nail removal using a bioabsorbable bone plug: technical tip

    NARCIS (Netherlands)

    Schepers, T.; Vogels, L. M. M.

    2012-01-01

    We describe a simple technique for closure of the intra-articular opening after the removal of a retrograde femur nail. With the use of a gelatine bioabsorbable bone plug the medullary canal is closed, reducing leakage of blood and cancellous bone particles from the bone into the knee joint

  9. MR renography : An algorithm for calculation and correction of cortical volume averaging in medullary renographs

    NARCIS (Netherlands)

    de Priester, JA; den Boer, JA; Giele, ELW; Christiaans, MHL; Kessels, A; Hasman, A; van Engelshoven, JMA

    We evaluated a mathematical algorithm for the generation of medullary signal from raw dynamic magnetic resonance (MR) data. Five healthy volunteers were studied. MR examination consisted of a run of 100 TI-weighted coronal scans (gradient echo: TR/TE 11/3.4 msec, flip angle 60 degrees; slice

  10. The dorsal tegmental noradrenergic projection: an analysis of its role in maze learning.

    Science.gov (United States)

    Roberts, D C; Price, M T; Fibiger, H C

    1976-04-01

    The hypothesis that the noradrenergic projection from the locus coeruleus (LC) to the cerebral cortex and hippocampus is an important neural substrate for learning was evaluated. Maze performance was studied in rats receiving either electrolytic lesions of LC or 6-hydroxydopamine (6-OHDA) lesions of the dorsal tegmental noradrenergic projection. The LC lesions did not disrupt the acquisition of a running response for food reinforcement in an L-shaped runway, even though hippocampal-cortical norepinephrine (NE) was reduced to 29%. Greater telencephalic NE depletions (to 6% of control levels) produced by 6-OHDA also failed to disrupt the acquisition of this behavior or to impair the acquisition of a food-reinforced position habit in a T-maze. Neither locomotor activity nor habituation to a novel environment was affected by the 6-OHDA lesions. Rats with such lesions were, however, found to be significantly more distractible than were controls during the performance of a previously trained response. The hypothesis that telencephalic NE is of fundamental importance in learning was not supported. The data suggest that this system may participate in attentional mechanisms.

  11. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  12. Somatostatin receptor scintigraphy using (99m)Tc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma

    NARCIS (Netherlands)

    Czepczynski, Rafal; Parisella, Maria Gemma; Kosowicz, Jerzy; Mikolajczak, Renata; Ziemnicka, Katarzyna; Gryczynska, Maria; Sowinski, Jerzy; Signore, Alberto

    2007-01-01

    Purpose Several new somatostatin analogues have been developed for the diagnosis and therapy of different tumours. Since somatostatin receptors are often over-expressed in medullary thyroid carcinoma (MTC), the aim of our study was to evaluate the utility of scintigraphy with the somatostatin

  13. Benzo[alpyrene induction of cytochrome P450 1A1/1A2 in the lymph nodes of rats.

    Science.gov (United States)

    Borodin, Yu I; Safina, A F; Maiborodin, I V; Grishanova, A Yu

    2003-12-01

    Studies of mesenteric lymph nodes of rats by indirect immunoperoxidase method using monoclonal antibodies to cytochrome P450 1A/1A2 after oral dose of benzo[a]pyrene showed the presence of these cytochrome forms in monocytes, macrophages, reticular and litoral cells, cell detritus, and liquid contents of the paracortical zone and medullary substance sinuses. Oxidation of various exo- and endogenous toxins in the lymph nodes was revealed.

  14. Reduced expression of Nogo-A leads to motivational deficits in rats

    Directory of Open Access Journals (Sweden)

    Thomas eEnkel

    2014-01-01

    Full Text Available Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Mice lacking Nogo-A, or rats with neuronal Nogo-A deficiency, exhibit behavioral abnormalities such as impaired short-term memory, decreased prepulse inhibition and behavioral inflexibility. In the current study we extended the behavioral profile of the Nogo-A deficient rat line with respect to reward sensitivity and motivation and determined the concentrations of the monoamines dopamine and serotonin in the prefrontal cortex, dorsal striatum and nucleus accumbens. Using a limited access consumption task, we found similar intake of a sweet condensed milk solution following ad libitum or restricted feeding in wild-type and Nogo-A deficient rats, indicating normal reward sensitivity and translation of hunger into feeding behavior. When tested for motivation in a spontaneous progressive ratio task, Nogo-A rats exhibited lower break points and tended to have lower ‘highest completed ratios’. Further, under extinction conditions responding ceased substantially earlier in these rats. Finally, in the prefrontal cortex we found increased tissue levels of serotonin, while dopamine was unaltered. Dopamine and serotonin levels were also unaltered in the dorsal striatum and the nucleus accumbens. In summary, these results suggest a role for Nogo-A regulated processes in motivated behavior and related neurochemistry. The behavioral pattern observed resembles aspects of the negative symptomatology of schizophrenia.

  15. Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories.

    Science.gov (United States)

    Ye, Xiaojing; Kapeller-Libermann, Dana; Travaglia, Alessio; Inda, M Carmen; Alberini, Cristina M

    2017-01-01

    The ability to regulate the consolidation and strengthening of memories for threatening experiences is critical for mental health, and its dysregulation may lead to psychopathologies. Re-exposure to the context in which the threat was experienced can either increase or decrease fear response through distinct processes known, respectively, as reconsolidation or extinction. Using a context retrieval-dependent memory-enhancement model in rats, we report that memory strengthens through activation of direct projections from dorsal hippocampus to prelimbic (PL) cortex and activation of critical PL molecular mechanisms that are not required for extinction. Furthermore, while sustained PL brain-derived neurotrophic factor (BDNF) expression is required for memory consolidation, retrieval engages PL BDNF to regulate excitatory and inhibitory synaptic proteins neuroligin 1 and neuroligin 2, which promote memory strengthening while inhibiting extinction. Thus, context retrieval-mediated fear-memory enhancement results from a concerted action of mechanisms that strengthen memory through reconsolidation while suppressing extinction.

  16. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  17. Three distinct subsets of thymic epithelial cells in rats and mice defined by novel antibodies.

    Directory of Open Access Journals (Sweden)

    Yasushi Sawanobori

    Full Text Available Thymic epithelial cells (TECs are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monoclonal antibodies (i.e., ED 18/19/21 and anti-CD205 antibodies and compare it with a map from mouse counterparts and that of rat thymic dendritic cells.Rat TECs were subdivided on the basis of phenotype into three subsets; ED18+ED19+/-keratin 5 (K5+K8+CD205+ class II MHC (MHCII+ cortical TECs (cTECs, ED18+ED21-K5-K8+Ulex europaeus lectin 1 (UEA-1+CD205- medullary TECs (mTEC1s, and ED18+ED21+K5+K8dullUEA-1-CD205- medullary TECs (mTEC2s. Thymic nurse cells were defined in cytosmears as an ED18+ED19+/-K5+K8+ subset of cTECs. mTEC1s preferentially expressed MHCII, claudin-3, claudin-4, and autoimmune regulator (AIRE. Use of ED18 and ED21 antibodies revealed three subsets of TECs in mice as well. We also detected two distinct TEC-free areas in the subcapsular cortex and in the medulla. Rat dendritic cells in the cortex were MHCII+CD103+ but negative for TEC markers, including CD205. Those in the medulla were MHCII+CD103+ and CD205+ cells were found only in the TEC-free area.Both rats and mice have three TEC subsets with similar phenotypes that can be identified using known markers and new monoclonal antibodies. These findings will facilitate further analysis of TEC subsets and DCs and help to define their roles in thymic selection and in pathological states such as autoimmune disorders.

  18. Avaliação da hiperalgesia e alterações histológicas do gânglio da raiz dorsal induzidas pelo núcleo pulposo Evaluation of hyperalgesia and histological changes of dorsal root ganglion induced by nucleus pulposus

    Directory of Open Access Journals (Sweden)

    André Luiz de Souza Grava

    2010-01-01

    estruturas do gânglio da raiz dorsal e apresentaram aumento da intensidade nos períodos mais longos de observação.OBJECTIVE: To evaluate hyperalgesia and histological changes of dorsal root ganglia induced by nucleus pulposus (NP contact. METHODS: Twenty Wistar rats were used, divided into two experimental groups. In one of the groups, a fragment of the autologous NP was removed from the sacroccocigeal region and deposited on the L5 dorsal root ganglia. In the control group, the NP was removed from the sacrococcygeal region, L5 dorsal root ganglia were exposed and covered by a piece of adipous fat tissue. Hyperalgesia was evaluated by the von Frey electronic test and Hargreaves test, and histological changes of the dorsal root ganglia by HE staining and immunohistochemistry using iNOS. The evaluation of hyperalgesia and histological changes of the dorsal root ganglia were performed on the third postoperative day and after 1, 3, 5, and 7 weeks. RESULTS: NP induced higher intensity mechanical and thermal hyperalgesia. Dorsal root ganglia in contact with nucleus pulposus presented histological changes and the intensity of these changes were proportional to the length of time in contact. The expression of iNOS was higher in the glial cells in contact with the nucleus pulposus. CONCLUSION: The contact of nucleus pulposus with dorsal root ganglia induced histological changes and mechanical and thermal hyperalgesia. These changes were more intense after longer period of evaluation.

  19. Ipsilateral hemiparesis in lateral medullary infarction: Clinical investigation of the lesion location on magnetic resonance imaging.

    Science.gov (United States)

    Uemura, Masahiro; Naritomi, Hiroaki; Uno, Hisakazu; Umesaki, Arisa; Miyashita, Kotaro; Toyoda, Kazunori; Minematsu, Kazuo; Nagatsuka, Kazuyuki

    2016-06-15

    In 1946, Opalski reported two cases of Wallenberg syndrome with ipsilateral hemiparesis (IH). His hypothesis seems to be based on the view that IH is caused by post-decussating pyramidal tract damage. Afterwards, other researchers proposed a different hypothesis that ipsilateral sensory symptoms of limbs (ISSL) or ipsilateral limb ataxia (ILA) caused by lateral medullary infarction (LMI) might lead to ipsilateral motor weakness. The present study is aimed to clarify whether IH in LMI patients is attributable mainly to ISSL/ILA or disruption of ipsilateral post-decussating pyramidal tract. Thirty-two patients with acute LMI admitted during the last 13years were divided to IH Group (n=7) and Non-IH Group (n=25). Lesion location/distribution on MRI and neurological findings were compared between the two groups. LMI involved the lower medulla in all seven IH patients and 12 of 25 Non-IH patients. The lower medullary lesion extended to the cervico-medullary junction (CMJ) in four of seven IH patients and one of 12 Non-IH patients. Definitive extension to upper cervical cord (UCC) was confirmed in none of the patients. ISSL was found in two IH and three Non-IH patients all showing only superficial sensory impairments. ILA or hypotonia was observed in 57% of IH and 60% of Non-IH patients. IH in LMI appears to be due mainly to post-decussating pyramidal tract damage at the lower medulla instead of ILA or ISSL participation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: an in vivo electrophysiological study.

    Science.gov (United States)

    Dalmolin, Gerusa D; Bannister, Kirsty; Gonçalves, Leonor; Sikandar, Shafaq; Patel, Ryan; Cordeiro, Marta do Nascimento; Gomez, Marcus Vinícius; Ferreira, Juliano; Dickenson, Anthony H

    2017-07-01

    Drugs that counteract nociceptive transmission in the spinal dorsal horn preferentially after nerve injury are being pursued as possible neuropathic pain treatments. In a previous behavioural study, the peptide toxin Tx3-3, which blocks P/Q- and R-type voltage-gated calcium channels, was effective in neuropathic pain models. In the present study, we aimed to investigate the effect of Tx3-3 on dorsal horn neuronal responses in rats under physiological conditions and neuropathic pain condition induced by spinal nerve ligation (SNL). In vivo electrophysiological recordings of dorsal horn neuronal response to electrical and natural (mechanical and thermal) stimuli were made in rats under normal physiological state (naive rats) or after the SNL model of neuropathic pain. Tx3-3 (0.3-100 pmol/site) exhibited greater inhibitory effect on electrical-evoked neuronal response of SNL rats than naive rats, inhibiting nociceptive C-fibre and Aδ-fibre responses only in SNL rats. The wind-up of neurones, a measurement of spinal cord hyperexcitability, was also more susceptible to a dose-related inhibition by Tx3-3 after nerve injury. Moreover, Tx3-3 exhibited higher potency to inhibit mechanical- and thermal-evoked neuronal response in conditions of neuropathy. Tx3-3 mediated differential inhibitory effect under physiological and neuropathic conditions, exhibiting greater potency in conditions of neuropathic pain.

  1. Gastric Medullary Carcinoma with Sporadic Mismatch Repair Deficiency and a TP53 R273C Mutation: An Unusual Case with Wild-Type BRAF

    Directory of Open Access Journals (Sweden)

    Brett M. Lowenthal

    2017-01-01

    Full Text Available Medullary carcinoma has long been recognized as a subtype of colorectal cancer associated with microsatellite instability and Lynch syndrome. Gastric medullary carcinoma is a very rare neoplasm. We report a 67-year-old male who presented with a solitary gastric mass. Total gastrectomy revealed a well-demarcated, poorly differentiated carcinoma with an organoid growth pattern, pushing borders, and abundant peritumoral lymphocytic response. The prior cytology was cellular with immunohistochemical panel consistent with upper gastrointestinal/pancreaticobiliary origin. Overall, the histopathologic findings were consistent with gastric medullary carcinoma. A mismatch repair panel revealed a mismatch repair protein deficient tumor with loss of MLH1 and PMS2 expression. BRAF V600E immunostain (VE1 and BRAF molecular testing were negative, indicating a wild-type gene. Tumor sequencing of MLH1 demonstrated a wild-type gene, while our molecular panel identified TP53 c.817C>T (p.R273C mutation. These findings were compatible with a sporadic tumor. Given that morphologically identical medullary tumors often occur in Lynch syndrome, it is possible that mismatch repair loss is an early event in sporadic tumors with p53 mutation being a late event. Despite having wild-type BRAF, this tumor is sporadic and unrelated to Lynch syndrome. This case report demonstrates that coordinate ancillary studies are needed to resolve sporadic versus hereditary rare tumors.

  2. Medullary colonic carcinoma with microsatellite instability has lower survival compared with conventional colonic adenocarcinoma with microsatellite instability

    Directory of Open Access Journals (Sweden)

    Miguel A. Gómez-Álvarez

    2016-12-01

    Full Text Available Introduction: Colorectal medullary carcinoma (MC is a rare subtype of poorly differentiated adenocarcinoma (PDA with unclear prognostic significance. Microsatellite instable (MSI colorectal carcinomas have demonstrated better prognosis in clinical stage II. Aim: To analyze the survival and clinicopathological characteristics of MCs versus PDAs with MSI in clinical stage III. Material and methods: We studied 22 cases of PDAs with MSI versus 10 MCs. Results : Of the 10 MCs, 7 patients were men; the mean age was 57.8 ±5.6 years. The mean tumor size was 9.6 ±4.1 cm, and the primary site was the right colon in 9; 7 patients showed lymph node metastases (LNM and lymphovascular invasion (LVI. Of the 22 PDA cases, 12 (54.5% were women with a mean age of 75 ±16.1 years. The mean tumor size was 6.4 ±3.2 cm. Twelve (54.5% presented in the right colon, 21 (95.5% showed LNM and 7 (31.8% LVI. Follow-up was 32 ±8 months, with a 5-year overall survival of 42.9% for MCs and 76.6% for PDAs (p = 0.048. Univariate analysis found local recurrence (p = 0.001 and medullary subtype (p = 0.043 associated with lower survival. Conclusions : Medullary carcinomas were of greater tumor size and associated with more LVI and worse survival versus PDAs with MSI in stage III.

  3. Clinical relevance of18F-FDG PET and18F-DOPA PET in recurrent medullary thyroid carcinoma

    NARCIS (Netherlands)

    H.H.G. Verbeek (Hans H.); J.T. Plukker (John); K.P. Koopmans (Klaas Pieter); J. de Groot (Jan); R.M.W. Hofstra (Robert); A.C. Muller Kobold (Anneke); A.N.A. van der Horst-Schrivers (Anouk); A.H. Brouwers (A.); T.P. Links (Thera)

    2012-01-01

    textabstractThe transition from stable to progressive disease is unpredictable in patients with biochemical evidence of medullary thyroid carcinoma (MTC). Calcitonin and carcinoembryonic antigen (CEA) doubling times are currently the most reliable markers for progression, but for accurate

  4. Medullary neurons in the core white matter of the olfactory bulb: a new cell type.

    Science.gov (United States)

    Paredes, Raúl G; Larriva-Sahd, Jorge

    2010-02-01

    The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.

  5. Predictors for perioperative blood transfusion in elderly patients with extra capsular hip fractures treated with cephalo-medullary nailing.

    Science.gov (United States)

    Fazal, M Ali; Bagley, Caroline; Garg, Parag

    2018-02-01

    The aim of our study was to determine predictive factors and requirement for perioperative blood transfusion in elderly patients with extra capsular hip fractures treated with cephalo-medullary device. Seventy-nine patients with extra capsular hip fractures treated with cephalo-medullary nailing were included in the study. Age, sex, ASA grade, timing of surgery, preoperative and postoperative haemoglobin, length of hospital stay, fracture type, number of units transfused and 30-day mortality were recorded. The mean age was 82.3 years. Forty-seven patients underwent a short nail and 32 patients a long nail; 53.4% patients required blood transfusion postoperatively. Transfusion was required in 71.8% of the long nails (p  0.05). Length of hospital stay in non-transfusion group was 13 days and in transfusion group was 19 days (p  0.05). Thirty-day mortality in patients needing blood transfusion was 5% and in non-transfusion group was 3.7% (p > 0.05). Patient age, ASA grade, preoperative haemoglobin and length of nail are reliable predictors for perioperative blood transfusion in extra capsular hip fractures in elderly patients treated with cephalo-medullary nailing and reinforce a selective transfusion policy. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  6. In vivo dermal absorption of pyrethroid pesticides in the rat.

    Science.gov (United States)

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  7. Healing of experimental femoral defects in rats after implantation of collagen-calcium phosphate biocomposites

    Directory of Open Access Journals (Sweden)

    O. V. Korenkov

    2017-06-01

    Full Text Available The aim of this study was to investigate the healing process of experimental defects of the femoral shaft diaphysis of rats after implantation of osteoplastic material Collapan into its cavity. In experi-mental animals, a perforated defect with diameter of 2.5 mm was created in the medullary canal of the femoral shaft and filled with osteoplastic material Collapan. In control rats, the defect was left un-filled. The bone fragments were examined on the 15th and 30th day by light microscopy morphometry and scanning electron microscopy. It was found that application of osteoplastic material Collapan in the femoral diaphysis defect optimised reparative osteogenesis, showed high biocompatibility, osteo-conductive properties, resorption ability and good integration with tissue-specific structures of the regenerate

  8. Alterations in substance P binding in brain nuclei of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Shigematsu, K.; Niwa, M.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1987-01-01

    Substance P binding sites were characterized in brain nuclei of young (4-wk-old) and adult (16-wk-old) spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats by quantitative autoradiography. Young SHR presented higher affinity constants (K/sub A/) than young WKY. The changes were restricted to locus coeruleus, the area postrema, the dorsal motor nucleus of the vagus, and to discrete areas located in lobes 9 and 10 of the vermis cerebelli of SHR. There were no differences in the maximal binding capacity (B/sub max/) except in the nucleus ambiguus where the B/sub max/ was lower than WKY. Conversely, the number of substance P binding sites was higher in the locus coeruleus, the nucleus tegmentalis dorsalis, the nucleus ambiguus, the dorsal motor nucleus of the vagus, the hypoglossal nucleus, the inferior olivary nucleus, and lobes 9 and 10 of the vermis cerebelli of adult SHR when compared with adult WKY. The results support the hypothesis of a role for brain substance P in blood pressure regulation and in genetic hypertension in rats

  9. Clinical Relevance of F-18-FDG PET and F-18-DOPA PET in Recurrent Medullary Thyroid Carcinoma

    NARCIS (Netherlands)

    Verbeek, Hans H. G.; Plukker, John T. M.; Koopmans, Klaas Pieter; de Groot, Jan Willem B.; Hofstra, Robert M. W.; Kobold, Anneke C. Muller; van der Horst-Schrivers, Anouk N. A.; Brouwers, Adrienne H.; Links, Thera P.

    2012-01-01

    The transition from stable to progressive disease is unpredictable in patients with biochemical evidence of medullary thyroid carcinoma (MTC). Calcitonin and carcinoembryonic antigen (CEA) doubling times are currently the most reliable markers for progression, but for accurate determination, serial

  10. Dorsal finger texture recognition: Investigating fixed-length SURF

    DEFF Research Database (Denmark)

    Hartung, Daniel; Kückelhahn, Jesper

    2012-01-01

    We seek to create fixed-length features from dorsal finger skin images extracted by the SURF interest point detector to combine it in the privacy enhancing helper data scheme. The source of the biometric samples is the GUC45 database which features finger vein, fingerprint and dorsal finger skin...

  11. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    Science.gov (United States)

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  12. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    Science.gov (United States)

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  13. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  14. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2. Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4 µm(2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  15. Elevated expression of transient receptor potential vanilloid type 1 in dorsal root ganglia of rats with endometriosis

    Science.gov (United States)

    Lian, Yu-Ling; Cheng, Ming-Jun; Zhang, Xian-Xia; Wang, Li

    2017-01-01

    Pain is the most pronounced complaint of women with endometriosis, however the underlying mechanism is still poorly understood. In the present study, the authors evaluate the effect of transient receptor potential vanilloid type 1 (TRPV1) of dorsal root ganglia (DRG) on endometriosis-associated pain. A total of 36 SD rats were randomly divided into a sham group (n=9) and a Model group (n=27), accepted auto-transplanted pieces of fat or uterus to the pelvic cavity. At 4 weeks, the Model group was randomly subdivided into the following groups: ENDO group (no treatment, n=9), BCTC group (Model + BCTC, an antagonist of TRPV1, n=9), Vehicle group (Model + cyclodextrin, the vehicle of BCTC, n=9). Tail-flick test was performed prior to surgery, 1 h prior to and following treatment of BCTC or cyclodextrin. The expression of TRPV1, substance P (SP), calcitonin gene-related peptide (CGRP) in L1-L6 DRG was measured via immunohistochemistry, western blotting and RT-qPCR. The results indicated that the Model group exhibited a significant decrease in tail flick latency compared to pre-surgical baseline, and the expression of TRPV1, SP, CGRP protein and mRNA in L1-L6 DRG significantly increased compared to the sham group. BCTC significantly improved tail flick latency, and downregulated the expression of TRPV1, SP and CGRP protein and mRNA levels in L1-L6 DRG compared to ENDO group. However, there were no significant differences of those in Vehicle group compared with the ENDO group. Taken together, the current study provides evidence that TRPV1 expressed in DRG may serve an important role in endometriosis-associated pain. PMID:28627595

  16. Short-term treatment with diminazene aceturate ameliorates the reduction in kidney ACE2 activity in rats with subtotal nephrectomy.

    Directory of Open Access Journals (Sweden)

    Elena Velkoska

    Full Text Available Angiotensin converting enzyme (ACE 2 is an important modulator of the renin angiotensin system (RAS through its role to degrade angiotensin (Ang II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE, which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx. Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day for 2 weeks. STNx led to hypertension (P<0.01, kidney hypertrophy (P<0.001 and impaired kidney function (P<0.001 compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01, with reduced cortical and medullary ACE2 activity (P<0.05, and increased urinary ACE2 excretion (P<0.05 compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001, and negatively with creatinine clearance (P=0.04. In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01, increased cortical ACE2 mRNA (P<0.05 and increased cortical and medullary ACE2 activity (P<0.05. The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.

  17. Inter- and intracellular relationship of substance P-containing neurons with serotonin and GABA in the dorsal raphe nucleus: combination of autoradiographic and immunocytochemical techniques

    International Nuclear Information System (INIS)

    Magoul, R.; Onteniente, B.; Oblin, A.; Calas, A.

    1986-01-01

    Double-labeling experiments were performed at the electron microscopic level in the dorsal raphe nucleus of rat, in order to study the inter- and intracellular relationship of substance P with gamma-aminobutyric acid (GABA) and serotonin. Autoradiography for either [ 3 H]serotonin or [ 3 H]GABA was coupled, on the same tissue section, with peroxidase-antiperoxidase immunocytochemistry for substance P in colchicine-treated animals. Intercellular relationships were represented by synaptic contacts made by [ 3 H]serotonin-labeled terminals on substance P-containing somata and dendrites, and by substance P-containing terminals on [ 3 H]GABA-labeled cells. Intracellular relationships were suggested by the occurrence of the peptide within [ 3 H]serotonin-containing and [ 3 H]GABA-containing cell bodies and fibers. Doubly labeled varicosities of the two kinds were also observed in the supraependymal plexus adjacent to the dorsal raphe nucleus. The results demonstrated that, in addition to reciprocal synaptic interactions made by substance P with serotonin and GABA, the dorsal raphe nucleus is the site of intracellular relationships between the peptide and either the amine or the amino acid

  18. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  19. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Science.gov (United States)

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Demographic, clinical, and genetic characteristics of patients with medullary thyroid cancer in the past 16 years in Castilla-La Mancha.

    Science.gov (United States)

    Louhibi, Lynda; Marco, Amparo; Pinés, Pedro J; Padillo, José C; Gómez, Inés; Valero, Miguel A; Alramadán, Mubarak; Herranz, Sandra; Aguirre, Miguel; Hernández, Antonio

    2014-10-01

    Medullary thyroid cancer is a rare tumor that is more aggressive and has a worse prognosis than differentiated thyroid cancer. The purpose of this study was to report the demographic, clinical, and genetic characteristics of patients seen in the health care system of the community of Castilla-La Mancha over a 16-year period. Data were collected through a review of patients' medical records. The medical records of 58 patients (mean age at diagnosis, 51 years; range, 6-82 years; 63.8% women) were reviewed. Prevalence rate was 2.84 cases per 100,000 inhabitants, with a high variability between areas (range, 0-5.4 cases per 100,000 inhabitants). Familial cases accounted for 34.5% of all medullary thyroid cancers, and the most common mutation was C634Y. The condition was most commonly diagnosed following palpation of a cervical lump (70.6%). At diagnosis, 56 of 58 patients underwent ultrasound and 8 of 58 patients were tested for serum calcitonin. Tumor multicentricity was reported in 59 and 50% of patients with multiple endocrine neoplasia syndrome type 2A and 2B, respectively, and in no sporadic cases. Fifty-two percent of patients had an advanced stage (iii or iv) at diagnosis. Median follow-up was 36 months (interquartile range, 14-210); 11 patients were lost to follow-up. In Castilla-La Mancha, medullary thyroid cancer is diagnosed by cervical ultrasound, rather than calcitonin assay. There is a high prevalence of both familial and sporadic medullary thyroid cancer, and a significant variability in the type of proto-oncogen rearranged during transfection mutation as compared to the rest of the Spanish population. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  2. Inhibition of calcineurin inhibits the desensitization of capsaicin evoked currents in cultured dorsal root ganglion neurones from adult rats

    NARCIS (Netherlands)

    Docherty, RJ; Yeats, JC; Bevan, S; Boddeke, HWGM

    Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal

  3. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  4. Incorporation of radioactive sulfate (Na235SO4) by mouse adrenal medullary cells as shown by radioautography

    International Nuclear Information System (INIS)

    Munhoz, C.O.G.; Merzel, J.

    1977-01-01

    Preliminary radioautographic results, observed in the adreno-medullary cells of mice injected with radiosulfate, suggested that the cells might synthetize sulfur-containing compounds. Only further studies could make-clear if sulfate groups are linked to carbohydrate molecules and/or chromaffin granules [pt

  5. Use of the gamma probe and of 99mTc-DMSA (V) in the identification of the neck recurrence of medullary carcinoma thyroid

    International Nuclear Information System (INIS)

    Melo, Rosana Leite de; Kowalski, Luiz P.; Ubrich, Fabio F.; Lima, Eduardo N. Pereira; Torres, Ivone C.G.

    2003-01-01

    Medullary carcinoma of the thyroid, a malignant neoplasm of para follicular C cells, represent about 5-10% of thyroid tumors. The symptoms are related to local invasion and hormonal secretion. The clinical course is variable, from indolent cases to extremely aggressive. Many radionuclide imaging have been described to locate metastasis of medullary cancer. Tl-201 and Tc-99m (V)DMS A showed to be useful in the evaluation o persistent elevated serum calcitonin levels. On the other hand, the use of the 131 I-Mibg, that is the isotope more used, has not been demonstrating efficiency in identifying metastasis. Our objective is to report a case of a patient with medullary thyroid carcinoma in which the follow-up use DMS A(V) demonstrated a recurrence no identified for other methods. A 34-year-old man had a diagnosis of medullary thyroid carcinoma and has submitted a total thyroidectomy and neck lymph node dissection. He presented elevated serum calcitonin levels and DMS A(V) scintigraphy demonstrated focal area of pathologic uptake at the medline of the neck, but the surgical exploration was negative. He persisted with high calcitonin levels and it was used a new DMS A(V). On this occasion he was submitted to the radio-guided surgery that located the recurrence and it was confirmed with anatomo-pathologic exam. This case allowed to demonstrate that the use of radionuclide associated to the gamma-probe is promising, allowing a precise surgical approach. (author)

  6. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    OpenAIRE

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recordin...

  7. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  8. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  9. Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats

    Directory of Open Access Journals (Sweden)

    N. Chami

    Full Text Available Carvacrol and eugenol, the main (phenolic components of essential oils of some aromatic plants, were evaluated for their therapeutic efficacy in the treatment of experimental oral candidiasis induced by Candida albicans in immunosuppressed rats. This anticandidal activity was analyzed by microbiological and histopathological techniques, and it was compared with that of nystatin, which was used as a positive control. Microbiologically, carvacrol and eugenol significantly (p<0.05 reduced the number of colony forming units (CFU sampled from the oral cavity of rats treated for eight consecutive days, compared to untreated control rats. Treatment with nystatin gave similar results. Histologically, the untreated control animals showed numerous hyphae on the epithelium of the dorsal surface of the tongue. In contrast no hyphal colonization of the epithelium was seen in carvacrol-treated animals, while in rats treated with eugenol, only a few focalized zones of the dorsal surface of the tongue were occupied by hyphae. In the nystatin treated group, hyphae were found in the folds of the tongue mucosa. Thus, the histological data were confirmed by the microbiological tests for carvacrol and eugenol, but not for the nystatin-treated group. Therefore, carvacrol and eugenol could be considered as strong antifungal agents and could be proposed as therapeutic agents for oral candidiasis.

  10. Adenocarcinoma of the prostate and metastatic medullary compression. A retrospective study of 22 patients

    DEFF Research Database (Denmark)

    Honnens de Lichtenberg, M; Kvist, E; Hjortberg, P

    1992-01-01

    A retrospective study of 709 patients with prostatic cancer was carried out. Twenty-two developed medullary cord compression (an incidence of 3%). All but two of the 22 patients were treated by radiation and 10 had additional hormonal treatment. Ten had some benefit from the treatment, but only 2...... of 19 regained their ability to walk. The need for immediate diagnosis and treatment is stressed....

  11. Predictors for perioperative blood transfusion in elderly patients with extra capsular hip fractures treated with cephalo-medullary nailing

    Directory of Open Access Journals (Sweden)

    M. Ali Fazal

    2018-02-01

    Conclusion: Patient age, ASA grade, preoperative haemoglobin and length of nail are reliable predictors for perioperative blood transfusion in extra capsular hip fractures in elderly patients treated with cephalo-medullary nailing and reinforce a selective transfusion policy.

  12. Effect of dimethylaminoethanol, an inhibitor of betaine production, on the disposition of choline in the rat kidney

    International Nuclear Information System (INIS)

    Lohr, J.; Acara, M.

    1990-01-01

    The choline metabolite betaine has been shown to be an important organic osmoregulatory solute in the kidney. The isolated perfused rat kidney and kidney slice incubations were used to investigate the effect of 2-dimethylaminoethanol (DMAE), a choline oxidase inhibitor, on the renal excretion and metabolism of choline. In the isolated perfused kidney, [ 14 C]choline, at an initial perfusate concentration of 300 microM, was effectively removed from the perfusate over 25 min, with nearly all the 14 C in the perfusate accounted for by betaine during the remainder of the 90-min perfusion. DMAE at concentrations of 3.0 or 5.0 mM significantly decreased the rate of removal of [ 14 C]choline from the perfusate and the rate of addition of [ 14 C]betaine to the perfusate, yet [14C]betaine remained the only metabolite of choline in perfusate and urine. In kidney tissue slice experiments, conversion of [ 14 C]choline to [ 14 C]betaine was found in cortical, outer medullary and inner medullary regions of rat kidney. DMAE at 5.0 mM significantly inhibited [ 14 C]betaine production in each of the three regions studied. These data show that DMAE is an effective inhibitor of betaine production by the kidney and, as such, may be an important agent for the study of osmoregulation by the kidney

  13. [Medullary carcinoma experience in breast oncology unit of Hospital Juarez Mexico].

    Science.gov (United States)

    Jiménez-Villanueva, Xicoténcatl; Hernández-Rubio, Angela; García-Rodríguez, Francisco Mario; García, Rebeca Gil; Moreno-Eutimio, Mario; Herrera-Torre, Analy

    2014-01-01

    Medullary breast cancer is a rare type, considered of good prognosis. To know the epidemiological and clinical characteristics of the population attended in the Hospital Juarez de Mexico, to know if they are alike to described worldwide and if the treatments proposed internationally are applicable for this hospitable center. We performed a retrospective analysis. Reviewing the records with histopathologic diagnosis of medullary breast cancer from February 1993 to February 2011. Finding 41 patients in the oncology unit of the institution. We report an incidence of 3.04%, originating in 11 Mexican States, with a low to middle socioeconomic level in 39.02%. The average age at the time of diagnosis was 50 years. No family history was reported but some patients had medical history for type 2 diabetes, hypertension and previous breast cancer. 63.41% were menopausal. The average clinical size of the tumor was 58 mm. The 63% of the cases were located in the left breast. The 53.1% were clinical stages I and II, 46.3% were clinical stages III and in 9.6% of the cases primary tumor could not be assessed. Only 47% of the patients had positive axillary lynph nodes at diagnosis. The inmunohistochemestry was only reported in 14 of the 41 patients, according to the molecular classification of breast cancer: 8 were triple negative, 2 luminal A, 1 luminal B and 3 Her2neu. The Mexican population presents epidemiological and clinical characteristics similar to those patients described in other studies worldwide.

  14. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats.

    Science.gov (United States)

    Nichols, Nicole L; Wilkinson, Katherine A; Powell, Frank L; Dean, Jay B; Putnam, Robert W

    2009-09-30

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.

  15. Kidney in potassium depletion. II. K+ handling by the isolated perfused rat kidney

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    In a companion paper the authors reported a large increment in Na + -K + -ATPase activity and [ 3 H]ouabain binding the inner stripe of outer medullary collecting tubules from K-depleted rats. To test the hypothesis that the increased number of Na + -K + pumps in these animals may be involved in potassium reabsorption they examined the effect of ouabain on K excretion by isolated, perfused kidneys from rats fed a K-free diet for 3 wk. Kidneys from K-depleted rats retain potassium avidly, both the fractional (FE/sub K/) and absolute K excretion being approximately fivefold lower than in control kidneys. Ouabain (5 mM) increased FE/sub K/ in kidneys from each K-depleted rat; similar results were obtained when kidneys were perfused with low and high potassium concentrations. In contrast, ouabain produced a variable effect in control kidneys, that depended on the perfusate potassium concentration. In K-depleted rats amiloride did not significantly alter K excretion and did not block the ouabain-induced kaliuresis, suggesting that the latter is not due to enhanced secretion secondary to increased distal fluid delivery. These results provide evidence for ouabain-sensitive potassium reabsorption in kidneys of chronically K-depleted rats, and suggest an explanation for the increased Na + -K + -ATPase observed in such animals

  16. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Park, Thomas J; Lu, Ying; Jüttner, René; Smith, Ewan St J; Hu, Jing; Brand, Antje; Wetzel, Christiane; Milenkovic, Nevena; Erdmann, Bettina; Heppenstall, Paul A; Laurito, Charles E; Wilson, Steven P; Lewin, Gary R

    2008-01-01

    In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.

  17. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber.

    Directory of Open Access Journals (Sweden)

    Thomas J Park

    2008-01-01

    Full Text Available In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.

  18. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  19. Disseminated medullary thyroid carcinoma despite early thyroid surgery in the multiple endocrine neoplasia-2A syndrome

    NARCIS (Netherlands)

    van Santen, H. M.; Aronson, D. C.; van Trotsenburg, A. S. P.; ten Kate, F. J. W.; van de Wetering, M. D.; Wiersinga, W. M.; de Vijlder, J. J. M.; Vulsma, T.

    2005-01-01

    A 5 1/2-year-old boy, with a family history of multiple endocrine neoplasia (MEN)-2A syndrome, was evaluated for presence of MEN-2A and medullary thyroid carcinoma (MTC). DNA diagnostics confirmed MEN-2A. Basal (360 ng/L) and pentagastrin stimulated (430 ng/L) calcitonin (CT) levels were slightly

  20. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  1. (18)F-Dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer : Relation to tumor differentiation

    NARCIS (Netherlands)

    Koopmans, Klaas P.; de Groot, Jan Willem B.; Plukker, John T. M.; de Vries, Elisabeth G. E.; Kema, Ido P.; Sluiter, Wim J.; Jager, Pieter L.; Links, Thera P.

    Curative treatment for recurrent medullary thyroid cancer (MTC), diagnosed by rising serum calcitonin, is surgery, but tumor localization is difficult. Therefore, the value of (18)F-dihy-droxyphenylanaline PET ((18)F-DOPA PET), (18)F-FDG PET, (99m)Tc-V-di-mercaptosulfuricacid (DMSA-V) scintigraphy,

  2. Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research

    Science.gov (United States)

    The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be diagnosed with thyroid cancer this year. The vast majority is of follicular cell origin, and the remaining cancer originates from parafollicular cells, so called medullary thyroid cancer.

  3. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  4. Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Gauthier, Jamie M; Tassin, David H; Dwoskin, Linda P; Kantak, Kathleen M

    2014-07-15

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with dysfunctional prefrontal and striatal circuitry and dysregulated dopamine neurotransmission. Spontaneously Hypertensive Rats (SHR), a heuristically useful animal model of ADHD, were evaluated against normotensive Wistar (WIS) controls to determine whether dopamine D1 receptor blockade of either prelimbic prefrontal cortex (plPFC) or lateral dorsal striatum (lDST) altered learning functions of both interconnected sites. A strategy set shifting task measured plPFC function (behavioral flexibility/executive function) and a reward devaluation task measured lDST function (habitual responding). Prior to tests, rats received bilateral infusions of SCH 23390 (1.0 μg/side) or vehicle into plPFC or lDST. Following vehicle, SHR exhibited longer lever press reaction times, more trial omissions, and fewer completed trials during the set shift test compared to WIS, indicating slower decision-making and attentional/motivational impairment in SHR. After reward devaluation, vehicle-treated SHR responded less than WIS, indicating relatively less habitual responding in SHR. After SCH 23390 infusions into plPFC, WIS expressed the same behavioral phenotype as vehicle-treated SHR during set shift and reward devaluation tests. In SHR, SCH 23390 infusions into plPFC exacerbated behavioral deficits in the set shift test and maintained the lower rate of responding in the reward devaluation test. SCH 23390 infusions into lDST did not modify set shifting in either strain, but produced lower rates of responding than vehicle infusions after reward devaluation in WIS. This research provides pharmacological evidence for unidirectional interactions between prefrontal and striatal brain regions, which has implications for the neurological basis of ADHD and its treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  6. Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test

    Directory of Open Access Journals (Sweden)

    Carvalho M.C.

    2005-01-01

    Full Text Available It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM. The present study uses a new approach (HPLC by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance. The study involved two experiments: i saline or midazolam (0.5 mg/kg before the first trial, and ii saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%. Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%, amygdala (78.96%, dorsal hippocampus (70.33%, and nucleus accumbens (73.58% of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM. A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05. These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

  7. New method for identification of precentral and postcentral gyrus on CT and MR studies based on the medullary pattern of cerebral white matter

    International Nuclear Information System (INIS)

    Iwasaki, S.; Uchida, H.; Kichikawa, K.; Nakagawa, H.; Ohishi, H.; Kuru, Y.

    1987-01-01

    The authors proposed and verified a new method to identify the precentral and postcentral gyrus on the axial images of CT and MR. The method is founded on the pattern of medullary branches of white matter instead of sulci, which had been reported previously. The accuracy of this method was verified by fixed brains, normal CT analysis based on the pattern of sulci, and clinical cases analyzed by angiography. This method can be used even if there are space-occupying lesions. This will probably be widely used not only for CT but also for MR imaging, which depicts the medullary branch more clearly

  8. Hematopoiesis stimulation test by interleukin 1α gene transfer in the Cynomolgus macaque: application to secondary medullary aplasia from an accidental irradiation

    International Nuclear Information System (INIS)

    De Revel, Th.

    2002-12-01

    After a description of the context of medullary aplasia (haematological radiobiology, radiation acute syndrome, therapeutic care), and an overview of knowledge about the interleukin-1 and medullary stroma cells, this research thesis aims at investigating therapeutic alternatives for radio-accidental aplasia. More precisely, it aims at defining means to get cytokines which are efficient for haematopoiesis. Interleukin-1 is chosen for its properties and tests are performed on a macaque with two approaches for gene transfer: an ex vivo transfer by retroviral vector enabling an integration in the target cell genome, and an in situ transfer by adeno-viral vector directly applied in the animal osseous medulla

  9. Enhanced post-ischemic neurogenesis in aging rats

    Directory of Open Access Journals (Sweden)

    Yao-Fang Tan

    2010-08-01

    Full Text Available Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g. by irradiation in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10-13 months old rats, cell production can be restored towards the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35 and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age.

  10. Impact of F DOPA-PET on therapeutic decision in endocrine tumours: digestive tumours, medullary thyroid cancer or pheochromocytoma

    International Nuclear Information System (INIS)

    Montravers, F.; Grahek, D.; Kerrou, K.; Gutman, F.; Beco, V. de; Nataf, V.; Balard, M.; Talbot, J.N.

    2006-01-01

    FDOPA-PET has been proposed for a decade in oncology, in particular in endocrine tumours. To the best of our knowledge, only one impact rate has been reported: 31% in 17 patients with digestive carcinoid tumours. We did a questionnaire survey to evaluate this impact reported by the referring clinician in 87 patients who had FDOPA PET due to digestive carcinoid tumour or another type of digestive endocrine tumour or a medullary thyroid cancer or a pheochromocytoma. The response rate to the survey was 87%. The overall impact of FDOPA PET on patient's management was 36%. Its value was greater for digestive carcinoid tumour and for medullary thyroid cancer; the number of patients with pheochromocytoma is still limited. In the other digestive endocrine tumours, a change in patient management was less frequent and FDOPA PET should be performed when the other examinations are inconclusive. (author)

  11. Penile alterations at early stage of type 1 diabetes in rats

    Directory of Open Access Journals (Sweden)

    Mingfang Tao

    Full Text Available ABSTRACT Objective Diabetes affects the erectile function significantly. However, the penile alterations in the early stage of diabetes in experimental animal models have not been well studied. We examined the changes of the penis and its main erectile components in diabetic rats. Materials and methods Male Sprague-Dawley rats were divided into 2 groups: streptozotocin (STZ-induced diabetics and age-matched controls. Three or nine weeks after diabetes induction, the penis was removed for immunohistochemical staining of smooth muscle and neuronal nitric oxide synthase (nNOS in midshaft penile tissues. The cross-sectional areas of the whole midshaft penis and the corpora cavernosa were quantified. The smooth muscle in the corpora cavernosa and nNOS in the dorsal nerves were quantified. Results The weight, but not the length, of the penis was lower in diabetics. The cross-sectional areas of the total midshaft penis and the corpora cavernosa were lower in diabetic rats compared with controls 9 weeks, but not 3 weeks after diabetes induction. The cross-sectional area of smooth muscle in the corpora cavernosa as percentage of the overall area of the corpora cavernosa was lower in diabetic rats than in controls 9 weeks, but not 3 weeks after diabetes induction. Percentage change of nNOS in dorsal nerves was similar at 3 weeks, and has a decreased trend at 9 weeks in diabetic rats compared with controls. Conclusions Diabetes causes temporal alterations in the penis, and the significant changes in STZ rat model begin 3-9 weeks after induction. Further studies on the reversibility of the observed changes are warranted.

  12. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  13. The heart of the matter: Acute quadriplegia with respiratory paralysis - bilateral medial medullary infarction

    Directory of Open Access Journals (Sweden)

    Bhaskara P Shelley

    2017-01-01

    Full Text Available The clinicoradiologic correlate of bilateral medial medullary infarction is described. This is a rare clinical entity of vertebrobasilar stroke syndrome with catastrophic consequences and a poor functional prognosis. Since the initial symptom is quadriplegia, the clinical diagnosis without neuroimaging can be challenging with a potential for misdiagnosis as Guillain–Barré syndrome or brainstem encephalitis in the early stages. The teaching neuroimage of the “heart appearance” sign is revisited.

  14. Presence of a nail in the medullary canal; is it enough to prevent femoral neck shortening in trochanteric fracture?

    Science.gov (United States)

    Song, Hyung Keun; Yoon, Han Kuk; Yang, Kyu Hyun

    2014-09-01

    Presence of a cephalomedullary nail (CMN) in the medullary canal has been thought as advantageous in the control of femoral neck shortening (FNS) and lag screw sliding in trochanteric fracture compared to extramedullary fixation system. However, researches on the factors that influence the degree of FNS after cephalomedullary nailing are lacking. We observed 95 patients (mean age, 75±2.8 years) with trochanteric fractures who were treated with a CMN, and evaluated the relationship between FNS and patient factors including age, gender, fracture type (AO/OTA), bone mineral density, medullary canal diameter, canal occupancy ratio (COR=nail size/canal diameter), and tip-apex distance using initial, immediate postoperative, and follow-up radiography. Univariate regression analyses revealed that the degree of FNS was significantly correlated with fracture type (A1 versus A3, pfracture type (pfracture.

  15. Periostite metacarpiana dorsal: incidência e fatores pré-disponentes

    Directory of Open Access Journals (Sweden)

    Flávio Gomes de Oliveira

    2006-04-01

    Full Text Available Forty two 2-year-old thoroughbreds were examined clinically at intervals of 15 days during their training for the first race to determine the incidence and the predisposing factors of dorsal metacarpal disease. During the first year 25 horses were followed during 2 months and in the second year the follow up was done for 4 months in 17 . Horses' data like gender, average speed, speed exercise work and trainer were also collected. Dorsal metacarpal disease was diagnosed in 28% and 70,6% of the 2 year-old thoroughbreds in the first and second year of the study, respectively. Total incidence was 45%. The incidence and average speed was not affected by gender. The average speed achieved by affected and none affected horses remained between 16 and 18m/s. On 500 and 700m speed exercise, the average speed of affected horses was higher than of none affected ones (p<0,05. Ten out of 19 horses showed dorsal metacarpal disease signs at the distance of 700m. There was significant difference between trainers regarding the incidence of dorsal metacarpal disease and average speed of their horses. 2-year-olds under care of trainers whose horses had the highest incidence o dorsal metacarpal disease also were the fastest one's. Therefore, fast speed associated with longer distances (700m and trainer are factors that predispose young horses to dorsal metacarpal disease.

  16. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats

    Directory of Open Access Journals (Sweden)

    Chen-Hwan Cherng

    2014-08-01

    Conclusion: The present findings suggest that baicalin can ameliorate neuropathic pain by suppressing HDAC1 expression and preventing histone-H3 acetylation in the spinal cord dorsal horn of SNL rats.

  17. Developmental plasticity in the D1- and D2-mediation of motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Ughrin, Y; Bruno, J P

    1996-12-01

    D1- and D2-like antagonist-induced catalepsy and dorsal immobility were studied in pups (Day 10) and weanlings (Days 20, 28, or 35) that received intraventricular injection of 6-OHDA (50 micrograms/hemisphere) or its vehicle solution or postnatal Day 3. The ability of the D1 of D2 antagonists to induce immobility differed as a function of the lesion condition and the age at the time of testing. Moreover, the two behavioral measures exhibited differences in their specific D1 and D2 receptor modulation. Administration of the D1 antagonist SCH 23390 (0.2 or 1.0 mg/kg) or the D2 antagonist clebopride (1.0, 10.0, or 20.0 mg/kg) led to catalepsy and dorsal immobility in intact rats, regardless of test age. Both antagonists induced catalepsy and dorsal immobility in rats depleted of DA when tested on Day 10. However, the effects of each antagonist in DA-depleted rats were ether negligible or significantly less than in controls when animals were tested as weanlings. These data suggest lesion-induced changes in the DA receptor modulation of motor behavior and that this plasticity requires more than a week to become apparent.

  18. MR Imaging of Ventriculus Terminalis of The Conus Medullaris. A report of two operated patients and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, Reidar; Server, A. [Ullevaal Univ. Hospital, Oslo (Norway). Div. of Radiology; Berg-Johnsen, J. [The National Hospital, Oslo (Norway). Dept. of Neurosurgery

    2003-07-01

    We report on 2 patients in whom a cystic dilation of the conus medullaris was incidentally found at MR imaging carried out in the work-up for sciatica. The cysts were well circumscribed and had signal intensity identical to the CSF on both T1- and T2-weighted images. There was no evidence of contrast enhancement. None of the patients had specific symptoms related to the spinal cord. At surgery, no evidence of malignancy was seen in any of the patients. A benign cystic dilation, also called dilated ventriculus terminalis, occasionally can be seen in the conus medullaris as an incidental finding at thoracolumbar MR imaging. Unless the expansion per se indicates cyst drainage, these patients may be monitored by clinical and MR follow-up, avoiding surgery in a substantial number of cases.

  19. MR Imaging of Ventriculus Terminalis of The Conus Medullaris. A report of two operated patients and review of the literature

    International Nuclear Information System (INIS)

    Dullerud, Reidar; Server, A.; Berg-Johnsen, J.

    2003-01-01

    We report on 2 patients in whom a cystic dilation of the conus medullaris was incidentally found at MR imaging carried out in the work-up for sciatica. The cysts were well circumscribed and had signal intensity identical to the CSF on both T1- and T2-weighted images. There was no evidence of contrast enhancement. None of the patients had specific symptoms related to the spinal cord. At surgery, no evidence of malignancy was seen in any of the patients. A benign cystic dilation, also called dilated ventriculus terminalis, occasionally can be seen in the conus medullaris as an incidental finding at thoracolumbar MR imaging. Unless the expansion per se indicates cyst drainage, these patients may be monitored by clinical and MR follow-up, avoiding surgery in a substantial number of cases

  20. [Effect of bone marrow mediator myelopeptides on the summation-threshold index and behavioral reactions of rats].

    Science.gov (United States)

    Vasilenko, A M; Barashkov, G N; Zakharova, L A

    1984-12-01

    Transmitter peptides having immunostimulant and endorphine-like properties were isolated from supernatant of medullary cell culture. Bioregulatory peptides were called myelopeptides. Myelopeptides provoked changes of the summation-threshold index in rats, which augmented in time. These changes pointed to the realization of the analgetic effect of myelopeptides via the spinal-stem structures of the central nervous system. Having a remarkable analgesic effect myelopeptides administered in the doses tested did not produce any action on the behavioral responses. The latter circumstance makes them differ from narcotic analgesics and known endorphines.

  1. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups.

    Science.gov (United States)

    Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young

    2017-12-01

    Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

  2. Predicting Early Reading Skills from Pre-Reading Measures of Dorsal Stream Functioning

    Science.gov (United States)

    Kevan, Alison; Pammer, Kristen

    2009-01-01

    It is well documented that good reading skills may be dependent upon adequate dorsal stream processing. However, the degree to which dorsal stream deficits play a causal role in reading failure has not been established. This study used coherent motion and visual frequency doubling to examine whether dorsal stream sensitivity measured before the…

  3. Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending limb (mTAL)

    DEFF Research Database (Denmark)

    Marques, Rita D; de Bruijn, Pauline I.A.; Sørensen, Mads Vaarby

    2012-01-01

    Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (m...

  4. The uremic environment and muscle dysfunction in man and rat

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Nielsen, Arne Høj; Eidemak, I.

    2006-01-01

    Background: Patients reaching end-stage renal disease experience debilitating fatigue, with progression of this disease, rendering patients dysfunctional in their everyday lives. Methods: In vivo measurements of muscle function, assessed using surface electromyography (EMG), were made on 25...... patients prior to and after a session of hemodialysis (HD) treatment, alongside in vitro measurements of muscle function in isolated rat muscles incubated in normal or uremic conditions approximating to those found in uremic rats (rat uremic: RU) or uremic humans (human uremic: HU). Results: HD...... significantly affected plasma values, e.g. reducing urea (69%), creatinine (62%), potassium (23%) and phosphate (48%) concentrations in patients (all pimproved the EMG frequency of 2nd dorsal interosseous (fast-twitch) (p

  5. Medullary breast carcinoma: The role of radiotherapy as primary treatment

    International Nuclear Information System (INIS)

    Fourquet, A.; Vilcoq, J.R.; Zafrani, B.; Schlienger, P.; Campana, F.; Jullien, D.

    1987-01-01

    The results are reported of a selected series of 41 patients with medullary carcinoma of the breast, treated with primary radiotherapy with (24 patients) or without (17 patients) adjuvant chemotherapy. Complete responses to radiotherapy occurred with moderate doses (67% of the patients had a complete response after a dose of 55-60 Gy) and were increased by the addition of an irradiation boost. The 6-year actuarial free of local recurrence survival, metastase-free survival and survival rates were 86, 83, and 83%, respectively. The 6-year actuarial probability of living with breast preserved was 72%. Recurrences and survivals were not influenced by the tumor size or clinical axillary node status. Adjuvant chemotherapy had no effect on the rate of recurrence or survival. 14 refs.; 3 tabs

  6. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus.

    Science.gov (United States)

    Lawther, A J; Clissold, M L; Ma, S; Kent, S; Lowry, C A; Gundlach, A L; Hale, M W

    2015-09-10

    Anxiety is a complex and adaptive emotional state controlled by a distributed and interconnected network of brain regions, and disruption of these networks is thought to give rise to the behavioral symptoms associated with anxiety disorders in humans. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is implicated in the control of anxiety states and anxiety-related behavior via neuromodulatory effects on these networks. Relaxin-3 is the native neuropeptide ligand for the Gi/o-protein-coupled receptor, RXFP3, and is primarily expressed in the nucleus incertus (NI), a tegmental region immediately caudal to the DR. RXFP3 activation has been shown to modulate anxiety-related behavior in rodents, and RXFP3 mRNA is expressed in the DR. In this study, we examined the response of relaxin-3-containing neurons in the NI and serotonergic neurons in the DR following pharmacologically induced anxiety and exposure to an aversive environment. We administered the anxiogenic drug FG-7142 or vehicle to adult male Wistar rats and, 30 min later, exposed them to either the elevated plus-maze or home cage control conditions. Immunohistochemical detection of c-Fos was used to determine activation of serotonergic neurons in the DR and relaxin-3 neurons in the NI, measured 2h following drug injection. Analysis revealed that FG-7142 administration and exposure to the elevated plus-maze are both associated with an increase in c-Fos expression in relaxin-3-containing neurons in the NI and in serotonergic neurons in dorsal and ventrolateral regions of the DR. These data are consistent with the hypothesis that relaxin-3 systems in the NI and serotonin systems in the DR interact to form part of a network involved in the control of anxiety-related behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The human dorsal action control system develops in the absence of vision.

    Science.gov (United States)

    Fiehler, Katja; Burke, Michael; Bien, Siegfried; Röder, Brigitte; Rösler, Frank

    2009-01-01

    The primate dorsal pathway has been proposed to compute vision for action. Although recent findings suggest that dorsal pathway structures contribute to somatosensory action control as well, it is yet not clear whether or not the development of dorsal pathway functions depends on early visual experience. Using functional magnetic resonance imaging, we investigated the pattern of cortical activation in congenitally blind and matched blindfolded sighted adults while performing kinesthetically guided hand movements. Congenitally blind adults activated similar dorsal pathway structures as sighted controls. Group-specific activations were found in the extrastriate cortex and the auditory cortex for congenitally blind humans and in the precuneus and the presupplementary motor area for sighted humans. Dorsal pathway activity was in addition observed for working memory maintenance of kinesthetic movement information in both groups. Thus, the results suggest that dorsal pathway functions develop in the absence of vision. This favors the idea of a general mechanism of movement control that operates regardless of the sensory input modality. Group differences in cortical activation patterns imply different movement control strategies as a function of visual experience.

  8. Conus medullaris syndrome due to an intradural disc herniation: A case report

    Directory of Open Access Journals (Sweden)

    Chaudhary Kshitij

    2008-01-01

    Full Text Available A 70-year-old male patient developed acute paraplegia due to conus medullaris compression secondary to extrusion of D12-L1 disc. After negative epidural examination intraoperatively, a durotomy was performed and an intradural disc fragment was excised. Patient did not regain ambulatory status at two-year follow-up. Intraoperative finding of negative extradural compression, tense swollen dura and CSF leak from ventral dura should alert the surgeon for the possibility of intradural disc herniation. A routine preoperative MRI is misleading and a high index of suspicion helps to avoid a missed diagnosis.

  9. The roles of pathways in the spinal cord lateral and dorsal funiculi in signaling nociceptive somatic and visceral stimuli in rats

    Czech Academy of Sciences Publication Activity Database

    Paleček, Jiří; Palečková, V.; Willis, W. D.

    2002-01-01

    Roč. 96, č. 3 (2002), s. 297-307 ISSN 0304-3959 Institutional research plan: CEZ:AV0Z5011922 Keywords : pain * spinothalamic * dorsal column pathway Subject RIV: FH - Neurology Impact factor: 4.829, year: 2002

  10. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    Science.gov (United States)

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  11. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2012-06-01

    Full Text Available Abstract Background The development of pain after peripheral nerve and tissue injury involves not only neuronal pathways but also immune cells and glia. Central sensitization is thought to be a mechanism for such persistent pain, and ATP involves in the process. We examined the contribution of glia to neuronal excitation in the juvenile rat spinal dorsal horn which is subjected to neuropathic and inflammatory pain. Results In rats subjected to neuropathic pain, immunoreactivity for the microglial marker OX42 was markedly increased. In contrast, in rats subjected to inflammatory pain, immunoreactivity for the astrocyte marker glial fibrillary acidic protein was increased slightly. Optically-recorded neuronal excitation induced by single-pulse stimulation to the dorsal root was augmented in rats subjected to neuropathic and inflammatory pain compared to control rats. The bath application of a glial inhibitor minocycline and a p38 mitogen-activated protein kinase inhibitor SB203580 inhibited the neuronal excitation in rats subjected to neuropathic pain. A specific P2X1,2,3,4 antagonist TNP-ATP largely inhibited the neuronal excitation only in rats subjected to neuropathic pain rats. In contrast, an astroglial toxin L-alpha-aminoadipate, a gap junction blocker carbenoxolone and c-Jun N-terminal kinase inhibitor SP600125 inhibited the neuronal excitation only in rats subjected to inflammatory pain. A greater number of cells in spinal cord slices from rats subjected to neuropathic pain showed Ca2+ signaling in response to puff application of ATP. This Ca2+ signaling was inhibited by minocycline and TNP-ATP. Conclusions These results directly support the notion that microglia is more involved in neuropathic pain and astrocyte in inflammatory pain.

  12. Effect of low level laser therapy on chronic compression of the dorsal root ganglion.

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    Full Text Available Dorsal root ganglia (DRG are vulnerable to physical injury of the intervertebral foramen, and chronic compression of the DRG (CCD an result in nerve root damage with persistent morbidity. The purpose of this study was to evaluate the effects of low level laser therapy (LLLT on the DRG in a CCD model and to determine the mechanisms underlying these effects. CCD rats had L-shaped stainless-steel rods inserted into the fourth and fifth lumbar intervertebral foramen, and the rats were then subjected to 0 or 8 J/cm2 LLLT for 8 consecutive days following CCD surgery. Pain and heat stimuli were applied to test for hyperalgesia following CCD. The levels of TNF-α, IL-1β and growth-associated protein-43 (GAP-43 messenger RNA (mRNA expression were measured via real-time PCR, and protein expression levels were analyzed through immunohistochemical analyses. Our data indicate that LLLT significantly decreased the tolerable sensitivity to pain and heat stimuli in the CCD groups. The expression levels of the pro-inflammatory cytokines TNF-α and IL-1β were increased following CCD, and we found that these increases could be reduced by the application of LLLT. Furthermore, the expression of GAP-43 was enhanced by LLLT. In conclusion, LLLT was able to enhance neural regeneration in rats following CCD and improve rat ambulatory behavior. The therapeutic effects of LLLT on the DRG during CCD may be exerted through suppression of the inflammatory response and induction of neuronal repair genes. These results suggest potential clinical applications for LLLT in the treatment of compression-induced neuronal disorders.

  13. Localization of 3H-serotonin in the adrenal medullary cells of newborn rats

    International Nuclear Information System (INIS)

    Sudar, F.; Csaba, G.

    1979-01-01

    Newborn rats received 25 μCi 3 H-5-hydroxytryptophan (5-HTP); 30, 60 min or 5 hours later the adrenal glands were removed. Electronmicroscopic autoradiography was carried out after fixation and embedding. As in the cells 5-HTP is formed into serotonin, the distribution of radioactivity actually represents the distribution of serotonin. Activity was found on the cellular, nuclear and catecholamine granule-membranes, and in the nucleus. The activity increased as a function of time at all the above mentioned sites, and in line with this more and more empty catecholamine-granules appeared. Data indicate the existence of intracellular serotonin-receptors and the role of serotonin in the release of catecholamines. (L.E.)

  14. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tokishakuyakusan ameliorates spatial memory deficits induced by ovariectomy combined with β-amyloid in rats

    Directory of Open Access Journals (Sweden)

    Nobuaki Egashira

    2018-03-01

    Full Text Available Previously, we reported that ovariectomy (OVX combined with β-amyloid peptide (Aβ impaired spatial memory by decreasing extracellular acetylcholine (ACh levels in the dorsal hippocampus. Here, we investigated the effect of tokishakuyakusan (TSS, a Kampo medicine, on the impairment of spatial memory induced by OVX combined with Aβ in rats. Repeated administration of TSS (300 mg/kg, p.o. significantly decreased the number of errors in the eight-arm radial maze test. Though TSS had no effect on extracellular ACh levels at baseline, TSS significantly increased extracellular ACh levels in the dorsal hippocampus. These results suggest that TSS improves the impairment of spatial memory induced by OVX combined with Aβ by (at least in part increasing extracellular ACh levels in the dorsal hippocampus. Keywords: Tokishakuyakusan, Ovariectomy, β-Amyloid, Memory, Acetylcholine

  16. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups

    Science.gov (United States)

    Baldy, Cécile; Chamberland, Simon

    2017-01-01

    Abstract The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14–P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups. PMID:29308430

  17. Multiple Myeloma Presenting as Massive Amyloid Deposition in a Parathyroid Gland Associated with Amyloid Goiter: A Medullary Thyroid Carcinoma Mimic on Intra-operative Frozen Section.

    Science.gov (United States)

    Hill, Kirk; Diaz, Jason; Hagemann, Ian S; Chernock, Rebecca D

    2018-06-01

    Clinical examples of amyloid deposition in parathyroid glands are exceedingly rare and usually present as an incidental finding in a patient with amyloid goiter. Here, we present the first histologically documented case of parathyroid amyloid deposition that presented as a mass. The patient did not have hyperparathyroidism. The parathyroid gland was submitted for intra-operative frozen section and concern for medullary thyroid carcinoma was raised. An important histologic clue arguing against medullary thyroid carcinoma was the evenly dispersed nature of the amyloid. Histologic perinuclear clearing and parathyroid hormone immunohistochemistry confirmed parathyroid origin on permanent sections. The patient was also found to have associated amyloid goiter. Mass spectrometry of the amyloid showed it to be composed of kappa light chains. On further work-up, the patient was diagnosed with multiple myeloma. Awareness of parathyroid amyloid deposition is important as it is a histologic mimic of medullary thyroid carcinoma, especially on frozen section. Amyloid typing with evaluation for multiple myeloma in any patient with kappa or lambda light chain restriction is also important.

  18. Effect of emotional stress on postradiation restoration of the hematopoietic system in rats under protection with indraline

    International Nuclear Information System (INIS)

    Moroz, B.B.; Deshevoj, Yu.B.; Lyrshchikova, A.V.; Lebedev, V.G.; Vorotnikova, T.V.

    1999-01-01

    Effect of the emotional stress developed before γ-irradiation at the dose of 6.0 Gy (LD 40-50/30 ) on the radioprotective effectiveness of indraline was studied using rats-females for experiments. Efficiency of the preparation was assessed by the status of post-radiation hemopoiesis regeneration. It was shown that the emotional stress developed before irradiation did not change the radioprotective effect of indraline on hemopoietic system. In contrast with this, the emotional stress developed after irradiation inhibited the radioprotective effect of preparation on the medullary hemopoiesis [ru

  19. Interest of MIBG scintigraphy in screening for pheochromocytoma in patients with medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Bonnin, F.; Lumbroso, J.; Schlumberger, M.; Megnigbeto, A.; Tenenbaum, F.; Leclere, J.; Travagli, J.P.; Gardet, P.; Parmentier, C.

    1995-01-01

    Adrenal medullary disease (AMD) is clinically silent in most patients with medullary thyroid carcinoma (MTC). During 16 years, a series of 174 MTC patients was screened yearly for AMD. Metaiodobenzylguanidine (MIBG) scans were performed in 54 cases (21 at diagnosis and 33 during the follow up of MTC) either systematically (43 cases) or in patients with biological or ultrasonographic signs of AMD (11 cases). AMD was discovered in ten patients: five patients were already known to have a type II multiple endocrine neoplasia (MEN-2); in five patients previously considered as having either a sporadic (four cases) or a familial type of isolated MTC (one case), the occurrence of AMD led to diagnose a MEN-2 a syndrome. In three cases, AMD was bilateral. MIBG scan were performed in nine of the ten patients with AMD. No false positive MIBG scan was observed in the series. All patients with positive MIBG scan had either elevated excretion of catecholamines and derivates. MIBG scan had a sensitivity of 0.9 and specificity of 1. MIBG should not be used as a screening test. In particular, MIBG scan should not be performed systematically neither at diagnosis nor during follow-up. But, in cases with suspicion of AMD, it provides important complementary functional information. (authors). 15 refs., 3 tabs., 2 figs

  20. Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells: the effects of bradykinin, bombesin and neurotensin.

    Science.gov (United States)

    Bunn, S J; Marley, P D; Livett, B G

    1990-04-01

    The ability of a number of drugs and neuropeptides to stimulate phosphoinositide metabolism in cultured bovine adrenal medullary cells has been assessed. Low concentrations (10 nM) of angiotensin II, bradykinin, histamine, arginine-vasopressin, and bombesin, and high (10 microM) concentrations of oxytocin, prostaglandins E1, and E2, beta-endorphin, and neurotensin stimulated significant accumulation of [3H]inositol phosphates in adrenal medullary cells preloaded with [3H)]inositol. Bradykinin stimulated a significant response at concentration as low as 10pM, with an EC50 of approximately 0.5 nM. The response was markedly inhibited by the bradykinin B2 antagonist [Thi5,8,D-Phe7] bradykinin but not the B1 antagonist [Des-Arg9,Leu8] bradykinin. Higher concentrations of bombesin and neurotensin were required to elicit a response (10 nM and 10 microM respectively). The bombesin response was sensitive to inhibition by the bombesin antagonist [D-Arg1,D-Pro2,D-Trp7,9Leu11]-substance P. In contrast, the neurotensin response was not reduced by the NT1 antagonist [D-Trp11]-neurotensin. These results indicate there are a number of agents that can stimulate phosphatidylinositide hydrolysis in the adrenal medullary cells by acting on different classes of receptors. Such a range of diverse agonists that stimulate inositol phosphate formation will facilitate further analysis of the phosphatidylinositide breakdown in chromaffin cell function.

  1. Case report of severe Cushing's syndrome in medullary thyroid cancer complicated by functional diabetes insipidus, aortic dissection, jejunal intussusception, and paraneoplastic dysautonomia: remission with sorafenib without reduction in cortisol concentration.

    Science.gov (United States)

    Hammami, Muhammad M; Duaiji, Najla; Mutairi, Ghazi; Aklabi, Sabah; Qattan, Nasser; Abouzied, Mohei El-Din M; Sous, Mohamed W

    2015-09-09

    Normalization of cortisol concentration by multikinase inhibitors have been reported in three patients with medullary thyroid cancer-related Cushing's syndrome. Aortic dissection has been reported in three patients with Cushing's syndrome. Diabetes insipidus without intrasellar metastasis, intestinal intussusception, and paraneoplastic dysautonomia have not been reported in medullary thyroid cancer. An adult male with metastatic medullary thyroid cancer presented with hyperglycemia, hypernatremia, hypokalemia, hypertension, acne-like rash, and diabetes insipidus (urine volume >8 L/d, osmolality 190 mOsm/kg). Serum cortisol, adrenocorticoitropic hormone, dehydroepiandrostenedione sulfate, and urinary free cortisol were elevated 8, 20, 4.4, and 340 folds, respectively. Pituitary imaging was normal. Computed tomography scan revealed jejunal intussusception and incidental abdominal aortic dissection. Sorafenib treatment was associated with Cushing's syndrome remission, elevated progesterone (>10 fold), normalization of dehydroepiandrostenedione sulfate, but persistently elevated cortisol concentration. Newly-developed proximal lower limb weakness and decreased salivation were associated with elevated ganglionic neuronal acetylcholine receptor (alpha-3) and borderline P/Q type calcium channel antibodies. Extreme cortisol concentration may have contributed to aortic dissection and suppressed antidiuretic hormone secretion; which combined with hypokalemia due cortisol activation of mineralocorticoid receptors, manifested as diabetes insipidus. This is the first report of paraneoplastic dysautonomia and jejunal intussusception in medullary thyroid cancer, they may be related to medullary thyroid cancer's neuroendocrine origin and metastasis, respectively. Remission of Cushing's syndrome without measurable reduction in cortisol concentration suggests a novel cortisol-independent mechanism of action or assay cross-reactivity. Normalization of dehydroepiandrostenedione

  2. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Science.gov (United States)

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  3. Matrix Gla Protein is Involved in Crystal Formation in Kidney of Hyperoxaluric Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Lu

    2013-02-01

    Full Text Available Background: Matrix Gla protein (MGP is a molecular determinant regulating vascular calcification of the extracellular matrix. However, it is still unclear how MGP may be invovled in crystal formation in the kidney of hyperoxaluric rats. Methods: Male Sprague-Dawley rats were divided into the hyperoxaluric group and control group. Hyperoxaluric rats were administrated by 0.75% ethylene glycol (EG for up to 8 weeks. Renal MGP expression was detected by the standard avidin-biotin complex (ABC method. Renal crystal deposition was observed by a polarizing microscope. Total RNA and protein from the rat kidney tissue were extracted. The levels of MGP mRNA and protein expression were analyzed by the real-time polymerase chain reaction (RT-PCR and Western blot. Results: Hyperoxaluria was induced successfully in rats. The MGP was polarly distributed, on the apical membrane of renal tubular epithelial cells, and was found in the ascending thick limbs of Henle's loop (cTAL and the distal convoluted tubule (DCT in hyperoxaluric rats, its expression however, was present in the medullary collecting duct (MCD in stone-forming rats. Crystals with multilaminated structure formed in the injurious renal tubules with lack of MGP expression.MGP mRNA expression was significantly upregulated by the crystals' stimulations. Conclusion: Our results suggested that the MGP was involved in crystals formation by the continuous expression, distributing it polarly in the renal tubular cells and binding directly to the crystals.

  4. Sonographic assessment of normal renal parenchymal and medullary pyramid thicknesses among children in Enugu, Southeast, Nigeria

    International Nuclear Information System (INIS)

    Eze, C.U.; Akpan, V.P.; Nwadike, I.U.

    2016-01-01

    Background: Renal parenchymal thickness (RPT) and renal medullary pyramid thickness (MPT) are important renal size parameters. This study was aimed at establishing normograms for RPT and MPT with respect to age and somatometric parameters among children. Methods: This was a cross sectional study done in Enugu, Nigeria between May 2013 and April 2014. The subjects were 512 children aged 1–17 years scanned with ultrasound equipment with 3.5 MHz and 5 MHz curvilinear transducers. The RPT was measured perpendicularly to the long axis of the kidney from the medullary papilla to the renal capsule and MPT was measured from the apex to the base of the medullary pyramid on the same plane. The age and somatometric parameters of the subjects were recorded. Results: The mean ± SD of RPT and MPT for the right kidney were 12.62 ± 1.67 mm and 7.10 ± 0.92 mm and the left kidney were 12.81 ± 1.7 and 7.23 ± 0.94 mm respectively. There was a significant difference between the right and left RPT and MPT (p < 0.05). The right and left RPT correlated strongly with age, body surface area (BSA), height, and weight but moderately with body mass index (BMI). A moderate positive correlation was observed between MPT and age, BSA, height, and weight. However, a weak correlation was observed between MPT and BMI. Conclusion: Normograms of RPT and MPT in relation to age could be useful for grading hydronephrosis in children. - Highlights: • Sonography of RPT and MPT at the anterior longitudinal axis of the kidney is simple. • RPT and MPT Measurements are reliable within and between experienced sonographers. • No significant gender differences in RPT and MPT values exist in this study. • Significant differences exist between the right and left RPT and MPT measurements. • Normative values of RPT and MPT in relation to age in children are useful.

  5. Medullary GABAergic mechanisms contribute to electroacupuncture modulation of cardiovascular depressor responses during gastric distention in rats

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2013-01-01

    Electroacupuncture (EA) at P5–P6 acupoints overlying the median nerves typically reduces sympathoexcitatory blood pressure (BP) reflex responses in eucapnic rats. Gastric distention in hypercapnic acidotic rats, by activating both vagal and sympathetic afferents, decreases heart rate (HR) and BP through actions in the rostral ventrolateral medulla (rVLM) and nucleus ambiguus (NAmb), leading to sympathetic withdrawal and parasympathetic activation, respectively. A GABAA mechanism in the rVLM mediates the decreased sympathetic outflow. The present study investigated the hypothesis that EA modulates gastric distention-induced hemodynamic depressor and bradycardia responses through nuclei that process parasympathetic and sympathetic outflow. Anesthetized hypercapnic acidotic rats manifested repeatable decreases in BP and HR with gastric distention every 10 min. Bilateral EA at P5–P6 for 30 min reversed the hypotensive response from −26 ± 3 to −6 ± 1 mmHg and the bradycardia from −35 ± 11 to −10 ± 3 beats/min for a period that lasted more than 70 min. Immunohistochemistry and in situ hybridization to detect c-Fos protein and GAD 67 mRNA expression showed that GABAergic caudal ventral lateral medulla (cVLM) neurons were activated by EA. Glutamatergic antagonism of cVLM neurons with kynurenic acid reversed the actions of EA. Gabazine used to block GABAA receptors microinjected into the rVLM or cVLM reversed EA's action on both the reflex depressor and bradycardia responses. EA modulation of the decreased HR was inhibited by microinjection of gabazine into the NAmb. Thus, EA through GABAA receptor mechanisms in the rVLM, cVLM, and NAmb modulates gastric distention-induced reflex sympathoinhibition and vagal excitation. PMID:23302958

  6. Ischaemia of the medullary cone after stent-graft implantation in a patient with abdominal aortic aneurysm - a case study.

    Science.gov (United States)

    Wachowski, Mariusz; Polguj, Michał; Ścibór, Janusz; Majos, Agata

    2018-03-01

    Preoperative visualization of the Adamkiewicz artery - the vessel which is to a great extent responsible for supplying blood to the medullary cone - is an important step which must be taken before initiating restorative procedures in the aorta. We present a case of a 67-year-old patient who underwent an intravascular stent-graft implantation procedure, due to clinical signs of abdominal aortic aneurysm. Routine pre-operative computed tomography examination failed to demonstrate the Adamkiewicz artery. On the second day after the surgery, as a result of unexpected clinical deterioration, an magnetic resonance imaging examination of the lumbar spine was carried out. Based on the magnetic resonance imaging images and clinical manifestations the diagnosis of ischaemia of the medullary cone was made. In our work we also present a deep analysis of the anatomy of small-sized vessels supplying blood to the spinal cord and discuss effective techniques which enable visualization of the Adamkiewicz artery.

  7. Dorsal buccal mucosal graft urethroplasty for anterior urethral stricture by Asopa technique.

    Science.gov (United States)

    Pisapati, V L N Murthy; Paturi, Srimannarayana; Bethu, Suresh; Jada, Srikanth; Chilumu, Ramreddy; Devraj, Rahul; Reddy, Bhargava; Sriramoju, Vidyasagar

    2009-07-01

    Buccal mucosal graft (BMG) substitution urethroplasty has become popular in the management of intractable anterior urethral strictures with good results. Excellent long-term results have been reported by both dorsal and ventral onlay techniques. Asopa reported a successful technique for dorsal placement of BMG in long anterior urethral strictures through a ventral sagittal approach. To evaluate prospectively the results and advantages of dorsal BMG urethroplasty for recurrent anterior urethral strictures by a ventral sagittal urethrotomy approach (Asopa technique). From December 2002 to December 2007, a total of 58 men underwent dorsal BMG urethroplasty by a ventral sagittal urethrotomy approach for recurrent urethral strictures. Forty-five of these patients with a follow-up period of 12-60 mo were prospectively evaluated, and the results were analysed. The urethra was split twice at the site of the stricture both ventrally and dorsally without mobilising it from its bed, and the buccal mucosal graft was secured in the dorsal urethral defect. The urethra was then retubularised in one stage. The overall results were good (87%), with a mean follow-up period of 42 mo. Seven patients developed minor wound infection, and five patients developed fistulae. There were six recurrences (6:45, 13%) during the follow-up period of 12-60 mo. Two patients with a panurethral stricture and four with bulbar or penobulbar strictures developed recurrences and were managed by optical urethrotomy and self-dilatation. The medium-term results were as good as those reported with the dorsal urethrotomy approach. Long-term results from this and other series are awaited. More randomised trials and meta-analyses are needed to establish this technique as a procedure of choice in future. The ventral sagittal urethrotomy approach is easier to perform than the dorsal urethrotomy approach, has good results, and is especially useful in long anterior urethral strictures.

  8. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  9. Sulfide silver architectonics of rat, cat, and guinea pig spinal cord. A light microscopic study with Timm's method for demonstration of heavy metals

    DEFF Research Database (Denmark)

    Schroder, H D

    1977-01-01

    The distribution of heavy metals in the spinal cord of the cat, rat, and guinea pig has been studied histochemically with Timm's sulfide silver method. There was considerable variation in the degree of staining of the neuropil. The dorsal horn showed a laminar staining pattern corresponding...... to the cytoarchitectonic lamination. Lamina I in the cat and guinea pig was light. Lamina II in all three species was heavily stained. In the rat and guinea pig it could be subdivided in a ventral and a dorsal layer, and moreover in the rat a darkly staining borderzone abutting on lamina III was present. Lamina III......, characterized by heterogeneous staining, also appeared dark, although less obvious in the guinea pig. In the ventral horn the coarser stained particles in lamina IX contrasted with the surrounding lamina. Cell staining varied between different cell groups, and within single cell populations. In the cat thoracic...

  10. Intermediate stage of sleep and acute cerveau isolé preparation in the rat.

    Science.gov (United States)

    User, P; Gioanni, H; Gottesmann, C

    1980-01-01

    The acute cerveau isole rat shows spindle bursts of large amplitude alternating with low voltage activity in the frontal cortex and continuous theta rhythm in the dorsal hippocampus. These patterns closely resemble an "intermediate" stage of sleep-waking cycle, when the forebrain structures seem to be functionally disconnected from the brainstem.

  11. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.

    Science.gov (United States)

    Li, Jay-Shake; Chao, Yuen-Shin

    2008-02-01

    Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.

  12. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  13. A rare case of concomitant sicca keratopathy and ipsilateral central facial palsy in Wallenberg’s dorsolateral medullary syndrome

    Directory of Open Access Journals (Sweden)

    De Bruyn, Deborah

    2017-03-01

    Full Text Available Objective: To describe a patient with a right-sided supranuclear facial palsy and concomitant sicca keratopathy of the right eye following right-sided dorsolateral medullary infarction. Methods: Our patient underwent a complete ophthalmologic and neurologic examination including biomicroscopy, fundus examination, cranial nerve examination, Shirmer I test, and magnetic resonance imaging of the brain.Results: A 61-year-old woman presented in emergency with a central facial nerve palsy on the right side and truncal ataxia. Neurologic assessment revealed a concurrent dysphagia, dysarthria, hypoesthesia of the right face, and weakness of the right upper limb. Magnetic resonance imaging of the brain showed an old left-sided cerebellar infarction, but a recent ischemic infarction at the level of the right dorsolateral medulla oblongata was the cause of our patient’s current problems. One month after diagnosis of the right-sided dorsolateral medullary syndrome, there were complaints of ocular irritation and a diminished visual acuity in the right eye. Biomicroscopy showed a sicca keratopathy with nearly complete absence of tear secretion on the Shirmer I test, but with normal eye closure and preserved corneal reflexes and sensitivity.Conclusion: A dorsolateral medullary syndrome can have a variable expression in symptomatology. Our case is special because of the combination of an ipsilateral supranuclear facial palsy with normal upper facial muscle function together with an ipsilateral sicca keratopathy as a result of a nearly absent tear secretion. We hypothesized that the mechanism underlying the patient’s sicca keratopathy ipsilateral to the supranuclear facial palsy involved the superior salivatory nucleus, which is situated in the caudal pons inferiorly of the motor facial nucleus and is most probably affected by a superior extension of the infarcted area in the right medulla oblongata.

  14. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  15. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    Science.gov (United States)

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  16. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  17. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  18. Effects of carbon dioxide therapy on the healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    2013-05-01

    Full Text Available PURPOSE: To evaluate the healing effect of carbon dioxide therapy on skin wounds induced on the back of rats. METHODS: Sixteen rats underwent excision of a round dermal-epidermal dorsal skin flap of 2.5 cm in diameter. The animals were divided into two groups, as follows: carbon dioxide group - subcutaneous injections of carbon dioxide on the day of operation and at three, six and nine days postoperatively; control group - no postoperative wound treatment. Wounds were photographed on the day of operation and at six and 14 days postoperatively for analysis of wound area and major diameter. All animals were euthanized on day 14 after surgery. The dorsal skin and the underlying muscle layer containing the wound were resected for histopathological analysis. RESULTS: There was no statistically significant difference between groups in the percentage of wound closure, in histopathological findings, or in the reduction of wound area and major diameter at 14 days postoperatively. CONCLUSION: Under the experimental conditions in which this study was conducted, carbon dioxide therapy had no effects on the healing of acute skin wounds in rats.

  19. Intercellular communication within the rat anterior pituitary: XIV electron microscopic and immunohistochemical study on the relationship between the agranular cells and GnRH neurons in the dorsal pars tuberalis of the pituitary gland.

    Science.gov (United States)

    Shirasawa, Nobuyuki; Sakuma, Eisuke; Wada, Ikuo; Naito, Akira; Horiuchi, Osamu; Mabuchi, Yoshio; Kanai, Miharu; Herbert, Damon C; Soji, Tsuyoshi

    2007-11-01

    Although numerous investigators in 1970s to 1980s have reported the distribution of LH-RH nerve fibers in the median eminence, a few LH-RH fibers have been shown to be present in the pars tuberalis. The significance of the finding remains to be elucidated, and there are few studies on the distribution of LH-RH neurons in the pars tuberalis, especially in the dorsal pars tuberalis (DPT). Adult male Wistar-Imamichi rats were separated into two groups: one for electron microscopy and the other for immunohistochemistry to observe LH-RH and neurofilaments. Pituitary glands attached to the brain were fixed by perfusion, and the sections were prepared parallel to the sagittal plane. The typical glandular structure of the pars tuberalis was evident beneath the bottom floor of the third ventricle, and the thick glandular structure was present in the foremost region. Closer to the anterior lobe, the glandular structure changed to be a thin layer, and it was again observed at the posterior portion. Then the pituitary stalk was surrounded with the dorsal, lateral, and ventral pars tuberalis. LH-RH and neurofilaments fibers were noted in the bottom floor, and some of them vertically descended to the gland. Adjacent to the glandular folliculostellate cells in the pars tuberalis, Herring bodies with numerous dense granules invading into the gland were present between the pituitary stalk and DPT. It was postulated that the "message" carried by LH-RH might have been transmitted to the cells in the DPT to aid in the modulation of LH release. Copyright 2007 Wiley-Liss, Inc.

  20. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  1. The dorsal thoracic fascia: anatomic significance with clinical applications in reconstructive microsurgery.

    Science.gov (United States)

    Kim, P S; Gottlieb, J R; Harris, G D; Nagle, D J; Lewis, V L

    1987-01-01

    The anatomic distribution and potential arterial flow patterns of the circumflex scapular artery were investigated by Microfil injection. These studies demonstrated that the circumflex scapular artery lies within the dorsal thoracic fascia, which plays a significant role in the circulation of the overlying skin and subcutaneous tissue. We conclude that scapular/parascapular flaps are fasciocutaneous flaps, the dorsal thoracic fascia can be transferred as a free flap without its overlying skin and subcutaneous tissue, and intercommunication exists between the myocutaneous perforators of the latissimus dorsi myocutaneous flap and the vascular plexus of the dorsal thoracic fascia. We present microvascular cases in which the vascular properties of the dorsal thoracic fascia facilitated wound closure with free fascia flaps or expanded cutaneous or myocutaneous flaps.

  2. Clinical utility of vandetanib in the treatment of patients with advanced medullary thyroid cancer

    Directory of Open Access Journals (Sweden)

    Deshpande H

    2011-12-01

    Full Text Available Hari Deshpande1,3, Vicky Marler3, Julie Ann Sosa2,31Department of Medicine, 2Department of Surgery, Yale University School of Medicine, 3Yale Cancer Center, New Haven, CT, USAAbstract: Vandetanib (ZD6474 became the first systemic agent to be approved for the treatment of metastatic or locally advanced medullary thyroid cancer. It was a proof of principle, because it is an orally bioavailable medication that targets the growth factors felt to be important in the pathogenesis of this disease, ie, the rearranged during transfection proto-oncogene and vascular endothelial growth factor receptor. It was tested initially in two Phase II studies at doses of 100 mg and 300 mg daily. Although activity was seen at both doses, the higher dose was chosen for a randomized, placebo-controlled Phase II study. This trial, which accrued more than 300 patients, showed a statistically significant benefit for the group taking vandetanib compared with those taking placebo medication. Progression-free survival for the vandetanib arm has not been reached, compared with 19 months for the placebo arm. The main toxicity appears to be diarrhea, although some patients experienced significant side effects, including torsades de pointes and sudden cardiac death. Therefore, it is now necessary for practitioners to enroll in a Risk Evaluation Mitigation Strategy before being allowed to prescribe this medication, to reduce the risk of serious side effects occurring.Keywords: ZD6474, medullary thyroid cancer, vandetanib

  3. Compound dorsal dislocation of lunate with trapezoid fracture

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    2016-12-01

    Full Text Available We report about a dorsal dislocation of the lunate accompanied by a trapezoid fracture in a 41-year old male patient after a motorcycle accident. The lunate dislocation with no dorsal or volar intercalated segment instability (DISI, VISI was diagnosed by x-ray whereas the trapezoid fracture was only diagnosable by computed tomography. A closed reduction and internal fixation of the lunate by two Kirschner wires was performed, the trapezoid fracture was conservatively treated. Surgery was followed by immobilization, intense physiotherapy and close follow-up. Even though complaints such as swelling and pain subsided during the course of rehabilitation, partial loss of strength and range of motion remained even after 16 months. In conclusion, a conservative treatment of trapezoid fractures seems to be sufficient in most cases. Closed reduction with Kwire fixation led to an overall satisfactory result in our case. For dorsal lunate dislocations in general, open reduction should be performed when close reduction is unsuccessful or DISI/VISI are observed in radiographs after attempted close reduction.

  4. Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Liang Jiang

    2013-01-01

    Full Text Available Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1 plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL in rats. 2 Hz EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG, but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01 mg/kg TRPV1 agonist 6′-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01 mg/kg 6′-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation.

  5. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  6. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  7. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Science.gov (United States)

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  8. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J

    2015-02-01

    Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  10. Prior Cocaine Self-Administration Increases Response-Outcome Encoding That Is Divorced from Actions Selected in Dorsal Lateral Striatum.

    Science.gov (United States)

    Burton, Amanda C; Bissonette, Gregory B; Zhao, Adam C; Patel, Pooja K; Roesch, Matthew R

    2017-08-09

    Dorsal lateral striatum (DLS) is a highly associative structure that encodes relationships among environmental stimuli, behavioral responses, and predicted outcomes. DLS is known to be disrupted after chronic drug abuse; however, it remains unclear what neural signals in DLS are altered. Current theory suggests that drug use enhances stimulus-response processing at the expense of response-outcome encoding, but this has mostly been tested in simple behavioral tasks. Here, we investigated what neural correlates in DLS are affected by previous cocaine exposure as rats performed a complex reward-guided decision-making task in which predicted reward value was independently manipulated by changing the delay to or size of reward associated with a response direction across a series of trial blocks. After cocaine self-administration, rats exhibited stronger biases toward higher-value reward and firing in DLS more strongly represented action-outcome contingencies independent from actions subsequently taken rather than outcomes predicted by selected actions (chosen-outcome contingencies) and associations between stimuli and actions (stimulus-response contingencies). These results suggest that cocaine self-administration strengthens action-outcome encoding in rats (as opposed to chosen-outcome or stimulus-response encoding), which abnormally biases behavior toward valued reward when there is a choice between two options during reward-guided decision-making. SIGNIFICANCE STATEMENT Current theories suggest that the impaired decision-making observed in individuals who chronically abuse drugs reflects a decrease in goal-directed behaviors and an increase in habitual behaviors governed by neural representations of response-outcome (R-O) and stimulus-response associations, respectively. We examined the impact that prior cocaine self-administration had on firing in dorsal lateral striatum (DLS), a brain area known to be involved in habit formation and affected by drugs of abuse

  11. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  12. Complete dorsal pancreatic agenesis and unilateral renal agenesis.

    Science.gov (United States)

    Moreira, Adriana; Carvalho, André; Portugal, Inês; Jesus, José Miguel

    2018-02-01

    Dorsal pancreatic agenesis is a very rare congenital anomaly. Unilateral renal agenesis, on the other hand, is a relatively common congenital anomaly, although its etiology is not fully understood. Renal and pancreatic embryologic development appears to be nonrelated. We report a case of a 34-year-old man who was referred to our hospital for evaluation of cholestasis and microalbuminuria. Ultrasound and magnetic resonance imaging examinations showed empty right renal fossa and absence of the pancreatic neck, body, and tail. Our case report is the second case of a dorsal pancreatic agenesis and unilateral renal agenesis in a young male patient.

  13. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  14. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.

    Science.gov (United States)

    Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel

    2010-08-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, plabelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, plabelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.

  15. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus.

    Science.gov (United States)

    Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young

    2017-12-11

    Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.

  16. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer

    DEFF Research Database (Denmark)

    Schlumberger, Martin J; Elisei, Rossella; Bastholt, Lars

    2009-01-01

    PURPOSE: This phase II study investigated the efficacy and tolerability of motesanib, an investigational, highly selective inhibitor of vascular endothelial growth factor receptors 1, 2, and 3; platelet-derived growth factor receptor; and Kit in advanced medullary thyroid cancer (MTC). PATIENTS A...

  17. Dorsal hippocampus inactivation impairs spontaneous recovery of Pavlovian magazine approach responding in rats

    Science.gov (United States)

    Campese, Vincent D.; Delamater, Andrew R.

    2014-01-01

    Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1–4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. PMID:24742862

  18. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  19. Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum.

    Science.gov (United States)

    Jupp, Bianca; Murray, Jennifer E; Jordan, Emily R; Xia, Jing; Fluharty, Meg; Shrestha, Saurav; Robbins, Trevor W; Dalley, Jeffrey W

    2016-02-01

    Studies in human and non-human primates demonstrate that social status is an important determinant of cocaine reinforcement. However, it is unclear whether social rank is associated with other traits that also predispose to addiction and whether social status similarly predicts cocaine self-administration in rats. The objective of this study is to investigate whether social ranking assessed using a resource competition task affects (i) the acquisition, maintenance and reinstatement of cocaine self-administration; (ii) the dopaminergic markers in the striatum; and (iii) the expression of ancillary traits for addiction. Social ranking was determined in group-housed rats based upon drinking times during competition for a highly palatable liquid. Rats were then evaluated for cocaine self-administration and cue-induced drug reinstatement or individual levels of impulsivity, anxiety and novelty-induced locomotor activity. Finally, dopamine content, dopamine transporter (DAT) and dopamine D2/D3 (D2/3) receptor binding were measured postmortem in the dorsal and ventral striatum. Rats deemed socially dominant showed enhanced novelty reactivity but were neither more impulsive nor anxious compared with subordinate rats. Dominant rats additionally maintained higher rates of cocaine self-administration but showed no differences in the acquisition, extinction and reinstatement of this behaviour. D2/3 binding was elevated in the nucleus accumbens shell and dorsal striatum of dominant rats when compared to subordinate rats, and was accompanied by elevated DAT and reduced dopamine content in the nucleus accumbens shell. These findings show that social hierarchy influences the rate of self-administered cocaine but not anxiety or impulsivity in rats. Similar to non-human primates, these effects may be mediated by striatal dopaminergic systems.

  20. Detection of genes regulated by Lmx1b during limb dorsalization.

    Science.gov (United States)

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  1. Plasma levels of calcitonin in medullary thyroid carcinoma patients with and without the RET proto-oncogene mutations in exons 10 and 11

    Directory of Open Access Journals (Sweden)

    Samira Ehyayi

    2017-09-01

    Conclusion: Routine measurement of calcitonin has been investigated as a screening method for the diagnosis of medullary thyroid carcinoma patients. Nevertheless, additional data are required to definitely support routine measurement of calcitonin due to the role of RET proto-oncogene.

  2. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat

    NARCIS (Netherlands)

    Hendriks, William T J; Eggers, R.; Ruitenberg, Marc J; Blits, Bas; Hamers, Frank P T; Verhaagen, J.; Boer, Gerard J

    The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or

  3. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Roth, Tania L; Zoladz, Phillip R; Sweatt, J David; Diamond, David M

    2011-07-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and Bdnf DNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed Bdnf DNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased Bdnf DNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in Bdnf DNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of Bdnf mRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnf gene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal Bdnf DNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Patterns of x-radiation-induced Schwann cell development in spinal cords of immature rats

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Heard, J.K.; Leiting, J.E.

    1983-01-01

    Schwann cells, Schwann cell myelin, and connective tissue components develop in the spinal cord of the immature rat following exposure to x-rays. For the purposes of this paper, these intraspinal peripheral nervous tissue constituents are referred to as IPNT. A series of investigations are in progress to elucidate factors related to the development of IPNT, and the present study is a light microscopic evaluation of the relationship between the amount of radiation administered (1,000-3,000R) to the lumbosacral spinal cord in 3-day-old rats and the incidence and distribution of IPNT at intervals up to 60 days postirradiation (P-I). The results showed that IPNT was present in only 33% of the rats exposed to 1,000R, whereas its presence was observed in 86% or more of those in the 2,000-, 2,500-, and 3,000R groups. The distribution of IPNT was quite limited in the 1,000R group, where it was restricted to the spinal cord-dorsal root junction and was found in only a few sections within the irradiated area. The distribution was more widespread with increasing amounts of radiation, and IPNT occupied substantial portions of the dorsal funiculi and extended into the dorsal gray matter in the 3,000R group. In all aR mals developing IPNT in the groups receiving 2,000R or more, the IPNT was present in essentially all sections from the irradiated area. Further studies will compare in detail spinal cords exposed to 1,000R in which IPNT is an infrequent, limited occurrence with those exposed to higher doses where IPNT occurs in a more widespread fashion in essentially all animals

  5. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  6. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  7. Effect of Picibanil (OK 432) on the Scavenging Effect of Free Radicals Produced during Liver Regeneration in the Rat

    OpenAIRE

    Okamoto, Ko; Hamazaki, Keisuke; Iwagaki, Hiromi; Orita, Kunzo; Mori, Akitane

    1995-01-01

    We administered a biological response modifier Picibanil (OK-432), attenuated Streptococcus pyogenes, via the dorsal vein of the penis after 70% hepatectomy in rats, and clarified the scavenging effect of Picibanil on free radicals generated in the regenerating liver. A group of 5 rats was intravenously administered with 25 KE/kg of OK-432 after hepatectomy, while the control group was given saline after hepatectomy. Serum levels of aspartate aminotransferase and alanine aminotransferase and ...

  8. Agenesis of the dorsal mesentery presenting in an adolescent

    Directory of Open Access Journals (Sweden)

    Anith Chacko

    2013-03-01

    Full Text Available Agenesis of the dorsal mesentery is a rare occurrence that usually presents in children. It is associated with proximal small bowel malrotation as well as high jejunal atresia with discontinuity of the small bowel. We present a case report of an adolescent presenting with clinical features of proximal small bowel obstruction (confirmed on imaging as well as acute pancreatitis. At laparotomy, he was found to have no dorsal mesentery, without small bowel atresia, and the duodenum was fixed to the posterior abdominal wall. The patient recovered well and remained symptom-free.

  9. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus.

    Science.gov (United States)

    Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio

    2017-09-01

    Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Science.gov (United States)

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing

    2015-01-01

    The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  11. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Directory of Open Access Journals (Sweden)

    Xiaolu Wang

    Full Text Available The laryngeal chemoreflex (LCR induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS, the vestibular nuclear complex (VNC, the loose formation of the nucleus ambiguus (AmbL, the rostral ventral respiratory group (RVRG, the ventrolateral reticular complex (VLR, the pre-Bötzinger complex (PrBöt, the Bötzinger complex (Böt, the spinal trigeminal nucleus (SP5, and the raphe obscurus nucleus (ROb bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic, and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  12. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  13. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  14. Hypoandrogenism related to early skin wound healing resistance in rats.

    Science.gov (United States)

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  15. Medullary sponge kidney on axial computed tomography

    International Nuclear Information System (INIS)

    Ginalski, J.-M.; Schnyder, Pierre; Portmann, Luc; Jaeger, Philippe

    1991-01-01

    To evaluate features of medullary sponge kidney (MSK) on computed tomography (CT), 4-mm-thick axial slices without intravenous contrast material were 1st made in 13 patients through 24 kidneys which showed images of MSK on excretory urograms. On CT, papillary calcifications were found in 11 kidneys. In 5 of these, the calcifications were not detectable on plain films. Some hyperdense papillae (attenuation value 55-70 Hounsfield units) without calcification were found in 4 other kidneys. 9 kidneys appeared normal. 10 of the 14 kidneys were reexamined by a 2nd series of 4-mm-thick axial slices, 5 min after intravenous injection of 50 ml of Urografin. Images suggesting possible ectasia of precaliceal tubules were found in only 4 kidneys. These images appear much less obvious and characteristic on CT than on excretory urogram and do nothing more than suggest the possibility of MSK. In conclusion, the sensitivity of CT in the detection of MSK is markedly lower than that of excretory urography. In the most florid cases of the disease, CT can only show images suggesting the possibility of MSK. On the other hand, CT appears much more sensitive than plain films and tomograms of excretory in the detection of papillary calcifications, the most frequent complication of MSK. (author). 13 refs.; 3 figs

  16. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient.

    Directory of Open Access Journals (Sweden)

    Michael D O'Connell

    2015-04-01

    Full Text Available In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.

  17. Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome.

    Science.gov (United States)

    Tinaz, Sule; Malone, Patrick; Hallett, Mark; Horovitz, Silvina G

    2015-08-01

    The mid-posterior part of the insula is involved in processing bodily sensations and urges and is activated during tic generation in Tourette syndrome. The dorsal anterior part of the insula, however, integrates sensory and emotional information with cognitive valuation and is implicated in interoception. The right dorsal anterior insula also participates in urge suppression in healthy subjects. This study examined the role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Resting-state functional magnetic resonance imaging was performed in 13 adult Tourette patients and 13 matched controls. The role of the right dorsal anterior insula within the urge-tic network was investigated using graph theory-based neural network analysis. The functional connectivity of the right dorsal anterior insula was also correlated with urge and tic severity. Even though the patients did not exhibit any overt tics, the right dorsal anterior insula demonstrated higher connectivity, especially with the frontostriatal nodes of the urge-tic network in patients compared with controls. The functional connectivity between the right dorsal anterior insula and bilateral supplementary motor area also correlated positively with urge severity in patients. These results suggest that the right dorsal anterior insula is part of the urge-tic network and could influence the urge- and tic-related cortico-striato-thalamic regions even during rest in Tourette syndrome. It might be responsible for heightened awareness of bodily sensations generating premonitory urges in Tourette syndrome. © 2015 International Parkinson and Movement Disorder Society.

  18. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  19. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Science.gov (United States)

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  20. Basal Cell Carcinoma of the Dorsal Hand: An Update and Comprehensive Review of the Literature.

    Science.gov (United States)

    Loh, Tiffany Y; Rubin, Ashley G; Brian Jiang, Shang I

    2016-04-01

    Excessive ultraviolet radiation (UVR) exposure is the primary predisposing factor for basal cell carcinoma (BCC). However, surprisingly, BCCs occur very rarely on the dorsal hand, which is subject to intense sun exposure, and their infrequent presentation in this location suggests that other factors besides UVR may play a role in BCC pathogenesis. Because dorsal hand BCCs are uncommon, knowledge of their characteristics is limited, and more data are needed to describe their clinical presentation and treatment. To perform an updated review of the literature on the management of dorsal hand BCCs. The authors conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal hand," "basal cell carcinoma hand," and "basal cell carcinoma finger," and "basal cell carcinoma thumb." The authors identified 176 cases of dorsal hand BCCs in the literature, 120 of which had sufficient data for analysis. Only 4 cases were treated with Mohs micrographic surgery (MMS). The authors present 14 additional cases of dorsal hand BCCs treated with MMS. Basal cell carcinomas on the dorsal hand occur infrequently, and potential risk factors include being a male of white descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment method.

  1. Basal Cell Carcinoma of the Dorsal Foot: An Update and Comprehensive Review of the Literature.

    Science.gov (United States)

    Loh, Tiffany Y; Rubin, Ashley G; Jiang, Shang I Brian

    2017-01-01

    Ultraviolet radiation is a well-known risk factor for basal cell carcinoma (BCC). Therefore, the high incidence of BCCs in sun-exposed areas such as the head and neck is unsurprising. However, unexpectedly, BCCs on the sun-protected dorsal foot have also been reported, and tumor occurrence here suggests that other factors besides ultraviolet radiation may play a role in BCC pathogenesis. Because only few dorsal foot BCCs have been reported, data on their clinical features and management are limited. To perform an updated review of the literature on clinical characteristics and treatment of dorsal foot BCCs. We conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal foot," "basal cell carcinoma foot," and "basal cell carcinoma toe." We identified 20 cases of dorsal foot BCCs in the literature, 17 of which had sufficient data for analysis. Only 1 case was treated with Mohs micrographic surgery. We present 8 additional cases of dorsal foot BCCs treated with Mohs micrographic surgery. Basal cell carcinomas on the dorsal foot are rare, and potential risk factors include Caucasian descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment option.

  2. Interaction between the Basolateral Amygdala and Dorsal Hippocampus Is Critical for Cocaine Memory Reconsolidation and Subsequent Drug Context-Induced Cocaine-Seeking Behaviorin Rats

    Science.gov (United States)

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory…

  3. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    Science.gov (United States)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  4. Growth control of the cranial base. A study with experimentally bipedal male rats

    Energy Technology Data Exchange (ETDEWEB)

    Smit-Vis, J.H.

    1981-01-01

    In a cross-sectional study the postnatal development of the skull, particularly that of the cranial base, was studied in experimentally bipedal male rats, up to the age of 46 weeks. A total of 81 bipedal rats and a control group of 90 animals were studied. It was found that, as compared with control rats, the bipedal rats had a definitely more spherical skull. This was the result of an increased height and a stronger dorsal flexion of the anterior cranial base. As to the chondrocranial elements, the basi-occipital bone reached, on the average, the same length in bipedal rats as in controls. However, the basisphenoid bone was significantly shorter. Arguments are given to relate the latter phenomenon to the altered shape of the neurocranium. The conclusion is drawn that, in this experimental approach, chondrocranial growth at the intersphenoidal synchondrosis is controlled not only by intrinsic genetic factors but also by local epigenetic and/or environmental factors.

  5. Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats.

    Science.gov (United States)

    Ludens, J H; Clark, M A; Lawson, J A

    1995-06-01

    Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats were observed. Effects of K+ channel modulation on glomerular filtration rate and electrolyte excretion were studied using the adenosine-triphosphate- (ATP)-sensitive K+ channel blocker 4-morpholinecarboximidine-N-1-adamantyl-N'-cyclohexylhydr ochloride (U-37883A) in conscious rats previously equipped with catheters for clearance studies. In saline-loaded rats, i.v. doses of U-37883A of 1.7, 5.0 and 15 mg/kg increased absolute and fractional Na+ excretion dose-dependently without changing K+ excretion. The glomerular filtration rate remained constant during diuresis. In water-loaded (hypotonic dextrose) rats, free-water clearance studies revealed that the ATP-sensitive K+ channel blocker significantly decreased an index of solute reabsorption (free-water clearance adjusted for chloride clearance) in the diluting segment during peak natriuretic activity. In addition, U-37883A significantly decreased the osmolality of renal papillary interstitial fluid, indicative of an effect in the medullary portion of the diluting segment. Together, these findings suggest that ATP-sensitive K+ channels, possibly those located at the apical boarder, play a pivotal role in Na+ reabsorption in the thick ascending limb of the loop of Henle.

  6. ABA and ABC renewal of conditioned magazine approach are not impaired by dorsal hippocampus inactivation or lesions

    Science.gov (United States)

    Campese, Vincent; Delamater, Andrew R.

    2013-01-01

    Three experiments investigated the role of the dorsal hippocampus (DH) in renewal of conditioned and then extinguished magazine approach responding in rats. Experiments 1 and 2 found no effect of muscimol inactivation of the DH during testing on ABA and ABC renewal, respectively. However, subjects from these studies were subsequently found to be impaired on a delayed non-matching-to-place task following muscimol but not saline infusions. Experiment 3 found no effects of post-training excitotoxic lesions of the DH on ABA and ABC renewal. Lesioned subjects were, however, impaired on the delayed non-matching-to-place task compared to control subjects. These findings suggest that the DH may not play a similar role in Pavlovian extinction in appetitive learning tasks as has previously been reported in aversive learning. PMID:23583520

  7. Two different streams form the dorsal visual system: anatomy and functions.

    Science.gov (United States)

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  8. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis.

    Science.gov (United States)

    Butler, A B

    1994-01-01

    The evolution of the dorsal thalamus in various vertebrate lineages of jawed vertebrates has been an enigma, partly due to two prevalent misconceptions: the belief that the multitude of nuclei in the dorsal thalamus of mammals could be meaningfully compared neither with the relatively few nuclei in the dorsal thalamus of anamniotes nor with the intermediate number of dorsal thalamic nuclei of other amniotes and a definition of the dorsal thalamus that too narrowly focused on the features of the dorsal thalamus of mammals. The cladistic analysis carried out here allows us to recognize which features are plesiomorphic and which apomorphic for the dorsal thalamus of jawed vertebrates and to then reconstruct the major changes that have occurred in the dorsal thalamus over evolution. Embryological data examined in the context of Von Baerian theory (embryos of later-descendant species resemble the embryos of earlier-descendant species to the point of their divergence) supports a new 'Dual Elaboration Hypothesis' of dorsal thalamic evolution generated from this cladistic analysis. From the morphotype for an early stage in the embryological development of the dorsal thalamus of jawed vertebrates, the divergent, sequential stages of the development of the dorsal thalamus are derived for each major radiation and compared. The new hypothesis holds that the dorsal thalamus comprises two basic divisions--the collothalamus and the lemnothalamus--that receive their predominant input from the midbrain roof and (plesiomorphically) from lemniscal pathways, including the optic tract, respectively. Where present, the collothalamic, midbrain-sensory relay nuclei are homologous to each other in all vertebrate radiations as discrete nuclei. Within the lemnothalamus, the dorsal lateral geniculate nucleus of mammals and the dorsal lateral optic nucleus of non-synapsid amniotes (diapsid reptiles, birds and turtles) are homologous as discrete nuclei; most or all of the ventral nuclear group

  9. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  10. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats.

    Science.gov (United States)

    Yao, Fan-Rong; Wang, Hui-Sheng; Guo, Yuan; Zhao, Yan

    2016-02-01

    A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes. © 2016 John Wiley & Sons Australia, Ltd.

  11. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories

    Science.gov (United States)

    Altenritter, Matthew E.; Kinnison, Michael T.; Zydlewski, Gayle B.; Secor, David H.; Zydlewski, Joseph D.

    2015-01-01

    The imperiled status of sturgeons worldwide places priority on the identification and protection of critical habitats. We assessed the micro-structural and micro-chemical scope for a novel calcified structure, dorsal scutes, to be used for reconstruction of past habitat use and group separation in shortnose sturgeon (Acipenser brevirostrum). Dorsal scutes contained a dual-layered structure composed of a thin multi-layered translucent zone lying dorsally above a thicker multi-layered zone. Banding in the thick multi-layered zone correlated strongly with pectoral fin spine annuli supporting the presence of chronological structuring that could contain a chemical record of past environmental exposure. Trace element profiles (Sr:Ca), collected using both wavelength dispersive electron microprobe analysis and laser ablation inductively coupled mass spectrometry, suggest scutes record elemental information useful for tracing transitions between freshwater and marine environments. Moreover, mirror-image like Sr:Ca profiles were observed across the dual-zone structuring of the scute that may indicate duplication of the microchemical profile in a single structure. Additional element:calcium ratios measured in natal regions of dorsal scutes (Ba:Ca, Mg:Ca) suggest the potential for further refinement of techniques for identification of river systems of natal origin. In combination, our results provide proof of concept that dorsal scutes possess the necessary properties to be used as structures for reconstructions of past habitat use in sturgeons. Importantly, scutes may be collected non-lethally and with less injury than current structures, like otoliths and fin spines, affording an opportunity for broader application of microchemical techniques.

  12. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Christensen, Rikke Elgaard; Pedersen, Sara Hougaard

    2017-01-01

    The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved...... in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis...... was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox...

  13. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats?

    Science.gov (United States)

    Luquin, Natasha; Mitrofanis, John

    2008-01-01

    We have explored the survival of dopaminergic cells of the substantia nigra pars compacta (SNc) in 6 hydroxydopamine (6OHDA)-lesioned rats with prior cortical removal. There were approximately 35% more dopaminergic cells in the ventral sector of SNc (vSNc) of 6OHDA-lesioned rats that had prior cortical removal compared to those that did not. By contrast, there were no differences in dopaminergic cell number between these experimental groups in the ventral tegmental area (VTA) and the dorsal sector of SNc (dSNc). Hence, prior cortical removal in 6OHDA-lesioned rats neuroprotected vSNc--but not VTA or dSNc--dopaminergic cells from death.

  14. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  15. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207

  16. Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas

    Directory of Open Access Journals (Sweden)

    Kostianets Olga

    2012-11-01

    Full Text Available Abstract Background On the past decade a plethora of investigations were directed on identification of molecules involved in breast tumorogenesis, which could represent a powerful tool for monitoring, diagnostics and treatment of this disease. In current study we analyzed six previously identified medullary breast carcinoma autoantigens including LGALS3BP, RAD50, FAM50A, RBPJ, PABPC4, LRRFIP1 with cancer restricted serological profile in different histological types of breast cancer. Methods Semi-quantitative immunohistochemical analysis of 20 tissue samples including medullary breast carcinoma, invasive ductal carcinoma, invasive lobular carcinoma and non-cancerous tissues obtained from patients with fibrocystic disease (each of five was performed using specifically generated polyclonal antibodies. Differences in expression patterns were evaluated considering percent of positively stained cells, insensitivity of staining and subcellular localization in cells of all tissue samples. Results All 6 antigens predominantly expressed in the most cells of all histological types of breast tumors and non-cancerous tissues with slight differences in intensity of staining and subcellular localization. The most significant differences in expression pattern were revealed for RAD50 and LGALS3BP in different histological types of breast cancer and for PABPC4 and FAM50A antigens in immune cells infiltrating breast tumors. Conclusions This pilot study made possible to select 4 antigens LGALS3BP, RAD50, PABPC4, and FAM50A as promising candidates for more comprehensive research as potential molecular markers for breast cancer diagnostics and therapy. Virtual slides The virtual slides’ for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1860649350796892

  17. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...

  18. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  19. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.

    Science.gov (United States)

    Song, Dan-dan; Li, Yong; Tang, Dong; Huang, Li-ya; Yuan, Yao-zong

    2014-05-01

    Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.

  20. Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis

    NARCIS (Netherlands)

    Giger, Roman J; Wolfer, D P; De Wit, G M; Verhaagen, J

    1996-01-01

    Semaphorin III/collapsin-1 (semaIII/coll-1) is a chemorepellent that exhibits a repulsive effect on growth cones of dorsal root ganglion neurons. To identify structures that express semaIII/coll-1 in developing mammals, we cloned the rat homologue and performed in situ hybridization on embryonic,

  1. Targeted Therapy for Medullary Thyroid Cancer: A Review

    Directory of Open Access Journals (Sweden)

    S. R. Priya

    2017-10-01

    Full Text Available Medullary thyroid cancers (MTCs constitute between 2 and 5% of all thyroid cancers. The 10-year overall survival (OS rate of patients with localized disease is around 95% while that of patients with regional stage disease is about 75%. Only 20% of patients with distant metastases at diagnosis survive 10 years which is significantly lower than for differentiated thyroid cancers. Cases with regional metastases at presentation have high recurrence rates. Adjuvant external radiation confers local control but not improved OS. The management of residual, recurrent, or metastatic disease till a few years ago was re-surgery with local measures such as radiation. Chemotherapy was used with marginal benefit. The development of targeted therapy has brought in a major advantage in management of such patients. Two drugs—vandetanib and cabozantinib—have been approved for use in progressive or metastatic MTC. In addition, several drugs acting on other steps of the molecular pathway are being investigated with promising results. Targeted radionuclide therapy also provides an effective treatment option with good quality of life. This review covers the rationale of targeted therapy for MTC, present treatment options, drugs and methods under investigation, as well as an outline of the adverse effects and their management.

  2. Infarcts presenting with a combination of medial medullary and posterior inferior cerebellar artery syndromes.

    Science.gov (United States)

    Lee, Hyung; Baik, Seung Kug

    2004-09-15

    Cerebellar and medial medullary infarctions are well-known vertebrobasilar stroke syndromes. However, their development in a patient with distal vertebral artery occlusion has not been previously reported. A 49-year-old man with longstanding hypertension suddenly developed vertigo, right-sided Horner syndrome, and left-sided weakness. An MRI of the brain showed acute infarcts in the right inferior cerebellum (posterior inferior cerebellar artery territory) and the right upper medial medulla (direct penetrating branches of vertebral artery). Magnetic resonance angiogram showed occlusion of the distal vertebral artery on the right side. Atherothrombotic occlusion of the distal vertebral artery may cause this unusual combination of vertebrobasilar stroke.

  3. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    Science.gov (United States)

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  4. Effects of fluoxetine on the rat brain in the forced swimming test: a [F-18]FDG micro-PET imaging study.

    Science.gov (United States)

    Jang, Dong-Pyo; Lee, So-Hee; Park, Chan-Woong; Lee, Sang-Yoon; Kim, Young-Bo; Cho, Zang-Hee

    2009-02-13

    We used the [F-18]FDG micro-PET neuroimaging to examine the effects of fluoxetine on brain activity in rats and on their behavioral response in the forced swimming test (FST). In the first experiment, the rats were administered doses of fluoxetine (10 or 20mg/kg) 24, 19 and 1h before the rat brains were scanned. Fluoxetine induced strong activation of the dorsal hippocampus and the deactivation of the inferior colliculus, medulla oblongata, and prelimbic cortex in a dose-dependent manner. These results seemed to be related with the changes in 5-HT (5-hydroxytryptamine, serotonin) levels after selective serotonin reuptake-inhibitor treatments. In the second experiment, the changes in glucose metabolism in the test session were measured after fluoxetine was given between pre-test and test sessions of the FST. Fluoxetine administration significantly decreased immobility behavior compared with saline administration. At the same time, the activity of the insular/piriform cortex decreased significantly. In contrast, the extent of cerebellar activation increased. The glucose metabolism of the dorsal hippocampus also increased, which suggests that post-stress changes in the facilitation of hippocampal serotonergic neurotransmission lead to decreased immobilization in the FST.

  5. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles

    Science.gov (United States)

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.

    2001-01-01

    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  6. Dorsal onlay vaginal graft urethroplasty for female urethral stricture

    Directory of Open Access Journals (Sweden)

    Manmeet Singh

    2013-01-01

    Full Text Available Introduction: Female urethral stricture is an underdiagnosed and overlooked cause of female bladder outlet obstruction. The possible etiologies may be infection, prior dilation, difficult catheterization with subsequent fibrosis, urethral surgery, trauma, or idiopathic. We present our technique and results of dorsal onlay full thickness vaginal graft urethroplasty for female urethral stricture. Materials and Methods: A retrospective review was performed on 16 female patients with mid-urethral stricture who underwent dorsal onlay vaginal graft urethroplasty from January 2007 to June 2011.Of these, 13 patients had previously undergone multiple Hegar dilatations, three had previous internal urethrotomies. The preoperative work up included detailed voiding history, local examination, uroflowmetry, calibration, and micturating cystourethrogram. Results: All patients had mid-urethral stricture. Mean age was 47.5 years. Mean Q max improved from 6.2 to 27.6 ml/s. Mean residual volume decreased from 160 to 20 ml. Mean duration of follow-up was 24.5 months (6 months to 3 years. Only one patient required self-calibration for 6 months after which her stricture stabilized. None of the patient was incontinent. Conclusion: Dorsal vaginal onlay graft urethroplasty could be considered as an effective way to treat female urethral stricture.

  7. Effects of Electrical Stimulation of the Rat Vestibular Labyrinth on c-Fos Expression in the Hippocampus.

    Science.gov (United States)

    Hitier, Martin; Sato, Go; Zhang, Yan-Feng; Besnard, Stephane; Smith, Paul F

    2018-04-22

    Several studies have demonstrated that electrical activation of the peripheral vestibular system can evoke field potential, multi-unit neuronal activity and acetylcholine release in the hippocampus (HPC). However, no study to date has employed the immediate early gene protein, c-Fos, to investigate the distribution of activation of cells in the HPC following electrical stimulation of the vestibular system. We found that vestibular stimulation increased the number of animals expressing c-Fos in the dorsal HPC compared to sham control rats (P ≤ 0.02), but not in the ventral HPC. c-Fos was also expressed in an increased number of animals in the dorsal dentate gyrus (DG) compared to sham control rats (P ≤ 0.0001), and to a lesser extent in the ventral DG (P ≤ 0.006). The results of this study show that activation of the vestibular system results in a differential increase in the expression of c-Fos across different regions of the HPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The functional anatomy of speech perception: Dorsal and ventral processing pathways

    Science.gov (United States)

    Hickok, Gregory

    2003-04-01

    Drawing on recent developments in the cortical organization of vision, and on data from a variety of sources, Hickok and Poeppel (2000) have proposed a new model of the functional anatomy of speech perception. The model posits that early cortical stages of speech perception involve auditory fields in the superior temporal gyrus bilaterally (although asymmetrically). This cortical processing system then diverges into two broad processing streams, a ventral stream, involved in mapping sound onto meaning, and a dorsal stream, involved in mapping sound onto articulatory-based representations. The ventral stream projects ventrolaterally toward inferior posterior temporal cortex which serves as an interface between sound and meaning. The dorsal stream projects dorsoposteriorly toward the parietal lobe and ultimately to frontal regions. This network provides a mechanism for the development and maintenance of ``parity'' between auditory and motor representations of speech. Although the dorsal stream represents a tight connection between speech perception and speech production, it is not a critical component of the speech perception process under ecologically natural listening conditions. Some degree of bi-directionality in both the dorsal and ventral pathways is also proposed. A variety of recent empirical tests of this model have provided further support for the proposal.

  9. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia

    Directory of Open Access Journals (Sweden)

    Tianyu Jia

    2018-01-01

    Full Text Available Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP. Satellite glial cells (SGCs enwrap the neuronal soma in the dorsal root ganglia (DRG. The purinergic 2 (P2 Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM. Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β and connexin43 (Cx43 resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.

  10. Electrocautery-induced cavernous nerve injury in rats that mimics radical prostatectomy in humans.

    Science.gov (United States)

    Song, Lu-Jie; Zhu, Jian-Qiang; Xie, Min-Kai; Wang, Yong-Chuan; Li, Hong-Bin; Cui, Zhi-Qiang; Lu, Hong-Kai; Xu, Yue-Min

    2014-07-01

    To investigate the early and delayed effects of cavernous nerve electrocautery injury (CNEI) in a rat model, with the expectation that this model could be used to test rehabilitation therapies for erectile dysfunction (ED) after radical prostatectomy (RP). In all, 30 male Sprague-Dawley rats were randomly divided equally into two groups (15 per group). The control group received CNs exposure surgery only and the experimental group received bilateral CNEI. At 1, 4 and 16 weeks after surgery (five rats at each time point), the ratio of maximal intracavernosal pressure (ICP) to mean arterial pressure (MAP) was measured in the two groups. Neurofilament expression in the dorsal penile nerves was assessed by immunofluorescent staining and Masson's trichrome staining was used to assess the smooth muscle to collagen ratio in both groups. At the 1-week follow-up, the mean ICP/MAP was significantly lower in the CNEI group compared with the control group, at 9.94% vs 70.06% (P 0.05). The smooth muscle to collagen ratio in the CNEI group was significantly lower than in the control group at the 4- and 16-week follow-ups (P < 0.05), and the ratio at 16 weeks was further reduced compared with that at 4 weeks (P < 0.05). In the CNEI rat model, we found the damaging effects of CNEI were accompanied by a decline in ICP, reduced numbers of nerve fibres in the dorsal penile nerve, and exacerbated fibrosis in the corpus cavernosum. This may provide a basis for studying potential preventative measures or treatment strategies to ameliorate ED caused by CNEI during RP. © 2013 The Authors. BJU International © 2013 BJU International.

  11. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Science.gov (United States)

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  12. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available The antidepressant drug fluoxetine (Prozac has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b effects on tryptophan hydroxylase (TPH expression, a measure of serotonin synthesis; c whether treatment effects during adolescence differed from treatment at an adult age, and d whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+ cells and of the number of young migratory neurons (doublecortin+, revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  13. Effects of enviromental temperature and femoral fracture on wound healing in rats.

    Science.gov (United States)

    Crowley, L V; Seifter, E; Kriss, P; Rettura, G; Nakao, K; Levenson, S M

    1977-06-01

    Femoral fracture, unilateral and bilateral, impaired the healing of dorsal skin incisions and formation of reparative granulation tissue in subcutaneously implanted polyvinyl alcohol sponges judged histologically and by breaking strengths and hydroxyproline contents, respectively, 1 week after injury in pair-fed rats kept at 22 degrees C. When rats were transferred to a room at 30 degrees C immediately after skin incision and sponge implants, with or without unilateral fracture, no differences in healing were observed between the two groups. Rats with skin incision, sponge implants, and either femoral fracture or sham-fracture excreted more urinary nitrogen than preoperatively when kept at 22 degrees. Counterpart groups transferred to a 30 degrees room right after operation excreted less urinary nitrogen than preoperatively, but because of lower food intakes postoperatively, the ratio of urinary nitrogen to food intake nitrogen was increased. With equivalent food intakes, pair-fed rats with fracture kept at 22 degrees postoperatively lost more weight and excreted more nitrogen than corresponding rats transfered to a 30 degrees room.

  14. Effect of indomethacin and salt depletion on renal proton MR imaging; An experimental study in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, S.N.; Mammen, M. (Harvard Medical School, Boston, MA (United States). Charles A Dana Research Inst. Beth Israel Hospital, Boston, MA (United States))

    1991-11-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.).

  15. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  16. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  17. A rare mutation in the RET-protooncogen associated with mixed medullary-follicular micro-carcinoma of the thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Richter, K.; Huwe, A.; Boldt, H.; Dresel, S. [Nuklearmedizinische Klinik, HELIOS-Klinikum Berlin-Buch (Germany); Geipel, D. [St.-Hedwig-Krankenhaus, Bereich Endokrine Chirurgie (Germany); Mairinger, T. [Inst. fuer Pathologie, HELIOS-Klinikum Emil von Behring (Germany); Schwabe, M. [Inst. fuer Pathologie, Charite Berlin Campus Mitte (Germany)

    2008-07-01

    Medullary thyroid carcinoma (MTC) arises from parafollicular C-cells of the thyroid and accounts for 1% to 10% of all thyroid cancers (1). MTC can be sporadic or hereditary. Hereditary MTC represents 20% to 30% of all MTC with an autosomal dominant pattern of transmission and a high degree of penetrance (>90%). It can be transmitted as a single entity (sporadic), familial MTC (FMTC), or it can arise as part of a multiple endocrine neoplasia (MEN) syndrome type 2A or 2B. Both genders are equally affected. (1, 9) The identification of hereditary MTC has been facilitated in recent years by the direct analysis of germline point mutations of the RET(rearranged during transfection)-protooncogene, a 21 exon gene that encodes a plasma membrane-bound tyrosine kinase receptor, localised on chromosome 10q11.2, which is expressed in tissues derived from the neural crest. To date codon mutations in nine different exons were identified (7, 8, 16, 22, 29) causing MEN 2A (MTC in combination with pheochromocytoma and hyperparathyroidism, including rare variants with Hirschsprung's disease and cutaneous lichen amyloidosis), FMTC (MTC as a sole disease phenotype) and MEN 2B (MTC in combination with pheochromocytoma, multiple mucosa neuromas, and marfanoid habitus). The most common mutation, accounting for over 80% of all mutations associated with MEN 2A (or Sipple's) syndrome affects codon 634 in exon 11 of the RET-protooncogene. Other mutations affect codon 630 in exon 11, and codons 609, 611, 618, 620 in exon 10 - they also cause FMTC, although some have a classic MEN 2A syndrome. 5% to 10% of families with FMTC have mutations that affect codons 768, 790, 791 in exon 13: codons 804, 844 in exon 14, and codon 891 in exon 15 (3, 4, 10). The much more aggressive MEN 2B is caused by a single mutation converting a methionine into a threonine at codon 918 in exon 16, and has been identified in approximately 95% of patients with MEN 2B. Other rare mutations associated with MEN 2

  18. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  19. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    Science.gov (United States)

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.

  20. A case of dorsal oblique fingertip amputation.

    Science.gov (United States)

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai's classification is appropriate for guiding treatment.