WorldWideScience

Sample records for rat liver metabolism

  1. Alanine metabolism in pyridoxine-depleted rat liver

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Abe, Midori

    1976-01-01

    Alanine metabolism in normal and pyridoxine-deficient rats was studied in vivo and in vitro. Incorporation of 14 C-alanine into various liver components was determined and no difference was shown between normal and deficient animals in the incorporation into liver homogenates, lipid, protein and plasma glucose. Using the liver slice system, gluconeogenic activity from alanine or pyruvate was 40% lower in deficient rats compared with the activity of normal rats. However, inhibition was completely removed by the addition of 2-oxoglutarate to alanine. Penicillamine did not affect glucose formation from alanine in the liver slice. (auth.)

  2. Coenzyme metabolism in rat liver transketolase

    International Nuclear Information System (INIS)

    Gorbach, Z.V.; Kubyshin, V.L.; Maglysh, S.S.; Zabrodskaya, S.V.

    1987-01-01

    On the basis of the results of kinetic investigations, two binding sites for hydroxythiamine diphosphate were determined in apotransketolase, with sharply differing values of K/sub i/: (7-22) x 10 -9 and (13.0-19.7) x 10 -8 M. A study was made of the turnover rate of thiamine diphosphate in holotransketolase in rat liver tissue by a radioisotope method, using [ 14 C] thiamine as the labeled precursor. The half-substitution time and rate constant of degradation of the coenzyme in transketolase are close in absolute values to the analogous indices for the protein portion of the enzyme and constitute 153 h and 0.108 day -1 , respectively. Rat liver transketolase exists in vivo in the form of a substituted α-carbanion. Replacement of thiamine diphosphate by hydroxythiamine diphosphate in the holoenzyme has no effect on the formation of the intermediate α-carbanion form of the enzyme

  3. The metabolic effects of diuron in the rat liver.

    Science.gov (United States)

    da Silva Simões, Mellina; Bracht, Lívia; Parizotto, Angela Valderrama; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2017-09-01

    A systematic study on the effects of diuron on the hepatic metabolism was conducted with emphasis on parameters linked to energy metabolism. The experimental system was the isolated perfused rat liver. The results demonstrate that diuron inhibited biosynthesis (gluconeogenesis) and ammonia detoxification, which are dependent of ATP generated within the mitochondria. Conversely, it stimulated glycolysis and fructolysis, which are compensatory phenomena for an inhibited mitochondrial ATP generation. Furthermore, diuron diminished the cellular ATP content under conditions where the mitochondrial respiratory chain was the only source of this compound. Besides the lack of circulating glucose due to gluconeogenesis inhibition, one can expect metabolic acidosis due to excess lactate production, impairment of ammonia detoxification and cell damage due to a deficient maintenance of its homeostasis. Some of the general signs of toxicity that were observed in diuron-treated rats can be attributed, partly at least, to the effects of the herbicide on energy metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recellularization of rat liver: An in vitro model for assessing human drug metabolism and liver biology.

    Directory of Open Access Journals (Sweden)

    Matthew J Robertson

    Full Text Available Liver-like organoids that recapitulate the complex functions of the whole liver by combining cells, scaffolds, and mechanical or chemical cues are becoming important models for studying liver biology and drug metabolism. The advantages of growing cells in three-dimensional constructs include enhanced cell-cell and cell-extracellular matrix interactions and preserved cellular phenotype including, prevention of de-differentiation. In the current study, biomimetic liver constructs were made via perfusion decellularization of rat liver, with the goal of maintaining the native composition and structure of the extracellular matrix. We optimized our decellularization process to produce liver scaffolds in which immunogenic residual DNA was removed but glycosaminoglycans were maintained. When the constructs were recellularized with rat or human liver cells, the cells remained viable, capable of proliferation, and functional for 28 days. Specifically, the cells continued to express cytochrome P450 genes and maintained their ability to metabolize a model drug, midazolam. Microarray analysis showed an upregulation of genes involved in liver regeneration and fibrosis. In conclusion, these liver constructs have the potential to be used as test beds for studying liver biology and drug metabolism.

  5. Diet and liver apoptosis in rats: a particular metabolic pathway.

    Science.gov (United States)

    Monteiro, Maria Emilia Lopes; Xavier, Analucia Rampazzo; Azeredo, Vilma Blondet

    2017-03-30

    Various studies have indicated an association between modifi cation in dietary macronutrient composition and liver apoptosis. To explain how changes in metabolic pathways associated with a high-protein, high-fat, and low-carbohydrate diet causes liver apoptosis. Two groups of rats were compared. An experimental diet group (n = 8) using a high-protein (59.46%), high-fat (31.77%), and low-carbohydrate (8.77%) diet versus a control one (n = 9) with American Institute of Nutrition (AIN)-93-M diet. Animals were sacrificed after eight weeks, the adipose tissue weighed, the liver removed for flow cytometry analysis, and blood collected to measure glucose, insulin, glucagon, IL-6, TNF, triglycerides, malondialdehyde, and β-hydroxybutyrate. Statistical analysis was carried out using the unpaired and parametric Student's t-test and Pearson's correlation coeffi ents. Significance was set at p triglycerides lower levels compared with the control group. The results show a positive and significant correlation between the percentage of nonviable hepatocytes and malondialdehyde levels (p = 0.0217) and a statistically significant negative correlation with triglycerides levels (p = 0.006). Results suggest that plasmatic malondialdehyde and triglyceride levels are probably good predictors of liver damage associated with an experimental low-carbohydrate diet in rats.

  6. Actions of juglone on energy metabolism in the rat liver

    International Nuclear Information System (INIS)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Márcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-01-01

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 μM, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 μM, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of α-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: ► We investigated how juglone acts on liver metabolism. ► The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. ► Juglone stimulates glycolysis and ureagenesis and inhibits gluconeogenesis. ► The cellular ATP content is diminished. ► Juglone can

  7. In vitro metabolism of [14C]-toluene by human and rat liver microsomes and liver slices

    International Nuclear Information System (INIS)

    Chapman, D.E.; Moore, T.J.; Michener, S.R.; Powis, G.

    1990-01-01

    Toluene metabolites produced by liver microsomes from six human donors included benzylalcohol (Balc), benzaldehyde (Bald) and benzoic acid (Bacid). Microsomes from only one human donor metabolized toluene to p-cresol and o-cresol. Human liver microsomes also metabolized Balc to Bald. Balc metabolism required NADPH, was inhibited by carbon monoxide, and was decreased at a buffer pH of 10. Balc metabolism was not inhibited by ADP-ribose or sodium azide. These results suggest that cytochrome P450 is responsible for the in vitro metabolism of Balc by human liver microsomes. Toluene metabolites formed by human liver slices and released into the incubation media included hippuric acid, and Bacid. Cresols or cresol-conjugates were not detected in liver slice incubation media from any human donor. Toluene metabolism by human liver was compared to metabolism by comparable liver preparations from male Fischer F344 rats. Rates of toluene metabolism by human liver microsomes and liver slices were 9-fold and 1.3-fold greater than for rat liver, respectively. Covalent binding of toluene to human liver microsomes and liver slices was 21-fold and 4-fold greater than for comparable rat liver preparations. Covalent binding of toluene to human microsomes required NADPH, was significantly decreased by coincubation with 4 mM cysteine or 4 mM glutathione, and radioactivity associated with microsomes was decreased by subsequent digestion of microsomes with protease. These results suggest that toluene metabolism and covalent binding of toluene are underestimated if the male Fischer 344 rat is used as a model for human toluene metabolism

  8. Actions of juglone on energy metabolism in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar, E-mail: adebracht@uol.com.br

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  9. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  10. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  11. Comparative Metabolism Study of Five Protoberberine Alkaloids in Liver Microsomes from Rat, Rhesus Monkey, and Human.

    Science.gov (United States)

    Li, Yan; Zhou, Yanyan; Si, Nan; Han, Lingyu; Ren, Wei; Xin, Shaokun; Wang, Hongjie; Zuo, Ran; Wei, Xiaolu; Yang, Jian; Zhao, Haiyu; Bian, Baolin

    2017-11-01

    Protoberberine alkaloids including berberine, palmatine, jatrorrhizine, coptisine, and epiberberine are major components in many medicinal plants. They have been widely used for the treatment of cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. However, the metabolism of five protoberberine alkaloids among different species has not been clarified previously. In order to elaborate on the in vitro metabolism of them, a comparative analysis of their metabolic profile in rat, rhesus monkey, and human liver microsomes was carried out using ultrahigh-performance liquid chromatography coupled with a high-resolution linear trap quadrupole-Orbitrap mass spectrometer (UHPLC-electrospray ionization-Orbitrap MS) for the first time. Each metabolite was identified and semiquantified by its accurate mass data and peak area. Fifteen metabolites were characterized based on accurate MS/MS spectra and the proposed MS/MS fragmentation pathways including demethylation, hydroxylation, and methyl reduction. Among them, the content of berberine metabolites in human liver microsomes was similar with those in rhesus monkey liver microsomes, whereas berberine in rat liver microsomes showed no demethylation metabolites and the content of metabolites showed significant differences with that in human liver microsomes. On the contrary, the metabolism of palmatine in rat liver microsomes resembled that in human liver microsomes. The content of jatrorrhizine metabolites presented obvious differences in all species. The HR-ESI-MS/MS fragmentation behavior of protoberberine alkaloids and their metabolic profile in rat, rhesus monkey, and human liver microsomes were investigated for the first time. The results demonstrated that the biotransformation characteristics of protoberberine alkaloids among different species had similarities as well differences that would be beneficial for us to better understand the pharmacological activities of protoberberine alkaloids

  12. Metabolism of 1-[14C]nitropyrene in isolated perfused rat livers

    International Nuclear Information System (INIS)

    Bond, J.A.; Medinsky, M.A.; Dutcher, J.S.

    1984-01-01

    1-Nitropyrene (1-NP), a constituent of diesel exhaust, is carcinogenic to rats and is a bacterial and mammalian mutagen. Biliary and fecal excretion of 1-NP metabolites are the major routes of excretion in rats, suggesting that hepatic metabolism plays a dominant role in determining the biological fate of 1-NP. The purpose of this investigation was to quantitate 1-[14C]NP metabolites formed in isolated perfused rat livers and excreted in bile from rats. Perfused rat livers displayed a capacity for oxidation, reduction, acetylation, and conjugation of 1-NP (or its metabolites). Reduction of 1-NP followed by N-acetylation was the major metabolic pathway observed in the perfused livers. Acetylaminopyrene (AAP) was the major metabolite detected, with total quantities (150 nmol) accounting for about 60% of the total 1-[14C]NP dose (258 nmol) added to the perfusate. Considerably smaller quantities of aminopyrene and hydroxynitropyrenes were also detected. Livers perfused with 1-[14C]NP excreted about 36 nmol equivalents of 1-[14C]NP (12% of the total 1-NP dose) in bile after 60 min. Some of the biliary metabolites were tentatively identified as metabolites of the mercapturic acid pathway. The spectrum of biliary metabolites was qualitatively identical to that seen in bile from intact rats. Quantities of 14C covalently bound to hepatic macromolecules from perfused livers were 0.4 nmol 1-NP eq/g liver. The data from this study indicate that the liver may be an important site for metabolism of 1-NP

  13. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  14. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  15. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  16. Characterization of liver changes in ZSF1 rats, an animal model of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Marta Borges-Canha

    Full Text Available Background: The non-alcoholic fatty liver disease is the hepatic counterpart of the metabolic syndrome. ZSF1 rats are a metabolic syndrome animal model in which liver changes have not been described yet. Aim: The characterization of liver histological and innate immunity changes in ZSF1 rats. Methods: Five groups of rats were included (n = 7 each group: healthy Wistar-Kyoto control rats (Ctrl, hypertensive ZSF1 lean (Ln, ZSF1 obese rats with a normal diet (Ob, ZSF1 obese rates with a high-fat diet (Ob-HFD, and ZSF1 obese rats with low-intensity exercise training (Ob-Ex. The animals were sacrificed at 20 weeks of age, their livers were collected for: a measurements of the area of steatosis, fibrosis and inflammation (histomorphological analysis; and b innate immunity (toll-like receptor [TLR] 2, TLR4, peroxisome proliferator-activated receptor γ [PPARγ], toll interacting protein [TOLLIP] and inflammatory marker (tumor necrosis factor-alpha [TNFvs], interleukin 1 [IL-1] expression analysis by real-time PCR. Results: Ob, Ob-HFD and Ob-Ex were significantly heavier than Ln and Ctrl animals. Ob, Ob-HFD and Ob-Ex animals had impaired glucose tolerance and insulin resistance. ZSF1 Ob, Ob-HFD and Ob-Ex presented a higher degree of steatosis (3,5x; p < 0.05 than Ctrl or ZSF1 Ln rats. Steatohepatitis and fibrosis were not observed in any of the groups. No differences in expression were observed between Ctrl, Ln and Ob animals (except for the significantly higher expression of TOLLIP observed in the Ob vs Ln comparison. Ob-HFD and Ob-Ex rats showed increased expression of PPARγ and TOLLIP as compared to other groups. However, both groups also showed increased expression of TLR2 and TLR4. Nevertheless, this did not translate into a differential expression of TNFα or IL-1 in any of the groups. Conclusion: The ZSF1 model is associated with liver steatosis but not with steatohepatitis or a significantly increased expression of innate immunity or

  17. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  18. Biotransformation of vinclozolin in rat precision-cut liver slices: comparison with in vivo metabolic pattern.

    Science.gov (United States)

    Bursztyka, Julian; Debrauwer, Laurent; Perdu, Elisabeth; Jouanin, Isabelle; Jaeg, Jean-Philippe; Cravedi, Jean-Pierre

    2008-06-25

    Vinclozolin is a dicarboxymide fungicide that presents antiandrogenic properties through its two hydrolysis products M1 and M2, which bind to the androgen receptor. Because of the lack of data on the biotransformation of vinclozolin, its metabolism was investigated in vitro in precision-cut rat liver slices and in vivo in male rat using [ (14)C]-vinclozolin. Incubations were performed using different concentrations of substrate, and the kinetics of formation of the major metabolites were studied. Three male Wistar rats were fed by gavage with [ (14)C]-VZ. Urine was collected for 24 h and analyzed by radio-HPLC for metabolic profiling. Metabolite identification was carried out on a LCQ ion trap mass spectrometer. In rat liver slices and in vivo, the major primary metabolite has been identified as 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutyranilide (M5) and was mainly present as glucuronoconjugates. M5 is produced by dihydroxylation of the vinyl group of M2. Other metabolites have been identified as 3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione (M4), a dihydroxylated metabolite of vinclozolin, which undergoes further conjugation to glucuronic acid, and 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3,4-dihydroxy-butanoic acid (M6), a dihydroxylated metabolite of M1.

  19. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inhibition of mirtazapine metabolism by Ecstasy (MDMA) in isolated perfused rat liver model.

    Science.gov (United States)

    Jamshidfar, Sanaz; Ardakani, Yalda H; Lavasani, Hoda; Rouini, Mohammadreza

    2017-06-28

    Nowadays MDMA (3,4-methylendioxymethamphetamine), known as ecstasy, is widely abused among the youth because of euphoria induction in acute exposure. However, abusers are predisposed to depression in chronic consumption of this illicit compound. Mirtazapine (MRZ), an antidepressant agent, may be prescribed in MDMA-induced depression. MRZ is extensively metabolized in liver by CYP450 isoenzymes. 8-hydroxymirtazapine (8-OH) is mainly produced by CYP2D6. N-desmethylmirtazapine (NDES) is generated by CYP3A4. MDMA is also metabolized by the mentioned isoenzymes and demonstrates mechanism-based inhibition (MBI) in association with CYP2D6. Several studies revealed that MDMA showed inhibitory effects on CYP3A4. In the present study, our aim was to evaluate the impact of MDMA on the metabolism of MRZ in liver. Therefore, isolated perfused rat liver model was applied as our model of choice in this assessment. The subjects of the study were categorized into two experimental groups. Rats in the control group received MRZ-containing Krebs-Henselit buffer (1 μg/ml). Rats in the treatment group received aqueous solution of 1 mg/ml MDMA (3 mg/kg) intraperitoneally 1 hour before receiving MRZ. Perfusate samples were analyzed by HPLC. Analyses of perfusate samples showed 80% increase in the parent drug concentrations and 50% decrease in the concentrations of both metabolites in our treatment group compared to the control group. In the treatment group compared to the control group, AUC (0-120) of the parent drug demonstrated 50% increase and AUC (0-120) of 8-OH and NDES showed 70% and 60% decrease, respectively. Observed decrease in metabolic ratios were 83% and 79% for 8-OH and NDES in treatment group compared to control group, respectively. Hepatic clearance (CL h ) and intrinsic clearance (Cl int ) showed 20% and 60% decrease in treatment group compared to control group. All findings prove the inhibitory effects of ecstasy on both CYP2D6 and CYP3A4 hepatic isoenzymes. In

  1. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat liver and brain in vivo

    International Nuclear Information System (INIS)

    Meghal, S.K.; O'Neal, R.M.; Koeppe, R.E.

    1977-01-01

    Rats were fed either a thiamine-deficient diet or diets containing pyrithiamine or oxythiamine. When symptoms of thiamine deficiency appeared, the animals were injected intraperitoneally with [2- 14 C] pyruvate six to twelve minutes prior to sacrifice. Free glutamic and aspartic acids were isolated from liver and brain and degraded. The results indicate that, in thiamine-deficient or oxythiamine-treated rats, pyruvate metabolism in liver and brain is similar to that in normal animals. In contrast, pyrithinamine drastically decreases the oxidative decarboxylation of pyruvate by rat liver. (auth.)

  2. Putrescine treatment reverses α-tocopherol-induced desynchronization of polyamine and retinoid metabolism during rat liver regeneration

    Directory of Open Access Journals (Sweden)

    Lourdes Sánchez-Sevilla

    2016-10-01

    Full Text Available Abstract Background The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH, by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. Methods This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC, and polyamine levels, were determined. Results Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also “synchronized” by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. Conclusions Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased

  3. Comparison of hepatotoxicity and metabolism of butyltin compounds in the liver of mice, rats and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shunji; Kashimoto, Takashige; Susa, Nobuyuki; Ishii, Masamitsu; Chiba, Toshikazu [Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Mutoh, Ken-ichiro [Laboratory of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Hoshi, Fumio [Laboratory of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, 034-8628, Towada-shi, Aomori (Japan); Suzuki, Takashi [Laboratory of Environmental Health and Toxicology, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, 606-5822, Kyoto (Japan); Sugiyama, Masayasu [Sugiyama Pharmacy, 1335-1 Shimotama, Tamagawa-cho, 759-3112, Yamaguchi (Japan)

    2003-03-01

    The hepatotoxicity of tributyltin chloride (TBTC) and dibutyltin dichloride (DBTC) was compared among mice, rats and guinea pigs in vivo. Further, the metabolism of these butyltin compounds in the liver was also investigated in these species. The oral administration of TBTC and DBTC to mice induced obvious liver injury, as demonstrated by both serodiagnosis and histopathological diagnosis. The concentrations of TBTC and DBTC that induced hepatotoxicity in mice at 24 h after oral administration were 180 and 60 {mu}mol/kg, respectively. In the case of rats, the liver injury induced by TBTC and DBTC was detected at 24 h by the serodiagnosis, but not by histopathological diagnosis. On the other hand, in guinea pigs, TBTC and DBTC administration did not produce any clear liver injury at 24 h, as evaluated by these two diagnostic methods. Thus, the following ranking was obtained with regard to increasing order of sensitivity to liver injury caused by TBTC and DBTC: mice, rats and guinea pigs. The total butyltin contents in the liver of mice were equivalent at 3 h and 24 h after the administration of TBTC or DBTC; however, the contents in the liver of rats and guinea pigs were relatively lower at 3 h and higher at 24 h than those of mice, although there were no differences between rats and guinea pigs in the total liver butyltin content. Concerning the liver metabolism of these butyltin compounds, the main form of butyltin compounds in these animals treated with TBTC was DBTC within 3 h after oral administration, while the main metabolites at 24 h were different in each species, indicating that the liver metabolism of TBTC might vary by animal type. When the animals were treated with DBTC orally, DBTC was hardly metabolized in the livers of these animals even at 24 h, and the liver levels of DBTC were two times greater in mice and guinea pigs than in rats at 3 h and were lower in mice at 24 h than in rats and guinea pigs. The analysis of cellular distributions of DBTC in

  4. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  5. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas.

    Science.gov (United States)

    Bertuloso, Bruno D; Podratz, Priscila L; Merlo, Eduardo; de Araújo, Julia F P; Lima, Leandro C F; de Miguel, Emilio C; de Souza, Leticia N; Gava, Agata L; de Oliveira, Miriane; Miranda-Alves, Leandro; Carneiro, Maria T W D; Nogueira, Celia R; Graceli, Jones B

    2015-05-19

    Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  7. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses. For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, α-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.

  8. Stereoselective in vitro metabolism of rhynchophylline and isorhynchophylline epimers of Uncaria rhynchophylla in rat liver microsomes.

    Science.gov (United States)

    Wang, Xin; Qiao, Zhou; Liu, Jia; Zheng, Mei; Liu, Wenyuan; Wu, Chunyong

    2017-11-10

    1. The objective was to investigate the underlying mechanism of the stereoselectivity in the metabolism of rhynchophylline (RIN) and isorhynchophylline (IRN) epimers in rat liver microsomes (RLM). 2. After incubation, eight metabolites of RIN (M1-5) and IRN (M6-8) reacted at A- and C-ring were identified using LC-Q-TOF/MS. Metabolic pathways included oxidation, hydroxylation, N-oxidation and dehydrogenation. In addition, hydroxylation at A-ring was the major metabolic pathway for RIN whereas the oxidation at C-ring was the major one for IRN. 3. Enzyme kinetics showed that the intrinsic clearance (CL int ) for IRN elimination was 1.9-fold higher than RIN and the degradation half-life (T 1/2 ) of RIN was 4.7-fold higher than that of IRN, indicating IRN was more favorable to be metabolized than RIN in RLM. 4. Data from chemical inhibition study demonstrated CYP3A was the predominant isoform involved in the metabolic elimination of both epimers, as well as the formation of M1-8. 5. In conclusion, data revealed that due to the spatial configurations at C-7 position, RIN and IRN epimers possessed different hepatic metabolic pathways and elimination rates which were mainly mediated by CYP3A.

  9. In vitro metabolism of the anti-androgenic fungicide vinclozolin by rat liver microsomes.

    Science.gov (United States)

    Sierra-Santoyo, Adolfo; Angeles-Soto, Esperanza; de Lourdes López-González, Ma; Harrison, Randy A; Hughes, Michael F

    2012-03-01

    Vinclozolin (V) is a fungicide used in agricultural settings. V administered to rats is hydrolyzed to 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1) and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2). V, M1 and M2 have antiandrogenic properties by interacting with the androgen receptor. Data on V, M1 and M2 biotransformation are limited. Our objective was to characterize V metabolism by rat liver microsomes. V was incubated with non-treated adult male Long-Evans rat liver microsomes and NADPH. Several metabolites were detected following the extraction of incubate with acetonitrile and analysis by HPLC/DAD/MSD. One metabolite was identified as [3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione] (M4), which was gradually converted to 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutylanilide (M5). Both co-eluted in the same HPLC peak. Another metabolite ([M7]) was detected by UV but was unstable for mass spectral analysis. The K(M app) for co-eluted M4/M5 and [M7] was 53.7 and 135.4 μM, the V(max app) was 0.812 and 0.669 nmoles/min/mg protein, and CL(int) was 15.1 and 4.9 ml/min/g protein, respectively. Pilocarpine, orphenadrine and proadifen and anti-rat cytochrome P450 (CYP)2A, 2B and 3A antibodies inhibited M4/M5 and [M7] formation. These results indicate that V is efficiently metabolized by CYP. Determination of the metabolites of V will provide further insight into the relationship between toxicity and tissue dose of V and its metabolites.

  10. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    Science.gov (United States)

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-05

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats.

    Science.gov (United States)

    de Vries, E M; van Beeren, H C; Ackermans, M T; Kalsbeek, A; Fliers, E; Boelen, A

    2015-01-01

    A variety of illnesses that leads to profound changes in the hypothalamus-pituitary-thyroid (HPT) are axis collectively known as the nonthyroidal illness syndrome (NTIS). NTIS is characterized by decreased tri-iodothyronine (T3) and thyroxine (T4) and inappropriately low TSH serum concentrations, as well as altered hepatic thyroid hormone (TH) metabolism. Spontaneous caloric restriction often occurs during illness and may contribute to NTIS, but it is currently unknown to what extent. The role of diminished food intake is often studied using experimental fasting models, but partial food restriction might be a more physiologically relevant model. In this comparative study, we characterized hepatic TH metabolism in two models for caloric restriction: 36 h of complete fasting and 21 days of 50% food restriction. Both fasting and food restriction decreased serum T4 concentration, while after 36-h fasting serum T3 also decreased. Fasting decreased hepatic T3 but not T4 concentrations, while food restriction decreased both hepatic T3 and T4 concentrations. Fasting and food restriction both induced an upregulation of liver D3 expression and activity, D1 was not affected. A differential effect was seen in Mct10 mRNA expression, which was upregulated in the fasted rats but not in food-restricted rats. Other metabolic pathways of TH, such as sulfation and UDP-glucuronidation, were also differentially affected. The changes in hepatic TH concentrations were reflected by the expression of T3-responsive genes Fas and Spot14 only in the 36-h fasted rats. In conclusion, limited food intake induced marked changes in hepatic TH metabolism, which are likely to contribute to the changes observed during NTIS. © 2015 Society for Endocrinology.

  12. Uptake and metabolism of polymerized albumin by rat liver. Role of the scavenger receptor

    International Nuclear Information System (INIS)

    Wright, T.L.; Roll, F.J.; Jones, A.L.; Weisiger, R.A.

    1988-01-01

    Hepatitis B virus binds avidly to albumin polymers, which in turn may mediate viral attachment to liver cells. This hypothesis is critically dependent on prior results obtained using glutaraldehyde-polymerized human serum albumin as a model for naturally occurring albumin species. We used the perfused rat liver to characterize the uptake, cellular distribution, and metabolism of glutaraldehyde-polymerized human albumin. 125 I-glutaraldehyde-polymerized human albumin was efficiently removed from the perfusate by the liver (29% extraction). However, few autoradiographic grains were located over hepatic parenchymal cells (6%). Instead, most glutaraldehyde-polymerized human albumin appeared to be removed by endothelial (59%) or Kupffer (31%) cells. Hepatic uptake was strongly inhibited by formaldehyde-treated monomeric albumin, a known ligand of the endothelial scavenger receptor for chemically modified proteins. After uptake, most glutaraldehyde-polymerized human albumin was rapidly degraded and released into the perfusate (74% within 60 min). This process was blocked by chloroquine and leupeptin, suggesting that it involves lysosomal acid hydrolases. We conclude that glutaraldehyde-polymerized albumin is efficiently cleared and degraded by the endothelial scavenger pathway. Glutaraldehyde-polymerized albumin therefore appears to be a poor model for predicting the hepatic handling of naturally occurring albumin species bound to hepatitis B virions. Even if viral particles were to follow this pathway, few would enter parenchymal hepatocytes

  13. Vitex agnus-castus L. (Verbenaceae) Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats

    OpenAIRE

    Moreno, Franciele Neves; Campos-Shimada, Lilian Brites; da Costa, Silvio Claudio; Garcia, Ros?ngela Fernandes; Cecchini, Alessandra Louren?o; Natali, Maria Raquel Mar?al; Vitoriano, Adriana de Souza; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2015-01-01

    Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (...

  14. The Metabolism of Separase Inhibitor Sepin-1 in Human, Mouse, and Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-05-01

    Full Text Available Separase, a known oncogene, is widely overexpressed in numerous human tumors of breast, bone, brain, blood, and prostate. Separase is an emerging target for cancer therapy, and separase enzymatic inhibitors such as sepin-1 are currently being developed to treat separase-overexpressed tumors. Drug metabolism plays a critical role in the efficacy and safety of drug development, as well as possible drug–drug interactions. In this study, we investigated the in vitro metabolism of sepin-1 in human, mouse, and rat liver microsomes (RLM using metabolomic approaches. In human liver microsomes (HLM, we identified seven metabolites including one cysteine–sepin-1 adduct and one glutathione–sepin-1 adduct. All the sepin-1 metabolites in HLM were also found in both mouse and RLM. Using recombinant CYP450 isoenzymes, we demonstrated that multiple enzymes contributed to the metabolism of sepin-1, including CYP2D6 and CYP3A4 as the major metabolizing enzymes. Inhibitory effects of sepin-1 on seven major CYP450s were also evaluated using the corresponding substrates recommended by the US Food and Drug Administration. Our studies indicated that sepin-1 moderately inhibits CYP1A2, CYP2C19, and CYP3A4 with IC50 < 10 μM but weakly inhibits CYP2B6, CYP2C8/9, and CYP2D6 with IC50 > 10 μM. This information can be used to optimize the structures of sepin-1 for more suitable pharmacological properties and to predict the possible sepin-1 interactions with other chemotherapeutic drugs.

  15. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes.

    OpenAIRE

    Salter, M; Pogson, C I

    1985-01-01

    The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxyg...

  16. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  17. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  19. Posthemorrhage glycogen and lactate metabolism in the liver: an experimental study with postprandial rats

    International Nuclear Information System (INIS)

    Boija, P.O.; Nylander, G.; Suhaili, A.; Ware, J.

    1988-01-01

    Glycogen and lactate metabolism was studied in livers from three groups of postprandial rats sustaining 70 mm Hg hemorrhagic hypotension for variable periods, 60 min (60H group), 120 min (120H group), and nonbled controls. The donor livers were investigated after completed hemorrhage using an in vitro perfusion system with L-lactate as substrate, together with U- 14 C-lactate. The residual glycogen stores were determined after perfusions. The incorporation of labelled lactate to glucose was increased in the 120H group by 66.7% and 116.8% compared to the 60H group and controls (p less than 0.01), but glycogenolysis was still the main source of glucose released in the 120H group. Glycogen formation from labelled lactate was 46.6% higher in the 120H group compared to controls (p less than 0.05) and lactate oxidation was decreased by 67.5% (p less than 0.05). The data suggest that hepatocytes are capable of rapid change from glycolysis to gluconeogenesis during hemorrhagic hypovolemia. However, energy-sparing glycogen breakdown is given priority over gluconeogenesis as long as glycogen remains available

  20. An in vivo magnetic resonance spectroscopy study of the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats

    NARCIS (Netherlands)

    Janssens, S.; Ciapaite, J.; Wolters, J.C.; van Riel, N.A.; Nicolay, K.; Prompers, J.J.

    2017-01-01

    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or

  1. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats

    NARCIS (Netherlands)

    Janssens, Sharon; Ciapaite, Jolita; Wolters, Justina C.; van Riel, Natal A.; Nicolay, Klaas; Prompers, Jeanine J.

    2017-01-01

    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or

  2. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The metabolism of L-phenylalanine and L-tyrosine by liver cells isolated from adrenalectomized rats and from streptozotocin-diabetic rats.

    OpenAIRE

    Stanley, J C; Fisher, M J; Pogson, C I

    1985-01-01

    Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabol...

  4. Metabolism of fatty acids and the levels of ketone bodies in the livers of pyridoxine-deficient rats

    International Nuclear Information System (INIS)

    Gomikawa, Shuzo; Okada, Mitsuko

    1978-01-01

    Lipid metabolism was examined in rats fed a high-protein pyridoxine-deficient diet, and their livers were found to contain large amounts of lipids, mainly in the forms of triglycerides and cholesteryl ester. The contents of ketone bodies in the livers of pyridoxine-deficient and the control rats were similar. Their NAD + /NADH ratios, calculated from the amounts of ketone bodies, were also similar in pyridoxine-deficient and control groups when the animals were fed, but the ratio in pyridoxine-deficient rats was lower than that of control rats when the animals were starved. After injection of 14 C-linoleic acid, the amounts of expired 14 CO 2 in pyridoxine-deficient and control rats were similar. The pattern of incorporations of 14 C-linoleic acid into various lipid components of the livers were examined; incorporation into the phospholipid fraction was similar in control and deficient rats, but the incorporation into the triglyceride fraction was slower, and the incorporation into cholesterol was faster in deficient animals than in controls. (auth.)

  5. The effects of multiply ionizing gamma irradiations on the xenobiotic metabolizing system in the liver of rats

    International Nuclear Information System (INIS)

    Zavodnik, L.B.; Buko, V.U.

    2009-01-01

    The aim of the work was the studying the effect of multiply low doses of gamma-irradiation in a total doze 1 and 2 Gy on processes lipid peroxidation and xenobiotics metabolizing in rat liver. It was shown the multiply irradiation causes the expressed activation of lipid peroxidation, by increase of TBARS level and dien conjugates. The system of microsomal oxidations was broken at the same time. (authors)

  6. Early radiation impairment of the cholesterol metabolism in organelles of rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaznacherev, Yu S; Kolomiitseva, I K [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1975-05-01

    The incorporation of 1-C/sup 14/-acetate into cholesterol of the nuclear, mitochondrial, microsomal and 105000 g-supernatant fractions isolated from the rat liver in norm and 60 min after the exposure to 1200 r has been investigated. An increase has been observed in the label uptake into liver cholesterol of irradiated rats. Intracellular distribution of the newly synthesized (labelled) cholesterol is substantially changed after irradiation: maximum label incorporation into the cholesterol is observed in the 105000 g-supernatant fraction, whereas, normally, the cholesterol of microsomal fraction has the highest specific activity.

  7. Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis.

    Science.gov (United States)

    Bernal, Cristina; Martín-Pozuelo, Gala; Lozano, Ana B; Sevilla, Angel; García-Alonso, Javier; Canovas, Manuel; Periago, María J

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders, covering steatosis to nonalcoholic steatohepatitis (NASH). Dietary factors may modulate its evolution, and antioxidants have been proposed as therapeutic agents. Among them, lycopene has been demonstrated to prevent the development of steatohepatitis and even to inhibit NASH-promoted early hepatocarcinogenesis induced by a high-fat diet in rats. These conclusions have been related to its antioxidant activity; however, NAFLD is more complex than a simple redox imbalance state since it disturbs several metabolic systems in the liver. In consequence, there is a lack of information related to the action of lycopene beyond antioxidant biomarkers. In this work, NAFLD was induced in rats using a hypercholesterolemic and high-fat diet to evaluate the effect of lycopene consumption from tomato juice on liver metabolism. Several classical antioxidant biomarkers related to NAFLD were measured to check the state of this disease after 7 weeks of the controlled diet. Moreover, a metabolomics platform was applied to measure more than 70 metabolites. Results showed clear differences in the classical antioxidant biomarkers as well as in the metabolic pattern, attending not only to the diet but also to the intake of lycopene from tomato juice. Interestingly, tomato juice administration partially reverted the metabolic pattern from a high-fat diet to a normal diet even in metabolites not related to the redox state, which could lead to new targets for therapeutic agents against NAFLD and to achieving a better understanding of the role of lycopene in liver metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  9. Metabolism and Clearance of T-2 Mycotoxin in Perfused Rat Livers

    Science.gov (United States)

    1986-02-10

    nucleottde system in rat liver. B5ochem. J. 117, 499-503. 4ALLACE, E. 4., PATHRE, S. V., MIROCHA, C. J., ROSISON, T. S., AND FENTON , S. W. (1977). Synthesis...lactating cow. Food Cosmet . Toxicol. 19, 31- 39. YOSHIZAWA, T., SAKAMOTO, T., AND KUWAMWA, K. (1985). Structures of Deepoxytrichothecene mecabolites

  10. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Attenuated Hepatic Steatosis Through Regulation of Cholesterol Metabolism in Rats with Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Liu, Yanjun; Shi, Di; Tian, Yingying; Liu, Yuntao; Zhan, Qiping; Xu, Jie; Wang, Jingfeng; Xue, Changhu

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Disturbed cholesterol metabolism plays a crucial role in the development of NAFLD. The present study was conducted to evaluate the effects of EPA-PC extracted from sea cucumber on liver steatosis and cholesterol metabolism in NAFLD. Male Wistar rats were randomly divided into seven groups (normal control group, model group, lovastatin group, low- and high-dose EPA groups, and low- and high-dose EPA-PC groups). Model rats were established by administering a diet containing 1% orotic acid. To determine the possible cholesterol metabolism promoting mechanism of EPA-PC, we analyzed the transcription of key genes and transcriptional factors involved in hepatic cholesterol metabolism. EPA-PC dramatically alleviated hepatic lipid accumulation, reduced the serum TC concentration, and elevated HDLC levels in NAFLD rats. Fecal neutral cholesterol excretion was also promoted by EPA-PC administration. Additionally, EPA-PC decreased the mRNA expression of hydroxymethyl glutaric acid acyl (HMGR) and cholesterol 7α-hydroxylase (CYP7A), and increased the transcription of sterol carrying protein 2 (SCP2). Moreover, EPA-PC stimulated the transcription of peroxisome proliferators-activated receptor α (PPARα) and adenosine monophosphate activated protein kinase (AMPK) as well as its modulators, liver kinase B1 (LKB1) and Ca 2+ /calmodulin-dependent kinase kinase (CAMKK). Based on the results, the promoting effects of EPA-PC on NAFLD may be partly associated with the suppression of cholesterol synthesis via HMGR inhibition and the enhancement of fecal cholesterol excretion through increased SCP2 transcription. The underlying mechanism may involve stimulation of PPARα and AMPK.

  11. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); Alegret, Marta; Merlos, Manuel; Roglans, Nuria [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB - Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain; Laguna, Juan C., E-mail: jclagunae@ub.edu [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB -Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain

    2011-02-15

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights

  12. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    International Nuclear Information System (INIS)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.; Alegret, Marta; Merlos, Manuel; Roglans, Nuria; Laguna, Juan C.

    2011-01-01

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid β-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid β-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights:

  13. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats.

    Science.gov (United States)

    Salgado-Delgado, Roberto C; Saderi, Nadia; Basualdo, María del Carmen; Guerrero-Vargas, Natali N; Escobar, Carolina; Buijs, Ruud M

    2013-01-01

    In the liver, clock genes are proposed to drive metabolic rhythms. These gene rhythms are driven by the suprachiasmatic nucleus (SCN) mainly by food intake and via autonomic and hormonal pathways. Forced activity during the normal rest phase, induces also food intake, thus neglecting the signals of the SCN, leading to conflicting time signals to target tissues of the SCN. The present study explored in a rodent model of night-work the influence of food during the normal sleep period on the synchrony of gene expression between clock genes and metabolic genes in the liver. Male Wistar rats were exposed to forced activity for 8 h either during the rest phase (day) or during the active phase (night) by using a slow rotating wheel. In this shift work model food intake shifts spontaneously to the forced activity period, therefore the influence of food alone without induced activity was tested in other groups of animals that were fed ad libitum, or fed during their rest or active phase. Rats forced to be active and/or eating during their rest phase, inverted their daily peak of Per1, Bmal1 and Clock and lost the rhythm of Per2 in the liver, moreover NAMPT and metabolic genes such as Pparα lost their rhythm and thus their synchrony with clock genes. We conclude that shift work or food intake in the rest phase leads to desynchronization within the liver, characterized by misaligned temporal patterns of clock genes and metabolic genes. This may be the cause of the development of the metabolic syndrome and obesity in individuals engaged in shift work.

  14. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  15. Impact of grape pomace consumption on the blood lipid profile and liver genes associated with lipid metabolism of young rats.

    Science.gov (United States)

    Yu, Jianmei; Bansode, Rishipal R; Smith, Ivy N; Hurley, Steven L

    2017-08-01

    Herein, we investigated the effects of grape pomace (GP) in diet on body weight, blood lipid profile, and expression of liver genes associated with lipid metabolism using a young rat model. In this study, twenty female Sprague-Dawley rats at 7 weeks of age were randomly divided into 4 groups, which were fed modified AIN-93G diets containing 0% (control), 6.9%, 13.8%, and 20.7% of GP for 10 weeks. Feed consumption and body weight were weekly determined. Blood samples were obtained at the beginning and end of the feeding period for cholesterol, alanine aminotransferase (ALT), and glucose analysis. At the end of the feeding period, all rats were fasted overnight and euthanized. Heart, kidney, and liver samples were obtained and weighed. Liver tissues were used for gene expression analysis. GP-containing diet did not influence the body weight of the rats. As GP content increased, blood triglyceride and very low density lipoprotein (VLDL) decreased (P consumption of a diet containing appropriate amount of GP may help in the reduction of body fat accumulation and prevention of obesity. This is the first study revealing the change in gene expression caused by long-term consumption of GP-containing diet.

  16. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J

    2017-05-08

    Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and

  17. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro

    NARCIS (Netherlands)

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; Ravenzwaay, van Bennard

    2016-01-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To

  18. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  19. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  20. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  1. Metabolism of histones and nonhistone proteins of the nuclei and chromatin of liver cells in rats of different ages

    International Nuclear Information System (INIS)

    Klimenko, A.I.; Malyshev, A.B.; Kulachenko, B.V.

    1986-01-01

    The metabolism of various classes of histones and nonhistone proteins in whole nuclei and liver chromatin of albino Wistar rats 1, 3, 12, and 24 months of age was studied. It was shown that in the course of postnatal ontogenesis, the metabolism of nonhistone proteins, extractable by a 0.14 M solution of NaCl, is increased in the animals. The incorporation of labeled precursors into the HMG 14 and HMG 17 proteins decreases with age of the animals; a higher level of specific radioactivity was established for the HMG 1+2 proteins in the 3- and 24-month old animals. The intensity of the metabolism of nonhistone proteins and histones is higher in the chromatin complex than in the whole nucleus at all stages of postnatal development of the animals. Among the histone proteins, H1 histones possess a higher level of specific radioactivity in animals of all age groups

  2. [Effects of berberine on the recovery of rat liver xenobiotic-metabolizing enzymes after partial hepatectomy].

    Science.gov (United States)

    Zverinsky, I V; Zverinskaya, H G; Sutsko, I P; Telegin, P G; Shlyahtun, A G

    2015-01-01

    We have studied the effect of berberine on the recovery processes of liver xenobiotic-metabolizing function during its compensatory growth after 70% partial hepatectomy. It was found the hepatic ability to metabolize foreign substances are not restored up to day 8. Administration of berberine (10 mg/kg intraperitoneally) for 6 days led to normalization of both cytochrome P450-dependent and flavin-containing monooxygenases. It is suggested that in the biotransformation of berberine involved not only cytochrome P450, but also flavin-containing monooxygenases.

  3. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    Science.gov (United States)

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  4. Phenylalanine metabolism in isolated rat liver cells. Effects of glucagon and diabetes.

    OpenAIRE

    Carr, F P; Pogson, C I

    1981-01-01

    1. Methods are described for monitoring the metabolic flux through phenylalanine hydroxylase, the tyrosine catabolic pathway and phenylalanine: pyruvate transaminase in isolated liver cell incubations. 2. The relationship between hydroxylase flux and phenylalanine concentration is sigmoidal. 3. Glucagon increases hydroxylase activity at low, near-physiological, substrate concentrations only. The hormone does not affect the rate of formation of phenylpyruvate. 4. Experimental diabetes (for 10 ...

  5. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics.

    Science.gov (United States)

    Sridharan, Gautham Vivek; D'Alessandro, Matthew; Bale, Shyam Sundhar; Bhagat, Vicky; Gagnon, Hugo; Asara, John M; Uygun, Korkut; Yarmush, Martin L; Saeidi, Nima

    2017-09-01

    Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.

  6. Studies on the mechanism of quinone action on hormonal regulation of metabolism in the rat liver

    International Nuclear Information System (INIS)

    Cheng, E.Y.

    1989-01-01

    The mechanism of quinone actions in liver cell metabolism had been investigated using menadione as a model compound. Previous reports suggested that quinones and free radicals could produce perturbations in cellular calcium homeostasis. Since calcium plays an important role in the regulation of cellular metabolic processes, then regulation of cytosolic calcium concentrations, and thus of cellular metabolism, by calcium-mobilizing hormones such as phenylephrine and vasopressin could possibly be modified by quinones such as menadione. Methods used to approach this hypothesis included the assay for activation of glycogen phosphorylase, an indirect index of calcium mobilization; the determination of calcium mobilization with 45 Ca efflux exchange and with fluorescent calcium indicator fura-2; and the measurement of phosphatidylinositides, an important link in the membrane-associated receptor-mediated signal transduction mechanism

  7. Correction of glutathione metabolism in the liver of albino rats affected by low radiation doses

    International Nuclear Information System (INIS)

    Moiseenok, A.G.; Slyshenkov, V.S.; Khomich, T.I.; Zimatkina, T.I.; Kanunnikova, N.P.

    1997-01-01

    The levels of total glutathione GSH, GSSG and the activities of glutathione reductase and glutathione peroxidase were studied in the liver of adult albino rats subjected to 3-fold external γ-irradiation throughout 2 weeks at the overall dose of 0.75 Gy after 15 h, 2 and 5 days from the last irradiation. Some animals were injected intraperitoneally with the pantothenate containing complex > 3 times on days 1-3 before the irradiation. The radiation related decrease of GSH, GSH/GSSG and the total glutathione level was prevented by the prophylactic administration of the complex and probably at the expense of the activation of the G-SH biosynthesis and/or transport in the liver by the CoA biosynthetic precursor. (author)

  8. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1978-01-01

    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  9. Vitex agnus-castus L. (Verbenaceae) Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats.

    Science.gov (United States)

    Moreno, Franciele Neves; Campos-Shimada, Lilian Brites; da Costa, Silvio Claudio; Garcia, Rosângela Fernandes; Cecchini, Alessandra Lourenço; Natali, Maria Raquel Marçal; Vitoriano, Adriana de Souza; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2015-01-01

    Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (CE) and a butanolic fraction of VAC (ButF) and displayed the beneficial effects of a reduction in the adiposity index and a complete reversion of NAFLD. NAFLD reversion was accompanied by a general improvement in the liver redox status. The activities of some antioxidant enzymes were restored and the mitochondrial hydrogen peroxide production was significantly reduced in animals treated with CE and the ButF. It can be concluded that the CE and ButF from Vitex agnus-castus were effective in preventing NAFLD and oxidative stress, which are frequent causes of abnormal liver functions in the postmenopausal period.

  10. Vitex agnus-castus L. (Verbenaceae Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Franciele Neves Moreno

    2015-01-01

    Full Text Available Vitex agnus-castus (VAC is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD, frequently associated with menopause. Ovariectomized (OVX rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (CE and a butanolic fraction of VAC (ButF and displayed the beneficial effects of a reduction in the adiposity index and a complete reversion of NAFLD. NAFLD reversion was accompanied by a general improvement in the liver redox status. The activities of some antioxidant enzymes were restored and the mitochondrial hydrogen peroxide production was significantly reduced in animals treated with CE and the ButF. It can be concluded that the CE and ButF from Vitex agnus-castus were effective in preventing NAFLD and oxidative stress, which are frequent causes of abnormal liver functions in the postmenopausal period.

  11. Vitex agnus-castus L. (Verbenaceae) Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats

    Science.gov (United States)

    Moreno, Franciele Neves; Campos-Shimada, Lilian Brites; da Costa, Silvio Claudio; Garcia, Rosângela Fernandes; Cecchini, Alessandra Lourenço; Natali, Maria Raquel Marçal; Vitoriano, Adriana de Souza; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2015-01-01

    Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (CE) and a butanolic fraction of VAC (ButF) and displayed the beneficial effects of a reduction in the adiposity index and a complete reversion of NAFLD. NAFLD reversion was accompanied by a general improvement in the liver redox status. The activities of some antioxidant enzymes were restored and the mitochondrial hydrogen peroxide production was significantly reduced in animals treated with CE and the ButF. It can be concluded that the CE and ButF from Vitex agnus-castus were effective in preventing NAFLD and oxidative stress, which are frequent causes of abnormal liver functions in the postmenopausal period. PMID:25954315

  12. Metabolic Profile of Obeticholic Acid and Endogenous Bile Acids in Rats with Decompensated Liver Cirrhosis.

    Science.gov (United States)

    Roda, A; Aldini, R; Camborata, C; Spinozzi, S; Franco, P; Cont, M; D'Errico, A; Vasuri, F; Degiovanni, A; Maroni, L; Adorini, L

    2017-07-01

    Obeticholic acid (OCA) is a semisynthetic bile acid (BA) analog and potent farnesoid X receptor agonist approved to treat cholestasis. We evaluated the biodistribution and metabolism of OCA administered to carbon tetrachloride-induced cirrhotic rats. This was to ascertain if plasma and hepatic concentrations of OCA are potentially more harmful than those of endogenous BAs. After administration of OCA (30 mg/kg), we used liquid chromatography-mass spectrometry to measure OCA, its metabolites, and BAs at different timepoints in various organs and fluids. Plasma and hepatic concentrations of OCA and BAs were higher in cirrhotic rats than in controls. OCA and endogenous BAs had similar metabolic pathways in cirrhotic rats, although OCA hepatic and intestinal clearance were lower than in controls. BAs' qualitative and quantitative compositions were not modified by a single administration of OCA. In all the matrices studied, OCA concentrations were significantly lower than those of endogenous BAs, potentially much more cytotoxic. © 2017 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  13. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    International Nuclear Information System (INIS)

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from 14 C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation

  14. Metabolism of indole alkaloid tumor promoter, (-)-indolactam V, which has the fundamental structure of teleocidins, by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, N.; Irie, K.; Tokuda, H.; Koshimizu, K.

    1987-07-01

    Metabolic activation and/or deactivation of indole alkaloid tumor promoter, (-)-indolactam V (ILV), was examined using rat liver microsomes. Reaction of ILV with the microsomes supplemented with NADPH and MgCl/sub 2/ gave three major metabolites, which were identified as (-)-N13-desmethylindolactam V and two diastereomers of (-)-2-oxyindolactam V at C-3. The tumor-promoting activities of these metabolites were evaluated by induction of Epstein-Barr virus early antigen and inhibition of specific binding of (/sup 3/H)-12-O-tetradecanoylphorbol-13-acetate to a mouse epidermal particulate fraction, and proved to be conspicuously lower than that of ILV. These results demonstrate that the metabolism of ILV results in detoxification, and that it itself is the tumor-promoting entity. Studies on the enzymes concerned with this metabolism suggested the involvement of cytochrome P-450-containing mixed-function oxidases. Similar deactivation seems to be possible by skin, where the mixed-function oxidases are known to exist.

  15. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  16. Metabolic alterations by clofibric acid in the formation of molecular species of phosphatidylcholine in rat liver.

    Science.gov (United States)

    Mizuguchi, H; Kudo, N; Kawashima, Y

    2001-10-01

    The mechanism by which p-chlorophenoxyisobutyric acid (clofibric acid) induces striking changes in the proportion of the molecular species of phosphatidylcholine (PC) in rat liver was studied. Treatment of rats with clofibric acid strikingly increased the content of 1-palmitoyl-2-oleoyl (16:0-18:1) PC, but decreased the contents of 1-palmitoyl-2-docosahexaenoyl (16:0-22:6), 1-stearoyl-2-arachidonoyl (18:0-20:4), and 1-stearoyl-2-linoleoyl (18:0-18:2) PC; the drug did not change the content of 1-palmitoyl-2-arachidonoyl (16:0-20:4) PC. The mechanism underlying these changes has been investigated with regard to the in vivo formation of the molecular species of PC by: (i) de novo synthesis, (ii) reacylation, and (iii) methylation of phosphatidylethanolamine (PE). We found that (i) the incorporation of [3H]glycerol, which was injected intravenously, into 16:0-18:1 diacylglycerol (DG) and 16:0-18:1 PC was increased markedly by clofibric acid feeding without changing the substrate specificity of CDP-choline:DG cholinephosphotransferase, (ii) the in vivo formation of 16:0-18:1 and 16:0-20:4 PC from 1-16:0-[3H]glycerophosphocholine (GPC), which was injected intraportally, was increased markedly by clofibric acid feeding, and (iii) the incorporation of [14C]ethanolamine, which was injected intravenously into 16:0-22:6, 18:0-22:6, and 18:0-20:4 PC, was decreased by clofibric acid feeding; the extent of the decrease in 16:0-20:4 PC was less than that of 18:0-20:4 PC. It was concluded, therefore, that (i) clofibric acid selectively increased the content and proportion of 16:0-18:1 PC by enhancing both the CDP-choline pathway and the remodeling of the pre-existing PC molecule, and (ii) the drug kept the content of 16:0-20:4 PC unchanged by stimulating the remodeling of the pre-existing PC molecule, whereas the formation of other more long chain, polyunsaturated molecular species, such as 16:0-22:6, 18:0-22:6, and 18:0-20:4, was decreased owing to the suppression of PE

  17. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosis, and lipogenic gene expression in the liver at weaning. However, the precise underlying mechanisms leading to metabolic dysregulation in the offspring remains unclear. Using a rat model of overfeeding-induced obesity, we previously demonstrated that exposure to maternal obesity from pre-conception to birth, is sufficient to program increased obesity risk in the offspring. Offspring of obese rat dams gain greater body weight and fat mass when fed high fat diet (HFD as compared to lean dam. Since, disruptions of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver, we examined the hypothesis that maternal obesity leads to perturbations of core clock components and thus energy metabolism in offspring liver. Offspring from lean and obese dams were examined at post-natal day 35, following a short (2 wk HFD challenge. Hepatic mRNA expression of circadian (CLOCK, BMAL1, REV-ERBα, CRY, PER and metabolic (PPARα, SIRT1 genes were strongly suppressed in offspring exposed to both maternal obesity and HFD. Using a mathematical model, we identified two distinct biological mechanisms that modulate PPARα mRNA expression: i decreased mRNA synthesis rates; and ii increased non-specific mRNA degradation rate. Moreover, our findings demonstrate that changes in PPARα transcription were associated with epigenomic alterations in H3K4me3 and H3K27me3 histone marks near the PPARα transcription start site. Our findings indicated that offspring from obese rat dams have detrimental alternations to circadian machinery that may contribute to impaired liver metabolism in response to HFD, specifically via reduced PPAR

  18. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  19. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    International Nuclear Information System (INIS)

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-01-01

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  20. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants

    Czech Academy of Sciences Publication Activity Database

    Václavíková, R.; Horský, S.; Šimek, Petr; Gut, I.

    2003-01-01

    Roč. 368, - (2003), s. 200-209 ISSN 0028-1298 R&D Projects: GA AV ČR IPP1050128 Institutional research plan: CEZ:AV0Z5007907 Keywords : paclitaxel * cytochrome P450 * rat Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.101, year: 2003

  1. In vitro metabolism of the anti-androgenic fungicide vinclozolin by rat liver microsomes

    Science.gov (United States)

    Vinclozolin (V) is a fungicide used in agricultural settings. V administered to rats is hydrolyzed to 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (Ml) and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2). V, Ml and M2 have antiandrogenic properties by in...

  2. Metabolic pathways for ketone body production. 13C NMR spectroscopy of rat liver in vivo using 13C-multilabeled fatty acids

    International Nuclear Information System (INIS)

    Pahl-Wostl, C.; Seelig, J.

    1986-01-01

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with 13 C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of 13 C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the 13 C signal intensities were enhanced by using doubly labeled [1,3- 13 C]butyrate as a substrate. Different 13 C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The 13 C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of 13 C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded β-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. 13 C-labeled glucose could be detected in vivo in the liver of diabetic rats

  3. Changes in the acinar distribution of some enzymes involved in carbohydrate metabolism in rat liver parenchyma after experimentally induced cholestasis

    NARCIS (Netherlands)

    van Noorden, C. J.; Frederiks, W. M.; Aronson, D. C.; Marx, F.; Bosch, K.; Jonges, G. N.; Vogels, I. M.; James, J.

    1987-01-01

    Extrahepatic cholestasis induced by ligation and transsection of the common bile duct caused a change in the parenchyma/stroma relationship in rat liver. Two weeks after ligation, the periportal zones of the parenchyma were progressively invaded by expanding bile ductules with surrounding connective

  4. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2018-04-01

    Full Text Available The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old and adult (90 days old rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective

  5. Effect of radio-detoxified endotoxin on the liver microsomal drug metabolizing enzyme system in rats

    International Nuclear Information System (INIS)

    Bertok, L.; Szeberenyi, S.

    1983-01-01

    E. coli endotoxin (LPS) depresses the hepatic microsomal mono-oxygenase activity. Radio-detoxified LPS (TOLERIN: 60 Co irradiated endotoxin preparation) decreases this biotransforming activity to a smaller extent. Phenobarbital, an inducer of this mono-oxygenase system, failed to induce in LPS-treated animals. In radio-detoxified LPS-treated rats, phenobarbital induced the mono-oxygenase and almost fully restored the biotransformation

  6. Carbon-14 tracer studies in the metabolism of isolated rat-liver parenchymal cells under conditions of gluconeogenesis from lactate and pyruvate

    International Nuclear Information System (INIS)

    Muellhofer, G.; Mueller, C.; Stetten, C. von; Gruber, E.

    1977-01-01

    In rat liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate, 14 C-labeling patterns of metabolites with (1- 14 C)-labeled and (2- 14 C)-labeled lactate or pyruvate. [ 14 C]bicarbonate and [1- 14 C]octanoate as tracers have been obtained which do not agree with generally assumed reaction schemes. The experiments have been repeated with incubations of isolated rat-liver parenchymal cells. The results demonstrate that the discrepancies between expected and analysed 14 C-labeling patterns of metabolites were still existent. From this observation, it may be concluded that 14 C-labelling patterns of metabolites are indicative for the existence of still unknown metabolic relationships in liver parenchymal cells. Furthermore, the results of our experiments prove that conclusions based on the exclusive analysis of metabolite levels are of limited value for studying intracellular events, because of uncharacterized compartmentations, which become evident in 14 C-tracer studies. It cannot be answered by our studies whether the apparent existence of differently labelled species of citrate, oxoglutarate, or acetyl-CoA represent intracellular compartmentation, or whether it is the result of metabolic heterogeneity of liver parenchym cells. (orig.) [de

  7. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  8. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  9. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  10. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  11. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  12. Demonstration of metabolic and cellular effects of portal vein ligation using multi-modal PET/MRI measurements in healthy rat liver.

    Directory of Open Access Journals (Sweden)

    András Fülöp

    Full Text Available OBJECTIVES: In the early recognition of portal vein ligation (PVL induced tumor progression, positron emission tomography and magnetic resonance imaging (PET/MRI could improve diagnostic accuracy of conventionally used methods. It is unknown how PVL affects metabolic patterns of tumor free hepatic tissues. The aim of this preliminary study is to evaluate the effect of PVL on glucose metabolism, using PET/MRI imaging in healthy rat liver. MATERIALS AND METHODS: Male Wistar rats (n=30 underwent PVL. 2-deoxy-2-(18Ffluoro-D-glucose (FDG PET/MRI imaging (nanoScan PET/MRI and morphological/histological examination were performed before (Day 0 and 1, 2, 3, and 7 days after PVL. Dynamic PET data were collected and the standardized uptake values (SUV for ligated and non-ligated liver lobes were calculated in relation to cardiac left ventricle (SUVVOI/SUVCLV and mean liver SUV (SUVVOI/SUVLiver. RESULTS: PVL induced atrophy of ligated lobes, while non-ligated liver tissue showed compensatory hypertrophy. Dynamic PET scan revealed altered FDG kinetics in both ligated and non-ligated liver lobes. SUVVOI/SUVCLV significantly increased in both groups of lobes, with a maximal value at the 2nd postoperative day and returned near to the baseline 7 days after the ligation. After PVL, ligated liver lobes showed significantly higher tracer uptake compared to the non-ligated lobes (significantly higher SUVVOI/SUVLiver values were observed at postoperative day 1, 2 and 3. The homogenous tracer biodistribution observed before PVL reappeared by 7th postoperative day. CONCLUSION: The observed alterations in FDG uptake dynamics should be taken into account during the assessment of PET data until the PVL induced atrophic and regenerative processes are completed.

  13. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    Science.gov (United States)

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.

  14. Managing the Combination of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome with Chinese Herbal Extracts in High-Fat-Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the hepatic manifestation of metabolic syndrome (MetS. The aim of the study was to evaluate the effects of Chinese herbal extracts from Salvia miltiorrhiza and Gardenia jasminoides (SGE on the combination of NAFLD and MetS induced by a high-fat diet (HFD in rats. After 6 weeks of HFD feeding, rats (n=10 each group were treated with saline, rosiglitazone (RSG, and SGE for 4 weeks. HFD rats were obese, hyperinsulinemic, hyperlipidemic and increased hepatic enzymes with the histological images of NAFLD. Treatment with SGE significantly reduced serum triglycerides (TG, nonesterified fatty acids and enhanced insulin sensitivity, and ameliorated the elevated serum hepatic enzymes compared with HFD-saline group. SGE treatment also attenuated hepatic TG by 18.5% (P<0.05. Histological stains showed SGE decreased lipids droplets in hepatocytes (P<0.05 and normalized macrovesicular steatosis in HFD rats. Significant reduction of TNF-α and IL6 in adipose tissue was detected in SGE treated rats. The anti-inflammatory action may be, at least in part, the mechanism of SGE on MetS associated with NAFLD. This study discovered that SGE is capable of managing metabolic and histological abnormalities of NAFLD and MetS. SGE may be an optimal treatment for the combination of NAFLD and MetS.

  15. Metabolic turnover of pyridine nucleotides in ascites cells of sarcoma Sa 180 and in the liver tissue of rats before and after ionizing radiation

    International Nuclear Information System (INIS)

    Kunz, K.; Musil, J.

    1979-01-01

    The metabolic turnover of NADP + labeled with 14 C in the ribose moiety of their molecules was determined in the ascites cells of sarcoma Sa 180 and in the rat liver tissue. The half-lives of NAD + and NADP + in the Sa 180 sarcoma cells were 60 mins (NAD + ) and 90 mins (NADP + ), the corresponding values in the liver cells were 80 mins (NAD + ) and 120 mins (NADP + ). Experiments were conducted on animals aimed at ascertaining the time-dependent effect of ionizing radiation on the values of pooled NAD + and NADP + after 0.129 C/kg (500 R) and 0.387 C/kg (1500 R) whole-body irradiation, and the metabolic turnover of these nucleotides 5 h after whole-body irradiation with 0.387 C/kg (1500 R). Exposure to 0.129 C/kg (500 R) whole-body irradiation induced no apparent changes compared with the controls. Within 5 h of irradiation the whole-body dose of 0.387 C/kg (1500 R) produced changes in rat liver cells characterized by a reduction in the nucleotide biological half-lives (NAD + from 80 to 60 mins and NADP + from 120 to 70 mins). No such changes in the pyridine nucleotide turnover were detected in the Sa 180 ascites sarcoma cells. (author)

  16. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats

    Directory of Open Access Journals (Sweden)

    William W. French

    2017-06-01

    Full Text Available A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa and lean control (Fa/fa rats were randomly assigned to either a high-protein (40% energy or moderate-protein (20% energy diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8, lean 40% protein (L40; n = 10, obese 20% protein (O20; n = 8, and obese 40% protein (O40; n = 10. At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05 compared to O20. O40 rats had lower liver weight (p < 0.05 compared to O20. However, O40 rats had higher orexin (p < 0.05 levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1 phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ mRNA expression compared to O20 (p < 0.05, with no difference in 5′ AMP-activated protein kinase (AMPK, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1, protein kinase B (Akt or p70 ribosomal S6 kinase (p70S6K phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  17. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    Science.gov (United States)

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  18. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver.

    Science.gov (United States)

    Maldonado, Marcos Rodrigues; Bracht, Lívia; de Sá-Nakanishi, Anacharis Babeto; Corrêa, Rúbia Carvalho Gomes; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2018-01-01

    p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    Science.gov (United States)

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  20. Dithiobiuret metabolism in the rat

    International Nuclear Information System (INIS)

    Williams, K.D.; Porter, W.R.; Peterson, R.E.

    1982-01-01

    Our main objective was to describe the metabolism of dithiobiuret (DTB) in the adult, male rat. Based on the thin-layer chromatographic analysis of urine from animals treated with [ 14 C] or [ 35 S] labeled DTB, two pathways for metabolism are proposed. One pathway is reversible and involves the oxidation of DTB to thiuret and the reduction of thiuret back to DTB. The other pathway consists of the desulfurization of DTB to monothiobiuret. The liver appears to desulfurate DTB because DTB-derived [35S] was eliminated from the liver more rapidly than [ 14 C]. The liver was the only tissue where the elimination kinetics of [ 35 S] and [ 14 C] DTB were different. DTB-derived radioactivity in urine that co-chromatographed with DTB, monothiobiuret, thiuret and sulfate was quantitated along with that of three uncharacterized metabolites. The presence of these unknown metabolites suggests that DTB metabolism is complex. The present study is the first description of the metabolic fate of DTB in the rat and serves as a starting point for determining whether DTB neurotoxicity is caused by the parent compound or a metabolite

  1. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  2. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  3. High expression of liver histone deacetylase 3 contributes to high-fat-diet-induced metabolic syndrome by suppressing the PPAR-γ and LXR-α-pathways in E3 rats.

    Science.gov (United States)

    Li, Dongmin; Wang, Xuan; Ren, Wuchao; Ren, Juan; Lan, Xi; Wang, Feimiao; Li, Hongmin; Zhang, Fujun; Han, Yan; Song, Tianbao; Holmdahl, Rikard; Lu, Shemin

    2011-09-15

    In the previous experiment, we found that there was a different response between E3 rats and DA.1U rats to high-fat-diet-induced metabolic syndrome (HFD-MetS). The aim of this study was to explore the cause and molecular mechanism of the genetic difference in susceptibility to metabolic syndrome in E3 rats as compared with DA.1U rats. Firstly, a 12-week HFD-MetS model in E3 and DA.1U rats was carried out and assessed. Then, the expression of key insulin signaling molecules, metabolic nuclear receptors, metabolic key enzymes and histone deacetylases (Hdacs) was determined by different methods. Finally, the effects of overexpression and disruption of Hdac3 on metabolic nuclear receptors were analyzed in CBRH-7919 cells and primarily-hepatic cells from DA.1U and E3 rats. We found that E3 rats were susceptible, while DA.1U rats were resisted to HFD-MetS. The expression of liver X receptor α,β (LXR-α,β), farnesoid X receptor (FXR), peroxisome proliferator activated receptor γ (PPAR-γ) and cholesterol 7α-hydroxylase (CYP7A1) increased markedly in DA.1U rat liver, whereas they decreased significantly in E3 rats. The expression of Hdac3 increased by HFD treatment in both E3 and DA.1U rat livers, but the constitutive Hdac3 expression was lower in DA.IU rat liver than in E3 rat liver. Importantly, overexpression of Hdac3 could downregulate the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from DA.IU rats. On the contrary, disruption of Hdac3 by shRNA upregulated the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from E3 rats. The results suggested that a high constitutive expression of Hdac3 inhibiting the expression of PPAR-γ, LXR-α and CYP7A1 in liver contributes to HFD-MetS in E3 rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Influence of dietary fat on metabolism of (14-14C)erucic acid in the perfused rat liver. Distribution of metabolites in lipid classes

    International Nuclear Information System (INIS)

    Holmer, G.; Ronneberg, R.

    1986-01-01

    Two groups of rats were fed diets containing 20% by weight of either partially hydrogenated marine oil supplemented with sunflower seed oil (PHMO) or palm oil (PO) for 8 wk. Using a liver perfusion system, the effect of dietary long chain monoenoic fatty acids on the uptake and metabolism of [14- 14 C]erucic acid was studied. The perfusion times were 15 and 60 min, respectively. The two groups showed equal ability for erucic acid uptake in the liver but differed in the channeling of the fatty acids into various metabolic pathways. A higher metabolic turnover of 22:1 in the PHMO livers relative to the PO livers was demonstrated by an increased recovery of total [ 14 C]labeling in the triglyceride (TG) and phospholipid (PL) fractions, already evident after 15 min of perfusion. The chain-shortening capacity was highest in the PHMO group, reflected by a higher [ 14 C]18:1 incorporation in both TG and PL, and increasing from 15 to 60 min of perfusion. The amount of [ 14 C]18:1 found in PL and TG after 60 min of perfusion of livers from rats fed PO corresponded to that shown for the PHMO group after 15 min. The PL demonstrated a discrimination against 22:1 compared to TG, and, when available, 18:1 was highly preferred for PL-synthesis. The total fatty acid distribution in the TG, as determined by gas liquid chromatography (GLC), reflected the composition of the dietary fats. In the total liver PL, 22:1 and 20:1 were present in negligible amounts, although the PHMO diet contained 12-13% of both 22:1 and 20:1. In the free fatty acid fraction (FFA), the major part of the radioactivity (approximately 80%) was [14- 14 C]erucic acid, and only small amounts of [ 14 C]18:1 (less than 2%) were present, even after 60 min of perfusion. The shortened-chain 18:1 was readily removed from the FFA pool and preferentially used for lipid esterification

  5. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation

    International Nuclear Information System (INIS)

    Morris, M.E.; Yuen, V.; Tang, B.K.; Pang, K.S.

    1988-01-01

    Sulfation and glucuronidation are two parallel pathways for the metabolism of phenolic substrates. Gentisamide (GAM) was used as a model compound to examine the effects of parallel competing pathways on drug disappearance and metabolite formation in the once-through perfused rat liver preparation. GAM was found to form one glucuronide (GAM-5G) and two sulfate (GAM-2S and GAM-5S) conjugates. These GAM conjugates were biosynthesized in recirculating rat liver preparations, and were isolated by preparative high-performance liquid chromatography. Specific incorporation of 35S-sodium sulfate and [14C]glucose into GAM sulfate and glucuronide conjugates revealed corresponding elution patterns as labeled GAM metabolites. Their identities were characterized by enzymatic and acid hydrolyses and by NMR spectroscopy. Gentisamide-5-sulfate (GAM-5S) and gentisamide-5-glucuronide (GAM-5G) are major metabolites, and gentisamide-2-sulfate (GAM-2S) is a minor metabolite. Single-pass rat liver perfusions were used to examine the effect of stepwise increases/decreases of input GAM concentration (CIn) on the extraction ratio (E) of GAM and formation of metabolites. The E of GAM remained constant (about 0.89) at input concentrations from 0.9 to 120 microM and decreased at CIn greater than 120 microM. Metabolite patterns, however, changed with GAM CIn, even when E was constant at CIn up to 120 microM. GAM-5S was present as the major metabolite of GAM at all GAM CInS in most liver preparations but the proportions of GAM-5S and GAM-2S decreased at increasing CIn; the proportion of GAM-5G, a minor metabolite at low CIn, increased with increasing CIn. Biliary excretion rates at steady state accounted for 5.3 +/- 2.7% (mean +/- S.D.) of the input rate: GAM-5G was the predominant metabolite found

  6. Role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    van Maanen, J.M.; de Ruiter, C.; de Vries, J.; Kootstra, P.R.; Gobas, F.; Pinedo, H.M.

    1985-09-01

    Covalent binding of /sup 3/H-labeled VP 16-213 to rat liver and HeLa cell microsomal proteins was studied in vitro. Metabolic activation by cytochrome P-450 was found to play a role in the covalent binding of VP 16-213 to rat liver microsomal proteins, as shown by the need of NADPH cofactor, the increased binding after phenobarbital pretreatment and the inhibition by SFK-525A. Addition of ascorbic acid or alpha-phenyl-N-tert. butylnitrone to the incubation mixture depressed covalent binding by about 85%, suggesting that formation of a reactive metabolite from the phenolic structure may be involved in the binding process. VP 16-213 did not inhibit aminopyrine N-demethylase at the concentration used in the binding experiments (17 microM), indicating that metabolism of its methylenedioxy group does not play a role in binding to microsomal proteins. HeLa cell microsomes were found to possess aminopyrine N-demethylase activity. Covalent binding of radiolabeled VP 16-213 to HeLa cell microsomes decreased by about 64% if NADPH was omitted.

  7. Radioprotection of whole-body gamma irradiation induced alterations in lipid metabolism of liver and plasma by AET (S-2, aminoethyl isothiuronium Br. H. Br.) and serotonin in rats

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1975-01-01

    Radioprotective effect of AET, serotonin and their mixture has been studied on liver and plasma lipid metabolism 24 hrs and 48 hrs after irradiation in fasted male rats. AET and serotonin both gave significant radioprotection to certain liver and plasma lipid components, but the mixture of the two afforded a better protection. The non-radioprotection of plasma NEFA, phospholipids and phosphatidyl choline levels by serotonin observed in irradiated rats was because serotonin itself raised the levels of these lipids in control rats. Serotonin alone or in mixture effectively protected the radiation-induced increased incorporation of NaH 2 32 PO 4 into liver phospholipids. Mixture of AET and serotonin failed to protect the increased incorporation of aceae-1-14-C into liver total fatty acids and cholesterol, but it prevented this increased incorporation into liver triglycerides and phospholipids. (orig.) [de

  8. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].

    Science.gov (United States)

    Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V

    1996-01-01

    It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.

  9. Effects of chronic ethanol intake on metabolic conversions of 14C erucic acid by the livers of rat fed with rapeseed or ground nut oil

    International Nuclear Information System (INIS)

    Lecerf, J.; Bezard, J.

    1975-01-01

    The effects of addition of ethanol to diets containing rapeseed or ground nut oil on the metabolic conversion of 14 14 C erudic and 9-10 3 H oleic acid were studied in the rat liver. Whatever the diet more 14 C than 3 H radioactivity was recovered in liver lipids 2 and 19 hours after injection of labelled fatty acids. Ethanol has little effect on this incorporation. Only small amounts of 3 H oleic acid were converted. In all cases, the metabolic conversion of erucic acid was identical: the main part of 14 C was not recovered as erucic acid but was present in other mono unsaturated fatty acids n-9:oleic acid (18:1), which was the most labelled acid, 16:1, 20:1 and nervonic acid (24:1). The amount of erucic acid converted to shorter chain fatty acids was unchanged by addition of ethanol but the alcohol increased the proportion of 14 C radioactivity recovered as nervonic acid. This latter effect was opposite to the effect of rapeseed oil diet, which consisted in a decrease in the conversion of erucic to nervonic acid. A high amount of 14 C radioactivity was recovered in the F.F.A. fraction of the liver as an unknown compound (13 and 80% of 14 C radioacitivty respectively after 2 and 19h). Its identification is presently under investigation [fr

  10. The nucleic acid metabolism in rat liver after single and long-term administration of tritium oxide

    International Nuclear Information System (INIS)

    Shorokhova, V.B.

    1984-01-01

    It was shown that after a single administration of tritiUm oxide in a dose of 22.2 MBq/g body mass the liver mass increased, the concentration of nucleic acids decreased and the biosynthesjs rate increased dUring a one-month observation. By the end of the observation period (the first year) the parameters under study were normalized. The long-term administration of tritium oxide in daily doses of 0.37, 0.925 and 1.85 MBq/g body mass caused changes in the nucleac acid metabolism which were less manifest (at early times), than in the case of a single injection. At the same time, the long-term administration of tritium oxide in the dose of 0.925 MBq/g caused a substantial disturbance of the nucleic acid metabolism at later times (after 2-9 months)

  11. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    Science.gov (United States)

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  12. Liver and water metabolism

    International Nuclear Information System (INIS)

    Fallot, P.

    1959-01-01

    The causes for the disturbance of hydro-electrolytic equilibrium observed in cirrhosis patients are far from clear. Studies on the static distribution of liquid in the organism and also on anomalies in the distribution of deuterium oxide and tritiated water provide no direct explanation of the nature of the water retaining mechanism. At the period when the illness is established, endocrine factors and electrolytic perturbations contribute to maintaining or increasing oliguresis, but they cannot be held solely responsible in the initial stages of evolution. An explanation of the ascites should therefore be looked for in a non-functioning of the polygonal or Kupffer cells. The hypothesis of an insufficient rejection of water outside the lymph spaces of the liver during cirrhosis is put forward, but the experimental demonstration of such a phenomenon proves very difficult. (author) [fr

  13. Effect of acetyl salicylic acid (aspirin) and Prostaglandins on thyroid tissue and carbohydrate metabolism in liver of male albino rats

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Ramakrishnan, S.

    1979-01-01

    Aspirin, both in chronic and acute doses, led to a considerable decrease in percentage uptake of labelled iodine (Na 131 I) and serum protein-bound iodine by the thyroid gland whereas prostaglandins (PGs) did not exhibit any significant effect on both the parameters. Simultaneous administration of aspirin and PGs caused a significant decrease in the two parameters, and on withdrawal of aspirin from the diet the two parameters were restored to normal levels, thus suggesting that the effect of aspirin on thyroid is direct and reversible. Aspirin, both in acute and chronic doses, effected decrease in glycogen levels, in vivo and in vitro incorporation of [U- 14 C] glucose into glycogen, and glycogen synthetase activity in the liver of both fed, and fasting, rat. Prostaglandins, on the other hand, resulted in a significant increase in the three parameters, thus enhancing the rate of liver glycogenesis. Normal levels were restored when both aspirin and PGs were given together. Withdrawal of aspirin also restored normal hepatic glycogenesis. Significant reduction in the activities of hepatic gluconeogenic enzymes, viz. glucose 6-phosphatase, fructose 1,6-diphosphatase, phosphopyruvate carboxylase, pyruvate carboxylase, aspartate aminotransferase and glutamate dehydrogenase was observed due to chronic and acute administration of aspirin and PGs were devoid of any significant effect on gluconeogenic enzymes, thus ruling out the mediation of PGs. (auth.)

  14. Effect of acetyl salicylic acid (aspirin) and Prostaglandins on thyroid tissue and carbohydrate metabolism in liver of male albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, A; Ramakrishnan, S [Jawaharlal Inst. of Postgraduate Medical Education and Research, Pondicherry (India)

    1979-04-01

    Aspirin, both in chronic and acute doses, led to a considerable decrease in percentage uptake of labelled iodine (Na/sup 131/I) and serum protein-bound iodine by the thyroid gland whereas prostaglandins (PGs) did not exhibit any significant effect on both the parameters. Simultaneous administration of aspirin and PGs caused a significant decrease in the two parameters, and on withdrawal of aspirin from the diet the two parameters were restored to normal levels, thus suggesting that the effect of aspirin on thyroid is direct and reversible. Aspirin, both in acute and chronic doses, effected decrease in glycogen levels, in vivo and in vitro incorporation of (U-/sup 14/C) glucose into glycogen, and glycogen synthetase activity in the liver of both fed, and fasting, rat. Prostaglandins, on the other hand, resulted in a significant increase in the three parameters, thus enhancing the rate of liver glycogenesis. Normal levels were restored when both aspirin and PGs were given together. Withdrawal of aspirin also restored normal hepatic glycogenesis. Significant reduction in the activities of hepatic gluconeogenic enzymes, viz. glucose 6-phosphatase, fructose 1,6-diphosphatase, phosphopyruvate carboxylase, pyruvate carboxylase, aspartate aminotransferase and glutamate dehydrogenase was observed due to chronic and acute administration of aspirin and PGs were devoid of any significant effect on gluconeogenic enzymes, thus ruling out the mediation of PGs.

  15. S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy

    Science.gov (United States)

    Eloranta, Terho O.; Raina, Aarne M.

    1977-01-01

    S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7–14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine. PMID:597268

  16. Effects of n-3 and n-6 polyunsaturated fatty acid-enriched diets on lipid metabolism in periportal and pericentral compartments of female rat liver lobules and the consequences for cell proliferation after partial hepatectomy

    NARCIS (Netherlands)

    van Noorden, C. J.

    1995-01-01

    The effects of a low fat diet or diets enriched with either n-6 or n-3 polyunsaturated fatty acids (safflower or fish oil, respectively) on lipid metabolism in periportal and pericentral zones of female rat liver lobules were investigated in relation with cell proliferation after partial

  17. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  18. Isolating Lysosomes from Rat Liver.

    Science.gov (United States)

    Pryor, Paul R

    2016-04-01

    This protocol describes the generation of a fraction enriched in lysosomes from rat liver. The lysosomes are rapidly isolated using density-gradient centrifugation with gradient media that retain the osmolarity of the lysosomes such that they are functional and can be used in in vitro assays. © 2016 Cold Spring Harbor Laboratory Press.

  19. Occurrence of lipids in the liver of the hypertriglyceridemic rats

    Czech Academy of Sciences Publication Activity Database

    Zemanová, Zdeňka; Strnadová, Miluše; Jirsová, Z.; Klusoňová, Petra

    2009-01-01

    Roč. 153, č. 1 (2009), s. 37-40 ISSN 1213-8118 R&D Projects: GA AV ČR(CZ) KJB500110703 Institutional research plan: CEZ:AV0Z50110509 Keywords : lipid histochemistry * liver glucocorticoid metabolism * Prague Hereditary Hypertriglyceridemic rats Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  20. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.

    Science.gov (United States)

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M; Nachtmann, C

    1999-09-01

    Monensin (MON) is an ionophore antibiotic widely used in veterinary practice as a coccidiostatic or a growth promoter. The aims of this study were to characterize the P-450 isoenzyme(s) involved in the biotransformation of the ionophore and to investigate how this process may be affected by tiamulin and other chemotherapeutic agents known to produce toxic interactions with MON when administered concurrently in vivo. In liver microsomes from untreated rats (UT) or from rats pretreated, respectively, with ethanol (ETOH), beta-naphthoflavone (betaNAF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), or dexamethasone (DEX), the rate of MON O-demethylation was the following: DEX > PCN > PB > UT = ETOH > betaNAF; similar results were obtained by measuring total MON metabolism. In addition, the extent of triacetyloleandomycin-mediated P-450 complexes was greatly reduced by the prior addition of 100 microM MON. In DEX-treated microsomes, MON O-demethylation was found to fit monophasic Michaelis-Menten kinetics (K(M) = 67.6 +/- 0.01 microM; V(max) = 4.75 +/- 0.76 nmol/min/mg protein). Tiamulin markedly inhibited this activity in an apparent competitive manner, with a calculated K(i) (Dixon plot) of 8.2 microM and an IC(50) of about 25 microM. At the latter concentration, only ketoconazole or metyrapone, which can bind P-450 3A, inhibited MON O-demethylase to a greater extent than tiamulin, whereas alpha-naphthoflavone, chloramphenicol, or sulphametasine was less effective. These results suggest that P-450 3A plays an important role in the oxidative metabolism of MON and that compounds capable of binding or inhibiting this isoenzyme could be expected to give rise to toxic interactions with the ionophore.

  1. Comparative in vitro metabolism of 1-14C-oleic acid and 1-14C-erucic acid in liver, heart and skeletal muscles of rats

    International Nuclear Information System (INIS)

    Bhatia, I.S.; Sharma, A.K.; Ahuja, S.P.

    1978-01-01

    In vitro oxidation of 14 C-oleic and 1- 14 C-erucic acid and their incorporation into lipids by liver, heart and skeletal muscles from female albino rats were studied. These tissues were obtained from rats maintained for 120 days on low fat diet or diets containing 15% mustard oil or 15% groundnut oil. In all these tissues from rats on different types of diets, the oxidation of 1- 14 C-erucic acid was lower than that 1- 14 C-oleic acid. There was little accumulation of lipids in heart after 120 days of feeding mustard oil. Oxidation of 1- 14 C-erucic acid was enhanced in liver, heart and skeletal muscles of rats conditioned to the mustard oil diet supplying erucic acid. Oxidation of erucic acid was maximum in liver and least in heart, whereas there were no differences in the oxidation of 1- 14 C-oleic acid in these tissues. Incorporation of 1- 14 C-oleic acid into triglycerides and phospholipids was not affected by the type of diet or tissues Incorporation of 1- 14 C-erucic acid was mainly into triglycerides of heart and skeletal muscles of rats not accustomed to mustard oil diet whereas these tissues from rats accustomed to mustard oil diets incorporated 1- 14 C-erucic acid both into the triglycerides and phospholipids. (author)

  2. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism

    OpenAIRE

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-01-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age....

  3. Modulation of the sympathetic nerve action on carbohydrate and ketone body metabolism by fatty acids, glucagon und insulin in perfused rat liver

    NARCIS (Netherlands)

    Küster, J.; Beuers, U.; JUNGERMANN, K.

    1989-01-01

    Rat liver was perfused in situ via the portal vein without recirculation: 1) Nerve stimulation (20 Hz, 2 ms, 20 V) increased glucose output and shifted lactate uptake to output; the alterations were diminished by oleate but not octanoate. 2) Glucagon (1nM) stimulated glucose output maximally also in

  4. [One-time effects of drinking mineral water and tap water enriched with silver nanoparticles on the biochemical markers of liver condition and metabolic parameters in healthy rats].

    Science.gov (United States)

    Efimenko, N V; Frolkov, V K; Kozlova, V V; Kaisinova, A S; Chalaya, E N

    2017-12-05

     The objective of the present research was to study the influence of tap water enriched with silver nanoparticles (NP) as well as that of «Krasnoarmeysky» and «Essentuki №17» mineral waters after their single administration through the oral gavage to the rats on the metabolism of carbohydrates and lipids, the biochemical markers of the liver condition, and the endocrine profile in the healthy animals.  The laboratory animals (130 male Wistar rats) were allocated to thirteen groups comprised of 10 rats each as follows: 1st group (n=10) intact animals, 2nd group (5 minutes after the administration of silver NP (n=10), 3rd group (15 minutes after the of silver NP), 4th group (60 minutes after the administration of silver NP), 5th group (n=10) (5 minutes after the introduction of the «Krasnoarmeysky» mineral water), 6th group (n=10) (15 min after the introduction of the «Krasnoarmeysky» mineral water), 7th group (n=10), (60 minutes after the introduction of the «Krasnoarmeysky» mineral water) 8th group (n=10) (5 minutes after the introduction of the «Essentuki № 17» mineral water), 9th group (n=10) (15 min after the introduction of the «Essentuki № 7» mineral water) , 10th group (n=10) (60 minutes after the introduction of the «Essentuki №17» mineral water), 11th group (n=10) (5 minutes after administration of tap water (control),12th group (n=10) (15 minutes after administration of tap water (control), and 13th (n=10) group 60 minutes after administration of tap water (control).  The study has demonstrated that the tap water enriched with silver nanoparticles similar to the mineral waters caused stress reactions that are inferior to those induced by «Essentuki №17» mineral water in terms of the magnitude; however, the effect provoked by the tap water was of longer duration. Moreover, the tap water enriched with silver nanoparticles stimulates prooxidant reactions, and inhibit the activity of antioxidant protection. Silver nanoparticles

  5. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  6. A comparative study of precision cut liver slices, hepatocytes, and liver microsomes from the Wistar rat using metronidazole as a model substance

    DEFF Research Database (Denmark)

    Sidelmann, U. G.; Cornett, Claus; Tjornelund, J.

    1996-01-01

    1. Metronidazole is metabolized by rat liver in vitro models to form a hydroxy metabolite, an acetic acid metabolite, a glucuronic acid conjugate, and a sulphate conjugate. 2. Four different in vitro systems for investigation of drug metabolism based on liver preparations from the male Wistar rat...

  7. [Metabolism of rat liver in the electrostatic field and in the faraday cage before and after hepatectomy (author's transl)].

    Science.gov (United States)

    Klingenberg, H G; Möse, J R; Fischer, G; Porta, J; Sadjak, A

    1975-10-01

    Investigations were performed with the aim of establishing the influence of various environmental conditions (such as steady field conditions, climatized laboratories, Faraday's cage) on a number of enzymic activities in the rat (including glutamic oxaloacetic tic transaminase, glutamic pyruvic transaminase, lactic dehydrogenase, gamma-glutamyl transpeptidase, acid phosphatase), as well as the serum concentrations of triglycerides, the oxygen consumption of hepatic parenchyma cells, and the influence on the incorporation of 3H-thymidine (following partial hepatectomy). In the steady field, the activities of the cytoplasmic enzymes (GOT, GPT, LDH) were higher then under Faraday conditions. The same applies both to the hepatic oxygen consumption and to the neutral fat serum levels. The control values always remained within the range of the results obtained under steady field or Faraday conditions. In the structure-linked enzymes (gamma-glutamyl transpeptidase, acid phosphatase) the results were not uniform. Following partial hepatectomy, and under steady field conditions, the serum triglyceride concentrations showed a less pronounced drop than they did in the controls. Under selected environmental conditions, the results obtained lie within the physiological range. The present findings, therefore, do not permit definite conclusions to be drawn on favourable or unfavourable effects exerted by the different types of electroclimates.

  8. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  9. Lactate metabolism in chronic liver disease

    DEFF Research Database (Denmark)

    Jeppesen, Johanne B; Mortensen, Christian; Bendtsen, Flemming

    2013-01-01

    Background. In the healthy liver there is a splanchnic net-uptake of lactate caused by gluconeogenesis. It has previously been shown that patients with acute liver failure in contrast have a splanchnic release of lactate caused by a combination of accelerated glycolysis in the splanchnic region...... and a reduction in hepatic gluconeogenesis. Aims. The aims of the present study were to investigate lactate metabolism and kinetics in patients with chronic liver disease compared with a control group with normal liver function. Methods. A total of 142 patients with chronic liver disease and 14 healthy controls...... underwent a liver vein catheterization. Blood samples from the femoral artery and the hepatic and renal veins were simultaneously collected before and after stimulation with galactose. Results. The fasting lactate levels, both in the hepatic vein and in the femoral artery, were higher in the patients than...

  10. The role of IL6 in liver cancer linked to metabolic liver disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The role of IL6 in liver cancer linked to metabolic liver disease. Liver cancer is highly fatal, it has very few treatment options, and it is one of the few cancers whose incidence is rising worldwide. One poorly understood risk factor for liver cancer is obesity/metabolic disease (such as diabetes and fatty liver disease).

  11. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  12. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD and Other Alterations Related to the Metabolic Syndrome in Zucker Rats

    Directory of Open Access Journals (Sweden)

    Garyfallia Kapravelou

    2017-07-01

    Full Text Available Metabolic syndrome (MetS is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD. Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean (Vigna radiata, a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65–85% VO2 max has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles factorial ANOVA (Analysis of Variance statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  13. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Nebot, Elena; López-Jurado, María; Aranda, Pilar; Arrebola, Francisco; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M

    2017-07-19

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean ( Vigna radiata ), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65-85% VO₂ max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  14. Ectopic Liver Tissue Formation in Rats with Induced Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Bauyrzhan Umbayev

    2014-12-01

    Full Text Available Introduction: The possible alternative approach to whole-organ transplantation is a cell-based therapy, which can also be used as a "bridge" to liver transplantation.  However, morphological and functional changes in the liver of patients suffering from chronic liver fibrosis and cirrhosis restrict the effectiveness of direct cell transplantation. Therefore, extra hepatic sites for cell transplantation, including the spleen, pancreas, peritoneal cavity, and subrenal capsule, could be a useful therapeutic approach for compensation of liver functions. However, a method of transplantation of hepatocytes into ectopic sites is needed to improve hepatocyte engraftment. Previously published data has demonstrated that mouse lymph nodes can support the engraftment and proliferation of hepatocytes as ES and rescue Fah mice from lethal liver failure. Thus, the aim of the study was to evaluate the engraftment of i.p. injected allogeneic hepatocytes into extra hepatic sites in albino rats with chemically induced liver fibrosis (LF. Materials and methods: Albino rats were randomly divided into 4 groups: (1 intact group (n = 18; (2 rats with induced LF (n = 18; (3 rats with induced LF and transplanted with hepatocytes (n = 18; (4 as a control, rats were treated with cyclosporine A only (n = 18. In order to prevent an immune response, groups 2 and 3 were subjected to immunosuppression by cyclosporine A (25 mg/kg per day. LF was induced using N-nitrosodimethylamine (NDMA, i.p., 10 mg/kg, three times a week for 4 weeks and confirmed by histological analysis of the liver samples. Hepatocytes transplantation (HT was performed two days after NDMA exposure cessation by i.p. injection of 5×106 freshly isolated allogeneic hepatocytes. Liver function was assessed by quantifying blood biochemical parameters (ALT, AST, GGT, total protein, bilirubin, and albumin at 1 week, 1 month, and 2 months after hepatocytes transplantation (HT. To confirm a hepatocytes

  15. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht

    2013-11-01

    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  16. Metabolism and pharmacokinetics of rhynchophylline in rats.

    Science.gov (United States)

    Wang, Wei; Ma, Chao-Mei; Hattori, Masao

    2010-01-01

    The alkaloid, rhynchophylline (RHY), from the stems and hooks of Uncaria rhynchophylla was revealed in recent years to have protective effect on neuronal damage. The present research was carried out to investigate the in vivo metabolism of this bioactive alkaloid. After administering RHY to rats, LC-MS detected RHY in plasma, bile, brain, urine and feces, the glucuronides, 11-hydroxyrhynchophylline 11-O-beta-D-glucuronide (M1) and 10-hydroxyrhynchophylline 10-O-beta-D-glucuronide (M2) in bile, and 11-hydroxyrhynchophylline (M3) and 10-hydroxyrhynchophylline (M4) in urine and feces. Within 24 h, 78.0% of RHY was excreted into the feces and 12.6% into the urine of rats after oral administration of 37.5 mg/kg. Monitoring by LC-MS showed that 9.4% of RHY was metabolized to M3 and M4 in a ratio of about 1 : 1. RHY was also detected in the brain (0.650 ng/g) at 3 h after oral administration of the same dose. Cytochrome P450 (CYP) in rat liver microsomes played a key role in RHY hydroxylation. Specific inhibition of CYP isozymes indicated that CYP2D, CYP1A1/2 and CYP2C participated in RHY hydroxylation, but not CYP3A.

  17. Age dependence of rat liver function measurements

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Poulsen, H E; Hansen, B A

    1989-01-01

    Changes in the galactose elimination capacity, the capacity of urea-N synthesis and antipyrine clearance were studied in male Wistar rats at the age of 8, 20 and 44 weeks. Further, liver tissue concentrations of microsomal cytochrome P-450, microsomal protein and glutathione were measured. All...... liver function measurements increased from the age of 8 to 44 weeks when expressed in absolute values. In relation to body weight, these function measurements were unchanged or reduced from week 8 to week 20. At week 44, galactose elimination capacity and capacity of urea-N synthesis related to body...... weight were increased by 10% and 36%, respectively, and antipyrine plasma clearance was reduced to 50%. Liver tissue concentrations of microsomal cytochrome P-450 and microsomal protein increased with age when expressed in absolute values, but were unchanged per g liver, i.e., closely related to liver...

  18. In vitro biotransformation of flavonoids by rat liver microsomes

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Breinholt, V.; Justesen, U.

    1998-01-01

    1. Sixteen naturally occurring flavonoids were investigated as substrates for cytochrome P450 in uninduced and Aroclor 1254-induced rat liver microsomes. Naringenin, hesperetin, chrysin, apigenin, tangeretin, kaempferol, galangin and tamarixetin were all metabolized extensively by induced rat liver...... pathway leading to the corresponding 3',4'-dihydroxylated flavonoids either by hydroxylation or demethylation. Structural requirements for microsomal hydroxylation appeared to be a single or no hydroxy group on the B-ring of the flavan nucleus. The presence of two or more hydroxy groups on the B......-ring seemed to prevent further hydroxylation. The results indicate that demethylation only occurs in the B-ring when the methoxy group is positioned at C-4'-, and not at the C-3'-position. 3. The CYP1A isozymes were found to be the main enzymes involved in flavonoid hydroxylation, whereas other cytochrome P...

  19. Serum glucose and liver glycogen in gamma irradiated rats

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Molcanova, A.

    1988-01-01

    Overnight fasted male rats of Wistar strain were irradiated with single whole-body doses of 4.78-7.17-9.57 and 14.35 Gy of gamma rays. After decapitation at intervals 1-28 d (4.78 and 7.17 Gy), 1-7 d (9.57 Gy) and 1-3 d (14.35 Gy) glucose concentration in serum and glycogen concentration in liver of irradiated and non-irradiated animals were determined. The higher was radiation dose the more expressive extent and depth of changes (hyperglycemia, accumulation of glycogen) occured. Blood glucose and liver glycogen may serve as a reliable and dose-dependent biological indicators of metabolic changes in irradiated rats. (author)

  20. Application of IBA to determine the effects of Kolaviron (Garcinia kola) on the elemental metabolism in the rat liver and kidney

    Energy Technology Data Exchange (ETDEWEB)

    Mars, J.A.; Kunsevi-Kilola, C.; Gihwala, D. [Department of Biomedical Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535 (South Africa)

    2013-07-01

    Full text: Poor or no antioxidant activity has been implicated in the aetiology of various pathologies. Since antioxidants are mostly derived from natural resources, the search for medicinal plants, that can either cure or alleviate ailments, has been phenomenal over the past decades. One plant, Garcinia kola, the oil of which is termed kolaviron, has been identified to have possible antioxidant activity [1]. Trace elements such as Fe, Mn, Cu, Zn and Se, form an integral part in antioxidant activity, especially in organ metabolism. In this study organ (Iiver and kidney) metabolism of major such as C, O, N, S, and trace elements is investigated. The kolaviron was dissolved in corn oil. Two groups (control and experimental) of Wistar rats were selected. The animals were housed in accordance with the WHO animal regulations. Both groups had ad libitum access to standard rat chow and potable tap water. The control group was fed, by gavage, with 200 microlitre of the solution of kolaviron in com oil once per day for a period of 4 weeks. After this period the animals were sacrificed by intraperitoneal injection of pentobarbitone. The organs were excised and homogenised into smaller parts which were freeze-dried - 80 deg C. The freeze-dried organ was then pulverized and press into a palette. Concentrations of trace elements were determined with proton induced X-ray emission (PIXE). PIXE was selected since with this technique concentrations down to minimum detection limits (MDLs) of parts per million (ppm) can be determined. A beam of 3 MeV protons was used for bombardment and a Be filter of 125 micrometer thickness for absorption. Backscattering spectrometry (BS) was used to determine the matrix composition. PIXE and BS measurements were determined simultaneously. Scanning electron microscopy was used both as complementary and supplementary to PIXE and BS. Statistical tests of p < 0.5 were considered significant. 1] Ogada and Braide (2009) Nig. J. Physio. Sci., vol. 24

  1. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Perocco, Paolo [Department of Experimental Pathology, Cancerology Section, viale Filopanti 22, I-40126, University of Bologna, Bologna (Italy); Bronzetti, Giorgio [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy); Canistro, Donatella; Sapone, Andrea; Affatato, Alessandra; Pozzetti, Laura; Broccoli, Massimiliano [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Valgimigli, Luca [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Pedulli, Gian Franco [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Iori, Renato [C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Barillari, Jessica [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy)]|[C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Sblendorio, Valeriana [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Legator, Marvin S. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States); Paolini, Moreno [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Abdel-Rahman, Sherif Z. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States)]. E-mail: sabdelra@utmb.edu

    2006-03-20

    Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard.

  2. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver

    International Nuclear Information System (INIS)

    Perocco, Paolo; Bronzetti, Giorgio; Canistro, Donatella; Valgimigli, Luca; Sapone, Andrea; Affatato, Alessandra; Pedulli, Gian Franco; Pozzetti, Laura; Broccoli, Massimiliano; Iori, Renato; Barillari, Jessica; Sblendorio, Valeriana; Legator, Marvin S.; Paolini, Moreno; Abdel-Rahman, Sherif Z.

    2006-01-01

    Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard

  3. Transferrin metabolism in alcoholic liver disease

    International Nuclear Information System (INIS)

    Potter, B.J.; Chapman, R.W.; Nunes, R.M.; Sorrentino, D.; Sherlock, S.

    1985-01-01

    The metabolism of transferrin was studied using purified 125 I-labeled transferrin in 11 alcoholic patients; six with fatty liver and five with cirrhosis. Six healthy subjects whose alcohol intake was les than 40 gm daily were studied as a control group. There were no significant differences in the mean fractional catabolic rate and plasma volume in the alcoholic groups when compared with control subjects. A significantly decreased mean serum transferrin concentration was found in the alcoholic cirrhotic patients (1.8 +/- 0.3 gm per liter vs. 2.9 +/- 0.2; p less than 0.01), resulting from diminished total body synthesis (0.9 +/- 0.2 mg per kg per hr vs. 1.8 +/- 0.2; p less than 0.01). In contrast, in the patients with alcoholic fatty liver, the mean total body transferrin synthesis (2.4 +/- 0.3 mg per kg per hr) was significantly increased when compared with controls (p less than 0.05). For all the alcoholic patients, the serum transferrin correlated with transferrin synthesis (r = +0.70; p less than 0.01) but the serum iron did not. These results suggest that, in alcoholic cirrhosis, transferrin synthesis is decreased, probably reflecting diminished synthetic capacity by the liver. In contrast, in patients with alcoholic fatty liver, transferrin turnover is accelerated

  4. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  5. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease

    Science.gov (United States)

    Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by nonalcoholic fatty liver disease (NAFLD) leading to nonalcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been show...

  6. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methionine metabolism after portacaval shunt in the rat

    International Nuclear Information System (INIS)

    Benjamin, L.E.; Steele, R.D.

    1985-01-01

    The effect of portacaval shunt (PCS) on methionine metabolism in the rat was investigated. Male Sprague-Dawley rats were subjected to PCS and maintained on an 18% casein diet. Growth curves of operated rats were similar to controls. PCS rats excreted more urinary 35 SO 4 and less [ 35 S]taurine than controls after intraperitoneal injection of 0.3 mmol/100 g [ 35 S]methionine or [ 35 S]cysteine. Total urinary taurine excretion was similar in PCS and control rats after a methionine or cysteine load; however, under basal conditions PCS rats had higher urinary taurine levels than controls, indicating that PCS may cause the taurine pool to be expanded. Hepatic methionine, S-adenosylmethionine, and cysteine pools were significantly decreased in PCS rats, while S-adenosylhomocysteine levels were unchanged. Relative rates of transsulfuration in PCS and control rats were studied by following the decrease in the 3 H-to- 35 S ratio in liver protein after injection of [methyl-3H]methionine and [ 35 S]methionine, and no difference in flux of 35 S from [ 35 S]methionine to [ 35 S]cysteine was found. Similarly, total hepatic activities of methionine adenosyltransferase, cystathionine synthase, and cystathionine gamma-lyase were unchanged in PCS rats. These results indicate that altered methionine metabolism in PCS rats is not explained by changes in conversion of methionine to cysteine via the transsulfuration pathway

  8. The effects of silver ions on copper metabolism in rats.

    Science.gov (United States)

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  9. Risk factors for metabolic syndrome after liver transplantation

    DEFF Research Database (Denmark)

    Thoefner, Line Buch; Rostved, Andreas Arendtsen; Pommergaard, Hans-Christian

    2018-01-01

    syndrome after liver transplantation. METHODS: The databases Medline and Scopus were searched for observational studies evaluating prevalence and risk factors for metabolic syndrome after liver transplantation. Meta-analyses were performed based on odds ratios (ORs) from multivariable analyses...

  10. Application of spectroscopy (1HMRS) to assess liver metabolite concentrations in rats with intrauterine growth restriction.

    Science.gov (United States)

    Wang, Tao; Chen, Pingyang; Bian, Dujun; Chen, Juncao

    2017-04-01

    Proton magnetic resonance spectroscopy ( 1 H-MRS) measurement of liver metabolism in intrauterine growth restriction rats has seldom been reported. This study investigated the application of 1 H-MRS in assessing liver metabolism in newborn pups that experienced intrauterine growth restriction. Intra-uterine growth restriction was established by feeding rats low-protein diets during pregnancy. Newborn pups received conventional magnetic resonance imaging and 1 H-MRS using a 3.0T whole body MR scanner at 3, 8 and 12 weeks post birth. The success rate of 1 H-MRS was 83.33%. Significantly lower body weight, BMI and body length at 3 weeks as well as significantly lower body weight, BMI and waist circumference at 8 and 12 weeks were observed in newborn pups of IUGR rats compared with pups of control rats. Significant differences in ACho/H 2 O, ACr/H 2 O, AGlx/H 2 O and ALipid/H 2 O at 3 and 8 weeks as well as significant differences in ACr/H 2 O, ALipid/H 2 O and AGlx/H 2 O at 12 weeks were observed between pups of control rats and pups of IUGR rats. 1 H-MRS allows noninvasive assessment of liver metabolism in the rat and demonstrated the poor liver development of rats that experienced IUGR.

  11. Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome.

    Science.gov (United States)

    Derkach, K V; Ivantsov, A O; Chistyakova, O V; Sukhov, I B; Buzanakov, D M; Kulikova, A A; Shpakov, A O

    2017-06-01

    We studied the effect of 10-week treatment with intranasal insulin (0.5 IU/day) on glucose tolerance, glucose utilization, lipid metabolism, functions of pancreatic β cells, and insulin system in the liver of rats with cafeteria diet-induced metabolic syndrome. The therapy reduced body weight and blood levels of insulin, triglycerides, and atherogenic cholesterol that are typically increased in metabolic syndrome, normalized glucose tolerance and its utilization, and increased activity of insulin signaling system in the liver, thus reducing insulin resistance. The therapy did not affect the number of pancreatic islets and β cells. The study demonstrates prospects of using intranasal insulin for correction of metabolic parameters and reduction of insulin resistance in metabolic syndrome.

  12. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  13. The Use of Statin Substitutes to Improve the Lipid Profile in Liver Dysfunctional Male Albino Rats

    International Nuclear Information System (INIS)

    Amer, M.M.; Michael, M.I.

    2010-01-01

    More attention has been drawn to different strategies for prevention of cardiovascular associated with liver dysfunction. The aim of the present study is to compare between statin and free fat- milk supplemented with multivitamins in hyperlipidaemic male rats with or without liver dysfunction induced by CCl4. The animals were allocated to 7 equal experimental groups (16 rats each): control group, hypercholesterolemic group, hypercholestero-lemic-statin group, hypercholesterolemic-free fat milk-multivitamins group, hypercholesterolemic-CCl4 group, hypercholesterolemic-CCl4-statin group, and hypercholesterolemic-CCl4- fat-free milk-multivita-mins group. After one month half of the rats of each group were decapitated and the rest of the animals were decapitated after two months. Lipid profile, relative liver weight, liver function, CPK and LDH were determined. The effectiveness of statin drug in the management of blood lipids was confirmed without improving or worsening liver functions. Meanwhile, this effectiveness worsened in hypercholesterolemic rats treated with CCl4 as compared to hypercholesterolemic group. Administration of fat-free milk with multivitamins, as an alternative remedy for statin drug, has improved lipid profile in hypercholesterolemic rats and it revealed no changes in liver enzymes in hypercholesterolemic rats with liver dysfunction indicating the favorable use of them as hypolipotropic agent without affecting liver metabolism

  14. Changes in energy metabolism of the juvenile Fasciola hepatica during its development in the liver parenchyma

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1982-01-01

    Juvenile Fasciola hepatica at different stages of development were isolated from the liver parenchyma of experimentally infected rats. Their energy metabolism was studied by incubation with D-[16-14C]glucose and compared with that of juveniles isolated immediately after in vitro emergence from the

  15. Structural changes in the liver in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    D. V. Vasendin

    2015-01-01

    Full Text Available Scientifically proven close relationship of nonalcoholic fatty liver disease with development of metabolic syndrome and its individual components involves the conclusion that the target organ in metabolic symptom, even regardless of the severity of obesity, the liver occupies a dominant position, as the body undergoes the first characteristic of non-alcoholic fatty liver disease changes, involving violation of metabolism in the body. Dislipoproteinemia plays an important role in the formation of metabolic syndrome in obesity and other obesity-associated diseases. Altered liver function are the root cause of violations of processes of lipid metabolism and, consequently, abnormal functioning of the liver may be a separate, additional and independent risk factor for development of dyslipidemia and obesity as the main component of the metabolic syndrome.

  16. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  17. Some effects of curry feeding on the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, S B

    1981-01-01

    The liver is the major site for the biotransformation and metabolism of most foreign substances that are absorbed into the body via the gastrointestinal tract. The present investigation was undertaken to ascertain whether curry spice constituents, affected liver function. Rats were administered curry powder either intragastrically by intubation, or mixed into their food. Liver function was assessed employing both biochemical and morphological approaches. Two non-invasive tests designed to appraise the in vivo drug-metabolising capabilities of the liver were utilised, viz. the aminopyrine breath test and the measurement of urinary ascorbic acid excretion. The functional integrity of the liver was also assessed by light and electron microscopy. There was no evidence to suggest that curry feeding influenced the hepatic drug-metabolising system as determined by the biochemical studies. The electron microscopical studies did, however, reveal increased activity of the Golgi complex and the lytic compartment. /sup 14/CO/sub 2/ exhalation curves were found to undergo a change in shape from the expected single exponential decay to one in which two phases could be distinguished, which has not been previously reported. Furthermore, in vitro work by other investigators has indicated that aminopyrine and its major metabolites might be involved in a complex series of product-inhibition events. Finally, the occurrence of elongated, dumb-bell shaped mitochondria, with well-defined elaborations of the inner membrane, were noted as a characteristic feature in the hepatocytes situated immediately adjacent to the central venule.

  18. Effects of low-stearate palm oil and high-stearate lard high-fat diets on rat liver lipid metabolism and glucose tolerance

    NARCIS (Netherlands)

    Janssens, S.; Heemskerk, M.M.; van den Berg, S.A.; van Riel, N.A.; Nicolaij, K.; Willems van Dijk, K.; Prompers, J.

    2015-01-01

    Background: Excess consumption of energy-dense, high-fat Western diets contributes to the development of obesity and obesity-related disorders, such as fatty liver disease. However, not only the quantity but also the composition of dietary fat may play a role in the development of liver steatosis.

  19. Tritium metabolism in rat tissues

    International Nuclear Information System (INIS)

    Takeda, H.

    1982-01-01

    As part of a series of studies designed to evaluate the relative radiotoxicity of various tritiated compounds, metabolism of tritium in rat tissues was studied after administration of tritiated water, leucine, thymidine, and glucose. The distribution and retention of tritium varied widely, depending on the chemical compound administered. Tritium introduced as tritiated water behaved essentially as body water and became uniformly distributed among the tissues. However, tritium administered as organic compounds resulted in relatively high incorporation into tissue constituents other than water, and its distribution differed among the various tissues. Moreover, the excretion rate of tritium from tissues was slower for tritiated organic compounds than for tritiated water. Administrationof tritiated organic compounds results in higher radiation doses to the tissues than does administration of tritiated water. Among the tritiated compounds examined, for equal radioactivity administered, leucine gave the highest radiation dose, followed in turn by thymidine, glucose, and water. (author)

  20. The characterization and metabolism of rat hepatic nascent HLD subfractions

    International Nuclear Information System (INIS)

    Winkler, K.E.

    1988-01-01

    Nascent HDL was isolated from recirculating rat liver perfusates and separated by heparin-sepharose chromatography into a non-retained fraction (A) and a fraction (B) that eluted with 0.5 M NaCl. Fractions A and B contained 70% and 30% of the nascent HDL protein, respectively. Livers perfused by the single-pass technique produced fractions A and B in the same ratio as livers perfused by recirculation. The apolipoprotein compositions were similar to those in the recirculating perfusion; however, both fractions A and B had more triglyceride (greater than 50% of total lipid). In a preliminary study designed to investigate whether nascent HDL-apo E was secreted by Kupffer cells or hepatocytes, label was targeted to Kupffer cells by perfusing rat livers with 3 H-acetylated LDL or 3 H-amino acids incorporated into large multilamellar vesicles. For metabolic studies, nascent HDL and nascent VLDL were isolated from rat livers that had been perfused with 3 H-glycerol to label the triglyceride

  1. Influence of nutrition on liver oxidative metabolism.

    Science.gov (United States)

    Jorquera, F; Culebras, J M; González-Gallego, J

    1996-06-01

    The liver plays a major role in the disposition of the majority of drugs. This is due to the presence of several drug-metabolizing enzyme systems, including a group of membrane-bound mixed-function oxidative enzymes, mainly the cytochrome P450 system. Hepatic oxidative capacity can be assessed by changes in antipyrine metabolism. Different drugs and other factors may induce or inhibit the cytochrome P450-dependent system. This effect is important in terms of the efficacy or toxicity of drugs that are substrates for the system. Microsomal oxidation in animals fed with protein-deficient diets is depressed. The mixed-function oxidase activity recovers after a hyperproteic diet or the addition of lipids. Similar findings have been reported in patients with protein-calorie malnutrition, although results in the elderly are conflicting. Different studies have revealed that microsomal oxidation is impaired by total parenteral nutrition and that this effect is absent when changing the caloric source from carbohydrates to a conventional amino acid solution or after lipid addition, especially when administered as medium-chain/long-chain triglyceride mixtures. Peripheral parenteral nutrition appears to increase antipyrine clearance.

  2. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  3. Influence of dietary macronutrients on liver fat accumulation and metabolism

    OpenAIRE

    Parry, Siôn A; Hodson, Leanne

    2017-01-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the av...

  4. Mangosteen peel extract reduces formalin-induced liver cell death in rats

    Directory of Open Access Journals (Sweden)

    Afiana Rohmani

    2014-08-01

    Full Text Available Background Formalin is a xenobiotic that is now commonly used as a preservative in the food industry. The liver is an organ that has the highest metabolic capacity as compared to other organs. Mangosteen or Garcinia mangostana Linn (GML peel contains xanthones, which are a source of natural antioxidants. The purpose of this study was to evaluate the effect of mangosteen peel extract on formalin-induced liver cell mortality rate and p53 protein expression in Wistar rats. Methods Eighteen rats received formalin orally for 2 weeks, and were subsequently divided into 3 groups, consisting of the formalin-control group receiving a placebo and treatment groups 1 and 2, which were treated with mangosteen peel extract at doses of 200 and 400 mg/kgBW/day, respectively. The treatment was carried out for 1 week, and finally the rats were terminated. The differences in liver cell mortality rate and p53 protein expression were analyzed. Results One-way ANOVA analysis showed significant differences in liver cell mortality rate among the three groups (p=0.004. The liver cell mortality rate in the treatment group receiving 400 mg/kgBW/day extract was lower than that in the formalin-control group. There was no p53 expression in all groups. Conclusions Garcinia mangostana Linn peel extract reduced the mortality rate of liver cells in rats receiving oral formalin. Involvement of p53 expression in liver cell mortality in rats exposed to oral formalin is presumably negligible.

  5. Effects of phenobarbital pretreatment on the in vivo metabolism of carbaryl in rats

    International Nuclear Information System (INIS)

    Knight, E.V.; Alvares, A.P.; Chin, B.H.

    1987-01-01

    Phenobarbital (PB) pretreatment of animals is known to induce the activity of drug-metabolizing enzymes in liver microsomes. Previous studies showed that incubation of carbaryl with microsomes obtained from livers of untreated or PB-treated rats resulted in little or no oxidative metabolism of the substrate. In addition, no spectral interactions were observed when carbaryl was added to hepatic microsomal suspensions. The present study was carried out to determine the effect of PB pretreatment on the in vivo metabolism of carbaryl in rats

  6. Rat Strain Differences in Susceptibility to Alcohol-Induced Chronic Liver Injury and Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sarah M. DeNucci

    2010-01-01

    Full Text Available The finding of more severe steatohepatitis in alcohol fed Long Evans (LE compared with Sprague Dawley (SD and Fisher 344 (FS rats prompted us to determine whether host factors related to alcohol metabolism, inflammation, and insulin/IGF signaling predict proneness to alcohol-mediated liver injury. Adult FS, SD, and LE rats were fed liquid diets containing 0% or 37% (calories ethanol for 8 weeks. Among controls, LE rats had significantly higher ALT and reduced GAPDH relative to SD and FS rats. Among ethanol-fed rats, despite similar blood alcohol levels, LE rats had more pronounced steatohepatitis and fibrosis, higher levels of ALT, DNA damage, pro-inflammatory cytokines, ADH, ALDH, catalase, GFAP, desmin, and collagen expression, and reduced insulin receptor binding relative to FS rats. Ethanol-exposed SD rats had intermediate degrees of steatohepatitis, increased ALT, ADH and profibrogenesis gene expression, and suppressed insulin receptor binding and GAPDH expression, while pro-inflammatory cytokines were similarly increased as in LE rats. Ethanol feeding in FS rats only reduced IL-6, ALDH1–3, CYP2E1, and GAPDH expression in liver. In conclusion, susceptibility to chronic steatohepatitis may be driven by factors related to efficiency of ethanol metabolism and degree to which ethanol exposure causes hepatic insulin resistance and cytokine activation.

  7. Inhibitory effect of metformin on oxidation of NADH-dependent substrates in rat liver homogenate

    Czech Academy of Sciences Publication Activity Database

    Páleníčková, E.; Cahová, M.; Drahota, Zdeněk; Kazdová, L.; Kalous, M.

    2011-01-01

    Roč. 60, č. 5 (2011), s. 835-839 ISSN 0862-8408 R&D Projects: GA MZd NS10504 Institutional research plan: CEZ:AV0Z50110509 Keywords : Metformin * mitochondrial respiration * rat liver homogenate Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.555, year: 2011

  8. Effect of moderate intake of sweeteners on metabolic health in the rat

    OpenAIRE

    Figlewicz, D.P.; Ioannou, G.; Jay, J. Bennett; Kittleson, S.; Savard, C.; Roth, C.L.

    2009-01-01

    The rise in prevalence of obesity, diabetes, metabolic syndrome, and fatty liver disease has been linked to increased consumption of fructose-containing foods or beverages. Our aim was to compare the effects of moderate consumption of fructose-containing and non-caloric sweetened beverages on feeding behavior, metabolic and serum lipid profiles, and hepatic histology and serum liver enzymes, in rats. Behavioral tests determined preferred (12.5–15%) concentrations of solutions of agave, fructo...

  9. Investigation on liver fast metabolism with CT

    International Nuclear Information System (INIS)

    Huebener, K.H.; Schmitt, W.G.H.

    1981-01-01

    Measurements of the density of normal and diffusely diseased liver parenchyma show a significant difference only in fatty liver. A linear relationship between the fat content and physical density has been demonstrated. Computed tomographic densitometry of liver tissue correlates well with physical in vitro measurements of fat content and is sufficiently accurate for clinical use. Other types of liver diseases cannot be differentiated by densitometry, Lipolisis in fatty liver in chronic alcoholism alcohol withdrawal has been investigated. It has been found that a rate of decrease of the fatty degeneration of the liver equals to 1 percent/day. Fatty degeneration of the liver in acute pancreatitis and other diseases have been also investigated. CT densitometry of the liver should be considered as a useful routine clinical method to determine the fat content of liver. (author)

  10. Investigation on liver fast metabolism with CT

    Energy Technology Data Exchange (ETDEWEB)

    Huebener, K.H.; Schmitt, W.G.H. (Heidelberg Univ. (Germany, F.R.). Pathologisches Inst.)

    1981-01-01

    Measurements of the density of normal and diffusely diseased liver parenchyma show a significant difference only in fatty liver. A linear relationship between the fat content and physical density has been demonstrated. Computed tomographic densitometry of liver tissue correlates well with physical in vitro measurements of fat content and is sufficiently accurate for clinical use. Other types of liver diseases cannot be differentiated by densitometry, Lipolisis in fatty liver in chronic alcoholism alcohol withdrawal has been investigated. It has been found that a rate of decrease of the fatty degeneration of the liver equals to 1 percent/day. Fatty degeneration of the liver in acute pancreatitis and other diseases have been also investigated. CT densitometry of the liver should be considered as a useful routine clinical method to determine the fat content of liver.

  11. The mechanisms underlying the hypolipidaemic effects of Grifola frondosa in the liver of rats

    Directory of Open Access Journals (Sweden)

    Yinrun Ding

    2016-08-01

    Full Text Available The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats and of hyperlipidaemic rats treated with oral Grifola frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with Grifola frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, acyl-coenzyme A: cholesterol acyltransferase (ACAT2, apolipoprotein B (ApoB, fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC1 were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1 was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS were used to identify twenty proteins differentially expressed in livers of rats treated with Grifola frondosa compared with untreated hyperlipidemic rats. Of these twenty proteins, seven proteins were down-regulated and thirteen proteins were up-regulated. These findings indicate that the hypolipidaemic effects of Grifola frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption and catabolic pathways. Grifola frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, Grifola frondosa may produce both hypolipidaemic

  12. Ideal Experimental Rat Models for Liver Diseases.

    Science.gov (United States)

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-05-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

  13. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    Science.gov (United States)

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  14. Recovery of nutritional metabolism after liver transplantation.

    Science.gov (United States)

    Sugihara, Kohei; Yamanaka-Okumura, Hisami; Teramoto, Arisa; Urano, Eri; Katayama, Takafumi; Morine, Yuji; Imura, Satoru; Utsunomiya, Tohru; Shimada, Mitsuo; Takeda, Eiji

    2015-01-01

    Perioperative nutritional assessment is critically important to reflect nutritional management because liver transplantation (LTx) often is undertaken in patients with poor nutritional status. The aim of this study was to evaluate nutritional status, including the non-protein respiratory quotient (npRQ), resting energy expenditure (REE), nitrogen balance, and blood biochemical parameters in patients before and after LTx. Fourteen patients undergoing LTx and 10 healthy controls were enrolled in this study. The npRQ and REE were measured using indirect calorimetry before LTx and at 2, 3, and 4 wk after the procedure. Blood biochemistry and nitrogen balance calculated by 24-h urine collection were performed concurrently with indirect calorimetric measurement; the results were compared between the two groups. Before LTx, npRQ was significantly lower and serum non-esterified fatty acid levels were significantly higher in the patients than in the controls. Furthermore, a negative nitrogen balance was observed in the patients. These, however, improved significantly at 4 wk after LTx. REE did not significantly increase compared with the preoperative values in recipients. Blood biochemistry showed gradually increasing levels of serum cholinesterase and albumin. These failed to reach to normal levels by 4 wk post-transplant. The findings revealed that improvement of nutritional metabolism after LTx may require 4 wk. Additional nutritional strategies, therefore, may be needed to minimize catabolic state during the early post-transplant period. Adequate, individualized nutritional guidance before and after LTx should be performed in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  16. Evaluation of the Protective Role of Vitamin C on the Metabolic and Enzymatic Activities of the Liver in the Male Rats After Exposure to 2.45 GHz Of Wi-Fi Routers

    Directory of Open Access Journals (Sweden)

    Shekoohi-Shooli F.

    2016-09-01

    Full Text Available Background: The use of devices emitted microwave radiation such as mobile phones, wireless fidelity (Wi-Fi routers, etc. is increased rapidly. It has caused a great concern; the researchers should identify its effects on people’s health. We evaluated the protective role of Vitamin C on the metabolic and enzymatic activities of the liver after exposure to Wi-Fi routers. Material and Methods: 70 male Wistar rats weighing 200-250 g were randomly divided into 7 groups (10 rats in each group.The first stage one –day test: Group A (received vitamin C 250 mg/kg/day orally together with 8- hour/day Wi-Fi exposure. Group B (exposed to Wi-Fi radiation. Group C (received vitamin C. Group D or Control (was neither exposed to radiation of Wi-Fi modem nor did receive vitamin C. The second phase of experiment had done for five consecutive days. It involved Group E (received vitamin C, Group F (exposed to Wi-Fi radiation, Group G (received vitamin C together with Wi-Fi radiation. The distance between animals’ restrainers was 20 cm away from the router antenna. Finally, blood samples were collected and assayed the level of hepatic enzymes including alkaline phosphatase(ALP, alanine amino transferase(ALT aspartate amino transferase (ASL, gamma glutamyl transferase (GGT and the concentration of Blood Glucose, Cholesterol , Triglyceride(TG,High density lipoprotein (HDLand low density lipoprotein (LDL. Results: Data obtained from the One day test showed an increase in concentration of blood glucose, decrease in Triglyceride level and GGT factor (P<0.05, however no observed significant difference on the Cholesterol , HDL , LDL level and hepatic enzymes activities in compare to control group. Groups of the five-day test showed reduction in the amount of blood glucose, elevation of cholesterol level and LDL relative to control group(P<0.05. Conclusion: WiFi exposure may exert alternations on the metabolic parameters and hepatic enzymes activities through stress

  17. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    International Nuclear Information System (INIS)

    Rasmussen, M.; Blomhoff, R.; Helgerud, P.; Solberg, L.A.; Berg, T.; Norum, K.R.

    1985-01-01

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased

  18. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    Science.gov (United States)

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-10-01

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  19. Importance Rat Liver Morphology and Vasculature in Surgical Research.

    Science.gov (United States)

    Vdoviaková, Katarína; Vdoviaková, Katarína; Petrovová, Eva; Krešáková, Lenka; Maloveská, Marcela; Teleky, Jana; Jenčová, Janka; Živčák, Jozef; Jenča, Andrej

    2016-12-02

    BACKGROUND The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. MATERIAL AND METHODS Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. RESULTS We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. CONCLUSIONS Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations.

  20. Bisphenol A sulfonation is impaired in metabolic and liver disease

    International Nuclear Information System (INIS)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  1. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu; King, Roberta, E-mail: rking@uri.edu

    2016-02-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  2. Mutagenicity of comfrey (Symphytum Officinale) in rat liver

    OpenAIRE

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-01-01

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  3. Mutagenicity of comfrey (Symphytum Officinale) in rat liver.

    Science.gov (United States)

    Mei, N; Guo, L; Fu, P P; Heflich, R H; Chen, T

    2005-03-14

    Comfrey is a rat liver toxin and carcinogen that has been used as a vegetable and herbal remedy by humans. In order to evaluate the mechanisms underlying its carcinogenicity, we examined the mutagenicity of comfrey in the transgenic Big Blue rat model. Our results indicate that comfrey is mutagenic in rat liver and the types of mutations induced by comfrey suggest that its tumorigenicity results from the genotoxicity of pyrrolizidine alkaloids in the plant.

  4. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine.

    Science.gov (United States)

    Hoffman, D R; Marion, D W; Cornatzer, W E; Duerre, J A

    1980-11-25

    The effects of varying concentrations of L-methionine, L-homocysteine, and adenosine on the tissue levels of S-adenosylmethionine (AdoMet) and S-adenosyl-homocystein (AdoHcy) were investigated in perfused liver. In the normal liver, the intracellular concentration of AdoMet was dependent upon the availability of methionine. In the presence of high concentrations of methionine the maximum level of AdoMet attainable was 300 nmol/g of liver. The exogenous concentration of methionine did not alter the hepatic concentration of AdoHcy (8 to 20 nmol/g) while adenosine or homocysteine blocked hydrolysis of AdoHcy resulting in elevated levels of AdoHcy (400 to 600 nmol/g) and AdoMet (300 to 600 nmol/g). The addition of both adenosine (4mM) and homocysteine (3.4 mM) to the perfusate further increased the levels of AdoHcy (4 mumol/g) and AdoMet (1.2 mumol/g). As the concentration of AdoHcy increased, significant amounts of this compound were released into the perfusate, while AdoMet was not detected. Under all conditions where AdoHcy accumulated in the cell, a concomitant increase in the AdoMet level occurred. Apparently AdoHcy acts as a positive effector of the S-adenosylmethionine synthase. The hepatocytes did not take up significant amounts of [methyl-14C]AdoMet from the perfusate nor were any [14C]methyl groups from this compound incorporated into histones, DNA, or phospholipids. In contrast, [14C]methyl groups were readily incorporated into these macromolecules from exogenous [methyl-14C]methionine. The addition of adenosine (4 mM) and homocystein (3.4 mM) shifted the AdoMet:AdoHcy ratio from 8.2 to 0.3. Under these conditions, transmethylation was inhibited markedly.

  5. Effect of glucagon on cyclic AMP, albumin metabolism and incorporation of 14C-leucine into proteins in isolated parenchymal rat liver cells

    DEFF Research Database (Denmark)

    Dich, J; Gluud, C N

    1976-01-01

    wet wt. This is about the rate found in the perfused liver, Glucagon (10(-8-10(-6) M) inhibited albumin secretion and the incorporation of 14C-leucine into albumin, into total proteins in the medium and into total proteins in the cell suspension. The effect of glucagon on albumin secretion...... is compatible with an effect on the rate of synthesis. A positive correlation existed between the maximal level of cyclic AMP after glucagon administration and the inhibition of both albumin secretion and the incorporation of 149leucine....

  6. Cerebral ammonia metabolism in hyperammonemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A J; Mora, S N; Cruz, N F; Gelbard, A S

    1985-06-01

    The short-term metabolic fate of blood-borne (/sup 13/N)ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a freeze-blowing technique it was shown that the overwhelming route for metabolism of blood-borne (/sup 13/N)ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of (/sup 13/N)ammonia to L-(amide-/sup 13/N)glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.

  7. Leucine and protein metabolism in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Pengxiang She

    Full Text Available Branched-chain amino acids (BCAAs are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-(14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA dehydrogenase complex (BCKDC activities. Male obese Zucker rats (11-weeks old had increased body weight (BW, 53%, liver (107% and fat (∼300%, but lower plantaris and gastrocnemius masses (-21-24%. Plasma BCAAs and BCKAs were elevated 45-69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%, leucine (Leu turnover and proteolysis [35% per g fat free mass (FFM, urinary markers of proteolysis: 3-methylhistidine (183% and 4-hydroxyproline (766%] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (-47-66%. A process disposing of circulating BCAAs, protein synthesis, was increased 23-29% by obesity in whole-body (FFM corrected, gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193-418% than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein

  8. The influence of vitamin E supplementation on the oxidative status of rat liver

    Directory of Open Access Journals (Sweden)

    Đurašević S.F.

    2010-01-01

    Full Text Available We tested to see if the additional intake of vitamin E in the form of α-tocopheryl-succinate would improve liver antioxidative protection. Thus, we studied the tissue oxidative status in rats supplemented by two doses of the antioxidant over a four week period of time. Our results confirmed that the additional intake of vitamin E decreased the liver lipid peroxidation level and SOD activity level and preserved its vitamin C content. However, the hydrogen peroxide content and catalase activity remained unchanged, probably due to the mechanism of vitamin E liver metabolism. .

  9. Synchrotron Based Phase Contrast Tomography of Hyper cholesteromic Rat Liver

    Directory of Open Access Journals (Sweden)

    Fatima A

    2017-05-01

    Full Text Available X-ray phase contrast imaging technique has been applied for the study of morphological variations in soft tissues. The effect of an antioxidant, α-lipoic acid in reducing hypercholesterolemia in rats is investigated. The experiment was conducted to measure serum lipid profile and diameter of vessels in rat liver, as liver is the most vital organ in hypolipidemic activity studies. Methods: Four groups of male Wistar rats, control (Group I, hyperlipidemic (Group II, positive control (Group III and treated Group IV were studied for serum lipid profile and liver vessels with synchrotron X-ray phase tomography. The Group I rats received chow diet, in Group II rats, administration of 20% butter rich diet induced hyperlipidemia. Group III, treated rats received hypolipidemic drug Atorvastatin and Group IV animals received a potent antioxidant DL-α-Lipoic acid. The excised liver tissue immersed in 10% formalin. X-ray phase contrast tomography was performed for comparison of diameter of liver vessels. Results: Among the four group of animals, the diameter of liver vessels was much larger in hypercholesterolemic rat (Group II. The liver vessel diameter comparison with X-ray phase contrast tomography and the lipid profile shows reduction in serum lipids and lipoproteins by ALA treatment.

  10. Differential Expression ESTs Associated with Fluorosis in Rats Liver

    Directory of Open Access Journals (Sweden)

    Y. Q. He

    2012-01-01

    Full Text Available The fluoride has volcanic activity and abundantly exists in environment combining with other elements as fluoride compounds. Recent researches indicated that the molecular mechanisms of intracellular fluoride toxicity were very complex. However, the molecular mechanisms underlying the effects on gene expression of chronic fluoride-induced damage is unknown, especially the detailed regulatory process of mitochondria. In the present study, we screened the differential expression ESTs associated with fluorosis by DDRT-PCR in rat liver. We gained 8 genes, 3 new ESTs, and 1 unknown function sequence and firstly demonstrated that microsomal glutathione S-transferase 1 (MGST1, ATP synthase H+ transporting mitochondrial F0 complex subunit C1, selenoprotein S, mitochondrial IF1 protein, and mitochondrial succinyl-CoA synthetase alpha subunit were participated in mitochondria metabolism, functional and structural damage process caused by chronic fluorosis. This information will be very helpful for understanding the molecular mechanisms of fluorosis.

  11. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches

    Directory of Open Access Journals (Sweden)

    Yun-Xia Li

    2017-11-01

    Full Text Available Liver injury induced by Polygonum multiflorum Thunb. (PM have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg, medium (20 g/kg, high (40 g/kg dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury.

  12. Liver carbohydrates metabolism: A new islet-neogenesis associated protein peptide (INGAP-PP) target.

    Science.gov (United States)

    Villagarcía, Hernán Gonzalo; Román, Carolina Lisi; Castro, María Cecilia; González, Luisa Arbeláez; Ronco, María Teresa; Francés, Daniel Eleazar; Massa, María Laura; Maiztegui, Bárbara; Flores, Luis Emilio; Gagliardino, Juan José; Francini, Flavio

    2018-03-01

    Islet-Neogenesis Associated Protein-Pentadecapeptide (INGAP-PP) increases β-cell mass and enhances glucose and amino acids-induced insulin secretion. Our aim was to demonstrate its effect on liver metabolism. For that purpose, adult male Wistar rats were injected twice-daily (10 days) with saline solution or INGAP-PP (250 μg). Thereafter, serum glucose, triglyceride and insulin levels were measured and homeostasis model assessment (HOMA-IR) and hepatic insulin sensitivity (HIS) were determined. Liver glucokinase and glucose-6-phosphatase (G-6-Pase) expression and activity, phosphoenolpyruvate carboxykinase (PEPCK) expression, phosphofructokinase-2 (PFK-2) protein content, P-Akt/Akt and glycogen synthase kinase-3β (P-GSK3/GSK3) protein ratios and glycogen deposit were also determined. Additionally, glucokinase activity and G-6-Pase and PEPCK gene expression were also determined in isolated hepatocytes from normal rats incubated with INGAP-PP (5 μg/ml). INGAP-PP administration did not modify any of the serum parameters tested but significantly increased activity of liver glucokinase and the protein level of its cytosolic activator, PFK-2. Conversely, INGAP-PP treated rats decreased gene expression and enzyme activity of gluconeogenic enzymes, G-6-Pase and PEPCK. They also showed a higher glycogen deposit and P-GSK3/GSK3 and P-Akt/Akt ratio. In isolated hepatocytes, INGAP-PP increased GK activity and decreased G-6-Pase and PEPCK expression. These results demonstrate a direct effect of INGAP-PP on the liver acting through P-Akt signaling pathway. INGAP-PP enhances liver glucose metabolism and deposit and reduces its production/output, thereby contributing to maintain normal glucose homeostasis. These results reinforce the concept that INGAP-PP might become a useful tool to treat people with impaired islet/liver glucose metabolism as it occurs in T2D. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. In vitro metabolism of 2,2',3,4',5,5',6-heptachlorobiphenyl(CB187) with liver microsomes of rats, hamsters and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Koga, N.; Ohta, C.; Kanamaru, T. [Nakamura Gakuen Univ., Fukuoka (Japan); Haraguchi, K. [Daiichi Coll. of Pharmaceutical Sciences, Fukuoka (Japan); Kato, Y.; Yamada, S. [Univ. of Shizuoka, Shizuoka (Japan)

    2004-09-15

    PCB congeners possess extremely high lipophilicity and biological stability, and as a result they are not easily eliminated from the body once ingested. In particular, not only 2,4,5-trichlorosubstituted but also 6 or more chlorine-substituted PCBs such as 2,2',3',4,4',5-hexa-chlorobiphenyl (hexaCB) (CB138), 2,2',4,4',5,5'-hexaCB (CB153), 2,2',3,4,4',5,5'-heptachloro-biphenyl (heptaCB) (CB180) and 2,2',3,4',5,5',6-heptaCB (CB187) have been detected in blood and adipose tissues of mammals and human mother's milk at higher concentration. In addition, the 4-hydroxy (OH)-metabolite of CB187 has been reported to be present in human blood at the highest concentration of that derived from other PCB congeners. Although CB187, a tri-ortho-PCB, is one of the minor component in the commercial PCB preparations such as Clophen, Aroclor and Kanechlor, the toxic equivalency factor (TEF) which is used for dioxin-like PCB congeners including coplanar-PCBs and mono-ortho-PCBs to assess the potency of the toxicity has not been set up for di- and tri-ortho-PCB congeners. These facts indicate that 4-OH-PCB187 become more persistent and more important toxicologically than the parent CB187. However, there is little report about biotransformation in vivo or in vitro of CB187 in animals. Therefore, we examined CB187 metabolism by liver microsomes of rats, hamsters and guinea pigs.

  14. Production of acetone and conversion of acetone to acetate in the perfused rat liver

    International Nuclear Information System (INIS)

    Gavino, V.C.; Somma, J.; Philbert, L.; David, F.; Garneau, M.; Belair, J.; Brunengraber, H.

    1987-01-01

    The utilization of millimolar concentrations of [2- 14 C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2- 14 C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1- 14 C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2- 14 C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate

  15. Metabolic cooperation of ascorbic acid and glutathione in normal and vitamin C-deficient ODS rats.

    Science.gov (United States)

    Wang, Y; Kashiba, M; Kasahara, E; Tsuchiya, M; Sato, E F; Utsumi, K; Inoue, M

    2001-01-01

    Although the coordination of various antioxidants is important for the protection of organisms from oxidative stress, dynamic aspects of the interaction of endogenous antioxidants in vivo remain to be elucidated. We studied the metabolic coordination of two naturally occurring water-soluble antioxidants, ascorbic acid (AA) and reduced glutathione (GSH), in liver, kidney and plasma of control and scurvy-prone osteogenic disorder Shionogi (ODS) rats that hereditarily lack the ability to synthesize AA. When supplemented with AA, its levels in liver and kidney of ODS rats increased to similar levels of those in control rats. Hepato-renal levels of glutathione were similar with the two animal groups except for the slight increase in its hepatic levels in AA-supplemented ODS rats. Administration of L-buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, rapidly decreased the hepato-renal levels of glutathione in a biphasic manner, a rapid phase followed by a slower phase. Kinetic analysis revealed that glutathione turnover was enhanced significantly in liver mitochondria and renal cytosol of ODS rats. Administration of BSO significantly increased AA levels in the liver and kidney of control rats but decreased them in AA-supplemented ODS rats. Kinetic analysis revealed that AA is synthesized by control rat liver by some BSO-enhanced mechanism and the de novo synthesized AA is transferred to the kidney. Such a coordination of the metabolism of GSH and AA in liver and kidney is suppressed in AA-deficient ODS rats. These and other results suggest that the metabolism of AA and GSH forms a compensatory network by which oxidative stress can be decreased.

  16. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.

    Science.gov (United States)

    Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo

    2017-08-10

    The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of phenobarbital on 131I-bromosulfophthalein metabolism of isolated perfused liver of rats with alpha-naphthylisothiocyanate-induced chloestasis

    International Nuclear Information System (INIS)

    Tapalaga, D.; Suciu, A.; Schvartz, M.; Duca, S.

    1979-01-01

    In order to establish whether the increased bromosulfophthalein (BSP) secretion in the bile following phenobarbital administration is the consequence of change in the bile output or of the enzymatic induction, the dynamics of the elimination of 131 I-BSP was studied in animals treated with alpha-naphthylisothiocyanate (ANIT) and pehnobarbital in the conditions of isolated perfused liver. At the same time the levels of the conjugation enzyme of BSP were also determined. It was noted that after phenobarbital the biliary elimination of 131 I-BSP is in correlation with the important increase of the output; in the animals treated with ANIT, on the other hand, the biliary excretion of BSP is minimal. The biliary elimination is directly proportional to the increase of the bile output and reflects the changes found in the perfusate. Our findings allow us to assume that the increased biliary BSP excretion is the consequence of the increase of the bile output and in a smaller extent the result of the stimulation of the BSP, conjugation with glutathion. (author)

  18. The metabolic fate of exogenous sorbitol in the rat

    International Nuclear Information System (INIS)

    Ertel, N.H.; Akgun, S.; Kemp, F.W.; Mittler, J.C.

    1983-01-01

    Dietary sorbitol is rapidly converted to fructose and other carbohydrates in the liver, but its metabolic fate has not been studied rigorously. Twenty-four rats were given 20.4 muCi [ 14 C]sorbitol with 100 mg of sorbitol, and groups of six were killed at 1, 3, 6, and 24 hours after sorbitol administration. Rats were also fed 6.9 muCi [ 14 C]sorbitol for 7 or 14 days. Serum, liver, and lens were analyzed for 14 C-labeled sorbitol, fructose, and glucose by using high-performance liquid chromatography. Negligible radioactivity (1.1%) was found in the gastrointestinal content at 24 hours indicating virtually complete absorption. Most of the radioactivity was recovered in the glucose fraction in serum, liver and lens. Glucose and fructose concentrations showed some decline by day 14 compared with day 7 in serum and liver. However, in the lens, sorbitol showed a peak value at the end of the 14th day (37.5 +/- 9.9 micrograms/pair). These findings suggest that: 1) after oral administration, sorbitol is completely absorbed, and 2) that there is a finite accumulation of sorbitol and fructose in the lens in 14 days. Although the radioactive label indicated the exogenous origin of these carbohydrates, it is not certain whether the sorbitol is converted to glucose before entering and accumulating in the lens

  19. Fraction from human and rat liver which is inhibitory for proliferation of liver cells.

    Science.gov (United States)

    Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A

    1989-01-01

    A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.

  20. Metabolic neural mapping in neonatal rats

    International Nuclear Information System (INIS)

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by 14 C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in 14 C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of 14 C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed

  1. Proteomic analysis of liver in rats chronically exposed to fluoride.

    Directory of Open Access Journals (Sweden)

    Heloísa Aparecida Barbosa da Silva Pereira

    Full Text Available Fluoride (F is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group. At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS. Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.

  2. Age dependent in vitro metabolism of bifenthrin in rat and human hepatic microsomes.

    Science.gov (United States)

    Nallani, Gopinath C; Chandrasekaran, Appavu; Kassahun, Kelem; Shen, Li; ElNaggar, Shaaban F; Liu, Zhiwei

    2018-01-01

    Bifenthrin, a pyrethroid insecticide, undergoes oxidative metabolism leading to the formation of 4'-hydroxy-bifenthrin (4'-OH-BIF) and hydrolysis leading to the formation of TFP acid in rat and human hepatic microsomes. In this study, age-dependent metabolism of bifenthrin in rats and humans were determined via the rates of formation of 4'-OH-BIF and TFP acid following incubation of bifenthrin in juvenile and adult rat (PND 15 and PND 90) and human (18years) liver microsomes. Furthermore, in vitro hepatic intrinsic clearance (CL int ) of bifenthrin was determined by substrate consumption method in a separate experiment. The mean V max (±SD) for the formation of 4'-OH-BIF in juvenile rat hepatic microsomes was 25.0±1.5pmol/min/mg which was significantly lower (pbifenthrin occurs primarily via oxidative pathway with relatively lesser contribution (~30%) from hydrolytic pathway in both rat and human liver microsomes. The CL int values for bifenthrin, determined by monitoring the consumption of substrate, in juvenile and adult rat liver microsomes fortified with NADPH were 42.0±7.2 and 166.7±20.5μl/min/mg, respectively, and the corresponding values for human liver microsomes were 76.0±4.0 and 21.3±1.2μl/min/mg, respectively. The data suggest a major species difference in the age dependent metabolism of bifenthrin. In human liver microsomes, bifenthrin is metabolized at a much higher rate in juveniles than in adults, while the opposite appears to be true in rat liver microsomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Changes in protein metabolism after irradiation. Pt. 2. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat liver after 600 R whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1976-01-01

    The protease activity of cytoplasm and cell organelles of the rat liver against liver protein and hemoglobin as a substrate increases during an initial reaction phase on the first day after 600 R whole body x irradiation. This is probably a consequence of the degradation of cellular debris. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the liver is therefore not explained by an increased protease activity. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.

  4. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  5. Chronic stress does not impair liver regeneration in rats

    DEFF Research Database (Denmark)

    Andersen, Kasper J; Knudsen, Anders Riegels; Wiborg, Ove

    2015-01-01

    a 70 % partial hepatectomy (PHx). The animals were evaluated on postoperative day 2 or 4. Blood samples were collected to examine circulating markers of inflammation and liver cell damage. Additionally, liver tissues were sampled to evaluate liver weight and regeneration rate. RESULTS: None......BACKGROUND: Although wound healing is a simple regenerative process that is critical after surgery, it has been shown to be impaired under psychological stress. The liver has a unique capacity to regenerate through highly complex mechanisms. The aim of this study was to investigate the effects...... of chronic stress, which may induce a depression-like state, on the complex process of liver regeneration in rats. METHODS: Twenty rats were included in this study. The animals received either a standard housing protocol or were subjected to a Chronic Mild Stress (CMS) stress paradigm. All rats underwent...

  6. In vivo 19F-MRS observation of 5-FU metabolism in fatty liver induced by choline-deficient diet

    International Nuclear Information System (INIS)

    Otsuka, Hideki; Harada, Masafumi; Nishitani, Hiromu; Koga, Keiko.

    1996-01-01

    Using 19 F-MRS, 5-FU metabolism was investigated in rat fatty liver. Fatty liver was induced by choline-deficient diet (CD diet). This study showed differences in 5-FU metabolism between normal and fatty liver. After laparotomy, a surface coil was placed directly on the liver surface. Spectra were continuously obtained after injection of 5-FU 100 mg/kg body weight via a catheter inserted into femoral vein. We made MRI and 1 H-MRS study to examine the lipid accumulation. Histological study was also performed using HE (hematoxylin-eosin) and oil red stain. The livers of rats fed a CD diet showed very high intensity on T 1 -WI. 1 H-MRS was very useful in deteminating the fat content because the fat ratio demonstrated by 1 H-MRS is well correlated to histological findings. In 19 F-MRS, we recognized the following four peaks: 5-FU, FBAL, Fnct (fluoronucleotide) and FUPA. The decrease of 5-FU was not very apparent, but compared to the normal liver, the formation of Fnct increased and the formation of FBAL was suppressed in fatty liver. The rats fed a CD diet for four weeks showed a higher Fnct peak and lower FBAL peak compared with the results of rats fed a CD diet for two weeks. In a CD diet group, liver cell degeneration and necrotic changes were observed histologically. It is reported that cell degeneration is followed by cell proliferation in fatty liver induced by a choline deficient diet, and the high Fnct peak found in our study may reflect this phenomenon. The high Fnct peak on 19 F-MRS may correspond to recovering reaction from liver injury like fatty liver. (author)

  7. EFFECT OF ETHANOL ON HEPATOBILIARY TRANSPORT OF CATIONIC DRUGS - A STUDY IN THE ISOLATED-PERFUSED RAT-LIVER, RAT HEPATOCYTES AND RAT MITOCHONDRIA

    NARCIS (Netherlands)

    STEEN, H; MEIJER, DKF; Merema, M.T.

    The effect of ethanol on the hepatic uptake of various cationic drugs was studied in isolated perfused rat livers, isolated rat hepatocytes and isolated rat liver mitochondria. In isolated rat hepatocytes and in isolated perfused rat livers, the uptake of the model organic cation

  8. Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Ma, Hong; Cui, Fan; Dong, Jing-Jing; You, Guo-Ping; Yang, Xiang-Jiu; Lu, Hua-Dong; Huang, Yan-Ling

    2014-10-28

    To explore the therapeutic role of globular adiponectin (gAd) in high-fat diet/streptozotocin (STZ)-induced type 2 diabetic rats with nonalcoholic fatty liver disease (NAFLD). Seven rats were fed a basic diet (normal control group; NC) during the experiment. Experimental rats (14 rats) were given a high-fat diet for 4 wk and were then injected with STZ to induce type 2 diabetes mellitus (T2DM) and NAFLD. Half of the T2DM/NAFLD rats were randomly injected intraperitoneally with gAd for 7 d (gAd-treated group), while the other 7 rats (T2DM/NAFLD group) received 0.9% saline. Plasma biochemical parameters and insulin concentrations were measured. Liver histopathology was examined by hematoxylin-eosin staining. Insulin receptor expression in the liver was analyzed by immunohistochemical staining, Western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. Compared to the control group, the T2DM/NAFLD group had increased levels of glucolipid and decreased levels of insulin. Plasma glucose and lipid levels were decreased in the gAd-treated group, while serum insulin levels increased. The expression of insulin receptor in the T2DM/NAFLD group increased compared with the NC group, and gAd downregulated insulin receptor expression in the livers of T2DM/NAFLD rats. Steatosis of the liver was alleviated in the gAd-treated group compared to the T2DM/NAFLD group (NAS 1.39 ± 0.51 vs 1.92 ± 0.51, P Globular adiponectin exerts beneficial effects in T2DM rats with NAFLD by promoting insulin secretion, mediating glucolipid metabolism, regulating insulin receptor expression and alleviating hepatic steatosis.

  9. Metabolism of methylphenidate in dog and rat

    International Nuclear Information System (INIS)

    Egger, H.; Bartlett, F.; Dreyfuss, R.; Karliner, J.

    1981-01-01

    The urinary metabolites of methylphenidate in the dog and rat were investigated. After oral administration of 14C-labeled methylphenidate, approximately 86% and 63% of the dose was recovered in the urine of the dog and rat, respectively. Less than 1% of the dose was excreted as unchanged drug. Metabolism involved oxidation, hydrolysis, and conjugation processes. The primary hydrolytic product was alpha-phenyl-2-piperidineacetic acid (24%, dog; 35-40%, rat). The primary metabolites of oxidation were methyl 6-oxo-alpha-phenyl-2-piperidineacetate (3%, dog; 1.5%, rat) and the glucuronide of alpha-(p-hydroxyphenyl)-2-piperidineacetic acid (10%, rat). The former also underwent extensive biotransformation, including: 1) hydrolysis to the lactam acid (27%, dog; 7-10%, rat) and subsequent carboxylic acid O-glucuronidation (15%, dog); or 2) hydroxylation at the 5-position (1%, dog; 2%, rat) and subsequent hydrolysis (4%, dog; 15-17%, rat); or 3) 5-O-glucuronidation (12%, dog). Additional minor metabolites from methyl-6-oxo-alpha-phenyl-2-piperidineacetate were the phenolic O-glucuronide of methyl alpha-(p-hydroxyphenyl)-6-oxo-2-piperidineacetate (1%, dog), and the 4-O-glucuronide of methyl 4-hydroxy-6-oxo-alpha-phenyl-2-piperidineacetate (1%, dog), and the taurine amide conjugate of alpha-(p-hydroxyphenyl)-6-oxo-2-piperidineacetic acid (1%, dog). Additional products from methylphenidate conjugation included methyl 1-carbamoyl-alpha-phenyl-2-piperidineacetate (1%, dog or rat) and its carboxylic acid hydrolysis product (1%, rat). The chirality of the major metabolites isolated from dog urine showed that metabolism was partially stereoselective in all investigated cases, except in the formation of alpha-phenyl-2-piperidineacetic acid

  10. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    Science.gov (United States)

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999

  11. Oxidation of esterified arachidonate by rat liver microsomes

    International Nuclear Information System (INIS)

    Davis, H.W.; Suzuki, T.; Schenkman, J.B.

    1986-01-01

    The authors have previously demonstrated a relationship between phospholipid arachidonate in liver microsomes and malondialdehyde (MDA) formation during lipid peroxidation. In this study arachidonic acid (U- 14 C) was incorporated into rat liver microsomes and NADPH-supported peroxidation was carried out at 37 0 C for 15 minutes. The microsomes were pelleted by centrifugation and the labeled products in the supernatant were isolated by a solid phase method. Pellets were hydrolyzed with phospholipase A 2 and extracted with diethyl ether and the products from both fractions were separated by reverse phase HPLC. The results show that (1) oxidation occurs in all of the major phospholipids but that phosphatidylethanolamine is the most susceptible; (2) a linear correlation exists between MDA formation and supernatant radioactivity; (3) several different polar products are found in both the supernatant and the hydrolyzed pellet but that the ratios of product peaks in HPLC do not change during the peroxidation, indicating no secondary metabolism or propagation; and (4) cytochrome P-450 is not involved in the peroxidative reactions since no oxidation occurs in the absence of Fe 3+ and since product formation is unaffected in the presence of carbon monoxide

  12. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  13. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  14. Hyperthyroidism affects lipid metabolism in lactating and suckling rats.

    Science.gov (United States)

    Varas, S M; Jahn, G A; Giménez, M S

    2001-08-01

    Two per thousand pregnant women have hyperthyroidism (HT), and although the symptoms are attenuated during pregnancy, they rebound after delivery, affecting infant development. To examine the effects of hyperthyroidism on lactation, we studied lipid metabolism in maternal mammary glands and livers of hyperthyroid rats and their pups. Thyroxine (10 microg/100 g body weight/d) or vehicle-treated rats were made pregnant 2 wk after commencement of treatment and sacrificed on days 7, 14, and 21 of lactation with the litters. Circulating triiodothyronine and tetraiodothyronine concentrations in the HT mothers were increased on all days. Hepatic esterified cholesterol (EC) and free cholesterol (FC) and triglyceride (TG) concentrations were diminished on days 14 and 21. Lipid synthesis, measured by incorporation of [3H]H2O into EC, FC, and TG, fatty acid synthase, and acetyl CoA carboxylase activities increased at day 14, while incorporation into FC and EC decreased at days 7 and 21, respectively. Mammary FC and TG concentrations were diminished at day 14; incorporation of [3H]H2O into TG decreased at days 7 and 21, and incorporation of [3H]H2O into FC increased at day 14. In the HT pups, growth rate was diminished, tetraiodothyronine concentration rose at days 7 and 14 of lactation, and triiodothyronine increased only at day 14. Liver TG concentrations increased at day 7 and fell at day 14, while FC increased at day 14 and only acetyl CoA carboxylase activity fell at day 14. Thus, hyperthyroidism changed maternal liver and mammary lipid metabolism, with decreased lipid concentration in spite of increased liver rate of synthesis and decreases in mammary synthesis. These changes, along with the mild hyperthyroidism of the litters, may have contributed to their reduced growth rate.

  15. Regulation of N-nitrosodimethylamine demethylase in rat liver and kidney.

    Science.gov (United States)

    Hong, J Y; Pan, J M; Dong, Z G; Ning, S M; Yang, C S

    1987-11-15

    In previous work, the low Km form of N-nitrosodimethylamine (NDMA) demethylase has been demonstrated to be due to a specific form of cytochrome P-450 (designated as P-450ac) and to be the enzyme required for the metabolic activation of NDMA. The present work deals with the regulation of P-450ac in rat liver during development as well as the mechanism of induction of P-450ac in rat liver and kidney by inducers. NDMA demethylase activity was almost undetectable in the liver of newborn rats, increased after day 4, and remained elevated throughout the first 17 days of the neonatal period. The enhancement of NDMA demethylase activity during development was accompanied by corresponding increases of P-450ac content and P-450ac mRNA levels as determined by Western and slot blot analyses, respectively. No sex differences with respect to this enzyme were observed in the developing rats. Acetone treatment on late-term pregnant rats for 2 days resulted in transplacental inductions of P-450ac and P-450ac mRNA in the newborn rats. Pretreatment of young male rats and adult female rats with acetone or isopropyl alcohol caused increases of NDMA demethylase activity and P-450ac content in the liver but no significant change in the P-450ac mRNA level. These facts suggest the possible existence of a posttranscription regulatory mechanism under these induction conditions. The presence of P-450ac in rat kidney was demonstrated by Western and Northern blot analyses. The renal form of P-450ac seemed to be regulated in a fashion similar to the hepatic P-450ac regarding its response to inducing factors such as fasting and acetone treatment.

  16. Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats

    International Nuclear Information System (INIS)

    Kalender, Yusuf; Yel, Mustafa; Kalender, Suna

    2005-01-01

    Doxorubicin (DXR) is an anthracycline antibiotic, broady used in tumor therapy. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of doxorubicin. Vitamin E (200 IU/kg/week), catechin (200 mg/kg/week), doxorubicin (5 mg/kg/week), doxorubicin + vitamin E (200 IU/kg/week), doxorubicin + catechin (200 mg/kg/week) combinations were given to rats weighing 210-230 g (n = 6/group). Changes in major enzymes participating in free radical metabolism superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GSHPx), catalase (CAT) and malondialdehyde (MDA) were evaluated in the livers of all animals. Superoxide dismutase and catalase activity increased in the doxorubicin-treated group compared to control (P 0.05). Electron microscopic studies supported biochemical findings. We conclude that vitamin E and catechin significantly reduce doxorubicin-induced hepatotoxicity in rats

  17. Pre-existing liver cirrhosis reduced the toxic effect of diethylene glycol in a rat model due to the impaired hepatic alcohol dehydrogenase.

    Science.gov (United States)

    Ming Xing Huang; Xiao Mou Peng; Lin Gu; Gui Hua Chen

    2011-09-01

    Hepatic metabolizing enzymes of diethylene glycol (DEG) are impaired in liver diseases. Thus, the purpose of this study was to increase our understandings in metabolism and toxicology of DEG by clarifying the influences of pre-existing liver disease. Forty Sprague-Dawley rats with carbon tetrachloride-induced liver cirrhosis and 20 control rats were intraperitoneally administered a single dose of DEG, and randomly killed 1, 2, 5 or 8 days following exposure. Compared with control rats, the model rats had significantly higher blood CO(2)-combining power, lower blood urine nitrogen, serum creatinine and alanine aminotransferase levels on the second day and a lower mortality rate on the eighth day following DEG exposure. Enlargements of liver and kidneys and degeneration and necrosis of hepatocytes and renal tubules in the model rats was also less serious than in the control rats. Urine DEG levels were significantly higher on the first day in the model rats than the control rats (46.65 ± 8.79 mg vs 18.88 ± 6.18 mg, p activity in the model rats was significantly lower than that in the control rats, which was positively related to renal damage. The toxic effects of DEG in rats with pre-existing liver cirrhosis are significantly reduced, which may be due to the decreased hepatic ADH activity. It suggests that the metabolite of ADH is responsible for DEG poisoning, and this toxic metabolite may mainly originate in the liver.

  18. Influence of Chloramphenicol and Amoxicillin on Rat Liver ...

    African Journals Online (AJOL)

    This study examined the effect of chloramphenicol and amoxicillin on liver microsomal enzymes Ca2+-ATPase and Glucose-6-Phosphatase (G-6-P) and lipid peroxidation in rats. Male Wistar strain rats weighing 120 – 195 g were divided into four groups. Group one, the control group, received physiological saline, group ...

  19. Evaluation of selected parameters of rat liver and kidney function ...

    African Journals Online (AJOL)

    The effects of administration of yohimbine, an aphrodisiac on some functional parameters of rat liver and kidney were investigated. White male albino rats weighing between 200-250g were grouped into two such that one group was orally administered with 14mg/kg body weight on daily basis for 15days while the control ...

  20. Inherited metabolic liver diseases in infants and children: an overview

    Directory of Open Access Journals (Sweden)

    Ivo Barić

    2013-10-01

    Full Text Available Inborn errors of metabolism, which affect the liver are a large, continuously increasing group of diseases. Their clinical onset can occur at any age, from intrauterine period presenting as liver failure already at birth to late adulthood. Inherited metabolic disorders must be considered in differential diagnosis of every unexplained liver disease. Specific diagnostic work-up for either their confirmation or exclusion should start immediately since any postponing can result in delayed diagnosis and death or irreversible disability. This can be particularly painful while many inherited metabolic liver diseases are relatively easily treatable if diagnosed on time, for instance galactosemia or hereditary fructose intolerance by simple dietary means. Any unexplained liver disease, even one looking initially benign, should be considered as a potential liver failure and therefore should deserve proper attention. Diagnosis in neonates is additionally complicated because of the factors which can mask liver disease, such as physiological neonatal jaundice, normally relatively enlarged liver and increased transaminases at that age. In everyday practice, in order to reveal the etiology, it is useful to classify and distinguish some clinical patterns which, together with a few routine, widely available laboratory tests (aminotransferases, prothrombine time, albumin, gammaGT, total and conjugated bilirubin, ammonia, alkaline phosphatase and glucose make the search for the cause much easier. These patterns are isolated hyperbilirubinemia, syndrome of cholestasis in early infancy, hepatocellular jaundice, Reye syndrome, portal cirrhosis and isolated hepatomegaly. Despite the fact that some diseases can present with more than one pattern (for instance, alpha-1-antitrypsin deficiency as infantile cholestasis, but also as hepatocellular jaundice, and that in some disesases one pattern can evolve into another (for instance, Wilson disease from hepatocellular

  1. [Comparative metabolism of three amide alkaloids from Piper longum in five different species of liver microsomes].

    Science.gov (United States)

    He, Huan; Guo, Wei-Wei; Chen, Xiao-Qing; Zhao, Hai-Yu; Wu, Xia

    2016-08-01

    Piperine, piperlonguminine and pellitorine are three major amide alkaloids from Piper longum, showing a variety of pharmacological activities. In order to investigate the different metabolism pathways of these compounds in five species of liver microsomes in vitro, the data of full mass spectrum, and MS2, MS3 spectra of these three alkaloids were collected and analyzed by using ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap MS); gragment ion information was collected and combined with fragmentation regularities of mass spectra and accurate mass spectrometry data of metabolites, to compare the metabolism difference of three amide alkaloids in liver microsomes of human, rhesus monkey, Beagle dogs, rats and mice. 3 metabolites of piperine, 2 metabolites of piperlonguminine and 1 metabolite of pellitorine were identified quickly. The results showed that the major metabolic pathways of these amide alkaloids in liver microsomes were methylenedioxy group demethylation and oxidation reaction, and metabolic rates were different between species. This study provides basis for further research on in vivo metabolism of piperine analogues from Piper longum. Copyright© by the Chinese Pharmaceutical Association.

  2. Liver and muscle protein metabolism in cachexia

    NARCIS (Netherlands)

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown.

  3. Evolving insights on metabolism, autophagy and epigenetics in liver myofibroblasts

    Directory of Open Access Journals (Sweden)

    Zeribe Chike Nwosu

    2016-06-01

    Full Text Available Liver myofibroblasts (MFB are crucial mediators of extracellular matrix (ECM deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs upon a process termed activation. To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.

  4. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    Science.gov (United States)

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  5. Lipidomic changes in rat liver after long-term exposure to ethanol

    International Nuclear Information System (INIS)

    Fernando, Harshica; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Kaphalia, Bhupendra S.; Shakeel Ansari, G.A.

    2011-01-01

    Alcoholic liver disease (ALD) is a serious health problem with significant morbidity and mortality. In this study we examined the progression of ALD along with lipidomic changes in rats fed ethanol for 2 and 3 months to understand the mechanism, and identify possible biomarkers. Male Fischer 344 rats were fed 5% ethanol or caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet. Animals were killed at the end of 2 and 3 months and plasma and livers were collected. Portions of the liver were fixed for histological and immunohistological studies. Plasma and the liver lipids were extracted and analyzed by nuclear magnetic resonance (NMR) spectroscopy. A time dependent fatty infiltration was observed in the livers of ethanol-fed rats. Mild inflammation and oxidative stress were observed in some ethanol-fed rats at 3 months. The multivariate and principal component analysis of proton and phosphorus NMR spectroscopy data of extracted lipids from the plasma and livers showed segregation of ethanol-fed groups from the pair-fed controls. Significant hepatic lipids that were increased by ethanol exposure included fatty acids and triglycerides, whereas phosphatidylcholine (PC) decreased. However, both free fatty acids and PC decreased in the plasma. In liver lipids unsaturation of fatty acyl chains increased, contrary to plasma, where it decreased. Our studies confirm that over-accumulation of lipids in ethanol-induced liver steatosis accompanied by mild inflammation on long duration of ethanol exposure. Identified metabolic profile using NMR lipidomics could be further explored to establish biomarker signatures representing the etiopathogenesis, progression and/or severity of ALD. - Highlights: → Long term exposure to ethanol was studied. → A nuclear magnetic resonance (NMR) spectroscopy based lipidomic approach was used. → We examined the clustering pattern of the NMR data with principal component analysis. → NMR data were compared with histology and

  6. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    Science.gov (United States)

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  7. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    Science.gov (United States)

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  8. Ontogenic changes in selenite metabolism in rats

    International Nuclear Information System (INIS)

    Ostadalova, I.; Babicky, A.; Kopoldova, J.

    1982-01-01

    Radioselenium concentration and excretion was studied after administration of 75 Se-labelled selenite to male rats during ontogeny. The concentration of radioselenium in individual organs decreases with increasing age. The largest differences between young and adults were in the quantity and quality of excreted substances. During 2 h after the administration of 20 μmol selenite/kg young rats excreted 2.4% of the dose, essentially in the urine only, whilst adults excreted a total of 11%, distributed equally in breath and urine. The part excreted as methylated metabolites was 0.1% of the administered dose in young and 6.3% in adult rats. These results support the hypothesis that the differences in the sensitivity to the toxic action of selenite between young and adult rats can be due to ontogenic differences in selenium metabolism. (orig.)

  9. Influence of dietary macronutrients on liver fat accumulation and metabolism

    Science.gov (United States)

    Parry, Siôn A; Hodson, Leanne

    2017-01-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated. PMID:28947639

  10. Influence of dietary macronutrients on liver fat accumulation and metabolism.

    Science.gov (United States)

    Parry, Siôn A; Hodson, Leanne

    2017-12-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    OpenAIRE

    Venditti, Paola; Pamplona Gras, Reinald; Ayala, Victoria; Rosa, R. de; Caldarone, G.; Di Meo, S.

    2006-01-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most ex...

  12. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats

    Science.gov (United States)

    Barve, Avantika; Chen, Chi; Hebbar, Vidya; Desiderio, Joseph; Saw, Constance Lay-Lay; Kong, Ah-Ng

    2012-01-01

    The purpose of this study was to compare the hepatic and small intestinal metabolism, and examine bioavailability and gastro-intestinal first-pass effects of Kaempferol in the rats. Liver and small intestinal microsomes fortified with either NADPH or UDPGA were incubated with varying concentrations of Kaempferol for upto 120 minutes. Based on the values of the kinetic constants (Km and Vmax), the propensity for UDPGA-dependent conjugation as compared to NADPH-dependent oxidative metabolism was higher for both hepatic and small intestinal microsomes. Male Sprague-Dawley rats were administered Kaempferol intravenously (IV) (10, 25 mg/kg) or orally (100, 250 mg/kg). Gastro-intestinal first pass effects were observed by collecting portal blood after oral administration of 100 mg/kg Kaempferol. Pharmacokinetic parameters were obtained by Noncompartmental analysis using WinNonlin. After IV administration, the plasma concentration-time profiles for 10 and 25 mg/kg were consistent with high clearance (~ 3 L/hr/kg) and large volumes of distribution (8-12 L/kg). The disposition was characterized by a terminal half-life value of 3-4 hours. After oral administration the plasma concentration-time profiles demonstrated fairly rapid absorption (tmax ~ 1-2 hours). The area under the curve (AUC) values after IV and oral doses increased proportional to the dose. The bioavailability (F) was poor at ~ 2%. Analysis of portal plasma after oral administration revealed low to moderate absorption. Taken together, the low F of Kaempferol is attributed in part to extensive first-pass metabolism by glucuronidation and other metabolic pathways in the gut and in the liver. PMID:19722166

  13. EFFECT OF THIOPROPANOL ON AMINO ACID TURNOVER AND REDOX STATUS IN ALLOXAN DIABETIC RAT LIVER

    Directory of Open Access Journals (Sweden)

    Vickram

    2016-07-01

    Full Text Available BACKGROUND Decreased cellular thiol levels seen in diabetes mellitus (DM may be in part attributed to increased free radical generation. The free radical mediated oxidative stress has been implicated in the pathogenesis of DM and its complications. The relative deficiency or non-availability of insulin in DM affects the metabolism of biomolecules, specifically the carbohydrate metabolism. The insulin-mimicking actions of various thiols have been studied. In our previous study, we have documented that 3-mercapto- 1-propanol (Thiopropanol, a low molecular weight thiol, at the dosage employed has increased glucose utilisation in alloxandiabetic rat liver tissue probably by favouring utilisation of glucose through glycolysis and HMP pathway. It is known that insulin inhibits gluconeogenesis by inhibiting the key enzymes of the same and by controlling the channelling of amino acids for the glucose biosynthesis through gluconeogenic pathway. A study was undertaken to assess the effects of thiopropanol (TP on amino acid turnover and the redox status in alloxan diabetic rat liver. METHODS Male albino rats weighing 150-250 g were used. Diabetes was induced using alloxan monohydrate. Rats were divided into normal and diabetic groups. Levels of amino acid nitrogen (AAN, alanine, total thiol (-SH groups, TBARS (Thiobarbituric acid reactive substances, and activities of alanine transaminase (ALT and aspartate transaminase (AST were estimated in liver specimens of normal, control-alloxan diabetic and TP-exposed-alloxan-diabetic rats. RESULTS The results showed a significant increase (p<0.001 in AAN levels, alanine levels, and total -SH groups concentration; and a significant decrease (p<0.001 in TBARS levels, ALT and AST activities in TP-exposed-alloxan diabetic liver slices as compared to control-alloxan diabetic liver slices. CONCLUSIONS Hence, it may be concluded that TP, at the concentration employed, inhibits gluconeogenesis from amino acids probably by

  14. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Stephen Wanyonyi

    2017-11-01

    Full Text Available The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6% and salt (predominantly potassium (K 20% with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H diet, alone or supplemented with a 5% (w/w dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.

  15. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  16. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  17. The effects of the continuous administration of N,N-dimethyl-4-phenylazoaniline (DAB) on the activities and the inducibilities of some drug-metabolizing enzymes in rat liver

    DEFF Research Database (Denmark)

    Autrup, Herman; Thurlow, Brenda J.; Warwick, Gerald P.

    1975-01-01

    of dye feeding on some of the enzyme activities in the two major liver lobes and differences were found. (3) The effect of phenobarbital (PB) pretreatment on the DAB-fed rats was studied at 4-week intervals. The activities of DAB-azoreductase and of nitroreductase increased throughout the whole period......-252-azoreductase was not induced by PB or MC, and CO did not inhibit its reduction. Its reduction depended only slightly on NADH. CO caused a greater relative decrease in the activity of DAB-azoreductase in dye-fed animals and also in animals following PB and MC pretreatment, implying a greater role of cytochrome...

  18. Gamma radiation induced alterations in the ultrastructure of pancreatic islet, metabolism and enzymes in wistar rat

    Energy Technology Data Exchange (ETDEWEB)

    Daoo, J.V.; Suryawanshi, S.A. [Inst. of Science, Bombay (India)

    1992-07-01

    Effects of gamma irradiation (600 rads) on the ultrastructure of pancreatic islet, metabolism and some enzymes in wistar rat, are reported. Electron microscopic observations of endocrine pancreas revealed prominent changes in beta cells while alpha and delta cells were not much affected. Irradiation also inflicted hyperglycemia, increase in liver and muscle glycogen and decrease in insulin level. It has also increased the activity of enzymes but failed to produce significant changes in protein, lipid and mineral metabolism. (auth0008.

  19. Metabolic activation of 2-methylfuran by rat microsomal systems

    International Nuclear Information System (INIS)

    Ravindranath, V.; Boyd, M.R.

    1985-01-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins

  20. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  1. Skeletal muscle metabolism in hypokinetic rats

    Science.gov (United States)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  2. Insulin resistance and postreceptor changes of liver metabolism in fat-fed mice

    DEFF Research Database (Denmark)

    Hedeskov, Carl Jørgen; Capito, Kirsten; Hansen, Svend Erik

    1992-01-01

    Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet......Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet...

  3. Sex Hormone-Related Functions in Regenerating Male Rat Liver

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; POLIMENO, LORENZO; PANELLA, CARMINE; AQUILINO, A. MARIA; INGROSSO, MARCELLO; Van THIEL, DAVID H.; STARZL, THOMAS E.

    2011-01-01

    Sex hormone receptors were quantitated in normal male rat liver and in regenerating liver at several different times after partial (70%) hepatectomy. Both estrogen and androgen receptor content were altered dramatically by partial hepatectomy. Total hepatic content and nuclear retention of estrogen receptors increased, with the zenith evident 2 days after partial hepatectomy, corresponding to the zenith of mitotic index. Serum estradiol increased after 1 day, and reached a maximum at 3 days after surgery. In contrast, total and nuclear androgen receptor content demonstrated a massive decline at 1, 2, and 3 days after resection. Serum testosterone displayed a parallel decline. In addition, hepatic content of two androgen-responsive proteins was reduced to 15% and 13% of normal values during this period. The activity of these various proteins during regeneration of male rat liver is comparable to that observed in the liver of normal female rats. Taken together, these results indicate that partial hepatectomy induces a feminization of certain sexually dimorphic aspects of liver function in male rats. Furthermore, these data provide evidence that estrogens, but not androgens, may have an important role in the process of liver regeneration. PMID:3758617

  4. Metabolic heterogeneity of apolipoprotein B in the rat

    International Nuclear Information System (INIS)

    Sparks, C.E.; Marsh, J.B.

    1981-01-01

    Triglyceride-rich lipoprotein apoprotein catabolism was studied in rats from 5 to 60 min after intravenous injection of 125 I-labeled lipoproteins. The plasma and liver labeled apoprotein content was analyzed by gel filtration column chromatography using an elution buffer containing 1% sodium dodecyl sulfate. The method resolved two B apoproteins of lower (apo B1) and higher (apo Bh) molecular weight. Total apoprotein B disappeared from plasma faster than either apo E or apo C and the smaller sized apo B1 had the most rapid disappearance, with 90% being lost after 60 min. The larger sized apo Bh disappeared rapidly from the plasma in the first 15 min but between 15 and 60 min 40% of the apo Bh remained in the plasma, associated with low density lipoprotein. Apoprotein analysis of liver homogenates was consistent with the plasma results. There was 28% of apo B1 compared to 16% of apo Bh present in the liver 5 min after injection, expressed as percent of initial injected radioactivity in each fraction. Apo B1 and apo Bh were the predominant liver apoproteins up to 30 min but by 60 min there was little of either apo B in the liver. In contrast to apo B, there was a relatively constant amount of apo E and apo C, about 10%, associated with the liver over 60 min. Plasma apo E declined progressively to 68% and apo C to 86% of initial concentration by 60 min. These findings suggest that there is differential hepatic catabolism of a subpopulation of triglyceride-rich lipoproteins containing apo B1. A population of triglyceride-rich lipoproteins containing apo Bh preferentially enters the low density lipoprotein pool with a slower catabolism. The results are consistent with an hypothesis that apo B1 mediates binding and rapid hepatic catabolism of its associated lipoproteins. Metabolic heterogeneity of the triglyceride-rich lipoproteins may be explained by the molecular heterogeneity of apoprotein B

  5. Protective role of garlic against gamma radiation induced histological and histochemical changes in rat liver

    International Nuclear Information System (INIS)

    Abdel Motaal, N.A.; Abdel Maguid, A.

    2007-01-01

    The present work was planned to evaluate the radioprotective effect of garlic (Allium sativum) against the hazardous action of gamma radiation on liver of rat one and ten days post-exposure. Garlic was orally administered (100 mg/ kg body wt) to rats daily for two weeks before exposure to single dose whole body gamma-irradiation (5Gy). The results showed that exposure of rats to gamma- irradiation caused massive portal infiltration with inflammatory cells, dilatation of blood sinusoids, an increase in the number of Kupffer cells, vacuolation of some hepatocytes as well as pyknosis and karyolysis of hepatic nuclei in the liver tissue. Histochemical examination of liver one day post- irradiation illustrated weak to moderate glycogen particles. While, on ten days post-irradiation, a strong activity for glycogen was detected. The disturbance in carbohydrate metabolism is closely related to the radiation induced histological damage in the liver tissue. Administration of garlic for 2 weeks pre-irradiation reduced the radiation induced histopathological changes and showed marked protection against the tissue damaging effect of radiation. It could be concluded that treatment of rats with garlic before exposure to gamma-irradiation offered a noticeable radioprotective effect of the studied organ

  6. Radiorespirometric study of carbohydrate metabolism in childhood liver disease

    International Nuclear Information System (INIS)

    DaCosta, H.; Shreeve, W.W.; Merchant, S.

    1976-01-01

    The need for a suitable parameter to evaluate patients with chronic liver disease has been felt for some time, especially in order to judge the response to surgical shunts and the influence of certain drugs and diets on the liver. Since the liver is a major organ for carbohydrate metabolism, it was decided to analyze the in vivo oxidation of such substrates as glucose and galactose labeled with 14 C. Moderately advanced ''Indian childhood cirrhosis'' and idiopathic fatty hepatic infiltration were selected to represent diffuse chronic liver disease. Oral administration of 14 C-U-glucose or 14 C-1-galactose was followed by analyses of 14 CO 2 in breath by liquid scintillation counting. Conversion of 14 C-glucose to 14 CO 2 was accelerated by both diseases. On the other hand, oxidation of 14 C-galactose was slowed in fatty infiltration and was markedly subnormal in Indian childhood cirrhosis

  7. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  8. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  9. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    Science.gov (United States)

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  10. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  11. Modeling the mechanical properties of liver fibrosis in rats.

    Science.gov (United States)

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.N. [Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Bueno, P.G. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Avó, L.R.S. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Nonaka, K.O.; Selistre-Araújo, H.S. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Leal, A.M.O. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-07-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  13. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    International Nuclear Information System (INIS)

    Silva, R.N.; Bueno, P.G.; Avó, L.R.S.; Nonaka, K.O.; Selistre-Araújo, H.S.; Leal, A.M.O.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved

  14. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Directory of Open Access Journals (Sweden)

    R.N. Silva

    2014-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C and high-fat (HF diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim or a sedentary group (C-Sed and HF-Sed. Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  15. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  16. Disturbances of perinatal carbohydrate metabolism in rats exposed to methylmercury in utero

    Energy Technology Data Exchange (ETDEWEB)

    Snell, K; Ashby, S L; Barton, S J

    1977-12-01

    Pregnant rats were given a single subcutaneous injection of methylmercuric chloride (at 4 or 8 mg/kg) on the ninth day of gestation. Fetal (2 days prenatal), newborn and postnatal (6 days post partum) animals from the methylmercury-treated mothers were investigated with respect to parameters of carbohydrate metabolism. In the absence of any physical abnormalities, fetal rats exposed to methylmercury in utero showed diminished concentrations of plasma glucose and liver glycogen concentrations and a lower hepatic glucose-6-phosphatase activity compared to control animals. Newborn rats from the methylmercury-treated mothers showed an impairment in glycogen mobilization in the first hours of extra-uterine life which was accompanied by a severe and protracted hypoglycemic response. Postnatal rats exposed to methylmercury in utero exhibited higher liver glycogen concentration and decreased body weights compared to control rats. The results point to a derangement of perinatal carbohydrate metabolism in the offspring of pregnant rats exposed briefly to low doses of methylmercury during gestation (''metabolic teratogenesis''). The postnatal hypoglycemic episode in exposed rats may contribute to the pathogenesis of the neurological disturbances revealed by these animals in later life.

  17. Similar metabolic responses to calorie restriction in lean and obese Zucker rats.

    Science.gov (United States)

    Chiba, Takuya; Komatsu, Toshimitsu; Nakayama, Masahiko; Adachi, Toshiyuki; Tamashiro, Yukari; Hayashi, Hiroko; Yamaza, Haruyoshi; Higami, Yoshikazu; Shimokawa, Isao

    2009-10-15

    Calorie restriction (CR), which is thought to be largely dependent on the neuroendocrine system modulated by insulin/insulin-like growth factor-I (IGF-I) and leptin signaling, decreases morbidity and increases lifespan in many organisms. To elucidate whether insulin and leptin sensitivities are indispensable in the metabolic adaptation to CR, we investigated the effects of CR on obese Zucker (fa/fa) rats and lean control (+/+) rats. CR did not fully improve insulin resistance in (fa/fa) rats. Nonetheless, CR induced neuropeptide Y (NPY) expression in the hypothalamic arcuate nucleus and metabolism related gene expression changes in the liver in (fa/fa) rats and (+/+) rats. Up-regulation of NPY augmented plasma corticosterone levels and suppressed pituitary growth hormone (GH) expression, thereby modulating adipocytokine production to induce tissue-specific insulin sensitivity. Thus, central NPY activation via peripheral signaling might play a crucial role in the effects of CR, even in insulin resistant and leptin receptor deficient conditions.

  18. S-Adenosylmethionine attenuates bile duct early warm ischemia reperfusion injury after rat liver transplantation.

    Science.gov (United States)

    Tang, Yong; Chu, Hongpeng; Cao, Guojun; Du, Xiaolong; Min, Xiaobo; Wan, Chidan

    2018-03-01

    Warm ischemia reperfusion injury (IRI) plays a key role in biliary complication, which is a substantial vulnerability of liver transplantation. The early pathophysiological changes of IRI are characterized by an excessive inflammatory response. S-Adenosylmethionine (SAM) is an important metabolic intermediate that modulates inflammatory reactions; however, its role in bile duct warm IRI is not known. In this study, male rats were treated with or without SAM (170 μmol/kg body weight) after orthotopic autologous liver transplantation. The histopathological observations showed that bile duct injury in the IRI group was more serious than in the SAM group. The alanine aminotransferase (ALT), alkaline phosphatase (ALP) and direct bilirubin (DBIL) levels in the serum of the IRI group were significantly increased compared to the SAM group (P liver and bile duct tissues, down-regulated TNF-α levels and up-regulated IL-10 expression in bile duct tissues compared to the IRI group (P livers were much higher compared to those in SAM-treated rats at 24 h after liver transplantation (P bile ducts against warm IRI by suppressing oxidative stress, inflammatory reactions and apoptosis of biliary epithelial cells after liver transplantation.α. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Real time monitoring of rat liver energy state during ischemia.

    Science.gov (United States)

    Barbiro, E; Zurovsky, Y; Mayevsky, A

    1998-11-01

    Hepatic failure is one of the major problems developed during the posttransplantation period. A possible cause of hepatic failure is the prolonged ischemia induced during the implantation procedure. Hepatic ischemia leads to a reduction in oxygen supply, ATP level decline, liver metabolism impairment, and finally organ failure. The purpose of this study was to estimate the functional state of the liver by monitoring liver blood flow and the mitochondrial NADH redox state simultaneously and continuously during in situ liver ischemia followed by reperfusion. Measurements were performed using the multiprobe developed in our laboratory consisting of fibers for the measurement of relative liver blood flow (laser Doppler flowmetry) and mitochondrial redox state (NADH fluorescence). The experimental procedure included the temporary interruption of blood flow to the liver using three types of ischemia, hepatic artery occlusion, portal vein occlusion, and simultaneous occlusion of hepatic artery and portal vein, followed by a reperfusion period. These preliminary experiments showed a significant decrease in liver blood flow, following the three types of liver ischemia, and a significant increase in NADH levels. The probe used in this study incorporates the advantage of monitoring NADH and liver blood flow simultaneously and continuously from the same area on the surface of the liver. Since each of these two parameters is not calibrated in absolute units, the simultaneous monitoring decreases possible artifacts. Also, it will allow us to determine of the coupling between tissue blood flow and oxidative phosphorylation. It is believed that the measurements of respiratory chain dysfunction might predict organ viability in clinical organ transplantation situations. Using this probe may also help to decrease the variability in liver blood flow monitoring since liver blood flow monitoring is supported simultaneously with the mitochondrial redox state, which supplies the

  20. In vivo effects of Faizol Ubat Batuk, a herbal product on aminopyrine metabolism in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Abas Hj Hussin

    2011-09-01

    Full Text Available Traditional medicines, in particular herbal products, have been used abundantly over the years in curing several diseases. Pharmacological interactions of herbal products with modern drugs, however, remain to some extent unknown. Herein, we examined whether co-administration of Faizol Ubat Batuk (FUB, a mixture of aqueous extract of different plants, modifies the metabolism of aminopyrine, a conventional analgesic drug, in rat liver. We used rat hepatocytes outfitted by collagenase perfusion technique. Determination of aminopyrine n-demethylase activity was performed using the Nash colorimetric method, by measuring the amount of formaldehyde produced. Compared to control treatment, FUB significantly increased the hepatic metabolism of aminopyrine in healthy adult male rats. In contrast, the hepatic metabolism of aminopyrine in adult female rats was decreased. Besides, a biphasic effect in n-demethylase activity was observed in young male rats treated with FUB. In a subsequent experiment, FUB did not change the metabolism of aminopyrine in streptozotocin (STZ-diabetic adult male rats. In conclusion, administration of FUB could affect phase I aminopyrine metabolism in rat heptocytes. In addition, the effects of FUB on hepatic n-demethylase activity were gender and disease dependent.

  1. Hepatic injury after whole-liver irradiation in the rat

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.; Leitch, J.M.

    1985-01-01

    Radiation-induced hepatic injury in rats, which is characterized by marked ascites accompanied by liver necrosis, fibrosis, and vein lesions, is described in this study. These adverse sequelae are produced within 30 days after irradiation if there is surgical removal of two-thirds of the liver immediately after whole-liver irradiation. The LD/sub 50/30/ day and median survival time after liver irradiation and two-thirds partial hepatectomy is 24 Gy and 17 days, respectively. Death is preceded by reduction in liver function as measured by [ 131 I]-labeled rose bengal clearance. Prior to death, liver sepsis and endotoxemia were detected in most irradiated, partially hepatectomized animals. Pretreatment of the animals with endotoxin and/or antibiotic decontamination of the GI tract resulted in increased survival time, but no irradiated, partially hepatectomized animal survived beyond 63 days. This suggests that sepsis and endotoxemia resulting from the bacteria in the intestine are the immediate cause of death after 30-Gy liver irradiation and partial hepatectomy. It is concluded that the hepatectomized rat model is an economical and scientifically manageable experimental system to study a form of radiation hepatitis that occurs in compromised human livers

  2. Decreased bilirubin transport in the perfused liver of endotoxemic rats

    NARCIS (Netherlands)

    Roelofsen, H.; van der Veere, C. N.; Ottenhoff, R.; Schoemaker, B.; Jansen, P. L.; Oude Elferink, R. P.

    1994-01-01

    Hyperbilirubinemia associated with sepsis is frequently observed in humans. In this study, an experimental rat model was developed to study bilirubin metabolism and transport during endotoxemia. Rats were injected intravenously with a single bolus of lipopolysaccharide (1 mg/kg); after 18 hours, the

  3. DECREASED BILIRUBIN TRANSPORT IN THE PERFUSED LIVER OF ENDOTOXEMIC RATS

    NARCIS (Netherlands)

    ROELOFSEN, H; VANDERVEERE, CN; OTTENHOFF, R; SCHOEMAKER, B; JANSEN, PLM; ELFERINK, RPJO

    1994-01-01

    Background/Aims: Hyperbilirubinemia associated with sepsis is frequently observed in humans. In this study, an experimental rat model was developed to study bilirubin metabolism and transport during endotoxemia. Methods: Rats were injected intravenously with a single bolus of lipopolysaccharide (1

  4. Intracellular mechanism of action of sympathetic hepatic nerves on glucose and lactate balance in perfused rat liver

    NARCIS (Netherlands)

    Ballé, C.; Beuers, U.; ENGELHARDT, R.; JUNGERMANN, K.

    1987-01-01

    In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were

  5. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  6. Analysis of tissue residues and comparative metabolism of virginiamycin in rats, turkeys, and cattle

    International Nuclear Information System (INIS)

    Gottschall, D.W.; Gombatz, C.; Wang, R.

    1987-01-01

    Liver tissue samples from turkeys, cattle, and rats given [ 14 C]virginiamycin were examined for the presence of metabolites. Extraction of the liver was performed sequentially with methanol and pH 7.4 phosphate buffer. The methanol fraction was further partitioned into chloroform-soluble and water-soluble fractions. The majority of the total liver residue (56-73%) remained intractable following these treatments. The three extracts were fractionated by normal- or reversed-phase HPLC. The results indicated that virginiamycin was metabolized to a large number of fragments and that no single metabolite represented greater than 3.5% of the total liver residue. Due to sample limitations no metabolite identification was possible at this time. Fortification experiments indicated that little, if any, parent virginiamycin was present in the tissue. Additional balance-excretion studies conducted in cattle and rats demonstrated that the majority of the dose (83-94%) was eliminated in the feces

  7. Inhibition of gluconeogenesis in the perfusing liver of irradiated rats

    International Nuclear Information System (INIS)

    Borovikova, G.V.; Dokshina, G.A.; Ermakova, G.N.; Mashkova, N.Yu.

    1981-01-01

    It was shown on the perfusing liver taken from rats on the 1st and 3d days after irradiation in a dose of 18.06x10 -2 C/kg that insulin (400 μunits/ml) and taurine (40 mg%) exerted an inhibiting action on the rate of gluconeogenesi.s and transamination, catalyzed by alanine aminoferase and aspartate aminoferase, in a soluble fraction of the irradiated rat liver. The gluconeogenic capacity and the reactivity of the isolated organ were shown to decrease on the 3d day after irradiation [ru

  8. Chronic administration of ethanol with high vitamin A supplementation in a liquid diet to rats does not cause liver fibrosis. 2. Biochemical observations

    NARCIS (Netherlands)

    Seifert, W. F.; Bosma, A.; Hendriks, H. F.; Blaner, W. S.; van Leeuwen, R. E.; van Thiel-de Ruiter, G. C.; Wilson, J. H.; Knook, D. L.; Brouwer, A.

    1991-01-01

    The inability of the 'ethanol/high vitamin A Lieber-DeCarli diet' to induce liver fibrosis in two different rat strains was further evaluated by determining changes in parameters of liver cell damage and of retinoid and lipid metabolism. In the ethanol/vitamin A-treated group, slight but constant

  9. Mechanism of liver lipid accumulation in X-irradiated rat

    International Nuclear Information System (INIS)

    Aiyar, A.S.; De, A.K.

    1978-01-01

    The incorporation, both in vivo and in vitro, of 14 C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety. (orig.) [de

  10. Mechanism of liver lipid accumulation in X-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Aiyar, A S; De, A K [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-03-01

    The incorporation, both in vivo and in vitro, of /sup 14/C-acetate into hepatic lipids, notably the triglyceride and free fatty acid fractions, is greatly reduced following whole-body irradiation and is indicative of significantly reduced lipogenesis. Irradiation results in a several-fold increase in fatty acid oxidation, by the liver in vitro as well as in the whole animal, during the phase of active hepatic lipid accumulation. Small increases in lipoprotein lipase activity of adipose, immediately following irradiation and up to 24 hours, and the attendant marked fall in adipose lipids are suggestive of increased mobilization of peripheral lipids during the early period. However, in view of the fact that maximum lipid accumulations occurs very much later, inflow of extra-hepatic lipid into liver does not appear to be of major etiological significance. There is three-fold experimental evidence in support of an impairment of trigylceride transport from liver being primarily responsible for the build-up of liver lipids: (I) Triton WR-1339 induced hypertriglyceridemia is totally absent in the irradiated rat during the period when liver lipids increase significantly; (II) the rate of disappearance of radioactivity from pre-labeled hepatic lipids is considerably lower in the irradiated rats; and (III) the irradiated rats show decrease in lipoproteins of liver cell-sap and of serum, the latter being more marked and a lowered synthesis of the lipoproteins, as assessed by labeling of the protein moiety.

  11. [The effect of halothane on the fructose metabolism in the liver].

    Science.gov (United States)

    Götz, E; Scholz, R

    1975-10-01

    Glucose production from frutose (2 mmol) and fructolysis was studied in perfused rat liver. In the presence of halothane (0.5, 1.5, and 4.0 vol%) glucose production was inhibited, whereas lactate production was stimulated. Total fructose metabolism was unchanged. Since halogenated hydrocarbon compounds are known to inhibit the mitochondrial respiratory chain, it is concluded that glucose synthesis is inhibited due to decreased supply of energy-rich phosphates from oxidative phosphorylation. On the other hand, this depletion of energy may be partially compensated for by an increased extramitochondrial energy production due to fructolysis.

  12. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  13. Hepatic regeneration after sublethal partial liver irradiation in cirrhotic rats

    International Nuclear Information System (INIS)

    Gu Ke; Lai Songtao; Ma Ningyi; Zhao Jiandong; Ren Zhigang; Wang Jian; Liu Jin; Jiang Guoliang

    2011-01-01

    Our previous animal study had demonstrated that partial liver irradiation (IR) could stimulate regeneration in the protected liver, which supported the measurements adopted in radiotherapy planning for hepatocellular carcinoma. The purpose of this present study is to investigate whether cirrhotic liver repopulation could be triggered by partial liver IR. The cirrhosis was induced by thioacetamide (TAA) in rats. After cirrhosis establishment, TAA was withdrawn. In Experiment 1, only right-half liver was irradiated with single doses of 5 Gy, 10 Gy and 15 Gy, respectively. In Experiment 2, right-half liver was irradiated to 15 Gy, and the left-half to 2.5 Gy, 5 Gy and 7.5 Gy, respectively. The regeneration endpoints, including liver index (LI); mitotic index (MI); liver proliferation index (LPI); proliferating cell nuclear antigen-labeling index (PCNA-LI); serum hepatic growth factor (HGF), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-α and interleukin (IL)-6, were evaluated on 0 day, 30-day, 60-day, 90-day, 120-day and 150-day after IR. Serum and in situ TGF-β1 were also measured. In both experimental groups, the IR injuries were sublethal, inducing no more than 9% animal deaths. Upon TAA withdrawal, hepatic regeneration decelerated in the controls. In Experiment 1 except for LI, all other regeneration parameters were significantly higher than those in controls for both right-half and left-half livers. In Experiment 2 all regeneration parameters were also higher compared with those in controls for both half livers. Serum HGF and VEGF were increased compared with that of controls. Both unirradiated and low dose-irradiated cirrhotic liver were able to regenerate triggered by sublethal partial liver IR and higher doses and IR to both halves liver triggered a more enhanced regeneration. (author)

  14. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  15. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  16. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats.

    Science.gov (United States)

    Bagi, Cedo M; Edwards, Kristin; Berryman, Edwin

    2017-12-01

    Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated

  17. Serum metabolic changes in rats after intragastric administration of dextromethorphan.

    Science.gov (United States)

    Bao, Shihui; Zhang, Jing; Lin, Zixia; Su, Ke; Mo, Jingjing; Hong, Lin; Qian, Shuyi; Chen, Lianguo; Sun, Fa; Wen, Congcong; Wu, Qing; Hu, Lufeng; Lin, Guanyang; Wang, Xianqin

    2017-03-01

    Dextromethorphan is recognized as a substance of abuse around the world. An estimated 3.1 million people between the ages of 12 and 25 years (5.3%) misused over-the-counter cough and cold medications in 2006. In this study, we developed a serum metabolomic method by gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of abuse of dextromethorphan on rats. The dextromethorphan-treated rats were given 12, 24 and 48 mg/kg (low, medium, high) of dextromethorphan by intragastric administration each day for 3 days. Partial least squares-discriminate analysis revealed that intragastric administration of dextromethorphan induced metabolic perturbations. Compared with the control (healthy) group, the levels of propanoic acid, urea, heptafluorobutanoic acid, 2-hexyldecanoic acid and butanedioic acid of the low group decreased; levels of propanoic acid and heptafluorobutanoic acid of the medium group decreased, while that of benzoic acid increased; and levels of 2-hexyldecanoic acid, glycerol and butanedioic acid of the high group increased. These biomarkers are involved in the citric acid cycle, urea cycle, glycerolipid metabolism and tricarboxylic acid cycle. The results indicate that the metabolomic method by GC-MS may be useful to elucidate abuse of dextromethorphan. According to the pathological changes in the liver at different dosages, dextromethorphan is not hepatotoxic after intragastric administration of 12, 24 and 48 mg/kg for 3 days. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Hepatic cholesterol metabolism following a chronic ingestion of cesium-137 starting at fetal stage in rats

    International Nuclear Information System (INIS)

    Racine, R.; Grandcolas, L.; Blanchardon, E.; Gourmelon, P.; Souidi, M.; Veyssiere, G.

    2010-01-01

    The Chernobyl accident released many radionuclides in the environment. Some are still contaminating the ground and thus the people through dietary intake. The long-term sanitary consequences of this disaster are still unclear and several biological systems remain to be investigated. Cholesterol metabolism is of particular interest, with regard to the link established between atherosclerosis and exposure to high-dose ionizing radiations. This study assesses the effect of cesium-137 on cholesterol metabolism in rats, after a chronic exposure since fetal life. To achieve this, rat dams were contaminated with cesium-137-supplemented water from two weeks before mating until the weaning of the pups. Thereafter, the weaned rats were given direct access to the contaminated drinking water until the age of 9 months. After the sacrifice, cholesterol metabolism was investigated in the liver at gene expression and protein level. The cholesterolemia was preserved, as well as the cholesterol concentration in the liver. At molecular level, the gene expressions of ACAT 2 (a cholesterol storage enzyme), of Apolipoprotein A-I and of RXR (a nuclear receptor involved in cholesterol metabolism) were significantly decreased. In addition, the enzymatic activity of CYP27A1, which catabolizes cholesterol, was increased. The results indicate that the rats seem to adapt to the cesium-137 contamination and display modifications of hepatic cholesterol metabolism only at molecular level and within physiological range. (author)

  19. Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats.

    Science.gov (United States)

    Yokota, Tokunori; Mikata, Kazuki; Nagasaki, Hiromi; Ohta, Kazunari

    2003-11-19

    Absorption, distribution, excretion, and metabolism of clothianidin [(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine] were investigated after a single oral administration of [nitroimino-(14)C]- or [thiazolyl-2-(14)C]clothianidin to male and female rats at a dose of 5 mg/kg of body weight (bw) (low dose) or 250 mg/kg of bw (high dose). The maximum concentration of carbon-14 in blood occurred 2 h after administration of the low oral dose for both labeled clothianidins, and then the concentration of carbon-14 in blood decreased with a half-life of 2.9-4.0 h. The orally administered carbon-14 was rapidly and extensively distributed to all tissues and organs within 2 h after administration, especially to the kidney and liver, but was rapidly and almost completely eliminated from all tissues and organs with no evidence of accumulation. The orally administered carbon-14 was almost completely excreted into urine and feces within 2 days after administration, and approximately 90% of the administered dose was excreted via urine. The major compound in excreta was clothianidin, accounting for >60% of the administered dose. The major metabolic reactions of clothianidin in rats were oxidative demethylation to form N-(2-chlorothiazol-5-ylmethyl)-N'-nitroguanidine and the cleavage of the carbon-nitrogen bond between the thiazolylmethyl moiety and the nitroguanidine moiety. The part of the molecule containing the nitroguanidine moiety was transformed mainly to N-methyl-N'-nitroguanidine, whereas the thiazol moiety was further metabolized to 2-(methylthio)thiazole-5-carboxylic acid. With the exception of the transiently delayed excretion of carbon-14 at the high-dose level, the rates of biokinetics, excretion, distribution, and metabolism of clothianidin were not markedly influenced by dose level and sex.

  20. Role of the metabolism of parathyroid hormone. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, Anne P. [Univ. of Rochester, NY (United States)

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity.

  1. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-01-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  2. Glycogen content in hepatocytes is related with their size in normal rat liver but not in cirrhotic one.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Vorobev, Mikhail L; Kudryavtsev, Boris N

    2016-04-01

    Hepatocytes differ from one another by the degree of the ploidy, size, position in the liver lobule, and level of the DNA-synthetic processes. It is believed, that the cell size exerts substantial influence on the metabolism of the hepatocytes and the glycogen content in them. The aim of the present study was to test this hypothesis. Dry weight of hepatocytes, their ploidy and glycogen content were determined in the normal and the cirrhotic rat liver. Liver cirrhosis in rats was produced by chronic inhalation of CCl4 vapours in the course of 6 months. A combined cytophotometric method was used. Dry weight of the cell, its glycogen and DNA content were successively measured on a mapped preparation. Hepatocytes of each ploidy class in the normal and the cirrhotic rat liver accumulated glycogen at the same rate. In the normal liver, there was a distinct correlation between the size of hepatocytes and glycogen content in them. This correlation was observed in each ploidy class, and was especially pronounced in the class of mononucleate tetraploid hepatocytes. In the cirrhotic liver, there was no correlation between the size of the cells and their glycogen content. The impairment of liver lobular structure probably explains the observed lack of correlation between hepatocyte size and their glycogen content in the cirrhotic liver. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  3. Effect of insulin on aldolase turnover in irradiated rat liver

    International Nuclear Information System (INIS)

    Komov, V.P.; Kirillova, N.V.; Bekdzhanyan, A.G.

    1984-01-01

    A study was made of the effect of insulin on the rate of biosynthesis, ''half life'', spontaneous decomposition and transport of aldolase in mitochondria of liver and blood plasma of rats, subjected to whole-body X-irradiation. The hormone injected after irradiation was shown to normalize the rate of spontaneous decay and the time of aldolase functioning

  4. Chemical structure and biochemical significance of lysolecithins from rat liver

    NARCIS (Netherlands)

    Bosch, H. van den; Deenen, L.L.M. van

    1965-01-01

    1. 1. Synthetic lecithins containing in 2-position a [14C]fatty acid constituent were found to be hydrolysed by rat-liver homogenates so as to form both 1-acyl-glycero-3-phosphorylcholine and 2-acyl-glycero-3-phosphorylcholine. 2. 2. A comparison of the fatty acid pattern of lysolecithin obtained

  5. Decrease in Activities of Selected Rat Liver Enzymes following ...

    African Journals Online (AJOL)

    The effects of the chemical effluent from Soap and Detergent Industry on some rat liver enzymes were investigated. Chemical analyses of both the effluent and tap water which served as the control were carried out before various concentrations of the effluent (5%v/v, 25%v/v, 50%v/v and 100%v/v) were made. The effluent ...

  6. Transport of N-acetylglutamate in rat-liver mitochondria

    NARCIS (Netherlands)

    Meijer, A. J.; van Woerkom, G. M.; Wanders, R. J.; Lof, C.

    1982-01-01

    The permeability properties of the rat-liver mitochondrial membrane for N-acetylglutamate, the activator of carbamoyl-phosphate synthetase (ammonia), were studied. 1. Transport of N-acetylglutamate into the mitochondria was only observed in partially or fully de-energized mitochondria and when the

  7. Liver Iron Contents in Rats after Administration of Certain Iron ...

    African Journals Online (AJOL)

    The effect of consumption of certain iron compounds on liver iron deposition was ... extra iron probably depends on the type of food prepared, .... main groups. Each main group consisted of 4 subgroups. (8 rats per subgroup) which received the same basic diet but differing amounts of iron of a specific type. Each animal was ...

  8. Sirolimus influence on hepatectomy-induced liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    Edimar Leandro Toderke

    Full Text Available OBJECTIVE: To evaluate the influence of sirolimus on liver regeneration triggered by resection of 70% of the liver of adult rats. METHODS: we used 40 Wistar rats randomly divided into two groups (study and control, each group was divided into two equal subgroups according to the day of death (24 hours and seven days. Sirolimus was administered at a dose of 1mg/kg in the study group and the control group was given 1 ml of saline. The solutions were administered daily since three days before hepatectomy till the rats death to removal of the regenerated liver, conducted in 24 hours or 7 days after hepatectomy. Liver regeneration was measured by the KWON formula, by thenumber of mitotic figures (hematoxylin-eosin staining and by the immunohistochemical markers PCNA and Ki-67. RESULTS: there was a statistically significant difference between the 24h and the 7d groups. When comparing the study and control groups in the same period, there was a statistically significant variation only for Ki-67, in which there were increased numbers of hepatocytes in cell multiplication in the 7d study group compared with the 7d control group (p = 0.04. CONCLUSION: there was no negative influence of sirolimus in liver regeneration and there was a positive partial effect at immunohistochemistry with Ki-67.

  9. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  10. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Liu, Ruqing; Fuscoe, James C; Chen, Tao

    2007-01-01

    Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks

  11. Effects of dibutyl phthalate on lipid metabolism and drug metabolising enzyme system in rats

    International Nuclear Information System (INIS)

    Arakaki, Mitsuo; Ariyoshi, Toshihiko.

    1976-01-01

    Effects of dibutyl phthalate (DBP) on the liver constituents and the drug metabolizing enzyme system were investigated in rats. 1. In the experiments at a single oral dose of DBP (630 or 1260 mg/kg), the glycogen content was decreased only at the high dose, but no effects were observed on the contents of glycogen, triglyceride, microsomal protein and cytochromes, and on the activities of drug metabolizing enzymes. 2. In the repeated oral dose of DBP (630 or 1260 mg/kg/day) for 5 days, the ratio of liver weight to body weight was increased in both female and male rats, whereas the increases of cytochrome P-450 content and aniline hydroxylase activity were noted only in male rats. However, the contents of liver triglyceride, phospholipids, and cholesterol were unchanged. On the other hand, serum cholesterol content which showed the tendency to be decreased at the low dose was significantly decreased at the high dose. 3. In the incorporation of 1- 14 C-acetate into liver and serum lipids after repeated oral dose of DBP (630 mg/kg/day) for 5 days in male rats, the incorporation into triglyceride showed tendency to be increased, whereas the incorporation into cholesterol and cholesterol ester remained unchanged in vivo and in vitro. (auth.)

  12. Effects of IGFS on blood lipid metabolism in experimental hyperlipidemia rats

    International Nuclear Information System (INIS)

    Zhao Yanwei; Tianjin Medical College of Chinese People's Armed Police Force, Tianjin; Yu Xiaofeng; Xu Huali; Qu Shaochun; Sui Dayuan

    2005-01-01

    Objective: To observe the effects of injection of ginseng fruit saponins (IGFS) on total cholesterol (TC), lipoprotein cholesterol metabolism and antioxidative activity in experimental hyperlipidemia rats. Methods: The TC, lipoprotein cholesterol and lipidperoxidation (LPO) contents, prostacycline (PGI 2 ) and thromboxane (TXA 2 ) levels, superoxidedismutase (SOD) activity and blood viscosity were measured respectively in hyperlipidemia rats which had been given IGFS 10, 20 and 40 mg·kg -1 ·d - '1 ip, respectively, for fifteen days. In addition, fat accumulation in liver was observed. Results: The triglyceride (TG), TC, low density lipoprotein cholesterol (LDL-c) in serum, TXA 2 in plasma, LPO in serum and liver and blood viscosity were decreased significantly, and PGI 2 in plasma and SOD in serum and liver were significantly increased after administration with IGFS (20 and 40 mg·kg -1 ·d -1 ) in experimental hyperlipidemia rats. Moreover, IGFS decreased ratios of TC/HDL-c and LDL-c/HDL-c, increased the ratio of PGI 2 /TXA 2 and inhibit fat accumulation in liver. The content of high density lipoprotein cholesterol (HDL-c) in serum were significantly increased after administration IGFS (40 mg·kg -1 · -1 ) in experimental hyperlipidemia rats. Conclusions: IGFS can inhibit arterioscleros by improving cholesterol and lipoprotein cholesterol metabolism, suppressing LPO and increasing antioxidation. (authors)

  13. Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats.

    Science.gov (United States)

    Lahbib, Karima; Touil, Soufiane

    2016-10-01

    Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O 2 ), hydroxyl radical (OH) and Hydrogen peroxide (H 2 O 2 ). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  15. Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis

    Science.gov (United States)

    Mifuji-Moroka, Rumi; Hara, Nagisa; Miyachi, Hirohide; Sugimoto, Ryosuke; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban C.; Takei, Yoshiyuki

    2013-01-01

    Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (PBCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver. PMID:23936183

  16. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  17. The significance of liver in metabolism of plutonium 239

    International Nuclear Information System (INIS)

    Netchev, Christo.

    1977-01-01

    Plutonium 239 has an important toxicological significance and is widely used in the nuclear industry which makes the study of its metabolism in the organism appear of substantial interest. The role of the liver in the distribution of radionuclide and its barrier capabilities, determining to a certain extent the back transport of the isotope from the blood plasma into the gut is studied. The storage of Plutonium 239 in the organ and its reexcretion by way of the gull is quantitatively demonstrated. This question is related to the exact determination of the coefficient of absorption of the radioisotope in the digestive tract. The radionuclide is inserted into organism as PuCl 3 directly into vein jugularis and vein portae. The peculiarities of its distribution in the liver by the two ways of introduction as well as the essential differences in the radioactivity of the products of excretion by portal application are described. The mechanism of the storage of the radioisotope in the organ is explained to a great extent with its physical and chemical condition in the liver tissue. Plutonium 239 is found in the liver completely as a complex compound with the tissue proteins, the combining with globulines predominating. The dynamics of exchange of the radionuclide in the organ is determined mainly by its complex combination with the globulins. The part of nuclide connected with the other protein fractions of liver is not significant and hence they do not much influence kinetics in the organ

  18. DDT increases hepatic testosterone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Santoyo, Adolfo; Albores, Arnulfo; Cebrian, Mariano E. [Cinvestav-IPN, Seccion de Toxicologia, Mexico (Mexico); Hernandez, Manuel [Cinvestav-IPN, Departamento de Biologia Celular (Mexico)

    2005-01-01

    DDT and its metabolites are considered as endocrine disruptors able to promote hormone-dependent pathologies. We studied the effects of technical-grade DDT on hepatic testosterone metabolism and testosterone hydroxylase activity ratios in the rat. Male and female Wistar rats were treated by gavage with a single dose of technical-grade DDT (0, 0.1, 1, 10, and 100 mg/kg body weight) and killed 24 h later. Hepatic microsomes were incubated with [4-{sup 14}C]-testosterone and the metabolites were separated by thin-layer chromatography and quantified by radio scanning. DDT increased testosterone biotransformation and modified the profile of metabolites produced in a sex-dependent manner. Males treated with a representative dose (10 mg/kg) produced relatively less androstenedione (AD), 2{alpha}-hydroxytestosterone (OHT), and 16{alpha}-OHT but higher 6{beta}-OHT whereas treated females produced less 7{alpha}-OHT and AD but higher 6{beta}-OHT and 6{alpha}-OHT than their respective controls. In both sexes DDT decreased the relative proportion of AD and increased that of 6{beta}-OHT suggesting that the androgen-saving pathway was affected. The testosterone 6{alpha}-/15{alpha}-OHT ratio, a proposed indicator of demasculinization, was increased in treated males. This effect was in agreement with the demasculinizing ability proposed for DDT. The effects on 6{alpha}-/16{alpha}-OHT and 6-dehydrotestosterone/16{alpha}-OHT ratios followed a similar tendency, with the ratio 6{alpha}-/16{alpha}-OHT being the most sensitive marker. Interestingly, these ratios were reduced in treated females suggesting that technical-grade DDT shifted testosterone hydroxylations toward a more masculine pattern. Thus, technical-grade DDT altered the hepatic sexual dimorphism in testosterone metabolism and decreased the metabolic differences between male and female rats. (orig.)

  19. Changes at transcriptional level during liver regeneration in the rat

    International Nuclear Information System (INIS)

    Subba Rao, M.N.; Netrawali, M.S.; Pradhan, D.S.; Sreenivasan, A.

    1976-01-01

    A great upheaval in RNA synthetic pattern is known to occur during the early periods after partial hepatectomy. Such changes are being studied in regenerating rat liver with a view to understanding regulatory mechanisms of eukaryotic transcription. Follwoing partial hepatectomy, RNA synthesis is rat liver showed graded increase during 4 to 18 hours. At these time intervals, a significant enhancement could be discerned both in template efficiency of chromatin and in RNA polymerase activity in this tissue. Further examination revealed that the activity of RNA polymerase II (extra-nucleolar enzyme) stimulated to a much greater extent as compared to that of RNA polymerase I (nucleolar enzyme). Partial hepatectomy also resulted in significant alterations in turnovers of chromosomal acidic proteins in liver. 32 P-orthophosphate injected intraperitoneally was used in these studies. (author)

  20. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  1. Metabolic Disturbances in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    A Rezaeian

    2014-04-01

    Full Text Available Introduction: Liver disease results in complex pathophysiologic disturbances affecting nutrient digestion, absorption, distribution, storage, and use. This article aimed to present a classification of metabolic disturbances in chronic liver disease in children?   Materials and Methods: In this review study databases including proquest, pubmedcentral, scincedirect, ovid, medlineplus were been searched with keyword words such as” chronic liver disease"  ” metabolic disorder””children” between 1999 to 2014. Finally, 8 related articles have been found.   Results: Metabolic disorder in this population could be categorized in four set: 1carbohydrates, 2proteins,3 fats and 4vitamins. 1 Carbohydrates: Children with CLD are at increased risk for fasting hypoglycemia, because the capacity for glycogen storage and gluconeogenesis is reduced as a result of abnormal hepatocyte function and loss of hepatocyte mass. 2 Proteins: The liver’s capacity for plasma protein synthesis is impaired by reduced substrate availability, impaired hepatocyte function, and increased catabolism. This results in hypoalbuminemia, leading to peripheral edema and contributing to ascites. Reduced synthesis of insulin-like growth factor (IGF-1 and its binding protein IGF-BP3 by the chronically diseased liver results in growth hormone resistance and may contribute to the poor growth observed in these children. 3 Fats: There is increased fat oxidation in children with end-stage liver disease in the fed and fasting states compared with controls, which is probably related to reduced carbohydrate availability. The increased lipolysis results in a decrease in fat stores, which may not be easily replenished in the setting of the fat malabsorption that accompanies cholestasis. Reduced bile delivery to the gut results in impaired fat emulsification, and hence digestion. The products of fat digestion are also poorly absorbed, because bile is also required for micelle formation

  2. Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats.

    Science.gov (United States)

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Huang, Ying-Hsien; Tiao, Mao-Meng; Li, Shih-Wen; Huang, Li-Tung

    2016-08-20

    Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL.

  3. Kinetic variation of protein metabolism in pregnant rats

    International Nuclear Information System (INIS)

    Kubo, Katsuharu

    1980-01-01

    Kinetic variation of nitrogen metabolism in the skeletal muscle and liver of rats during the course of pregnancy was studied by the use of 15 N-amino nitrogen during acclimatization on a protein-free diet. 15 N from 15 N-glycine given on day 1 of pregnancy decreased from the 1st to 2nd trimester in the liver, suggesting contribution to the N metabolic pool. In the muscle, the rate of 15 N showed a marked decrease in the 2nd trimester, indicating, along with an increased accumulation of the total muscular N content, N accumulation in muscle protein in the 2nd trimester and promoted decomposition of mobiler muscular protein in the 2nd trimester. The marked decrease in the muscle 15 N content from the 2nd trimester and the decrease in the total N content in the 3rd trimester support the serious involvement of muscular N in fetal growth. The level of 15 N from 15 N-ammonium during the course of pregnancy was significantly high in the 2nd trimester and low in the 3rd. The 2nd trimester showed amino N accumulation in the muscle, and the 3rd, a decrease in N accumulation and amino N release. In regard to the kinetics of 15 N-lysine in the cell fraction, the muscular microsomes showed a high 15 N accumulation in the 2nd trimester and a voluminous release in the 3rd trimester. In contrast, the liver microsomes showed a linear decrease of 15 N up to 2nd trimester, followed by no change. (Chiba, N.)

  4. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  5. Nonalcoholic Fatty Liver Disease: Prevalence, Influence on Age and Sex, and Relationship with Metabolic Syndrome and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hui-Yun Cheng

    2013-12-01

    Conclusion: Fatty liver can be considered as the hepatic consequence of metabolic syndrome, specifically IR. There is a high prevalence of metabolic syndrome and fatty liver among the elderly population. Metabolic disorders are closely related to fatty liver; moreover, fatty liver appears to be a good predictor for the clustering of risk factors for metabolic syndrome.

  6. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  7. A proteomic-based characterization of liver metabolism in dairy cows and young pigs

    DEFF Research Database (Denmark)

    Sejersen, Henrik

    This thesis deals with studies on liver metabolism in cows and pigs. Proteome analysis was used to quantify a large number of proteins involved in metabolic pathways. In cows, the objective was to characterize differences in the liver proteome between early lactation dairy cows with low or high...... liver fat content and suggest potential blood-based biomarkers for early detection of fatty liver to substantiate prevention strategies. Our results show that several proteins in liver metabolic pathways are affected by liver fat content and that blood aspartate aminotransferase, ß...

  8. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  9. The effect of phenobarbital on the metabolism and excretion of thyroxine in rats

    International Nuclear Information System (INIS)

    McClain, R.M.; Levin, A.A.; Posch, R.; Downing, J.C.

    1989-01-01

    The effect of phenobarbital on thyroid function and the metabolism and biliary excretion of thyroxine in rats was determined. Phenobarbital, administered for 2 weeks at a dose of 100 mg/kg/day, resulted in an increase in hepatic and thyroid gland weights, decreased circulating levels of T4, T3 and rT3, and increased TSH levels in male and female rats. After 3 months of treatment liver and thyroid weights were still increased; however, hormone values were not as markedly affected indicating that the rats had partially compensated for the effect on thyroid function. In thyroidectomized rats the plasma clearance of thyroxine was increased with phenobarbital. In bile duct cannulated phenobarbital-treated male rats the hepatic uptake at 4 hr was markedly increased. Bile flow was increased and the 4-hr cumulative biliary excretion of administered radioactivity was increased by 42%. Most of the increase in the excretion (76%) was accounted for by an increase in the excretion of thyroxine-glucuronide in phenobarbital-treated rats. Hepatic thyroxine-glucuronyltransferase activity in phenobarbital-treated rats expressed as picomoles per milligram of protein was increased by 40%; enzyme activity per gram of liver was increased by about twofold which, coupled with increased hepatic weight, resulted in about a threefold increase in total hepatic thyroxine-glucuronyltransferase activity in phenobarbital-treated rats as compared to that of controls. Qualitatively similar effects on metabolism, excretion, and enzyme induction were noted in female rats; however, the magnitude of increase was less than that observed in male rats. It is concluded that the effect of phenobarbital on thyroid function in rats is primarily a result of its effects on the hepatic disposition of thyroid hormone

  10. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  11. A disposition kinetic study of Tramadol in bile duct ligated rats in perfused rat liver model.

    Science.gov (United States)

    Esmaeili, Zohre; Mohammadi, Saeid; Nezami, Alireza; Rouini, Mohammad Reza; Ardakani, Yalda Hosseinzadeh; Lavasani, Hoda; Ghazi-Khansari, Mahmoud

    2017-07-01

    Tramadol hydrochloride is a centrally acting synthetic opioid analgesic drug and is used to treat chronic pain. In this study, the effects of Bile Duct Ligation (BDL) on the pharmacokinetics of tramadol in a liver recirculating perfusion system of male rats were used. Twenty-four Wistar male rats were randomly divided into four groups: control, sham and two weeks BDL and four weeks BDL. Serum levels of liver enzymes were measured before perfusion and the pharmacokinetics of tramadol was evaluated by using liver recirculating perfusion system. Tramadol and metabolites concentrations were determined by HPLC-FL. The sharp increase in liver enzymes level in both BDL groups was observed and significant changes were also observed in liver weight and volume. Tramadol metabolites concentration significantly decreased compared with the control and sham group (Pbile duct diseases and the dose of tramadol should be accordingly adjusted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  13. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    Science.gov (United States)

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. © 2015 by the Society for Experimental Biology and Medicine.

  14. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    International Nuclear Information System (INIS)

    Xu Jinsheng; Purcell, Wendy M.

    2006-01-01

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect the status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity

  15. Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    2009-07-01

    Full Text Available Abstract Background Liver cancr is a heterogeneous disease in terms of etiology, biologic and clinical behavior. Very little is known about how many genes concur at the molecular level of tumor development, progression and aggressiveness. To explore the key genes involved in the development of liver cancer, we established a rat model induced by diethylnitrosamine to investigate the gene expression profiles of liver tissues during the transition to cirrhosis and carcinoma. Methods A rat model of liver cancer induced by diethylnitrosamine was established. The cirrhotic tissue, the dysplasia nodules, the early cancerous nodules and the cancerous nodules from the rats with lung metastasis were chosen to compare with liver tissue of normal rats to investigate the differential expression genes between them. Affymetrix GeneChip Rat 230 2.0 arrays were used throughout. The real-time quantity PCR was used to verify the expression of some differential expression genes in tissues. Results The pathological changes that occurred in the livers of diethylnitrosamine-treated rats included non-specific injury, fibrosis and cirrhosis, dysplastic nodules, early cancerous nodules and metastasis. There are 349 upregulated and 345 downregulated genes sharing among the above chosen tissues when compared with liver tissue of normal rats. The deregulated genes play various roles in diverse processes such as metabolism, transport, cell proliferation, apoptosis, cell adhesion, angiogenesis and so on. Among which, 41 upregulated and 27 downregulated genes are associated with inflammatory response, immune response and oxidative stress. Twenty-four genes associated with glutathione metabolism majorly participating oxidative stress were deregulated in the development of liver cancer. There were 19 members belong to CYP450 family downregulated, except CYP2C40 upregulated. Conclusion In this study, we provide the global gene expression profiles during the development and

  16. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    Science.gov (United States)

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  17. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats.

    Science.gov (United States)

    Tahan, Veysel; Ozaras, Resat; Canbakan, Billur; Uzun, Hafize; Aydin, Seval; Yildirim, Beytullah; Aytekin, Huseyin; Ozbay, Gulsen; Mert, Ali; Senturk, Hakan

    2004-09-01

    Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.

  18. The protective effect of 1alpha, 25-dihydroxyvitamin d3 and metformin on liver in type 2 diabetic rats.

    Science.gov (United States)

    Elattar, Samah; Estaphan, Suzanne; Mohamed, Enas A; Elzainy, Ahmed; Naguib, Mary

    2017-10-01

    There is an accumulating evidence suggesting an immunomodulatory role of 1α,25(OH) 2 D3. Altered 1α,25(OH) 2 D3 level may play a role in the development of T2DM and contribute to the pathogenesis of liver diseases. Our study was designed to study and compare the effect of metformin and 1α,25(OH) 2 D3 supplementation on liver injury in type 2 diabetic rat. Sixty male Albino rats were divided into 5 groups; group 1: control rats. the remaining rats were fed high fat diet for 2 weeks and injected with streptozotocin (35mg/kg BW, i.p.) to induce T2DM and were divided into: group 2: untreated diabetic rats, group 3: diabetic rats treated by metformin (100mg/kgBW/d, orally), group 4: diabetic rats supplemented by 1α,25(OH) 2 D3 (0.5μg/kg BW, i.p.) 3 times weekly and group 5: supplemented by both 1α,25(OH) 2 D3 and metformin. Eight weeks later, serum glucose and insulin levels were measured, HOMA IR was calculated, lipid profile, Ca2+, ALT and AST were estimated. Liver specimens were taken to investigate PPAR-α (regulator of lipid metabolism), NF-κB p65, caspase 3 and PCNA (proliferating cell nuclear antigen) and for histological examination. The liver enzymes were elevated in the diabetic rats and the histological results revealed an injurious effect of diabetes on the liver. 1α,25(OH) 2 D3, metformin and both drugs treatment significantly improved liver enzymes as compared to the untreated rats. The improvement was associated with a significant improvement in the glycemic control, lipid profile and serum Ca2+ with a significant reduction in NF-κB p65 and caspase 3 and increased PPAR-α, and PCNA expression as compared to the untreated group. 1α,25(OH) 2 D3 induced a slightly better effect as compared to metformin. Both agents together had a synergistic action and almost completely protected the liver. Histological results confirmed the biochemical findings. Our results showed a protective effect of 1α,25(OH) 2 D3 and metformin on liver in diabetic rats as

  19. Ideal Experimental Rat Models for Liver Diseases

    OpenAIRE

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-01-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and dive...

  20. Deuterium isotope effect on metabolism of N-nitrosodimethylamine in vivo in rat

    International Nuclear Information System (INIS)

    Swann, P.F.; Mace, R.; Angeles, R.M.; Keefer, L.K.

    1983-01-01

    The maximal rates of metabolic oxidation of N-nitrosodimethylamine (NDMA) and N-nitrosodimethylamine-d6 (NDMA-d6) in vivo (VH and VD, respectively) have been measured by following 14CO2 exhalation in rats after intraperitoneal injection of the two 14C-labelled carcinogens at high doses (20 or 40 mg/kg). Complete deuteration of NDMA reduced only slightly the maximal rate of metabolism when the two substrates were administered separately (VH/VD approximately 1.2). However, much larger (approximately 4-fold) deuterium isotope effects were observed when mixtures of NDMA with NDMA-d6 were injected. These results are tentatively interpreted as evidence that C-H bond cleavage is not a rate limiting feature of overall metabolism, but that the complex between NDMA and the principal enzyme(s) metabolizing it in vivo freely equilibrates with unbound substrate. Single, large, intraperitoneal doses of NDMA and NDMA-d6 produced a similar alkylation of rat liver DNA and also of kidney DNA. However, a small oral dose (54 micrograms/kg) of NDMA-d6 produced 1/3 less alkylation of liver DNA and 3 times as much alkylation of kidney DNA as did an equimolar dose of NDMA. The reduction in alkylation of liver DNA correlates well with, and possibly explains, the decreased ability of NDMA-d6 to induce liver tumors in rats. The associated increase in the alkylation of kidney DNA suggests that this change is due to a decrease in the amount of nitrosamine removed from the portal blood on the first pass through the liver

  1. Effect of chronic renal failure with metabolic acidosis on alanine metabolism in isolated liver cells

    NARCIS (Netherlands)

    Cano, N.; Sturm, J. M.; Meijer, A. J.; El-Mir, M. Y.; Novaretti, R.; Reynier, J. P.; Leverve, X. M.

    2004-01-01

    Background Et aims: Decreased ureagenesis and gluconeogenesis from atanine have been reported during chronic renal failure in rat. This study addressed the respective roles of plasma-membrane transport and intracellular metabolism in these abnormalities of alanine pathways. Methods: In hepatocytes

  2. Dynamic Metabolic Disruption in Rats Perinatally Exposed to Low Doses of Bisphenol-A.

    Directory of Open Access Journals (Sweden)

    Marie Tremblay-Franco

    Full Text Available Along with the well-established effects on fertility and fecundity, perinatal exposure to endocrine disrupting chemicals, and notably to xeno-estrogens, is strongly suspected of modulating general metabolism. The metabolism of a perinatally exposed individual may be durably altered leading to a higher susceptibility of developing metabolic disorders such as obesity and diabetes; however, experimental designs involving the long term study of these dynamic changes in the metabolome raise novel challenges. 1H-NMR-based metabolomics was applied to study the effects of bisphenol-A (BPA, 0; 0.25; 2.5, 25 and 250 μg/kg BW/day in rats exposed perinatally. Serum and liver samples of exposed animals were analyzed on days 21, 50, 90, 140 and 200 in order to explore whether maternal exposure to BPA alters metabolism. Partial Least Squares-Discriminant Analysis (PLS-DA was independently applied to each time point, demonstrating a significant pair-wise discrimination for liver as well as serum samples at all time-points, and highlighting unequivocal metabolic shifts in rats perinatally exposed to BPA, including those exposed to lower doses. In BPA exposed animals, metabolism of glucose, lactate and fatty acids was modified over time. To further explore dynamic variation, ANOVA-Simultaneous Component Analysis (A-SCA was used to separate data into blocks corresponding to the different sources of variation (Time, Dose and Time*Dose interaction. A-SCA enabled the demonstration of a dynamic, time/age dependent shift of serum metabolome throughout the rats' lifetimes. Variables responsible for the discrimination between groups clearly indicate that BPA modulates energy metabolism, and suggest alterations of neurotransmitter signaling, the latter finding being compatible with the neurodevelopmental effect of this xenoestrogen. In conclusion, long lasting metabolic effects of BPA could be characterized over 200 days, despite physiological (and thus metabolic changes

  3. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  4. Lipid Peroxidation in Rat Liver using Different Vegetable Oils

    International Nuclear Information System (INIS)

    Eqbal Dauqan; Aminah Abdullah; Halimah Abdullah Sani

    2013-01-01

    The objective of the study was to evaluate the effect of different vegetable oils (Red Palm Olien (RPO), Palm Olein (PO), Corn Oil (CO) and Coconut Oil on lipid peroxidation of rat liver. One hundred and thirty two Sprague Dawley male rats were randomly divided into two groups. The first group contains seventy two rats were divided into twelve groups of 6 rats per group and were treated with different concentrations of RPO (5 %, 10 % and 15 %) for 2, 4 and 8 weeks. The second group contains sixty male rats were randomly divided into ten groups of 6 rats per group and were treated with 15 % of RPO, PO, CO and COC for 4 and 8 weeks. The results shows that after 8 weeks of treatment the malonaldehyde (MDA) value in RPO group was significantly lower (P≤0.05) than control or vegetable oils studied. These experiments suggested that red palm olein antioxidants present in rat diets may better attenuate peroxyl radical than other vegetable oil studied. (author)

  5. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    International Nuclear Information System (INIS)

    Moore, R.J.; Klevay, L.M.

    1989-01-01

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 μg Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of 67 Cu (3.3 μCi as chloride) was added to 1 g of feed and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t 1/2 (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats

  6. Virtual determination of liver and muscle glycogen obtained from fed rats and from 24-hour fasted rats

    Directory of Open Access Journals (Sweden)

    V.M.T.T. Trindidade et al

    2014-08-01

    Full Text Available Introduction: Glycogen is the storage polysaccharide of animals, composed by glucoseresidues forming a branched polymer. The liver glycogen metabolism and hepaticgluconeogenesis are important buffer systems of blood glucose in different physiological orpathological situations, such as, during a fast period. Fasting muscle glycogenolysis alsooccurs, however, the release of glucose into the bloodstream is negligible because themuscle doesn’t have the enzyme glucose-6-P phosphatase, which is present in the liver.Objectives: This panel presents a learning object, mediated by computer, which simulatesthe determination of liver and muscle glycogen obtained from fed rats and from 24-hourfasted rats Materials and Methods: At first, cartoons were planned in order to show themethodology procedures and biochemical fundamentals. The most representative imageswere selected, edited, organized in a scene menu and inserted into an animationdeveloped with the aid of the Adobe ® Flash 8 software. The validation of this object wasperformed by the students of Biochemistry I (Pharmacy-UFRGS from the secondsemester of 2009 until the second semester of 2013. Results and Discussion: Theanalysis of students' answers revealed that 83% of them attributed the excellence rate tothe navigation program, to the display format and to the learning help. Conclusion:Therefore, this learning object can be considered an adequate teaching resource as wellas an innovative support in the construction of theoretical and practical knowledge ofBiochemistry. Support: SEAD-UFRGSAvailable at: http://www.ufrgs.br/gcoeb/obtencaodosagemglicogenio/

  7. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    OpenAIRE

    Guangyue Su; Guangyue Su; Gang Chen; Gang Chen; Xiao An; Haifeng Wang; Haifeng Wang; Yue-Hu Pei; Yue-Hu Pei

    2017-01-01

    Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin.Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar)-induced liver and kidney toxicity.Results: The metabolic p...

  8. Comparison of CYP2D metabolism and hepatotoxicity of the myocardial metabolic agent perhexiline in Sprague-Dawley and Dark Agouti rats.

    Science.gov (United States)

    Licari, Giovanni; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2015-01-01

    1. Perhexiline, a chiral anti-anginal agent, may be useful to develop new cardiovascular therapies, despite its potential hepatotoxicity. 2. This study compared Dark Agouti (DA) and Sprague-Dawley (SD) rats, as models of perhexiline's metabolism and hepatotoxicity in humans. Rats (n = 4/group) received vehicle or 200 mg/kg/d of racemic perhexiline maleate for 8 weeks. Plasma and liver samples were collected to determine concentrations of perhexiline and its metabolites, hepatic function and histology. 3. Median (range) plasma and liver perhexiline concentrations in SD rats were 0.09 (0.04-0.13) mg/L and 5.42 (0.92-8.22) ng/mg, respectively. In comparison, DA rats showed higher (p < 0.05) plasma 0.50 (0.16-1.13) mg/L and liver 24.5 (9.40-54.7) ng/mg perhexiline concentrations, respectively, 2.5- and 3.7-fold higher cis-OH-perhexiline concentrations, respectively (p < 0.05), and lower plasma metabolic ratio (0.89 versus 1.55, p < 0.05). In both strains, the (+):(-) enantiomer ratio was 2:1. Perhexiline increased plasma LDH concentrations in DA rats (p < 0.05), but had no effect on plasma biochemistry in SD rats. Liver histology revealed lower glycogen content in perhexiline-treated SD rats (p < 0.05), but no effects on lipid content in either strain. 4. DA rats appeared more similar to humans with respect to plasma perhexiline concentrations, metabolic ratio, enantioselective disposition and biochemical changes suggestive of perhexiline-induced toxicity.

  9. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  10. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  11. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  12. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions.

    Science.gov (United States)

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki; Kitamura, Hiromi; Minato, Kumiko

    2017-05-20

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differences in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running.

    Science.gov (United States)

    Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2016-08-01

    We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss. Copyright © 2016 the American Physiological Society.

  14. Effects of thyroxine and 1-methyl, 2-mercaptoimidazol on phosphoinositides synthesis in rat liver

    Directory of Open Access Journals (Sweden)

    Krasilnikova Oksana A

    2004-12-01

    Full Text Available Abstract Background Phosphoinositides mediate one of the intracellular signal transduction pathways and produce a class of second messengers that are involved in the action of hormones and neurotransmitters on target cells. Thyroid hormones are well known regulators of lipid metabolism and modulators of signal transduction in cells. However, little is known about phosphoinositides cycle regulation by thyroid hormones. The present paper deals with phosphoinositides synthesis de novo and acylation in liver at different thyroid status of rats. Results The experiments were performed in either the rat liver or hepatocytes of 90- and 720-day-old rats. Myo-[3H]inositol, [14C]CH3COONa, [14C]oleic and [3H]arachidonic acids were used to investigate the phosphatidylinositol (PtdIns, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PtdInsP2 synthesis. 1-methyl, 2-mercaptoimidazol-induced hypothyroidism was associated with the decrease of myo-[3H]inositol and [3H]arachidonic acids incorporation into liver phosphoinositides and total phospholipids, respectively. The thyroxine (L-T4 injection to hypothyroid animals increased the hormones contents in blood serum and PtdInsP2 synthesis de novo as well as [3H]arachidonic acids incorporation into the PtdIns and PtdInsP2. Under the hormone action, the [14C]oleic acid incorporation into PtdIns reduced in the liver of hypothyroid animals. A single injection of L-T4 to the euthyroid [14C]CH3COONa-pre-treated animals or addition of the hormone to a culture medium of hepatocytes was accompanied by the rapid prominent increase in the levels of the newly synthesized PtdIns and PtdInsP2 and in the mass of phosphatidic acid in the liver or the cells. Conclusions The data obtained have demonstrated that thyroid hormones are of vital importance in the regulation of arachidonate-containing phosphoinositides metabolism in the liver. The drug-induced malfunction of thyroid gland noticeably changed the

  15. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  16. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  17. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  18. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  19. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  20. Methyleugenol hepatocellular cancer initiating effects in rat liver.

    Science.gov (United States)

    Williams, Gary M; Iatropoulos, Michael J; Jeffrey, Alan M; Duan, Jian-Dong

    2013-03-01

    Methyleugenol (MEG), a constituent of plants used in the human diet, is hepatocarcinogenic in rodents. In an experiment to elucidate its mode of action in rat liver, male F344 rats were administered MEG intragastrically at 3 doses per week for up to 16 weeks in an initiation phase, after which half the rats were fed 500 ppm phenobarbital (PB) in the diet to promote liver neoplasia and the other half were maintained on control diet for 24 weeks. At 8 and 16 week interim terminations, (32)P-nucleotide postlabeling assay revealed 3 adducts in livers of all MEG groups. The hepatocellular replicating fractions, measured by proliferating cell nuclear antigen immunohistochemistry, were doubled or more in all MEG groups. Hepatocellular altered foci, detected by glutathione S-transferase-placental type (π) immunohistochemistry, were present beginning with the high dose group at 8 weeks and extending to all MEG groups at 16 weeks. At the end of maintenance/promotion phase, the incidences, multiplicity and size of foci was similar between control and low dose groups, while those of mid and high dose groups were increased. Hepatocellular adenomas occurred in the mid and high dose groups, attaining higher multiplicity and size with PB. Thus, MEG had rapid initiating activity, reflecting the formation of DNA adducts and possibly cell proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Isolation and purification of rat liver morphine UDP-glucuronosyltransferase

    International Nuclear Information System (INIS)

    Puig, J.F.; Tephly, T.R.

    1986-01-01

    The enhancement of rat liver microsomal morphine (M) and 4-hydroxybiphenyl (4-HBP) UDP-glucuronyltransferase (UDPGT) activities by phenobarbital treatment has been proposed to represent increased activity of a single enzyme form, GT-2. They have separated M and 4-HBP UDPGT activities from Emulgen 911-solubilized microsomes obtained from livers of phenobarbital-treated Wistar rats. A sensitive assay procedure was developed to quantify M-UDPGT and 4-HBP-UDPGT activities using 14 C-UDP-glucuronic acid (UDPGA) and reversed phase C-18 minicolumns whereby the radioactive glucuronides were differentially eluted from labeled UDPGA. Trisacryl DEAE, and chromatofocusing procedures were employed to separate M-UDPGT and 4-HBP-UDPGT in the presence of exogenous phosphatidylcholine (PC). The PC is necessary to stabilize UDPGT activities. M-UDPGT was isolated to apparent homogeneity and displayed a monomeric molecular weight of 56,000 daltons on SDS-PAGE. It reacted with M but not with 4-HBP, bilirubin, p-nitrophenol, testosterone, androsterone, estrone, 4-aminobiphenyl or α-naphthylamine. 4-HBP-UDPGT did not react with M. Therefore, M and 4-HBP glucuronidations are catalyzed by separate enzymes in rat liver microsomes

  2. Fatty Liver Index and Lipid Accumulation Product Can Predict Metabolic Syndrome in Subjects without Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yuan-Lung Cheng

    2017-01-01

    Full Text Available Background. Fatty liver index (FLI and lipid accumulation product (LAP are indexes originally designed to assess the risk of fatty liver and cardiovascular disease, respectively. Both indexes have been proven to be reliable markers of subsequent metabolic syndrome; however, their ability to predict metabolic syndrome in subjects without fatty liver disease has not been clarified. Methods. We enrolled consecutive subjects who received health check-up services at Taipei Veterans General Hospital from 2002 to 2009. Fatty liver disease was diagnosed by abdominal ultrasonography. The ability of the FLI and LAP to predict metabolic syndrome was assessed by analyzing the area under the receiver operating characteristic (AUROC curve. Results. Male sex was strongly associated with metabolic syndrome, and the LAP and FLI were better than other variables to predict metabolic syndrome among the 29,797 subjects. Both indexes were also better than other variables to detect metabolic syndrome in subjects without fatty liver disease (AUROC: 0.871 and 0.879, resp., and the predictive power was greater among women. Conclusion. Metabolic syndrome increases the cardiovascular disease risk. The FLI and LAP could be used to recognize the syndrome in both subjects with and without fatty liver disease who require lifestyle modifications and counseling.

  3. P-31 MR spectroscopy of rat liver in situ

    International Nuclear Information System (INIS)

    Grivegnee, A.R.; Masin, F.; Marschalck, C.; Fruhling, J.; Jeanmart, L.

    1988-01-01

    A technique using a three-turn solenoid coil implanted between the two lobes of the liver was used for performing P-31 magnetic resonance spectroscopic measurement of the rat liver in vivo. Stress tests were performed with intraperitoneal and intravenous injections of fructose and glucagon. After intraperitoneal injection of fructose (1 mg/g), an increase in sugar phosphate levels (SP) occurred at the expense of inorganic phosphate (Pi) and adenosine triphosphate (ATP). The intravenous injection of fructose (1 mg/kg) was followed by an early increase in the SP line, which returned to its basal value 15 minutes after injection. The ATP level decreased concomitantly and stayed 20% under the basal level until the end of the experiment. The intravenous injection of glucagon ws followed by an important increase in the SP line, accompanied by a slight decrease in the Pi line without modification of the ATP levels. In conclusion, liver stress tests are feasible in vivo in rats with injection of fructose and glucagon. The results obtained are in concordance with the results obtained in humans. The authors are now performing these tests on pathologic livers

  4. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  5. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Science.gov (United States)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  6. Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.

    Science.gov (United States)

    Battezzati, Alberto; Bertoli, Simona

    2004-09-01

    The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.

  7. Catalase increases ethanol oxidation through the purine catabolism in rat liver.

    Science.gov (United States)

    Villalobos-García, Daniel; Hernández-Muñoz, Rolando

    2017-08-01

    Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H 2 O 2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  9. Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluk

    NARCIS (Netherlands)

    Oldenborg, V.; Vugt, F. van; Golde, L.M.G. van

    1. 1. The phospholipid composition of Fasciola hepatica, the common liver fluke, was compared to that of the liver of the host animals (rats and cattle). Considerable differences were found: monoacyl-sn-glycero-3-phosphorylcholine, hardly detectable in the liver, was found in significant amounts in

  10. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Julie Dupas

    2017-01-01

    Full Text Available Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; n=14 and fructose fed (FF; n=18, with a fructose enriched drink (20–25% w/v fructose in water for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly. Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides and early sign of liver malfunction (higher liver weight. Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia but not T2D.

  11. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    Science.gov (United States)

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  12. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    International Nuclear Information System (INIS)

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2007-01-01

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are ∼ 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts (∼ 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected

  13. Toxicological Aspects of Carbaryl on liver functions, lipid profile and thyroid hormones in male rats

    International Nuclear Information System (INIS)

    Afifi, E.A.A.

    2003-01-01

    The present study was undertaken to show the toxicological effects of daily oral doses of carbaryl on different metabolic activities through biochemical determinations in male rats by feeding diet treated with 28 mg/kg for four consecutive weeks, followed by one and two weeks of recovery periods. Results revealed disturbance in liver functions which were elucidated through marked increases of serum glutamic oxalacetic (SGOT), glutamic pyruvic (SGPT) transaminases and alkaline phosphatase (SALP). Carbaryl also induced hypoglycemia, increase in liver glycogen content, decrease in kidney and brain glycogen, decrease in serum bilirubin and total lipids, reduction in blood cholesterol, increase in serum calcium with decrease in serum inorganic phosphorus. Thyroxine hormone(T 4 ) was increased while triiodothyronine (T 3 ) was decreased

  14. Animal experiments to study the connection between the radioreaction of the RNA metabolism of the liver and the activity of the protein metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E

    1973-02-05

    After selective deep X-ray irradiation of rat livers with 200 KeV X-rays, an enhanced incorporation of tritium uridine into various RNA species is observed. The extent and the rate of the radioreaction could be modified by experimentally changing the metabolic status of the liver cells. Partial deproteinisation of the plasma by means of an exchange function lead to a marked rise in the RNA synthesis rate of the liver for a short period of time. Additional irradiation had an inhibiting and delaying effect on the induction-dependent increase in tritium uridine incorporation in the case of transfer-RNA and m-RNA, while there was an enhanced incorporation in the messenger RNA of the heavy ribosome and polymer fraction.

  15. Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours

    International Nuclear Information System (INIS)

    Wang, Huaijun; Li, Junjie; Keyzer, Frederik De; Yu, Jie; Feng, Yuanbo; Marchal, Guy; Ni, Yicheng; Chen, Feng; Nuyts, Johan

    2010-01-01

    To evaluate effects of a vascular-disrupting agent on rodent tumour models. Twenty rats with liver rhabdomyosarcomas received ZD6126 intravenously at 20 mg/kg, and 10 vehicle-treated rats were used as controls. Multiple sequences, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) with the microvascular permeability constant (K), were acquired at baseline, 1 h, 24 h and 48 h post-treatment by using 1.5-T MRI. [ 18 F]fluorodeoxyglucose micro-positron emission tomography ( 18 F-FDG μPET) was acquired pre- and post-treatment. The imaging biomarkers including tumour volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC) and K from MRI, and maximal standardised uptake value (SUV max ) from FDG μPET were quantified and correlated with postmortem microangiography and histopathology. In the ZD6126-treated group, tumours grew slower with higher necrosis ratio at 48 h (P max dropped at 24 h (P < 0.01). Relative K of tumour versus liver at 48 h correlated with relative vascular density on microangiography (r = 0.93, P < 0.05). The imaging biomarkers allowed morphological, functional and metabolic quantifications of vascular shutdown, necrosis formation and tumour relapse shortly after treatment. A single dose of ZD6126 significantly diminished tumour blood supply and growth until 48 h post-treatment. (orig.)

  16. In vivo incorporation of 1-14C-acetate into liver and plasma lipids of postnatally overfed rats

    International Nuclear Information System (INIS)

    Aust, L.; Noack, R.; Borchardt, M.; Akademie der Wissenschaften der DDR, Berlin-Buch. Forschungszentrum fuer Molekularbiologie und Medizin)

    1982-01-01

    Postnatal overnutrition due to breeding of rats in small nests (4 pups per dam) leads to distinct metabolic changes in later life stages even in conditions of ad libitum feeding. At an age of 5 months rats from small nests differ from those of large nests (14 pups per dam) in a significant higher level of liver triglycerides and cholesterol esters, whereas changes in plasma lipids concern only the increased cholesterol ester fraction. The relative distribution of in vivo incorporated 1- 14 C-acetate into liver lipids shows a higher moiety in the triglyceride fraction of animals from small nests but no changes of the relative distribution of activity among lipid fractions of plasma. These changes of lipid metabolism are discussed in relation to the development of an obese state of postnatally overfed animals. (author)

  17. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Xiaoxia Gao

    2018-01-01

    Full Text Available The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS (with depression and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  18. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  19. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2017-11-01

    Full Text Available Background: The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC. HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. Methods: A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS was performed. Results: Triacylglycerols (TAGs with the number of double bond (DB > 2 (except 56:5 and 56:4 TAG were significantly down-regulated; conversely, others (except 52:2 TAG were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylinositol (PI were altered in a certain way. Sphingomyelin (SM was up-regulated and ceramide (Cer were down-regulated in HCC tissues. Conclusions: To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH, may also be effective for the treatment of HCC.

  20. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  1. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Toczek, Marek [Department of Experimental Physiology and Pathophysiology Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok (Poland); Bielawska, Katarzyna [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Skrzydlewska, Elżbieta, E-mail: elzbieta.skrzydlewska@umb.edu.pl [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland)

    2016-06-15

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB{sub 1} receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB{sub 1} receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the

  2. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    International Nuclear Information System (INIS)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka; Toczek, Marek; Bielawska, Katarzyna; Skrzydlewska, Elżbieta

    2016-01-01

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB 1 receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB 1 receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the liver of

  3. Metformin increases liver accumulation of vitamin B12 - An experimental study in rats

    DEFF Research Database (Denmark)

    Greibe, E; Miller, J W; Foutouhi, S H

    2013-01-01

    AIMS/HYPOTHESIS: Patients treated with metformin exhibit low levels of plasma vitamin B(12) (B(12)), and are considered at risk for developing B(12) deficiency. In this study, we investigated the effect of metformin treatment on B(12) uptake and distribution in rats. METHODS: Sprague Dawley rats (n...... that metformin has no decreasing effect on the B(12) absorption. CONCLUSIONS/INTERPRETATION: These results show that metformin treatment increases liver accumulation of B(12), thereby resulting in decreases in circulating B(12) and kidney accumulation of the vitamin. Our data questions whether the low plasma B......(12) observed in patients treated with metformin reflects impaired B(12) status, and rather suggests altered tissue distribution and metabolism of the vitamin....

  4. Protective Effects of Agmatine against Chlorpromazine- Induced Toxicity in the Liver of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Dejanović Bratislav

    2016-03-01

    Full Text Available The metabolic pathways of chlorpromazine (CPZ toxicity were tracked by assessing oxidative/nitrosative stress markers. The main objective of the study was to test the hypothesis that agmatine (AGM prevents oxidative/nitrosative stress in the liver of Wistar rats 15 days after administration of CPZ. All tested substances were administered intraperitoneally (i.p. for 15 consecutive days. The rats were divided into four groups: the control group (C, 0.9 % saline solution, the CPZ group (CPZ, 38.7 mg/kg b.w., the CPZ+AGM group (AGM, 75 mg/kg b.w. immediately after CPZ, 38.7 mg/kg b.w. i.p. and the AGM group (AGM, 75 mg/kg b.w..

  5. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    International Nuclear Information System (INIS)

    Tanoue, Shirou; Uto, Hirofumi; Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2011-01-01

    Highlights: → Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. → Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. → Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. → Regulation of the TGF-β1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-α were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-α, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-β1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-β1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result from altered metabolic gene expression

  6. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    Energy Technology Data Exchange (ETDEWEB)

    Tanoue, Shirou [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2011-04-01

    Highlights: {yields} Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. {yields} Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. {yields} Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. {yields} Regulation of the TGF-{beta}1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-{alpha} were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-{alpha}, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-{beta}1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-{beta}1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result

  7. Metabolic Effects of Prolonged Melatonin Administration and Short-Term Fasting in Laboratory Rats

    Directory of Open Access Journals (Sweden)

    B. Bojková

    2006-01-01

    Full Text Available The aim of this work was to evaluate the effect of prolonged administration of the pineal hormone melatonin and short-term fasting on metabolic variables in male and female Wistar:Han rats. Melatonin (MEL, 4 μg/ml of tap water was administered daily since the 5th week of age. The control group drank tap water. Rats were fed a standard type of diet ad libitum and were kept in the light regimen L:D - 12:12 h. The experiment was terminated after 11 (variant B or 12 (variant A weeks of MEL administration. The animals were sacrificed by quick decapitation following overnight fasting (variant A or 48-h fasting (variant B. Selected organs and tissues were removed and weighed and selected metabolic variables in the serum and tissues were determined. MEL decreased body mass independent of food and water intake in both sexes. In males (variant A MEL increased the weight of the heart muscle, spleen and adrenals; it decreased the absolute weight of epididymal fat and increased serum corticosterone and phospholipids concentration in comparison with controls. In females, serum glucose decrease and liver triacylglycerols increase were found. After 48-h fasting (variant B liver, spleen and adrenal weight increase in MELdrinking females was found. In males MEL increased the thymus weight and decreased the epididymal fat weight. In both sexes MEL increased serum corticosterone and liver glycogen concentration; MEL increased serum glucose in males and serum cholesterol concentration in females. Changes in the evaluated variables were also related to fasting duration prior to decapitation. A 48-h fasting at the end of the prolonged MEL intake (variant B vs. A decreased the absolute liver weight in both sexes and the epididymal/periovarial fat weight, and increased thymus weight in males. In females it decreased the absolute heart muscle weight and increased the spleen weight. In males, 48-h fasting increased serum corticosterone and phospholipids concentration; it

  8. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Voltarelli Fabrício A

    2010-10-01

    Full Text Available Abstract Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD, insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G and a fructose-rich diet group (60% fructose. The animals were tested for maximal lactate-steady state (MLSS in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol. Another third were submitted to the training from 90 to 120 days (late protocol, and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.

  9. The influence of interferon alpha on the rat liver injured by chronic administration of carbon tetrachloride.

    Science.gov (United States)

    Madro, Agnieszka; Słomka, Maria; Celiński, Krzysztof; Chibowski, Daniel; Czechowska, Grazyna; Kleinrok, Zdzisław; Karpińska, Agnieszka

    2002-01-01

    Due to their complex and not fully known etiopathogenesis as well as difficulties in treatment, chronic hepatitis and cirrhosis still remain one of the main problems of hepatologists. Nowadays, the use of IFN alpha is considered the most effective method of treatment in chronic hepatitis. Recently, a new property of IFN, i.e. its effects on the reduction of fibrosis, has been discovered. The aim of the paper was to examine the effects of IFN alpha on biochemical parameters (AlAt and AspAt activities), on the metabolic function of the liver and its morphologic picture observed under the light and electron microscope after the 3- and 6-week CCl4-induced damage. The experiments were carried out in Wistar male rats. To evaluate the liver function, the test of aminophenazone elimination in the isolated perfused rat livers was used according to Miller modified by Hafte. Additionally, AspAt and AlAt activities were determined. The liver specimens were analysed under the light and electron microscope and using immunohistochemical methods. The findings show that after the 3-week CCl4-induced liver damage, IFN alpha does not significantly affect AlAt and AspAt activities, irrespective of the dose used. IFN alpha administered after the 6-week damage significantly changes those activities when the doses used are high. It was found that carbon tetrachloride does not result in evident cirrhotic changes, however it activates Ito cells, causes focal retraction of the stroma and fibrosis. The increased number of Ito cells in Disse's space observed in immunohistochemical and ultrastructural examinations is indicative of the activation of liver fibrotic processes following CCl4 administration in both variants used. IFN alpha substantially weakens fibrogenesis of the CCl4-damaged liver which is visible in the decreased number of Ito cells and weaker expression of the stroma retraction. Moreover, IFN alpha administered to the experimental animals after the CCl4-induced injury of the

  10. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces.

    Science.gov (United States)

    Xing, Jian-feng; You, Hai-sheng; Dong, Ya-lin; Lu, Jun; Chen, Si-ying; Zhu, Hui-fang; Dong, Qian; Wang, Mao-yi; Dong, Wei-hua

    2011-05-01

    To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, t(max2) and C(max2) for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t(1/2) and CL(int) value for scutellarin in male rats was significantly higher than that in female rats. The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CL(int) and lower absorption in male rats.

  11. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming.

    Science.gov (United States)

    Akil, Mustafa; Bicer, Mursel; Kilic, Mehmet; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague-Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-µm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.

  12. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver.

    Science.gov (United States)

    Riedel, S; Abel, S; Swanevelder, S; Gelderblom, W C A

    2015-04-01

    Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of alterations in total coenzyme A on metabolic pathways in the liver and heart

    International Nuclear Information System (INIS)

    Schlosser, C.A.S.

    1989-01-01

    The first set of experiments involved in vitro experiments using primary cultures of rat hepatocytes. A range of conditions were developed which resulted in cell cultures with variations in total CoA over a range of 1.3 to 2.9 nmol/mg protein with identical hormonal activation which simulated metabolic stress. Elevations of total CoA levels above that of controls due to preincubation with cyanamide plus pantothenate were correlated with diminished rates of total ketone body production, 3-hydroxybutyrate production and ratios of 3 hydroxybutyrate/acetoactetate with palmitate as substrate. In contrast, cells with elevated total CoA levels had higher rates of [ 14 C] CO 2 production from radioactive palmitate which implied greater flux of acetyl CoA units into the TCA cycle and less to the pathway of ketogenesis. The second set of experiments were designed to alter total CoA levels in vivo by maintaining rats on a chronic ethanol diet with or without pantothenate-supplementation. The effect of alterations of CoA on mitochondrial metabolism was evaluated by measuring substrate oxidation rates in liver and heat mitochondria as well as ketone body production with palmitoyl-1-carnitine as substrate

  14. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables

    Directory of Open Access Journals (Sweden)

    Hala M Ayoub

    2018-04-01

    Full Text Available Metabolic Syndrome (MetS is a complex disorder that predisposes an individual to Cardiovascular Diseases and type 2 Diabetes Mellitus. Proteomics and bioinformatics have proven to be an effective tool to study complex diseases and mechanisms of action of nutrients. We previously showed that substitution of the majority of carbohydrate in a high fat diet by purple potatoes (PP or purple carrots (PC improved insulin sensitivity and hypertension in an animal model of MetS (obese Zucker rats compared to a control sucrose-rich diet. In the current study, we used TMT 10plex mass tag combined with LC-MS/MS technique to study proteomic modulation in the liver (n = 3 samples/diet and adipose tissue (n = 3 samples/diet of high fat diet-fed rats with or without substituting sucrose for purple vegetables, followed by functional enrichment analysis, in an attempt to elucidate potential molecular mechanisms responsible for the phenotypic changes seen with purple vegetable feeding. Protein folding, lipid metabolism and cholesterol efflux were identified as the main modulated biological themes in adipose tissue, whereas lipid metabolism, carbohydrate metabolism and oxidative stress were the main modulated themes in liver. We propose that enhanced protein folding, increased cholesterol efflux and higher free fatty acid (FFA re-esterification are mechanisms by which PP and PC positively modulate MetS pathologies in adipose tissue, whereas, decreased de novo lipogenesis, oxidative stress and FFA uptake, are responsible for the beneficial effects in liver. In conclusion, we provide molecular evidence for the reported metabolic health benefits of purple carrots and potatoes and validate that these vegetables are good choices to replace other simple carbohydrate sources for better metabolic health.

  15. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  16. Effect of Fenugreek (Trigonella Foenum-Graecum) Supplementation on Radiation-Induced Oxidative Stress in Liver and Kidney of Rats

    Energy Technology Data Exchange (ETDEWEB)

    EI-Tawil, G A [Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbances. Fenugreek (Trigonella foenumgraecum L. Leguminosae), one of the oldest medicinal plants rich in polyphenolic compounds is known to possess antioxidant properties. The present study was designed to determine the possible protective effect of fenugreek, against {gamma}-radiation-induced oxidative stress in liver and kidney tissues of rats. In parallel, the alteration in the activity of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as markers of liver function, creatinine and urea levels as markers of kidney function. In addition, serum glucose and insulin levels were determined as markers for carbohydrate metabolism. Irradiated rats were whole body exposed to 3.5 Gy (Acute dose) {gamma}-radiations. Fenugreek-treated irradiated rats received 1g fenugreek seed powder/kg body weight/day, by gavages, during 7 days before irradiation. Animals were sacrificed on the 1 sl day after irradiation. The results obtained demonstrated that exposure to ionizing radiation induced significant decreases in SOD and CAT activities and GSH content associated to significant increase of TBARS levels in liver and kidney. Fenugreek treatment has significantly attenuated radiation-induced oxidative stress in both tissues, which was substantiated by the significant amelioration of serum ALP, AST and ALT activities, creatinine, urea, glucose, and insulin levels. It could be concluded that fenugreek would protect from oxidative damage and metabolic disturbances induced by ionizing irradiation.

  17. Effect of Fenugreek (Trigonella Foenum-Graecum) Supplementation on Radiation-Induced Oxidative Stress in Liver and Kidney of Rats

    International Nuclear Information System (INIS)

    EI-Tawil, G.A.

    2009-01-01

    Whole body exposure to ionizing radiation provokes oxidative damage, organ dysfunction and metabolic disturbances. Fenugreek (Trigonella foenumgraecum L. Leguminosae), one of the oldest medicinal plants rich in polyphenolic compounds is known to possess antioxidant properties. The present study was designed to determine the possible protective effect of fenugreek, against γ-radiation-induced oxidative stress in liver and kidney tissues of rats. In parallel, the alteration in the activity of serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as markers of liver function, creatinine and urea levels as markers of kidney function. In addition, serum glucose and insulin levels were determined as markers for carbohydrate metabolism. Irradiated rats were whole body exposed to 3.5 Gy (Acute dose) γ-radiations. Fenugreek-treated irradiated rats received 1g fenugreek seed powder/kg body weight/day, by gavages, during 7 days before irradiation. Animals were sacrificed on the 1 sl day after irradiation. The results obtained demonstrated that exposure to ionizing radiation induced significant decreases in SOD and CAT activities and GSH content associated to significant increase of TBARS levels in liver and kidney. Fenugreek treatment has significantly attenuated radiation-induced oxidative stress in both tissues, which was substantiated by the significant amelioration of serum ALP, AST and ALT activities, creatinine, urea, glucose, and insulin levels. It could be concluded that fenugreek would protect from oxidative damage and metabolic disturbances induced by ionizing irradiation

  18. Liver fat content in type 2 diabetes: relationship with hepatic perfusion and substrate metabolism

    NARCIS (Netherlands)

    Rijzewijk, Luuk J.; van der Meer, Rutger W.; Lubberink, Mark; Lamb, Hildo J.; Romijn, Johannes A.; de Roos, Albert; Twisk, Jos W.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2010-01-01

    Hepatic steatosis is common in type 2 diabetes. It is causally linked to the features of the metabolic syndrome, liver cirrhosis, and cardiovascular disease. Experimental data have indicated that increased liver fat may impair hepatic perfusion and metabolism. The aim of the current study was to

  19. Metabolic adaptations in models of fatty liver disease : Of mice and math

    NARCIS (Netherlands)

    Hijmans, Brenda

    2017-01-01

    The increasing incidence of overweight is accompanied by a plethora of medical symptoms together called the metabolic syndrome. Non-alcoholic fatty liver disease, characterized by persistent storage of lipids in the liver, is regarded as the hepatic component of the metabolic syndrome. An imbalance

  20. Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction

    Science.gov (United States)

    Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the res...

  1. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    International Nuclear Information System (INIS)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu; Cheng, Xing-Guo; Liu, Jie

    2014-01-01

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels

  2. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China); Cheng, Xing-Guo [Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439 (United States); Liu, Jie, E-mail: Jieliu@zmc.edu.cn [Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003 (China)

    2014-10-15

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.

  3. Water metabolism and modification of tritium excretion in the rat

    International Nuclear Information System (INIS)

    Ichimasa, Y.; Akita, Y.

    1982-01-01

    1. The intake and excretion of tritium were studied in rats exposed to tritiated water vapor. The metabolism of tritium was also investigated in rats given single administrations of tritiated water and in rats given daily administrations (per os or i.p.). The results were essentially in accord with those reported previously. 2. Amounts of drinking water consumed and urine excreted by rats drinking water with 0.15% saccharin were 1.5 to 2 times higher than in rats drinking tap water. The tritium activity in various tissues of rats drinking water with 0.15% saccharin decreased to about half of that of rats drinking tap water. A similar tendency was observed also in rats drinking beer. The diuretic agent sodium acetazolamide also enhanced the urinary excretion of tritium. (author)

  4. Effect of irradiation and of cysteamine on rat liver mitochondria

    International Nuclear Information System (INIS)

    Braquet, Monique.

    1979-06-01

    The aim of this work was to determine: the effects of a cobalt 60 gamma irradiation received by an animal, the biological repercussions of the preliminary administration of cysteamine to the animal exposed. To this end the amount of damage caused by in vivo irradiation of rats was estimated at three levels: on the whole body; on an important organ, the liver; on a specific organite, the mitochondrion. The methods of investigation used fall mainly within the province of biochemical technology. Studies on the effects of ionizing radiations on rats irradiated for ten days at 900 roentgens showed a generalized attack on the whole system, known as the ''Acute Irradiation Syndrome'' and divisible into three phases: stage one, initial phase involving loss of weight and destruction of the liver. These symptoms appear early and reach a paroxysm on the 4th day after irradiation. Stage two, remission phase (from the 5th to the 8th day) when the weight variations become stabilised. Stage three, last phase, often leading to the death between the 9th and 10th days. During the same 10-day period, on the same irradiated rats, the changes in enzymatic systems were followed in order to estimate the magnitude of peroxidative phenomena within a subcellular particle such as the mitochondrion. The results obtained prove a strong disorganisation of the mitochondrial function [fr

  5. Effect of Creosote Bush-Derived NDGA on Expression of Genes Involved in Lipid Metabolism in Liver of High-Fructose Fed Rats: Relevance to NDGA Amelioration of Hypertriglyceridemia and Hepatic Steatosis.

    Directory of Open Access Journals (Sweden)

    Haiyan Zhang

    Full Text Available Nordihydroguaiaretic acid (NDGA, the main metabolite of Creosote bush, has been shown to have profound effects on the core components of the metabolic syndrome (MetS, lowering blood glucose, free fatty acids (FFA and triglyceride (TG levels in several models of dyslipidemia, as well as improving body weight (obesity, insulin resistance, diabetes and hypertension, and ameliorating hepatic steatosis. In the present study, a high-fructose diet (HFrD fed rat model of hypertriglyceridemia was employed to further delineate the underlying mechanism by which NDGA exerts its anti-hypertriglyceridemic action. In the HFrD treatment group, NDGA administration by oral gavage decreased plasma levels of TG, glucose, FFA, and insulin, increased hepatic mitochondrial fatty acid oxidation and attenuated hepatic TG accumulation. qRT-PCR measurements indicated that NDGA treatment increased the mRNA expression of key fatty acid transport (L-FABP, CD36, and fatty acid oxidation (ACOX1, CPT-2, and PPARα transcription factor genes and decreased the gene expression of enzymes involved in lipogenesis (FASN, ACC1, SCD1, L-PK and ChREBP and SREBP-1c transcription factors. Western blot analysis indicated that NDGA administration upregulated hepatic insulin signaling (P-Akt, AMPK activity (P-AMPK, MLYCD, and PPARα protein levels, but decreased SCD1, ACC1 and ACC2 protein content and also inactivated ACC1 activity (increased P-ACC1. These findings suggest that NDGA ameliorates hypertriglyceridemia and hepatic steatosis primarily by interfering with lipogenesis and promoting increased channeling of fatty acids towards their oxidation.

  6. Milk improved the metabolic syndrome in obese ß rats

    Directory of Open Access Journals (Sweden)

    María Catalina Olguin

    2014-02-01

    Full Text Available The response of adult spontaneously obese rats from the IIMb/Beta strain fed a high calcium skimmed milk diet (MHCa, high calcium from carbonate (HCa and a normal AIN 93 diet during 45 days was evaluated. Body weight, food intake and fecal fat excretion were measured. At the end of the experiment rats were euthanized, abdominal fat pads and livers were excised and weighed. Blood and liver triacylglycerols, total cholesterol and fractions were quantified. Body weight increase and abdominal fat pads in the MHCa group were significantly lower than in the other two. Plasma triacylglycerols, total and LDL-cholesterol were diminished in the MHCa group. Fecal lipid excretion was increased in the adult MHCa group. Total liver lipids and triacylglycerols showed a significant diminution in the MHCa group. These results suggest that calcium and other bioactive compounds from milk, most probably present in whey fraction, and not calcium carbonate exerted an "anti-obesity" effect on these rats.

  7. [Effect of acute biliary pancreatitis on liver metabolism of phenazone].

    Science.gov (United States)

    Hartleb, M; Nowak, A; Nowakowska-Duława, E; Mańczyk, I; Becker, A; Kacperek, T

    1990-03-01

    In 22 patients with acute pancreatitis caused by biliary calculi and 9 healthy controls the rate of hepatic elimination of phenazone was measured. The aim of the study was evaluation of the oxidative-detoxicating action of the liver in this disease in relation to its severity. In pancreatitis patients the half-time (T2) of phenazone was significantly (p less than 0.01 longer than in healthy subjects (23.6 +/- 10.5 vs 13.2 +/- 7.2 hrs). The T2 of phenazone was not correlated with the concentrations of transaminases, bilirubin and prothrombin, but was correlated positively with the concentration of hepatic lactic dehydrogenase (p less than 0.001). In the initial stage of pancreatitis the T2 of phenazone was without prognostic significance and showed no agreement with Ranson's clinical-laboratory classification of the severity of the disease. The degree of impairment of the hepatic metabolism of phenazone measured with the percent difference between T2 of phenazone in both tests was significantly (p less than 0.05) greater in the group of patients with complications than in those without pancreatitis complications (70.7 +/- 64.4% vs 21.4 +/- 16.2%). Biliary pancreatitis impairs the oxidative-reductive function of the liver proportionally to the degree of hepatic lactic dehydrogenase in the serum. Evaluation of the rate of hepatic elimination of phenazone in the initial stage of this pancreatitis was without prognostic importance for the severity of the disease.

  8. Liver, but not muscle, has an entrainable metabolic memory.

    Directory of Open Access Journals (Sweden)

    Sheng-Song Chen

    Full Text Available Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow or a simple nutrient diet (ND that was given either once daily (ND-4 or infused continuously (ND-C. Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU and muscle (MGU glucose uptake and oxidation were assessed at euglycemia (120 mg/dl and hyperglycemia (200 mg/dl in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4. Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.

  9. The adverse effect of 4-tert-octylphenol on fat metabolism in pregnant rats via regulation of lipogenic proteins.

    Science.gov (United States)

    Kim, Jun; Kang, Eun-Jin; Park, Mee-Na; Kim, Ji-Eun; Kim, Seung-Chul; Jeung, Eui-Bae; Lee, Geun-Shik; Hwang, Dae-Youn; An, Beum-Soo

    2015-07-01

    Alkylphenols such as 4-tert-octylphenol (OP), nonylphenol, and bisphenol A are classified as endocrine-disrupting chemicals (EDCs). Digestion and metabolism of food are controlled by many endocrine factors, including insulin, glucagon, and estrogen. These factors are differentially regulated during pregnancy. The alteration of nutritional intake and fat metabolism may affect the maintenance of pregnancy and supplementation of nutrients to the fetus, and therefore can cause severe metabolic diseases such as ketosis, marasmus and diabetes mellitus in pregnant individuals. In this study, we examined the effects of OP on fat metabolism in pregnant rats. Ethinyl estradiol (EE) was also administered as an estrogenic positive control. In our results, rats treated with OP showed significantly reduced body weights compared to the control group. In addition, histological analysis showed that the amount of fat deposited in adipocytes was reduced by OP treatment. To study the mechanism of action of OP in fat metabolism, we examined the expression levels of fat metabolism-associated genes in rat adipose tissue and liver by real-time PCR. OP and EE negatively regulated the expression of lipogenic enzymes, including FAS (fatty acid synthase), ACC-1 (acetyl-CoA carboxylase-1), and SCD-1 (stearoyl-CoA desaturase-1). The levels of lipogenic enzyme-associated transcription factors such as C/EBP-α (CAAT enhancer binding protein alpha) and SREBP-1c (sterol regulatory element binding protein-1c) were also reduced in both liver and adipose tissue. In summary, these findings suggest that OP has adverse effects on fat metabolism in pregnant rats and inhibits fat deposition via regulating lipogenic genes in the liver and adipose tissue. The altered fat metabolism by OP may affect the nutrition balance during pregnancy and can cause metabolism-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Carbon-14 tracer studies in rat-liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate

    International Nuclear Information System (INIS)

    Muellhofer, G.; Schwab, A.; Mueller, C.; Stetten, C. von; Gruber, E.

    1977-01-01

    The intracellular events in the metabolic pathway of gluconeogenesis from lactate and pyruvate in liver tissue were assumed to be understood. Nevertheless the results of several 14 C-tracer experiments gave rise to the postulation of still unknown intracellular interactions under this condition. A contribution was made to the solution of this problem by using different 14 C labelled tracers such as [1- 14 C]lactate or pyruvate and [2- 14 C]lactate or pyruvate. [ 14 C]bicarbonate and [1- 14 C]-octanoate in perfusion experiments with livers from rats under conditions of gluconeogenesis from lactate and pyruvate. The 14 C labelling patterns of intracellular metabolities such as malate, citrate, phosphoenolpyruvate, phosphoglycerate and newly synthesized glucose were analysed under different conditions. A comparison with values calculated by using metabolic models based on the generally accepted concepts of intracellular interactions showed some fundamental discrepancies which justify the postulation. (orig./MG) [de

  11. Influence of sex hormones on relative quantities of multiple species of cytochrome P-450 in rat liver microsomes

    International Nuclear Information System (INIS)

    Fujita, S.; Peisach, J.; Chevion, M.; Hebrew Univ., Jerusalem

    1981-01-01

    EPR spectra of rat liver microsomes from male, female and hormonally-treated castrated hepatectomized rats were studied. The spectra, especially in the region of gsub(max) suggested a heterogeneity of local environments of the low spin ferric heme indicative of multiple structures for cytochrome P-450. Certain features in the spectrum correlated with sexual differences. It is suggested that the changes in the relative amplitudes of the EPR features represent differences in the relative abundance of the individual proteins in the mixture that, in turn, are related to the sexual differences of metabolic patterns for reactions catalyzed by cytochrome P-450. (author)

  12. The Metabolism of Tetralin in Fischer 344 Rats

    Science.gov (United States)

    1986-04-01

    would die from the disease . The relevance of nephropathy observed in male rats exposed to various hydrocarbons to the occurrence of renal neoplasia in man...34 often obscure pathologic evaluations. "Old-rat nephropathy" is a common degenerative kidney disease predominantly seen in the male rat. By careful...studies have been performed with n-hexane and n-heptane to characterize their metabolism and role in neurotoxicity (Perbellini et al., 1982; Bahima et

  13. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-01-01

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α 2 -macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic

  14. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  15. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats

    Directory of Open Access Journals (Sweden)

    M. Ueno

    2000-12-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2 in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05. There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05 in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2 phosphorylation, to 83 ± 5% (P<0.05 in liver and to 77 ± 4% (P<0.05 in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

  16. Enantioselective metabolism of hydroxychloroquine employing rats and mice hepatic microsomes

    Directory of Open Access Journals (Sweden)

    Carmem Dickow Cardoso

    2009-12-01

    Full Text Available Hydroxychloroquine (HCQ is an important chiral drug used, mainly, in the treatment of rheumatoid arthritis, systemic lupus erythematosus and malaria, and whose pharmacokinetic and pharmacodynamic properties look to be stereoselective. Respecting the pharmacokinetic properties, some previous studies indicate that the stereoselectivity could express itself in the processes of metabolism, distribution and excretion and that the stereoselective metabolism looks to be a function of the studied species. So, the in vitro metabolism of HCQ was investigated using hepatic microsomes of rats and mice. The microsomal fraction of livers of Wistar rats and Balb-C mice was separated by ultracentrifugation and 500 μL were incubated for 180 minutes with 10 μL of racemic HCQ 1000 μg mL-1. Two stereospecific analytical methods, high performance liquid chromatography (HPLC and capillary electrophoresis (CE, were used to separate and quantify the formed metabolites. It was verified that the main formed metabolite is the (--(R-desethyl hydroxychloroquine for both animal species.A hidroxicloroquina (HCQ é um importante fármaco quiral usado, principalmente, no tratamento de artrite reumatóide, lupus eritematoso sistêmico e malária e cujas propriedades farmacocinéticas e farmacodinâmicas parecem ser estereosseletivas. Em relação às propriedades farmacocinéticas, alguns estudos prévios indicam que a estereosseletividade pode se expressar nos processos de metabolismo, distribuição e excreção e que o metabolismo estereosseletivo parece ser função da espécie estudada. Sendo assim, o metabolismo in vitro da HCQ foi investigado usando microssomas de fígado de ratos e de camundongos. A fração microssômica de fígados de ratos Wistar e de camundongos Balb-C foi isolada por ultracentrifugação e 500 μL foram incubados por 180 minutos com 10 μL de HCQ racêmica 1000 μg mL-1. Dois métodos analíticos estereoespecíficos, por cromatografia líquida de

  17. Tissue distribution, disposition, and metabolism of cyclosporine in rats

    International Nuclear Information System (INIS)

    Wagner, O.; Schreier, E.; Heitz, F.; Maurer, G.

    1987-01-01

    Tissue distribution, disposition, and metabolism of 3 H-cyclosporine were studied in rats after single and repeated oral doses of 10 and 30 mg/kg and after an iv dose of 3 mg/kg. The oral doses of 10 and 30 mg/kg were dissolved in polyethylene glycol 200/ethanol or in olive oil/Labrafil/ethanol. Absorption from both formulations was slow and incomplete, with peak 3 H blood levels at 3-4 hr. Approximately 30% of the radioactive dose was absorbed, which is consistent with oral bioavailability data for cyclosporine. More than 70% of the radioactivity was excreted in feces and up to 15% in urine. Elimination via the bile accounted for 10 and 60% of the oral and iv doses, respectively. Since unchanged cyclosporine predominated in both blood and tissues at early time points, the half-lives of the distribution phases (t 1/2 alpha) of parent drug and of total radioactivity were similar. In blood, kidney, liver, and lymph nodes, t 1/2 alpha of cyclosporine ranged from 6-10 hr. Elimination of radioactivity from the systemic circulation was multiphasic, with a terminal half-life of 20-30 hr. 3 H-Cyclosporine was extensively distributed throughout the body, with highest concentrations in liver, kidney, endocrine glands, and adipose tissue. The concentrations of both total radioactivity and parent drug were greater in tissues than in blood, which is consistent with the high lipid solubility of cyclosporine and some of its metabolites. Skin and adipose tissue were the main storage sites for unchanged cyclosporine. Elimination half-lives were slower for most tissues than for blood and increased with multiple dosing. The amount of unchanged drug was negligible in urine and bile

  18. Purification and characterization of rat liver minoxidil sulphotransferase.

    Science.gov (United States)

    Hirshey, S J; Falany, C N

    1990-01-01

    Minoxidil (Mx), a pyrimidine N-oxide, is used therapeutically as an antihypertensive agent and to induce hair growth in patients with male pattern baldness. Mx NO-sulphate has been implicated as the agent active in producing these effects. This paper describes the purification of a unique sulphotransferase (ST) from rat liver cytosol that is capable of catalysing the sulphation of Mx. By using DEAE-Sepharose CL-6B chromatography, hydroxyapatite chromatography and ATP-agarose affinity chromatography, Mx-ST activity was purified 240-fold compared with the activity in cytosol. The purified enzyme was also capable of sulphating p-nitrophenol (PNP) at low concentrations (less than 10 microM). Mx-ST was purified to homogeneity, as evaluated by SDS/PAGE and reverse-phase h.p.l.c. The active form of the enzyme had a molecular mass of 66,000-68,000 Da as estimated by gel exclusion chromatography and a subunit molecular mass of 35,000 Da. The apparent Km values for Mx, 3'-phosphoadenosine 5'-phosphosulphate and PNP were 625 microM, 5.0 microM and 0.5 microM respectively. However, PNP displayed potent substrate inhibition at concentrations above 1.2 microM. Antibodies raised in rabbits to the pure enzyme detected a single band in rat liver cytosol with a subunit molecular mass of 35,000 Da, as determined by immunoblotting. The anti-(rat Mx-ST) antibodies also reacted with the phenol-sulphating form of human liver phenol sulphotransferase, suggesting some structural similarity between these proteins. Images Fig. 5. Fig. 6. Fig. 7. PMID:2241904

  19. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  20. Effects of triiodothyronine on turnover rate and metabolizing enzymes for thyroxine in thyroidectomized rats.

    Science.gov (United States)

    Nagao, Hidenori; Sasaki, Makoto; Imazu, Tetsuya; Takahashi, Kenjo; Aoki, Hironori; Minato, Kouichi

    2014-10-29

    Previous studies in rats have indicated that surgical thyroidectomy represses turnover of serum thyroxine (T4). However, the mechanism of this process has not been identified. To clarify the mechanism, we studied adaptive variation of metabolic enzymes involved in T4 turnover. We compared serum T4 turnover rates in thyroidectomized (Tx) rats with or without infusion of active thyroid hormone, triiodothyronine (T3). Furthermore, the levels of mRNA expression and activity of the metabolizing enzymes, deiodinase type 1 (D1), type 2 (D2), uridine diphosphate-glucuronosyltransferase (UGT), and sulfotransferase were also compared in several tissues with or without T3 infusion. After the T3 infusion, the turnover rate of serum T4 in Tx rats returned to normal. Although mRNA expression and activity of D1 decreased significantly in both liver and kidneys without T3 infusion, D2 expression and activity increased markedly in the brain, brown adipose tissue, and skeletal muscle. Surprisingly, hepatic UGT mRNA expression and activity in Tx rats increased significantly in comparison with normal rats, and returned to normal after T3 infusion. This study suggests that repression of the disappearance of serum T4 in rats after Tx is a homeostatic response to decreased serum T3 concentrations. Additionally, T4 glucuronide is a storage form of T4, but may also have biological significance. These results suggest strongly that repression of deiodination of T4 by D1 in the liver and kidneys plays a major role in thyroid hormone homeostasis in Tx rats, and that hepatic UGT also plays a key role in this mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Binders of intravenously administered zinc 65 in rat liver cytoplasm

    International Nuclear Information System (INIS)

    Stortenbeek, A.J.; Hamer, C.J.A. van den.

    1976-01-01

    The fate of intravenously injected trace amounts of 65 Zn 2+ in the rat was studied over a period of ten days after injection. Tissue distributions were determined and a special study was made of 65 Zn-binders in liver cytoplasm. A total of six 65 Zn-binding fractions was found and a tentative identification of the main 65 Zn-binders in these six fractions is given using the collected data regarding their apparent molecular weight, time dependent prominence and content of stable zinc

  2. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    Science.gov (United States)

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  5. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  6. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale).

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-09-06

    Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.

  7. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  8. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  9. Effect of bitter gourd and spent turmeric on glycoconjugate metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Vijayalakshmi, B; Kumar, G Suresh; Salimath, P V

    2009-01-01

    Changes in glycoconjugate metabolism during the development of diabetic complications and their modulation by feeding bitter gourd and spent turmeric as fiber-rich source. This was studied by measuring the contents of total sugar, uronic acid, amino sugar, and sulfate in the streptozotocin-induced diabetic rats. Total sugar content decreased in liver, spleen, and brain, while an increase was observed in heart and lungs. Uronic acid content in liver, spleen, and brain decreased, and marginal increase was observed in testis. Amino sugar content decreased in liver, spleen, lungs and heart during diabetes, and augmentation was observed to different extents. Decrease in sulfation of glycoconjugates was observed in liver, spleen, lungs and heart during diabetes and was significantly ameliorated by bitter gourd and spent turmeric, except brain. Protein content decreased in liver, while an increase was observed in brain. The studies clearly showed alteration in glycoconjugate metabolism during diabetes and amelioration to different extents by feeding bitter gourd and spent turmeric. Improvement is due to slow release of glucose by fiber in the gastrointestinal track and short-chain fatty acid production from fiber by colon microbes.

  10. Increased Sensitivity of the Circadian System to Temporal Changes in the Feeding Regime of Spontaneously Hypertensive Rats - A Potential Role for Bmal2 in the Liver

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Sládek, Martin; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2013-01-01

    Roč. 8, č. 9 (2013), e75690 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian * clock gene * metabolism * liver * feeding regime * Bmal2 * spontaneously hypertensive rat Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  11. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice[S

    Science.gov (United States)

    Palmisano, Brian T.; Le, Thao D.; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M.

    2016-01-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. PMID:27354419

  12. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Science.gov (United States)

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    Science.gov (United States)

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  14. Influence of age and magnesium on calcium metabolism in rats

    International Nuclear Information System (INIS)

    McElroy, S.T.; Link, J.E.; Dowdy, R.P.; Zinn, K.R.; Ellersieck, M.R.

    1991-01-01

    This study evaluates the effect of dietary magnesium concentration on calcium metabolism in rats of differing ages. Young (3 wk) and old (18 mo) Fischer 344 rats were fed the AIN-76A diet modified to contain either low (218 mg/kg) or adequate (419 mg/kg) Mg for 4 wk. Some rats subsequently underwent a metabolic balance study (12 d duration). Other rats were gavaged with approximately 220 KBq (6 microCi) of 47 Ca; daily fecal and urine collections were made and periodic whole body radioactivity determined. Femurs were removed and analyzed. Calcium retention and balance were not affected by Mg in young rats. In old rats low Mg intake increased apparent Ca balance. Young rats retained about 3.25 times more of the original dose of 47 Ca than did old rats. Young rats retained more 47 Ca in the femur than did old rats; Mg intake had little effect. Aging accelerated Ca turnover rate, and whole body retention data suggest that adequate Mg does not significantly reduce Ca turnover

  15. Fatty liver as a risk factor for progression from metabolically healthy to metabolically abnormal in non-overweight individuals.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Hamaguchi, Masahide; Fukuda, Takuya; Ohbora, Akihiro; Kojima, Takao; Fukui, Michiaki

    2017-07-01

    Recent studies identified that metabolically abnormal non-obese phenotype is a risk factor for cardiovascular diseases. However, little is known about risk factor for progression from metabolically healthy non-overweight to metabolically abnormal phenotype. We hypothesized that fatty liver had a clinical impact on progression from metabolically healthy non-overweight to metabolically abnormal phenotype. In this retrospective cohort study, 14,093 Japanese (7557 men and 6736 women), who received the health-checkup program from 2004 to 2012, were enrolled. Overweight and obesity were defined as body mass index 23.0-25.0 and ≥25.0 kg/m 2 . Four metabolic factors (impaired fasting glucose, hypertension, hypertriglyceridemia and low high density lipoprotein-cholesterol concentration) were used for definition of metabolically healthy (less than two factors) or metabolically abnormal (two or more). We divided the participants into three groups: metabolically healthy non-overweight (9755 individuals, men/women = 4290/5465), metabolically healthy overweight (2547 individuals, 1800/747) and metabolically healthy obesity (1791 individuals, 1267/524). Fatty liver was diagnosed by ultrasonography. Over the median follow-up period of 5.3 years, 873 metabolically healthy non-overweight, 512 metabolically healthy overweight and 536 metabolically healthy obesity individuals progressed to metabolically abnormal. The adjusted hazard risks of fatty liver on progression were 1.49 (95% confidence interval 1.20-1.83, p = 0.005) in metabolically healthy non-overweight, 1.37 (1.12-1.66, p = 0.002) in metabolically healthy overweight and 1.38 (1.15-1.66, p overweight individuals.

  16. Rat liver contains a limited number of binding sites for hepatic lipase

    NARCIS (Netherlands)

    G.C. Schoonderwoerd (Kees); A.J.M. Verhoeven (Adrie); H. Jansen (Hans)

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the

  17. Effect of Salvia miltiorrhiza Bge extract on liver cirrhosis in rats | Li ...

    African Journals Online (AJOL)

    Purpose: To explore the effects of Salvia miltiorrhiza Bge.extract(SMBE) on diethylnitrosamine(DEN)- induced liver cirrhosis in rats. Methods: SMBE was obtained by extracting dried Salvia miltiorrhiza Bge. in water. Liver cirrhosis was induced in Wistar rats by injecting diethylnitrosamine in abdominal cavity once a week for ...

  18. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    Science.gov (United States)

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  19. Hepatoprotective Effects of Chinese Medicine Herbs Decoction on Liver Cirrhosis in Rats

    Directory of Open Access Journals (Sweden)

    Nor Aziyah Mat-Rahim

    2017-01-01

    Full Text Available Hepatoprotective and curative activities of aqueous extract of decoction containing 10 Chinese medicinal herbs (HPE-XA-08 were evaluated in Sprague–Dawley albino rats with liver damage induced by thioacetamide (TAA. These activities were assessed by investigating the liver enzymes level and also histopathology investigation. Increases in alkaline phosphatase (ALP and gamma-glutamyl transferase (GGT levels were observed in rats with cirrhotic liver. No significant alterations of the liver enzymes were observed following treatment with HPE-XA-08. Histopathology examination of rats treated with HPE-XA-08 at 250 mg/kg body weight, however, exhibited moderate liver protective effects. Reduced extracellular matrix (ECM proteins within the hepatocytes were noted in comparison to the cirrhotic liver. The curative effects of HPE-XA-08 were observed with marked decrease in the level of ALP (more than 3x and level of GGT (more than 2x in cirrhotic rat treated with 600 mg/kg body weight HPE-XA-08 in comparison to cirrhotic rat treated with just water diluent. Reversion of cirrhotic liver to normal liver condition in rats treated with HPE-XA-08 was observed. Results from the present study suggest that HPE-XA-08 treatment assisted in the protection from liver cirrhosis and improved the recovery of cirrhotic liver.

  20. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver.

    Science.gov (United States)

    Miyamoto, Maki; Iwasaki, Shinji; Chisaki, Ikumi; Nakagawa, Sayaka; Amano, Nobuyuki; Hirabayashi, Hideki

    2017-12-01

    1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CL t ) and volume of distribution at steady state (Vd ss ), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CL t and Vd ss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CL t and Vd ss values were predicted from the three animal models. 3. Predicted CL t values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vd ss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CL t and Vd ss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.

  1. Relationship between hepatocellular carcinoma, metabolic syndrome and non-alcoholic fatty liver disease: which clinical arguments?

    Science.gov (United States)

    Rosmorduc, Olivier

    2013-05-01

    Obesity and the metabolic syndrome are growing epidemics associated with an increased risk for many types of cancer. In the liver, inflammatory and angiogenic changes due to insulin resistance and fatty liver disease are associated with an increased incidence of liver cancer. Regardless of underlying liver disease, cirrhosis remains the most important risk factor for hepatocellular carcinoma (HCC) although are cases of HCC arising without cirrhosis raise the possibility of a direct carcinogenesis secondary to Non-alcoholic Fatty Liver Disease (NAFLD). Moreover, metabolic syndrome and its different features may also increase the risk of HCC in the setting of chronic liver diseases of other causes such as viral hepatitis or alcohol abuse. Taking into account all these data, it is necessary to better determine the risk of developing HCC in patients with metabolic syndrome to improve the screening guidelines and develop prophylactic treatments in this setting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  3. [The effect of copper on the metabolism of iodine, carbohydrates and proteins in rats].

    Science.gov (United States)

    Esipenko, B E; Marsakova, N V

    1990-01-01

    Experiments on 156 rats maintained at ration with copper deficiency have demonstrated a decrease in the values of iodine metabolism in organs and tissues excluding the liver where a sharp increase in the concentration and content of inorganic iodine was observed. A disturbance in indices of carbohydrate and proteins metabolism in the organism of animals is marked. A direct relationship with a correlation coefficient equaling 0.87-1.00 is determined between changes in the concentration of protein-bound iodine in blood and concentration of glycogen in the liver, skeletal muscles, albumins, alpha 1-, alpha 2-globulins, urea concentration; an inverse relationship with glucose, activity of blood lipo-dehydrogenase and liver mitochondria, aldolase, concentration of pyruvic and lactic acids is established as well. It is concluded that copper deficiency can exert both a direct effect on metabolic processes (as data from literature testify) and an indirect one disturbing iodine metabolism, i. e. sharply decreasing protein-bound iodine production by the thyroid gland.

  4. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver.

    Science.gov (United States)

    Guo, Lei; Mei, Nan; Dial, Stacey; Fuscoe, James; Chen, Tao

    2007-11-01

    Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with the PAs contained in the plant. Therefore, we suggest that carcinogenicity of comfrey result from those PAs. To confirm our hypothesis, we compared the expression of genes and processes of biological functions that were altered by comfrey (mixture of the plant with PAs) and riddelliine (a prototype of carcinogenic PA) in rat liver for carcinogenesis in this study. Groups of 6 Big Blue Fisher 344 rats were treated with riddelliine at 1 mg/kg body weight by gavage five times a week for 12 weeks or fed a diet containing 8% comfrey root for 12 weeks. Animals were sacrificed one day after the last treatment and the livers were isolated for gene expression analysis. The gene expressions were investigated using Applied Biosystems Rat Whole Genome Survey Microarrays and the biological functions were analyzed with Ingenuity Analysis Pathway software. Although there were large differences between the significant genes and between the biological processes that were altered by comfrey and riddelliine, there were a number of common genes and function processes that were related to carcinogenesis. There was a strong correlation between the two treatments for fold-change alterations in expression of drug metabolizing and cancer-related genes. Our results suggest that the carcinogenesis-related gene expression patterns resulting from the treatments of comfrey and riddelliine are very similar, and PAs contained in comfrey are the main active components responsible for carcinogenicity of the plant.

  5. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  6. Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Suman

    2016-01-01

    Full Text Available Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD and low dose of streptozotocin (STZ at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia (increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide, and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP, decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.

  7. Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats.

    Science.gov (United States)

    Suman, Rajesh Kumar; Ray Mohanty, Ipseeta; Borde, Manjusha K; Maheshwari, Ujwala; Deshmukh, Y A

    2016-01-01

    Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD) and low dose of streptozotocin (STZ) at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia {(increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol)}, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide), and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP), decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.

  8. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.

    Science.gov (United States)

    Tan, Yi; Kim, Jane; Cheng, Jing; Ong, Madeleine; Lao, Wei-Guo; Jin, Xing-Liang; Lin, Yi-Guang; Xiao, Linda; Zhu, Xue-Qiong; Qu, Xian-Qin

    2017-06-07

    To investigate protective effects and molecular mechanisms of green tea polyphenols (GTP) on non-alcoholic fatty liver disease (NAFLD) in Zucker fatty (ZF) rats. Male ZF rats were fed a high-fat diet (HFD) for 2 wk then treated with GTP (200 mg/kg) or saline (5 mL/kg) for 8 wk, with Zucker lean rat as their control. At the end of experiment, serum and liver tissue were collected for measurement of metabolic parameters, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), inflammatory cytokines and hepatic triglyceride and liver histology. Immunoblotting was used to detect phosphorylation of AMP-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c). Genetically obese ZF rats on a HFD presented with metabolic features of hepatic pathological changes comparable to human with NAFLD. GTP intervention decreased weight gain (10.1%, P = 0.052) and significantly lowered visceral fat (31.0%, P liver in GTP treated rats. The protective effects of GTP against HFD-induced NAFLD in genetically obese ZF rats are positively correlated to reduction in hepatic lipogenesis through upregulating the AMPK pathway.

  9. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  10. Some factors influencing liver metallothionein levels in rats and mice

    International Nuclear Information System (INIS)

    Jang, T.; Lee, M.

    1981-01-01

    Liver metallothionein (MT) was measured by the 203-mercury binding method of Piotrowski in the livers of rats and mice subjected to bilateral adrenalectomy or to sham adrenalectomy. Sham operation was followed by an increase in the level of MT at 24 hours; this immediately began to decrease, reaching control levels by 7 days. Adrenalectomy was also followed by an increase in MT, but the levels remained elevated for several days before beginning to decline. Mice which were adrenalectomized and allowed to recover for 28 days showed an increase in MT when subjected to sham operation. Ether anaesthesia without an incision did not increase the level of MT. Hypophysectomized mice had higher levels of MT than did controls, and these levels were further increased by sham adrenalectomy. Sprague-Dawley rats showed a similar response to adrenalectomy and to sham operation. It is concluded that the sham operation-induced increase in MT is probably not a result of a stress-induced release of adrenal hormones, but that adrenal hormones may play some role in the degradation or turnover of MT. The pituitary may also have some role in MT turnover

  11. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  12. The effects of comfrey derived pyrrolizidine alkaloids on rat liver.

    Science.gov (United States)

    Yeong, M L; Clark, S P; Waring, J M; Wilson, R D; Wakefield, S J

    1991-01-01

    Three groups of young adult rats were fed pyrrolizidine alkaloids derived from Russian comfrey to study the effects of the herb on the liver. Group I animals received a single dose of 200 mg/kg body wt, Group II 100 mg/kg three times a week for 3 weeks and Group III 50 mg/kg three times a week for 3 weeks. All rats showed light and electron-microscopic evidence of liver damage, the severity of which was dose dependent. There was swelling of hepatocytes and hemorrhagic necrosis of perivenular cells. There was a concomitant loss of sinusoidal lining cells with disruption of sinusoidal wall and the sinusoids were filled with cellular debris, hepatocyte organelles and red blood cells. Extravasation of red blood cells was evident. Terminal hepatic venules were narrowed by intimal proliferation, and in Group II and III, reiculin fibres radiated from these vessels. These appearances have been described in veno-occlusive disease due to pyrrolizidine alkaloids from other plant sources such as Senecio and Crotalaria. The safety of comfrey, a widely used herb, in relation to human consumption requires further investigation.

  13. Establishment of a rat model of early-stage liver failure and Th17/Treg imbalance

    OpenAIRE

    LI Dong; LU Zhonghua; GAN Jianhe

    2016-01-01

    ObjectiveTo investigate the methods for establishing a rat model of early-stage liver failure and the changes in Th17, Treg, and Th17/Treg after dexamethasone and thymosin interventions. MethodsA total of 64 rats were randomly divided into carbon tetrachloride (CCl4) group and endotoxin [lipopolysaccharide (LPS)]/D-galactosamine (D-GalN) combination group to establish the rat model of early-stage liver failure. The activities of the rats and changes in liver function and whole blood Th17 and ...

  14. Effect of phenobarbital pretreatment on benzene biotransformation in the rat. Pt. 2. 9. 000 g supernatant and isolated perfused liver versus living rat

    Energy Technology Data Exchange (ETDEWEB)

    Gut, I.; Hatle, K.; Zizkova, L.

    1981-03-01

    Factors responsible for different quantitative effect of phenobarbital (PB) pretreatment on benzene metabolism to phenol in vivo and in vitro were studied in male Wistar rats. A more than 4-fold increase of benzene metabolism was observed with 9,000 g supernatant of liver homogenate, 2.8- to 4-fold increase with isolated perfused liver; phenol formation in vivo after oral benzene was increased by PB 2-fold, but only shortly following benzene administration and the enhancement rapidly diminished to 1.15-fold increase in the total excreted phenol. Benzene concentrations in 9,000 g supernatant incubations were 2 mM, those with isolated perfused livers were up to 4 mM, but those in blood in vivo were below 0.3 mM; the effect of PB induction in vivo disappeared along with decreasing benzene and increasing phenol blood concentrations which surpassed benzene 2-3 h after oral benzene administration. The effect of benzene concentration on the manifestation of PB induction is also supported by almost a 2-fold increased phenol formation in PB rats over controls in vivo after repeated administration of benzene. The elimination of radioactive metabolites of orally administered benzene-/sup 14/C, in urine was markedly inhibited by intraperitoneal administration of phenol, but not by pyrocatechol, resorcinol or hydroquinol suggesting that phenol might inhibit benzene metabolism in vivo especially when its concentration exceeds that of benzene.

  15. Evaluation of methylmercury biotransformation using rat liver slices

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, A. [Biochemistry Section, National Inst. for Minamata Disease, Minamata, Kumamoto (Japan); Hirayama, K. [Kumamoto University College of Medical Science, Kuhonji (Japan)

    2001-09-01

    To examine the demethylation reaction of methylmercury (MeHg) in rat liver, slices prepared from MeHg-treated rats were incubated in L-15 medium under 95% O{sub 2}/5% CO{sub 2} atmosphere. During the incubation, the amount of inorganic Hg in the slices markedly increased in a time-dependent manner, although the concentration of total Hg remained unchanged. Since the C-Hg bond in MeHg was demonstrated to be cleaved by the action of some reactive oxygen species, the effects on MeHg demethylation of several reagents that could modify reactive oxygen production were examined in the present system. Methylviologen was found to be an effective enhancer of the demethylation reaction with only a minor effect on lipid peroxidation. On the other hand, ferrous ion added to the medium showed no effect on demethylation in the presence or absence of methylviologen, although lipid peroxide levels were increased significantly by ferrous ion. Similarly, deferoxamine mesylate, which effectively suppressed the increase in lipid peroxide levels, also had no effect on demethylation. Furthermore, hydroxy radical scavengers, such as mannitol and dimethylsulfoxide, had no effect on inorganic Hg production. Rotenone, an inhibitor of complex I in the mitochondrial electron transport system, increased levels of both inorganic Hg and lipid peroxide. However, other inhibitors, such as antimycin A, myxothiazole and NaCN, significantly suppressed the demethylation reaction. Cell fractionation of the MeHg-treated rat liver revealed that the ratio of inorganic Hg to total Hg was highest in the mitochondrial fraction. Furthermore, superoxide anion could degrade MeHg in an organic solvent but not in water. These results suggested that the demethylation of MeHg by the liver slice would proceed with the aid of superoxide anion produced in the electron transfer system at the hydrophobic mitochondrial inner membrane. Furthermore, the involvement of hydroxy radicals, which have been demonstrated to be

  16. Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

    OpenAIRE

    Baik, Myunggi; Nguyen, Trang Hoa; Jeong, Jin Young; Piao, Min Yu; Kang, Hyeok Joong

    2015-01-01

    Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p

  17. Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Eunice Molinar-Toribio

    Full Text Available SHROB rats have been suggested as a model for metabolic syndrome (MetS as a situation prior to the onset of CVD or type-2 diabetes, but information on descriptive biochemical parameters for this model is limited. Here, we extensively evaluate parameters related to CVD and oxidative stress (OS in SHROB rats. SHROB rats were monitored for 15 weeks and compared to a control group of Wistar rats. Body weight was recorded weekly. At the end of the study, parameters related to CVD and OS were evaluated in plasma, urine and different organs. SHROB rats presented statistically significant differences from Wistar rats in CVD risk factors: total cholesterol, LDL-cholesterol, triglycerides, apoA1, apoB100, abdominal fat, insulin, blood pressure, C-reactive protein, ICAM-1 and PAI-1. In adipose tissue, liver and brain, the endogenous antioxidant systems were activated, yet there was no significant oxidative damage to lipids (MDA or proteins (carbonylation. We conclude that SHROB rats present significant alterations in parameters related to inflammation, endothelial dysfunction, thrombotic activity, insulin resistance and OS measured in plasma as well as enhanced redox defence systems in vital organs that will be useful as markers of MetS and CVD for nutrition interventions.

  18. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet.

    Science.gov (United States)

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-09-01

    It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.

  19. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria

    Directory of Open Access Journals (Sweden)

    Halina Baran*

    2016-01-01

    Full Text Available Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3, respiratory control index (RC and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM or succinate (10 mM and in the presence of L-tryptophan metabolites (1 mM or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver

  20. Protective effect of a coffee preparation (Nescafe pure) against carbon tetrachloride-induced liver fibrosis in rats.

    Science.gov (United States)

    Shi, Hongyang; Dong, Lei; Zhang, Yong; Bai, Yanhua; Zhao, Juhui; Zhang, Li

    2010-06-01

    We examined the effects of a coffee preparation on liver fibrosis induced by carbon tetrachloride (CCl(4)) and explored the possible mechanisms. Rats were divided randomly into four groups: control, CCl(4), and two coffee preparation groups. Except for the control group, liver fibrosis was induced in male Sprague-Dawley (SD) rats by subcutaneous injection with 40% CCl(4) twice a week for 8 weeks. At the same time, a coffee preparation (300 mg/kg and 150 mg/kg) was administered to the two coffee preparation groups intragastrically once daily. Upon pathological examination, a coffee preparation treatment significantly reduced liver damage and symptoms of liver fibrosis. The mRNA expression of collagen I, collagen III, bcl-2, vascular endothelial growth factor (VEGF) and transforming growth factor-beta1 (TGF-beta1) were markedly increased by CCl(4) treatment but suppressed by a coffee preparation treatment. Whereas compared with the CCl(4) group, the mRNA expression of Bax was increased in the coffee preparation group. The protein expression of Bax and bcl-2 were confirmed by western blot. Intragastric administration of a coffee preparation reduced the protein expression of alpha-smooth muscle actin (alpha-SMA) and the glucose-regulated proteins (GRP) 78 and 94 in rats increased by CCl(4). Our data indicate that a coffee preparation can efficiently inhibit CCl(4)-induced liver fibrosis in rats. The coffee preparation may therefore be a potential functional food for preventing liver fibrosis. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  2. Fibronectin binding to gangliosides and rat liver plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, G R; Evers, D C; Radinsky, R; Morre, D J

    1986-02-01

    Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (G/sub T1b/ approx. = G/sub D1b/ approx. = G/sub D1a/ > G/sub M1/ >> G/sub M2/ approx. = G/sub D3/ approx. = G/sub M3/) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays. Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides G/sub M1/, G/sub D1a/ or G/sub T1b/ bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent K/sub d/ for binding to mixed rat liver gangliosides of 7.8 x 10/sup -9/ M was determined. This value compared favorably with the apparent K/sub d/ for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 x 10/sup -9/ M for fibronectin modified on the tyrosine residue, or 6.4 x 10/sup -9/ M for fibronectin modified on lysine residues. As shown previously by Grinnell and Minter, fibronectin modified on tyrosine residues did not promote spreading a