WorldWideScience

Sample records for rat intracardiac ganglion

  1. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat.

    Science.gov (United States)

    Turtzo, L Christine; Budde, Matthew D; Dean, Dana D; Gold, Eric M; Lewis, Bobbi K; Janes, Lindsay; Lescher, Jacob; Coppola, Tiziana; Yarnell, Angela; Grunberg, Neil E; Frank, Joseph A

    2015-01-01

    Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.

  2. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  3. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat.

    Directory of Open Access Journals (Sweden)

    L Christine Turtzo

    Full Text Available Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.

  4. [Effects of stellate ganglion block on blood pressure in spontaneously hypertensive rats].

    Science.gov (United States)

    Chen, Yong-quan; Hu, Guang-xiang; Fu, Qun; Jin, Xiao-ju

    2012-01-01

    To investigate the effects of stellate ganglion block (SGB) on blood pressure in spontaneously hypertensive rats(SHRs). Thirty-two 10-week-old male spontaneously hypertensive rats(SHRs) were assigned randomly into four groups: left stellate ganglion block group(Group LS), right stellate ganglion block group(Group RS), captopril group(Group D) and control group(Group C). Arterial systolic blood pressure(SBP) was measured, and endothelin (ET-1) and endothelial nitric oxide synthase(eNOS) in blood vessels were detected by radioimmunoassay. Compared with baseline value, the blood pressure of Group LS gradually increased significantly (P0.05) and increased only at week 2(P block can significantly lower blood pressure, down-regulate ET-1 and up-regulate eNOS protein expression.

  5. Purification of Dorsal Root Ganglion Neurons from Rat by Immunopanning

    OpenAIRE

    Zuchero, J. Bradley

    2014-01-01

    Dorsal root ganglion neurons (DRGs) are sensory neurons that facilitate somatosensation and have been used to study neurite outgrowth, regeneration, and degeneration and PNS and CNS myelination. Studies of DRGs have relied on cell isolation strategies that generally involve extended culture in the presence of antimitotic agents or other cytotoxic treatments that target dividing cells. The surviving cells typically are dependent on serum for growth. Other methods, involving purification of DRG...

  6. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Directory of Open Access Journals (Sweden)

    Rastrilla Ana M

    2006-12-01

    Full Text Available Abstract Background Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1 the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2 the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3 the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. Methods The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1 noradrenaline in the ganglion compartment; 2 LH in the ovarian compartment; and 3 noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline was also measured in the ovarian compartment by HPLC. Results The most relevant result concerning the action of noradrenaline in the celiac ganglion

  7. [Effect of stellate ganglion block on reconstruction of the left ventricle in spontaneously hypertensive rats].

    Science.gov (United States)

    Chen, Yongquan; Hu, Guangxiang; Fu, Qun; Jin, Xiaoju

    2013-01-01

    To determine the effect of stellate ganglion block on reconstruction of the left ventricle in spontaneously hypertensive rats (SHRs). Thirty-two 10-week-old male SHRs were randomly assigned into 4 groups: a left stellate ganglion block group (group LS), a right stellate ganglion block group (group RS), a captopril group (group D) and a control group (group C). The arterial systolic blood pressure (SBP) was measured by ALC-NIBP measuring system. After 10 weeks, we observed the left ventricular mass index (LVMI), myocardial pathologic changes, and detected the endothelin (ET-1) and endothelial nitric oxide synthase (eNOS) level in the left ventricle by radioimmunoassay and the collagen protein level in the left ventricle by immunohistochemical method. Compared with group LS and group C, the LVMI in group RS was lowered most notably (Pblock can not only decrease the arterial pressure but also reverse the reconstruction of the left ventricle.

  8. A slowly inactivating K+ current in retinal ganglion cells from postnatal rat.

    Science.gov (United States)

    Sucher, N J; Lipton, S A

    1992-02-01

    The whole-cell configuration of the patch-clamp technique was used to study voltage-gated K+ conductances in retinal ganglion cells from postnatal rat. Retinal ganglion cells were fluorescently labeled in situ, dissociated from the retina, and maintained in culture. With physiological solutions in the bath and the pipette, depolarizing voltage steps from physiological holding potentials activated Na(+)-(INa), Ca2+ (ICa), and K(+)-currents studied previously in retinal ganglion cells. Here we report on a slowly decaying K+ current, not heretofore reported in rat. With 4-AP, TEA, and Co2+ in the bath, to block IA, IK, and IK(Ca), respectively, a slowly decaying outward current was activated from -80 mV by steps positive to -40 mV. This current was present in 92% of all ganglion cells tested (n = 83). It activated within 10 ms and inactivated with a voltage-independent time constant of about 70 ms at 35 degrees C. Inactivation was voltage-dependent, half-maximal at -55 mV, and almost complete at 0 mV. The current was blocked by internal Cs+ and TEA, or by external application of 1 mM Ba2+, but not by 3 mM extracellular Co2+. The biophysical and pharmacological properties of this current are distinctly different from those of slowly inactivating K+ currents studied in other rat neurons. It was very similar, however, to a slowly inactivating K+ current previously reported in ganglion cells of tiger salamander retina. This last finding indicates conservation of a defined K+ channel type in functionally related cells in both lower vertebrates and mammals.

  9. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  10. [Effect of stellate ganglion block on cardiomyocyte apoptosis and expression of Bcl-2/Bax protein in spontaneously hypertensive rats].

    Science.gov (United States)

    Chen, Yongquan; Hu, Guangxiang; Fu, Qun; Jin, Xiaoju

    2013-09-01

    To investigate the relationship between apoptosis of myocardial cells in spontaneously hypertensive rats (SHRs) and the expressions of Bcl-2 and Bax protein, and the protective effect of stellate ganglion block on apoptosis of myocardial cells. A total of 32 ten-week-old male SHRs were assigned randomly into 4 groups: a left stellate ganglion block group (group LS), a right stellate ganglion block group (group RS), a captopril group (group D) and a control group (group C). The arterial systolic blood pressure was measured by ALC-NIBP system. After 10 weeks, all rats were anaesthetized by 3% pentobarbital sodium, cardiomyocyte apoptosis index of left ventricle was assessed by TUNEL, and the localization of myocardium Bcl-2, Bax was investigated by immunohistochemistry. Compared with group LS and C, the apoptotic index decreased (Pblock can reduce the apoptosis of myocardial cells and reverse the reconstruction of the left ventricle in SHRs via regulation of apoptosis-related gene proteins.

  11. Nitric oxide in prepubertal rat ovary contribution of the ganglionic nitric oxide synthase system via superior ovarian nerve.

    Science.gov (United States)

    Casais, Marilina; Delgado, Silvia Marcela; Vallcaneras, Sandra; Sosa, Zulema; Rastrilla, Ana María

    2007-02-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. Considering the existence of the nitric oxide/ nitric oxide synthase system in the peripheral neural system and in the ovary, the aim of this work was to analyze if the liberation of NO in the ovarian compartment of prepubertal rats is of ovarian and/or ganglionic origin. The analysis is carried out from a physiological point of view using the experimental coeliac ganglion--Superior Ovarian Nerve--ovary model with and without ganglionic cholinergic stimulus Acetylcholine (Ach) 10(-6) M. Non selective and selective inhibitors of the synthase nitric oxide enzyme were added to the ovarian and ganglionic compartment, and the liberation of nitrites (soluble metabolite of the nitric oxide) in the ovarian incubation liquid was measured. We found that the non-selective inhibitor L-nitro-arginina methyl ester (L-NAME) in the ovarian compartment decreased the liberation of nitrites, and that Aminoguanidine (AG) in two concentrations in a non-dose dependent form provoked the same effect. The addition of Ach in ganglion magnified the effect of the inhibitors of the NOS enzyme. The most relevant results after the addition of inhibitors in ganglion were obtained with AG 400 and 800 microM. The inhibition was made evident with and without the joint action of Ach in ganglion. These data suggest that the greatest production of NO in the ovarian compartment comes from the ovary, mainly the iNOS isoform, though the coeliac ganglion also contributes through the superior ovarian nerve but with less quantity.

  12. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice

    Science.gov (United States)

    Jagger, Daniel J; Housley, Gary D

    2003-01-01

    Neuro-anatomical studies in the mammalian cochlea have previously identified a subpopulation of approximately 5% of primary auditory neurones, designated type II spiral ganglion neurones (sgnII). These neurones project to outer hair cells and their supporting cells, within the ‘cochlear amplifier’ region. Physiological characterization of sgnII has proven elusive. Whole-cell patch clamp of spiral ganglion neurones in P7-P10 rat cochlear slices provided functional characterization of sgnII, identified by biocytin or Lucifer yellow labelling of their peripheral neurite projections (outer spiral fibres) subsequent to electrophysiological characterisation. SgnII terminal fields comprised multiple outer hair cells and supporting cells, located up to 370 μm basal to their soma. SgnII firing properties were defined by rapidly inactivating A-type-like potassium currents that suppress burst firing of action potentials. Type I spiral ganglion neurones (sgnI), had shorter radial projections to single inner hair cells and exhibited larger potassium currents with faster activation and slower inactivation kinetics, compatible with the high temporal firing fidelity seen in auditory nerve coding. Based on these findings, sgnII may be identified in future by the A-type current. Glutamate-gated somatic currents in sgnII were more potentiated by cyclothiazide than those in sgnI, suggesting differential AMPA receptor expression. ATP-activated desensitising inward currents were comparable in sgn II and sgnI. These data support a role for sgnII in providing integrated afferent feedback from the cochlear amplifier. PMID:14561834

  13. Extraction (DSX from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Shuo Yin

    2015-12-01

    Full Text Available AIM: To investigate the effect of DSX, an active component extracted from Erigeron breviscapus, on the voltage-gated outward K+ channel currents in rat retinal ganglion cells (RGCs by using electrophysiological method, and to explore the possible mechanisms of DSX on optic nerve protection. METHODS: Outward K+ currents were recorded by using whole-cell patch-clamp techniques on acutely isolated rat RGCs. Outward K+ currents were induced by a series of depolarizing voltage pulses from a holding potential of -70 mV to +20 mV in an increment of 10 mV. RESULTS: Extracellular application of DSX voltage-dependently suppressed both the steady-state and peak current amplitudes of outward K+ currents in rat RGCs. Furthermore, DSX reversibly and dose-dependently inhibited the amplitudes of outward K+ currents of the cells. At +20 mV membrane potential DSX at the concentrations of 0.02 g/L and 0.05 g/L showed no significant effects on the currents. In contrast, DSX at higher concentrations (0.1 g/L, 0.2 g/L and 0.5 g/L significantly suppressed the current amplitudes. CONCLUSION: These results suggest that DSX reversibly and dose-dependently suppress outward K+ channel currents in rat RGCs, which may be one of the possible mechanisms underlying Erigeron breviscapus prevents vision loss and RGC damage caused by glaucoma.

  14. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    Science.gov (United States)

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage.

  15. The role of NgR-Rhoa-Rock signal pathway in retinal ganglion cell apoptosis of early diabetic rats

    Directory of Open Access Journals (Sweden)

    Yun-Jie Fu

    2014-09-01

    Full Text Available AIM: To study the function and mechanism of the NgR-Rhoa-Rock signal pathways which exists in the retinal ganglion cells apoptosis in diabetes mellitus(DMrats. METHODS: Some healthy SD rats were operated by means of single intraperitoneal injection of 1% streptozotocin based on the standard of 50mg/kg wight, after that the blood sugar value was greater than 16.7mmol/L as DM model, then randomly divided into 3 groups, each group was 10 rats. In addition to take 10 healthy SD rats as control group. Four groups of rats were bilaterally eyeball intravitreal injection in turn with NgR-siRNA virus 10μL(siRNA group, NgR-siRNA virus diluted 10μL(DM group, NgR-siRNA virus-negative-control solution 10μL(siRNA blank group, NgR-siRNA virus diluted 10μL(normal control group, and fed normally. During that time, some life indexes like blood glucose, body mass, etc. were measured and recorded. After 12wk, the expression of NgR and Rhoa, HE staining, and TUNNEL staining were detected by Western blot analysis. RESULTS: Western blot analysis: compared with normal control group, the expression of NgR and Rhoa in DM group and siRNA blank group increased significantly(PP>0.05; compared with DM group and siRNA blank group, the expression of those proteins significantly lowered in siRNA group. HE staining: compared with normal control group, some extent ganglion cells arranged disorder, irregular shape, spacing not consistent were all found in three groups of model rats; compared with DM group and siRNA blank group, there was some improvement in siRNA group of ganglion cells about the order and shape size. TUNEL staining: compared with normal control group, there were retinal ganglion cells apoptosis in all of three groups of model rats. Compared with DM group and siRNA blank group, the number of retinal ganglion cells apoptotic cells was less, and the shape of cells had improved significantly in siRNA group. CONCLUSION: In the DM phase, the expression of NgR and

  16. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    Directory of Open Access Journals (Sweden)

    Pablo Valle-Leija

    2017-07-01

    Full Text Available Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc, but are not thought to express a functional full-length TrkB receptor (TrkB-Fl. We, and others, have demonstrated that nerve growth factor (NGF and brain derived neurotrophic factor (BDNF modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR, 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  17. Retinal ganglion cell neuroprotection in a rat model of glaucoma following brimonidine, latanoprost or combined treatments.

    Science.gov (United States)

    Hernández, María; Urcola, J Haritz; Vecino, Elena

    2008-05-01

    The aim of the present study is to evaluate the neuroprotective effect of two antiglaucomatous substances, regardless of their hypotensive effect in the eye. Brimonidine, which does not reduce IOP when administered intraperitoneally, and latanoprost, which has a renowned hypotensive effect topically. We examined rat retinal ganglion cell (RGC) survival and size distribution in experimental glaucoma in response to different glaucomatous agents. IOP was elevated by episcleral vein cauterization (EVC) prior to the application of different treatments: (I) PBS application (control group), (II) intraperitoneal administration of brimonidine (a general hypotensive agent), (III) topical application of latanoprost (an ocular hypotensive agent), and (IV) latanoprost combined with brimonidine. After 12 weeks, RGCs were retrogradely labeled with fluorogold and RGC density was analyzed. EVC caused a significant increase (42%) in IOP in each group before drug treatment. After 12weeks of EVC, RGC survival in control vs. EVC rats was 78.9+/-3.2%. No IOP reduction was observed in brimonidine injected rats, but RGC survival at 12 weeks was total (103.7+/-2.7%). In latanoprost treated rats, IOP dropped by around 22% and 94.7+/-3.7% of the RGC population survived. Finally in the latanoprost+brimonidine combined group, IOP was significantly reduced by 25% and 94.4+/-2.2% of RGCs survived. Surprisingly, whereas EVC led to a 6% increase in RGC soma size, brimonidine treatment was associated with a 9% reduction in the soma size of RGCs at 12 weeks. We conclude that brimonidine exerts a neuroprotective effect via a mechanism which is independent of IOP reduction. These findings indicate that cell survival in glaucoma may be enhanced by neuroprotective strategies which are independent of IOP reduction. No synergistic neuroprotective effect was observed when both treatments were applied simultaneously.

  18. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  19. Laser therapy reduces gelatinolytic activity in the rat trigeminal ganglion during temporomandibular joint inflammation.

    Science.gov (United States)

    Desiderá, A C; Nascimento, G C; Gerlach, R F; Leite-Panissi, C R A

    2015-07-01

    To investigate whether low-level laser therapy (LLLT) alters the expression and activity of MMP-2 and MMP-9 in the trigeminal ganglion (TG) during different stages of temporomandibular joint (TMJ) inflammation in rats. It also evaluated whether LLLT modifies mechanical allodynia and orofacial hyperalgesia. Wistar rats (±250 g) were divided into groups that received saline (SAL) or complete Freund's adjuvant (CFA, 50 μl) in the TMJ, and that later underwent LLLT (20 J cm(-2) ) at their TMJ or not (groups SAL, SAL + LLLT, CFA, and CFA + LLLT). LLLT was applied on days 3, 5, 7, and 9 after SAL or CFA. Mechanical allodynia was evaluated on days 1, 3, 5, 7, and 10; orofacial hyperalgesia was assessed on day 10. Gelatin zymography and in situ zymography aided quantification of MMPs in the TG. Low-level laser therapy abolished the reduction in the mechanical orofacial threshold and the increase in orofacial rubbing during the orofacial formalin test induced by CFA. LLLT also decreased the CFA-induced rise in the levels of MMP-9 and MMP-2 as well as the gelatinolytic activity in the TG. Low-level laser therapy could constitute an adjuvant therapy to treat temporomandibular disorders and prevent inflammation-induced alterations in the levels of MMP-2 and MMP-9 and in the gelatinolytic activity in TGs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne

    2013-01-01

    or in combination with algogenic chemicals (bradykinin, serotonin, prostaglandin E2 (all 10(-5)¿M), and adenosine (10(-3)¿M)) at pH 7.4 and 6.0. Neurons from diabetic animals exhibited an overall increased response to stimulation with 20¿mM¿K(+) compared to neurons from control. Stimulation with Capsaicin alone...... caused an augmented response in neurons from diabetic animals compared to control animals. When stimulated with a combination of Capsaicin and algogenic chemicals, no differences between the two groups of neurons were measured, neither at pH 7.4 nor 6.0. In conclusion, diabetes-induced alterations......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...

  1. Effect of SIRT1 regulating cholesterol synthesis in repairing retinal ganglion cells after optic nerve injury in rats

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2014-10-01

    Full Text Available AIM: To investigate the repair mechanism associated with cholesterol synthesis regulated by silent information regulator 1(SIRT1in rat model of optic nerve damage. METHODS: Preparation of optic nerve damage in 70 rats was randomly divided into normal group(10 rats, resveratrol treatment group(experimental group 30 ratsand PBS buffer control group(30 rats. The experimental group and control group was further divided into 3 subgroups(each group 10 rats, respectively. After 7, 14, 21d injected resveratrol or PBS, optic nerve injury were observed, then the rats were sacrificed. Retina was segregated; the surviving retinal ganglion cell(RGCswas counted. Dissection of optic nerve, cholesterol content of them were tested; RT-PCR was used to detect mRNA expression of SIRT1, SREBP2 and HMGCR; Western blot assay was used to test the protein expression levels of SIRT1, cholesterol regulatory element binding protein 2(SREBP2and HMGCR. RESULTS: The numbers of RGCs and cholesterol levels of rat model with optic nerve injury decreased significantly(PPPPCONCLUSION: Up-regulating the expression of SIRT1, SREBP2 and down-regulating HMGCR by resveratrol could repair the injury of optic nerve through promoting the synthesis of cholesterol in neurons and retinal ganglion cells in the repair process. SIRT1 may be as a promising new target for treatment on optic nerve damage.

  2. Gender Differences in Histamine-Induced Depolarization and Inward Currents in Vagal Ganglion Neurons in Rats

    Science.gov (United States)

    Li, Jun-Nan; Qian, Zhao; Xu, Wen-Xiao; Xu, Bing; Lu, Xiao-Long; Yan, Zhen-Yu; Han, Li-Min; Liu, Yang; Yuan, Mei; Schild, John; Qiao, Guo-Fen; Li, Bai-Yan

    2013-01-01

    Evidence has shown gender differences regarding the critical roles of histamine in the prevalence of asthma, anaphylaxis, and angina pectoris. Histamine depolarizes unmyelinated C-type neurons without any effects on myelinated A-type vagal ganglion neurons (VGNs) in male rats. However, little is known if VGNs from females react to histamine in a similar manner. Membrane depolarization and inward currents were tested in VGNs isolated from adult rats using a whole-cell patch technique. Results from males were consistent with the literature. Surprisingly, histamine-induced depolarization and inward currents were observed in both unmyelinated C-type and myelinated A- and Ah-type VGNs from female rats. In Ah-type neurons, responses to 1.0 μM histamine were stronger in intact females than in males and significantly reduced in ovariectomized (OVX) females. In C-type neurons, histamine-induced events were significantly smaller (pA/pF) in intact females compared with males and this histamine-induced activity was dramatically increased by OVX. Female A-types responded to histamine, which was further increased following ovariectomy. Histamine at 300 nM depolarized Ah-types in females, but not Ah-types in OVX females. In contrast, the sensitivity of A- and C-types to histamine was upregulated by OVX. These data demonstrate gender differences in VGN chemosensitivity to histamine for the first time. Myelinated Ah-types showed the highest sensitivity to histamine across female populations, which was changed by OVX. These novel findings improve the understanding of gender differences in the prevalence of asthma, anaphylaxis, and pain. Changes in sensitivity to histamine by OVX may explain alterations in the prevalence of certain pathophysiological conditions when women reach a postmenopausal age. PMID:24339729

  3. Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Hong, Min-Pyo; Kim, Hong Im; Shin, Yong Kyoo; Lee, Chung Soo; Park, Mijung; Song, Jin-Ho

    2004-05-15

    Free fatty acids (FFAs), especially polyunsaturated fatty acids (PUFAs), are potent modulators of muscle-type sodium channels. It is not known if they also modulate sodium channels of sensory neurons. In this study, we investigated the effects of FFAs on the fast tetrodotoxin-sensitive (fTTX-S) and the slow tetrodotoxin-resistant (sTTX-R) sodium currents in rat dorsal root ganglion neurons. At a holding potential of -80 mV, PUFAs potently inhibited fTTX-S current, but monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) to a lesser extent. All FFAs initially increased sTTX-R current, and then decreased it slightly. PUFAs and MUFAs produced a hyperpolarizing shift of the steady-state inactivation voltage for both types of sodium currents. The shift generally increased with the number of unsaturated bonds. FFAs did not change the maximum amplitude of fTTX-S current, but increased that of sTTX-R current. Most FFAs shifted the activation voltage for fTTX-S current in the hyperpolarizing direction, which was not dependent on the degree of unsaturation. MUFAs and SFAs shifted the activation voltage for sTTX-R current in the hyperpolarizing direction, but PUFAs were without effect. The modulation of sodium currents by FFAs, especially PUFAs, may have considerable impact on the excitability of sensory neurons.

  4. Preconditioning with inhalative carbon monoxide protects rat retinal ganglion cells from ischemia/reperfusion injury.

    Science.gov (United States)

    Biermann, Julia; Lagrèze, Wolf A; Dimitriu, Cornelia; Stoykow, Christian; Goebel, Ulrich

    2010-07-01

    PURPOSE. Retinal ischemia/reperfusion (I/R) injury damages retinal neurons. Carbon monoxide (CO) recently attracted attention as cytoprotective because of its anti-inflammatory and antiapoptotic effects. Rapid preconditioning of retinal neurons by inhaled CO before I/R injury may reduce inflammation and apoptosis in retinal ganglion cells (RGCs). METHODS. I/R injury was performed on the left eyes of rats (n = 8) with or without inhaled CO preconditioning (250 ppm) for 1 hour before ischemia. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Retinal tissue was further harvested to analyze protein expression of TNF-alpha, HSP-70, and mitogen-activated protein kinases (MAPKs) pERK1/2 and p-p38. DNA-binding activities of the transcription factors NF-kappaB, AP-1, CREB, and HSF-1 were determined to elucidate a possible pathway of neuroprotection. RESULTS. Seven days after I/R injury, RGC death decreased by 52% in the CO preconditioning group compared with controls receiving room air (P activity and TNF-alpha protein expression. In contrast, HSP-70 protein expression was elevated in the retina after CO. CREB and HSF-1 showed CO-dependent regulation and p-p38 MAPK. CONCLUSIONS. Rapid preconditioning with CO mediates anti-inflammatory and antiapoptotic effects in retinal I/R injury, thus making it neuroprotective. Further studies are needed to evaluate whether CO posttreatment may represent a therapeutic option counteracting ischemic neuronal injury.

  5. Mechanotransduction of trigeminal ganglion neurons innervating inner walls of rat anterior eye chambers.

    Science.gov (United States)

    Meng, Qingli; Fang, Peng; Hu, Zhuangli; Ling, Yun; Liu, Haixia

    2015-07-01

    To address mechanoreceptive roles of trigeminal ganglion (TG) nerve endings in the inner walls of rat anterior eye chambers, we investigated the mechanotransduction process and mechanosensitive (MS) channel on somata of TG neurons innervating this area in vitro. Rat TG neurons innervating inner walls of anterior chambers were labeled by anterior chamber injection of 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine, 4-chlorobenzenesulfonate (FAST DiI). The neuronal cell bodies were voltage clamped using a whole cell patch-clamp technique, while it was deformed by ejection of bath solution to verify mechanotransduction. Immunofluorescence staining was performed on sections of TG ganglia to determine the specific MS channel proteins. Mechanical stimuli induced MS currents in 55 out of 96 FAST DiI-labeled TG neurons. The MS currents exhibited mechanical intensity-dependent and clamp voltage-dependent characteristics. Mechanical stimulation further enhanced the membrane potential and increased the frequency of action potentials. Transient receptor potential ankyrin 1 (TRPA1), TRP vanilloid 4 (TRPV4), acid-sensing ion channel (ASIC) 2 and ASIC3 channel proteins were expressed in FAST DiI-labeled TG neurons. The inhibitory effect of HC-030031, a specific inhibitor of TRPA1, on MS currents demonstrated that TRPA1 was an essential MS channel protein. Taken together, our results show that mechanical stimuli induce MS currents via MS channels such as TRPA1 to trigger mechanotransduction in TG neurons innervating inner walls of anterior chambers. Our results indicate the existence of mechanoreceptive TG nerve endings in inner walls of anterior chambers. Whether the mechanoreceptive TG nerve endings play a role in intraocular pressure sensation warrants further investigation. Copyright © 2015 the American Physiological Society.

  6. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  7. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Guang-Yi Bai

    2014-12-01

    Full Text Available Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg. Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily. Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro was greatly attenuated in the ICA II-treated group (p < 0.01. ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes.

  8. Effects of Icariside II on corpus cavernosum and major pelvic ganglion neuropathy in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-12-15

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes.

  9. Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat.

    Science.gov (United States)

    Bongenhielm, U; Boissonade, F M; Westermark, A; Robinson, P P; Fried, K

    1999-09-01

    Peripheral nerve injury induces sprouting of sympathetic nerve fibers in dorsal root ganglia after spinal nerve injury. In the present study, we sought to determine the extent of intraganglionic noradrenergic sprouting in the trigeminal system. The inferior alveolar nerve, a major branch of the mandibular division, or the infraorbital nerve of the maxillary division was either ligated or chronically constricted in Sprague-Dawley rats and recovery permitted for either 2-3 or 6-9 weeks. In some animals both nerves were injured. Using immunohistochemistry with tyrosine hydroxylase antibodies, we found no signs of sympathetic nerve fiber sprouting in the trigeminal ganglion after injury. In contrast, sciatic nerve injury in rat littermates induced a widespread autonomic nerve outgrowth in affected DRGs. Thus, sensory ganglion sympathetic nerve sprouting does not seem to be a general outcome of PNS injury, but is restricted to certain specific locations. Sympathetic nerve fiber networks that surround primary sensory neurons have been suggested to form a structural basis for interactions between the sympathetic and sensory nervous systems after PNS injury. Such interactions, sometimes resulting in paraesthesia or dysaesthesia in patients, appear to be less common in territories innervated by the trigeminal nerve than in spinal nerve regions. The lack of injury-induced intraganglionic sympathetic sprouting in the trigeminal ganglion may help to explain this observation.

  10. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Yang F

    2015-11-01

    Full Text Available Fan Yang, Dongmei Wang, Lingling Wu, Ying Li Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China Purpose: To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs in a rat model of chronic glaucoma.Methods: Eighty Wistar rats were randomly divided into triptolide group (n=40 and normal saline (NS group (n=40. Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP, anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed.Results: Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05, with no statistical difference between the two groups (P>0.05. RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05. Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90 than the NS group (35.06±7.59 (P<0.05. TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01. The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia.Conclusion: Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. Keywords: glaucoma, triptolide

  11. Dural administration of inflammatory soup or Complete Freund's Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Haanes, K A; Majláth, Zs

    2015-01-01

    induces inflammatory activation in the trigeminal ganglion. METHODS: We performed topical administration of inflammatory soup (IS) or Complete Freund's Adjuvant (CFA) onto an exposed area of the rat dura mater in vivo for 20 min. The window was closed and the rats were sacrificed after 4 h and up to 7...... days. Myography was performed on middle meningeal arteries. The trigeminal ganglia were removed and processed for immunohistochemistry or Western blot. RESULTS: Both CFA and IS induced enhanced expression of pERK1/2, IL-1β and CGRP in the trigeminal ganglia. The pERK1/2 immunoreactivity was mainly seen...... vasoconstrictor response to IS, but not to CFA. CONCLUSIONS: These results suggest that the application of IS or CFA onto the dura mater causes long-term activation of the TG and demonstrate the importance of the neuro-glial interaction in the activation of the trigeminovascular system....

  12. KISS1 and KISS1R expression in the human and rat carotid body and superior cervical ganglion

    Directory of Open Access Journals (Sweden)

    A. Porzionato

    2011-05-01

    Full Text Available KISS1 and its receptor, KISS1R, have both been found to be expressed in central nervous system, but few data are present in the literature about their distribution in peripheral nervous structures. Thus, the aim of the present study was to investigate, through immunohistochemistry, the expression and distribution of KISS1 and KISS1R in the rat and human carotid bodies and superior cervical ganglia, also with particular reference to the different cellular populations. Materials consisted of carotid bodies and superior cervical ganglia were obtained at autopsy from 10 adult subjects and sampled from 10 adult Sprague-Dawley rats. Immunohistochemistry revealed diffuse expression of KISS1 and KISS1R in type I cells of both human and rat carotid bodies, whereas type II cells were negative. In both human and rat superior cervical ganglia positive anti-KISS1 and -KISS1R immunostainings were also selectively found in ganglion cells, satellite cells being negative. Endothelial cells also showed moderate immunostaining for both KISS1 and KISS1R. The expression of both kisspeptins and kisspeptin receptors in glomic type I cells and sympathetic ganglion cells supports a modulatory role of KISS1 on peripheral chemoreception and sympathetic function. Moreover, local changes in blood flow have been considered to be involved in carotid body chemoreceptor discharge and kisspeptins and kisspeptin receptors have also been found in the endothelial cells. As a consequence, a possible role of kisspeptins in the regulation of carotid body blood flow and, indirectly, in chemoreceptor discharge may also be hypothesized.

  13. Remodeling of hyperpolarization-activated current, Ih, in Ah-type visceral ganglion neurons following ovariectomy in adult rats.

    Directory of Open Access Journals (Sweden)

    Guo-Fen Qiao

    Full Text Available Hyperpolarization-activated currents (Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN channels modulate excitability of myelinated A- and Ah-type visceral ganglion neurons (VGN. Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage 'sag' as well as 'rebound' action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs, which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats.

  14. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism.

    Science.gov (United States)

    Chen, H S; Lipton, S A

    1997-01-01

    1. N-methyl-D-aspartic acid (NMDA)-activated currents were recorded from dissociated rat retinal ganglion cells using whole-cell recording. The NMDA open-channel blocking drug memantine was evaluated for non-competitive and/or uncompetitive components of antagonism. A rapid superfusion system was used to apply various drugs for kinetic analysis. 2. Dose-response data revealed that memantine blocked 200 microM NMDA-evoked responses with a 50% inhibition constant (IC50) of approximately 1 microM at -60 mV and an empirical Hill coefficient of approximately 1. The antagonism followed a bimolecular reaction process. This 1:1 stoichiometry is supported by the fact that the macroscopic blocking rate of memantine (kon) increased linearly with memantine concentration and the macroscopic unblocking rate (koff) was independent of it. The estimated pseudo-first order rate constant for macroscopic blockade was 4 x 10(5) M-1 S-1 and the rate constant for unblocking was 0.44 s-1. Both the blocking and unblocking actions of memantine were well fitted by a single exponential process. 3. The kon for 2 microM memantine decreased with decreasing concentrations of NMDA. By analysing kon behaviour, we estimate that memantine has minimal interaction with the closed-unliganded state of the channel. As channel open probability (Po) approached zero, a small residual action of memantine may be explained by the presence of endogenous glutamate and glycine. 4. Memantine could be trapped within the NMDA-gated channel if it was suddenly closed by fast washout of agonist. The measured gating process of channel activation and deactivation appeared at least 10-20-fold faster than the kinetics of memantine action. By combining the agonist and voltage dependence of antagonism, a trapping scheme was established for further kinetic analysis. 5. With low agonist concentrations, NMDA-gated channels recovered slowly from memantine blockade. By analysing the probability of a channel remaining blocked, we

  15. Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Wen-Long Sheng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGCs are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.

  16. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhenwei; Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Wu Yongchao, E-mail: wuyongchao@hotmail.com [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Song Yulin; Wu Bin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China)

    2009-08-31

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  17. Expression of Fos protein in the rat central nervous system in response to noxious stimulation: effects of chronic inflammation of the superior cervical ganglion

    Directory of Open Access Journals (Sweden)

    Laudanna A.

    1998-01-01

    Full Text Available The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

  18. Visualization of the neurovascular bundles and major pelvic ganglion with fluorescent tracers after penile injection in the rat.

    Science.gov (United States)

    Davila, Hugo H; Mamcarz, Maggie; Nadelhaft, Irving; Salup, Raoul; Lockhart, Jorge; Carrion, Rafael E

    2008-04-01

    To evaluate whether fluorescent tracers can consistently label the neurovascular bundles (NVBs) and major pelvic ganglion (MPG) after an intracavernosal penile injection, as the reported incidence of erectile dysfunction (ED) in men after radical prostatectomy (RP) is 55-65% and thus preservation of erectile function, sparing one or both of the NVBs remains one of the most vital factors. Male Sprague-Dawley rats (3 months old) received penile injections (20 microL; seven rats/group) of either deionized water (DW), Fluoro-Gold (FG), Fast-Blue (FB), Fluoro-Ruby (FR) or green fluorescent pseudorabies virus (GF-PRv). The rats were killed at 2, 3 and 14 days after injection and the NVBs and MPG were harvested and placed directly under fluorescence light. Image analysis was done by computer, coupled to a microscope equipped with a digital camera. Each NVB and MPG were analysed for its staining pattern and consistency. When compared with the FB, FR and GF-PRv rats, the FG-injected rats had better staining of the NVB at 2, 3 and 14 days after injection. Under x200, FG highlighted the axons of the cavernous nerve (CN) and cell bodies (MPG). This indicates that FG injection into the penis induced the strongest CN labelling (positive staining) at 2 and 3 days after injection as compared with FB-, FR- and GF-PRv-injected rats. FG injection into the penis has consistent retrograde staining of the NVBs and MPG after 3 days. Therefore, we predict that FG could potentially be used to improve the identification of the NVB in other models. However, further studies need to be carried out before these tracers can be used in humans.

  19. Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat.

    Science.gov (United States)

    Vargas, R; Cifuentes, F; Morales, M A

    2007-04-01

    Calcium involved in basal ganglionic transmission and long-term potentiation (LTP) can arise either by influx from the extracellular medium or release from intracellular stores. No attempts have yet been made to concurrently explore the contributions of extracellular and intracellular Ca2+ to basal ganglionic transmission or LTP. Here, we investigate this subject using the superior cervical ganglion of the rat. To explore the extracellular Ca2+ contribution, we evaluated basal transmission and LTP at different extracellular Ca2+ concentrations. To assess intracellular Ca2+ release, we explored the contribution of the calcium-induced calcium release process by overactivation or blockade of ryanodine-sensitive Ca2+ receptor channel with caffeine, and also by blocking either IP3R with Xestospongin C or the sarco(endo)plasmic reticulum Ca2+-ATPase pump with thapsigargin. Extracellular Ca2+ affected ganglionic basal transmission and LTP to different extents. While 25% of the physiological Ca2+ concentration supported 80% of basal transmission, 50% of normal Ca2+ was required to achieve 80% of LTP. Notably, disruption of intracellular Ca2+ release by all the drugs tested apparently did not affect basal ganglionic transmission but impaired LTP. We conclude that basal transmission requires only a small level of Ca2+ entry, while LTP expression not only requires more Ca2+ entry but is also dependent on Ca2+ release from intracellular stores. Copyright (c) 2007 Wiley Periodicals, Inc.

  20. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    Science.gov (United States)

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  1. Agile and Bright Intracardiac Catheters

    NARCIS (Netherlands)

    M. Pekař (Martin)

    2017-01-01

    markdownabstractIntracardiac imaging catheters represent unique instruments to diagnose and treat a diseased heart. While there are imminent advances in medical innovation, many of the commercially available imaging catheters are outdated. Some of them have been designed more than 20 years and

  2. Differential expression of neuronal voltage-gated sodium channel mRNAs during the development of the rat trigeminal ganglion.

    Science.gov (United States)

    Thun, Jonas; Persson, Anna-Karin; Fried, Kaj

    2009-05-07

    The developmental pattern of sodium channel expression in neurons of primary sensory ganglia is likely reflected in the electrical behavior of these cells. Little information is available on how voltage-gated sodium channels in sensory neurons are expressed during development in the trigeminal-innervated craniofacial region, where sensitivity is fundamental during early stages of life. Using in situ hybridization, we here demonstrate a differential both regional and transcript-dependent distribution of sodium channel alpha- and beta-subunits between Embryonic day (E)15 and Postnatal day (P)5/6 in the rat trigeminal ganglion. Na(v)1.3 mRNA was strongly expressed at E15, but declined to low levels at P5/P6. Na(v)1.8 was expressed at E15, increased to reach maximum levels at P1 and then decreased. Na(v)1.9 mRNA was detected at E19, reached a maximum at P1, and was then reduced. beta1 mRNA showed a steady rise in expression from E17, while beta2 mRNA was widely expressed from P1. beta 3 mRNA was detected at E15, reached a maximum at E19 followed by a decrease in expression. In the ophthalmic TG portion, there was a higher expression level of Na(v)1.8 and Na(v)1.9 between E19 and P5/P6 as compared to the maxillary/mandibular part, indicating an unexpected positional difference in channel distribution. mRNA levels of p11, which facilitates the expression of Na(v)1.8, were high at all stages. These findings show that trigeminal ganglion sodium channel transcripts mature in steps that are specific for each transcript. They also raise the possibility that different facial regions could differ in the ability to transmit sensory signals during early life.

  3. Neonatal maternal deprivation sensitizes voltage-gated sodium channel currents in colon-specific dorsal root ganglion neurons in rats.

    Science.gov (United States)

    Hu, Shufen; Xiao, Ying; Zhu, Liyan; Li, Lin; Hu, Chuang-Ying; Jiang, Xinghong; Xu, Guang-Yin

    2013-02-15

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by abdominal pain in association with altered bowel movements. The underlying mechanisms of visceral hypersensitivity remain elusive. This study was designed to examine the role for sodium channels in a rat model of chronic visceral hyperalgesia induced by neonatal maternal deprivation (NMD). Abdominal withdrawal reflex (AWR) scores were performed on adult male rats. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch-clamp configurations. The expression of Na(V)1.8 was analyzed by Western blot and quantitative real-time PCR. NMD significantly increased AWR scores, which lasted for ~6 wk in an association with hyperexcitability of colon DRG neurons. TTX-resistant but not TTX-sensitive sodium current density was greatly enhanced in colon DRG neurons in NMD rats. Compared with controls, activation curves showed a leftward shift in NMD rats whereas inactivation curves did not differ significantly. NMD markedly accelerated the activation time of peak current amplitude without any changes in inactivation time. Furthermore, NMD remarkably enhanced expression of Na(V)1.8 at protein levels but not at mRNA levels in colon-related DRGs. The expression of Na(V)1.9 was not altered after NMD. These data suggest that NMD enhances TTX-resistant sodium activity of colon DRG neurons, which is most likely mediated by a leftward shift of activation curve and by enhanced expression of Na(V)1.8 at protein levels, thus identifying a specific molecular mechanism underlying chronic visceral pain and sensitization in patients with IBS.

  4. Retinal Ganglion Cell Loss in a Rat Ocular Hypertension Model Is Sectorial and Involves Early Optic Nerve Axon Loss

    Science.gov (United States)

    Soto, Ileana; Pease, Mary E.; Son, Janice L.; Shi, Xiaohai; Quigley, Harry A.

    2011-01-01

    Purpose. Previous analyses of the DBA/2J mouse glaucoma model show a sectorial degeneration pattern suggestive of an optic nerve head insult. In addition, there are large numbers of retinal ganglion cells (RGCs) that cannot be retrogradely labeled but maintain RGC gene expression, and many of these have somatic phosphorylated neurofilament labeling. Here the authors further elucidate these features of glaucomatous degeneration in a rat ocular hypertension model. Methods. IOP was elevated in Wistar rats by translimbal laser photocoagulation. Retina whole mounts were analyzed for Sncg mRNA in situ hybridization, fluorogold (FG) retrograde labeling, and immunohistochemistry for phosphorylated neurofilaments (pNF) at 10 and 29 days after IOP increase. A novel automatic method was used to estimate axon numbers in plastic sections of optic nerves. Results. Sncg mRNA was confirmed as a specific marker for RGCs in rat. Loss of RGCs after IOP elevation occurred in sectorial patterns. Sectors amid degeneration contained RGCs that were likely disconnected because these had pNF in their somas and dendrites, were not labeled by FG, and were associated with reactive plasticity within the retina. Most of the axon loss within the optic nerve already occurred by 10 days after the onset of IOP elevation. Conclusions. These data demonstrate that the pattern of RGC loss after laser-induced ocular hypertension in rats is similar to that previously reported in DBA/2J mice. The results support the view that in glaucoma RGC axons are damaged at the optic nerve head and degenerate within the optic nerve before there is loss of RGC somas. PMID:20811062

  5. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A

    2012-01-01

    Cranial parasympathetic outflow is mediated through the sphenopalatine ganglion (SPG). The present study was performed to examine the expression of the parasympathetic signaling transmitters and their receptors in human and rat SPG. Indirect immunofluorescence technique was used for the demonstra......Cranial parasympathetic outflow is mediated through the sphenopalatine ganglion (SPG). The present study was performed to examine the expression of the parasympathetic signaling transmitters and their receptors in human and rat SPG. Indirect immunofluorescence technique was used...... for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), and PACAP receptor (PAC1). In addition, double labeling...

  6. Brimonidine is neuroprotective against glutamate-induced neurotoxicity, oxidative stress, and hypoxia in purified rat retinal ganglion cells

    Science.gov (United States)

    Lee, Kelvin Yoon Chiang; Nakayama, Mao; Chen, Yi-Ning; Araie, Makoto

    2010-01-01

    Purpose To investigate the neuroprotective effect of α2-adrenergic agonist brimonidine in the presence of glutamate-induced neurotoxicity, oxidative stress, and hypoxia on in vitro cultures of purified rat retinal ganglion cells (RGCs). Methods Purified RGC cultures were obtained from retinas of 6–8-day old Wistar rats, following a two-step immunopanning procedure. After 72 h of cultivation, the neuroprotective effect of brimonidine (0.01 μM, 0.1 μM, and 1 μM) was investigated by culturing the RGCs under glutamate, oxidative, and hypoxic stress for a further 72 h, 24 h, and 12 h, respectively. Glutamate neurotoxicity was induced by adding glutamate (25 μM), while oxidative stress was induced by substituting the culture medium with B27 supplement without antioxidants, and hypoxia was induced by cultivation in a controlled-atmosphere incubator with oxygen levels 5% of the normal partial pressure. The RGC viability under each stress condition normalized to that under normal condition was evaluated as live cell percentage based on a total of 7–8 full repeated experiments. Results The cell survival percentages of cultures exposed to glutamate, oxidative, and hypoxic stress were 58.2%, 59.3%, and 53.2%, respectively. Brimonidine dose dependently increased RGC survival in the presence of glutamate (80.6% at 1 µM), oxidative (79.8% at 1 µM), and hypoxic (72.3 and 77.4% at 0.1 and 1 µM, respectively) stress. In the presence of α2-adrenergic antagonist yohimbine (10 μM), brimonidine (1 μM) showed no protective effects on RGC viability. Conclusions At a concentration of 0.1 µM or higher, brimonidine increased survival of purified rat RGCs in the presence of glutamate neurotoxicity, oxidative stress, and hypoxia. The neuroprotective effect of brimonidine is mediated via α2-adrenergic receptors at the RGC level. PMID:20161817

  7. Altered expression of sodium channel distribution in the dorsal root ganglion after gradual elongation of rat sciatic nerves.

    Science.gov (United States)

    Ohno, Katsunori; Yokota, Atsushi; Hirofuji, Shinji; Kanbara, Kiyoto; Ohtsuka, Hisashi; Kinoshita, Mitsuo

    2010-04-01

    To elucidate the pathophysiological mechanisms underlying chronic nerve-stretch injury, we gradually lengthened rat femurs by 15 mm at the rate of 0.5 mm/day (group L, n = 13). The control groups comprised sham-operated (group S, n = 10) and naive (group N, n = 8) rats. Immediately after the lengthening, we performed a conduction study on their sciatic nerves and harvested samples. Electrophysiological and histological analyses showed mild conduction slowing and axonal degeneration of unmyelinated fibers in group L rats. Altered mRNA expression of the voltage-gated sodium channels in the dorsal root ganglion was also observed. Tetrodotoxin-resistant (TTX-R) sodium-channel Nav1.8 mRNA expression was significantly decreased and TTX-R sodium-channel Nav1.9 mRNA expression showed a tendency to decrease when compared with the mRNA expressions in the control groups. However, tetrodotoxin-sensitive (TTX-S) sodium-channel Nav1.3 mRNA expression remained unaltered. The immunohistochemical alteration of Nav1.8 protein expression was parallel to the results of the mRNA expression. Previous studies involving neuropathic states have suggested that pain/paresthesia is modulated by a subset of sodium channels, including downregulation and/or upregulation of TTX-R and TTX-S sodium channels, respectively. Our findings indicate that Nav1.8 downregulation may be one of the pathophysiological mechanisms involved in limb lengthening-induced neuropathy.

  8. Inhibition of [3H]resiniferatoxin binding to rat dorsal root ganglion membranes as a novel approach in evaluating compounds with capsaicin-like activity.

    Science.gov (United States)

    Szallasi, A; Szolcsanyi, J; Szallasi, Z; Blumberg, P M

    1991-11-01

    We have recently reported the specific binding of [3H]resiniferatoxin to sensory ganglion membranes; this binding appears to represent the postulated vanilloid (capsaicin) receptor. In the present report, we compare the structure/activity relations for binding to rat dorsal root ganglion membranes and for biological responses in the rat, using a series of vanilloids of the capsaicin (homovanilloyl-decylamide, homovanilloyl-dodecylamide, homovanilloyl-cyclododecylamide, homovanilloyl-hexadecylamide, homovanilloyl-piperidine and nonenoyl-homoveratrylamide) and resiniferatoxin (tinyatoxin, 12-deoxyphorbol 13-phenylacetate 20-homovanillate) classes. We find that all the tested biologically active vanilloids, but not the inactive structure analogs, compete for the [3H]resiniferatoxin binding sites in rat dorsal root ganglion membranes, and we conclude that the [3H]resiniferatoxin binding assay may provide an efficient approach for evaluating such compounds. We also provide evidence that the [3H]resiniferatoxin receptor is likely to recognize vanilloids which are inserted into the membranes; and that the apparent activity of capsaicinoids may be significantly influenced by factors other than equilibrium binding affinities.

  9. Increase in oxytocin and vasopressin concentration in the blood outflowing from sella turcica region after superior cervical ganglion stimulation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Lipinska, S.; Orlowska-Majdak, M.; Traczyk, W.Z. [Akademia Medyczna, Lodz (Poland). Katedra Fizjologii

    1996-12-31

    The aim of the study was to investigate whether the stimulation of the superior cervical ganglion influences the oxytocin and vasopressin release into the blood in condition of the of the sella turcica integrity. The experiments were performed on male rats under urethane-chloralose anaesthesia. Four 0.7 ml samples of the blood from the sella turcica region flowing through a tube inserted in the maxillary interna vein were collected in the 30, 35, 60 and 90 min of the experiments. The animals were divided into three groups: 1) control, 2) after the exposition of superior cervical ganglion. 3) after the collection of the 1-st sample of the blood the superior cervical ganglion was electrically stimulated for 30 min with trains of pulses. Vasopressin (AVP) and oxytocin (OXY) were determined in the blood plasma by radioimmunoassay. Stimulation of the superior cervical ganglion evoked an significant increase of AVP and OXY release into the blood. The increase of AVP release occurred after 30 min longer latency than the increase of OXY release. (author). 32 refs, 2 figs.

  10. Sialic acid contributes to hyperexcitability of dorsal root ganglion neurons in rats with peripheral nerve injury.

    Science.gov (United States)

    Peng, Xiao-Qing; Zhang, Xiu-Lin; Fang, Yan; Xie, Wen-Rui; Xie, Yi-Kuan

    2004-11-12

    Axonal injury of the dorsal root ganglion (DRG) neurons may alter the synthesis of certain membrane proteins that are responsible for the development of abnormal hyperexcitability. The external domains of most of these membrane proteins are sialylated. Because sialic acid carries heavy negative charges, the increase of sialylated proteins may increase neurons' negative surface charges, which will have predictable effects on the voltage-gated channels, and affect the excitability of injured neurons. Using intracellular electrophysiological recording, we demonstrated that following chronic constriction injury (CCI) of the sciatic nerve, Aalpha/beta DRG neurons become hyperexcitable, as indicated by a more depolarized resting membrane potential (Vm) and a lowered threshold current (TIC). More interestingly, the excitability of injured DRG neurons was reduced substantially when the extracellular sialic acid was removed by pretreatment with neuraminidase. The Vm was less depolarized and the TIC increased robustly as compared to the CCI neurons without neuraminidase treatment. However, desialylation of normal, intact neurons had no significant effect on the Vm and less effect on the TIC. Our results suggest that the hyperexcitability of injured sensory neurons may be associated with increased negatively charged sialic acid residues on the surface of the neuronal somata.

  11. Expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in the rat dental pulp and trigeminal ganglion following inflammation.

    Directory of Open Access Journals (Sweden)

    Eun Sun Yang

    Full Text Available There is increasing evidence that peripheral glutamate signaling mechanism is involved in the nociceptive transmission during pathological conditions. However, little is known about the glutamate signaling mechanism and related specific type of vesicular glutamate transporter (VGLUT in the dental pulp following inflammation. To address this issue, we investigated expression and protein levels of VGLUT1 and VGLUT2 in the dental pulp and trigeminal ganglion (TG following complete Freund's adjuvant (CFA application to the rat dental pulp by light microscopic immunohistochemistry and Western blot analysis.The density of VGLUT2- immunopositive (+ axons in the dental pulp and the number of VGLUT2+ soma in the TG increased significantly in the CFA-treated group, compared to control group. The protein levels of VGLUT2 in the dental pulp and TG were also significantly higher in the CFA-treated group than control group by Western blot analysis. The density of VGLUT1+ axons in the dental pulp and soma in the TG remained unchanged in the CFA-treated group.These findings suggest that glutamate signaling that is mediated by VGLUT2 in the pulpal axons may be enhanced in the inflamed dental pulp, which may contribute to pulpal axon sensitization leading to hyperalgesia following inflammation.

  12. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  13. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  14. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  15. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Directory of Open Access Journals (Sweden)

    Oscar Sacchi

    Full Text Available The permeability of the nicotinic channel (nAChR at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh, were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV resulted in a change of the synaptic potassium/sodium permeability ratio (P(K/P(Na from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh, by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn and of the EPSC decay time constant. Reduction of [Cl(-](o to 18 mM resulted in a change of P(K/P(Na from 1.57 (control to 2.26, associated with a reversible shift of E(ACh by about -10 mV. Application of 200 nM αBgTx evoked P(K/P(Na and g(syn modifications similar to those observed in reduced [Cl(-](o. The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K/P(Na changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization, while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  16. Involvement of trigeminal ganglionic Nav 1.7 in hyperalgesia of inflamed temporomandibular joint is dependent on ERK1/2 phosphorylation of glial cells in rats.

    Science.gov (United States)

    Bi, R-Y; Kou, X-X; Meng, Z; Wang, X-D; Ding, Y; Gan, Y-H

    2013-08-01

    Inflammation is a major cause of temporomandibular disorder-related pain. The Nav 1.7 sodium channel has a critical function in pain perceptions. However, whether and how Nav 1.7 in the trigeminal ganglion is involved in temporomandibular joint (TMJ) inflammatory pain remains to be examined. TMJ inflammation was induced by complete Freund's adjuvant in female rats. The expression of trigeminal ganglionic Nav 1.7 and other sodium channels was examined using real-time polymerase chain reaction or Western blotting. Immunohistofluorescence with fluorescent retrograde neuronal tracer DiI was used to confirm Nav 1.7 in the trigeminal neurons innervating TMJ. The functions of trigeminal ganglionic Nav 1.7 and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation were blocked with the microinjection of the Nav 1.7 antibody or U0126 into the trigeminal ganglion. Head withdrawal threshold and food intake was measured to evaluate TMJ nociceptive responses. TMJ inflammation significantly up-regulated Nav 1.7 mRNA and protein; however, the mRNA of Nav 1.3 was not affected and those of Nav 1.8 and Nav 1.9 were only slightly up-regulated. TMJ inflammation specifically induced Nav 1.7 in the neurons innervating TMJ. In addition, blocking the Nav 1.7 function significantly attenuated the hyperalgesia of the inflamed TMJ. Moreover, TMJ inflammation up-regulated ERK1/2 phosphorylation only in the glials; blocking ERK1/2 phosphorylation in the glials blocked Nav 1.7 up-regulation in the neurons and correspondingly attenuated the hyperalgesia of the inflamed TMJ. Trigeminal ganglionic Nav 1.7 has an important function in the hyperalgesia of the inflamed TMJ, which is dependent on the communication with the satellite glials. © 2012 European Federation of International Association for the Study of Pain Chapters.

  17. [Nav1.8 and Nav1.9 mRNA expression in rat trigeminal ganglion at different interval after molar extraction].

    Science.gov (United States)

    Zhang, Lei; Liu, Hong-Chen; Wang, Dong-Sheng

    2009-05-01

    To observe the expression and function of extraction. Real-time reverse transcription PCR paralleled with vitro-established cRNA standard curves was applied to measure the expression of Nav1.8, Nav1.9 at 30 min, 2 h, 1 d, 3 d and 6 d respectively after extraction of rat right mandibular molars. The right mandibular molars were used as control. Both Nav1.8 and Nav1.9 mRNA in right trigeminal ganglion showed little change after 30 min, and increased slowly after 2 h. Nav1.8, Nav1.9 mRNA expressions increased by 27% and 24.5% respectively compared to the left trigeminal ganglion after 3 d, reaching the highest level (P Nav1.9 mRNA, indicating the participation of sodium channels in regulations of peripheral tissue pain after molar extraction.

  18. [Effects on erectile function of transplanted major pelvic ganglion into the corpus cavernosum of adult rats with bilateral cavernous nerve injury].

    Science.gov (United States)

    Cui, Dian-sheng; Hu, Li-quan; Li, Shi-wen; Zheng, Xin-min

    2004-05-22

    To investigate the effects on erectile function of transplanted major pelvic ganglion into the corpus cavernosum of adult male rats undergoing transection of bilateral cavernous nerves. Twenty-six male Sprague-Dawley rats (3 - 4 month-old and 300 - 400 g/each) were divided into 2 groups: experimental group (transection of bilateral cavernous nerves and transplantation of left ganglion into left crus of penis, n = 16) and control group (transection of bilateral cavernous nerves only, n = 10). Erectile function was measured by injecting APO, and intracavernous pressure was measured 1 and 3 months afterwards by electric-stimulating the right major pelvic ganglion or the left crus. Half animals in each group were sacrificed 1 and 3 months afterwards for detecting nNOS-containing nerve fibers of corpus cavernosum. Electron microscopy of the implanted area was performed to assess neuronal survival. Both of the two groups have no erectile response to APO injection. Electrostimulation on the right major pelvic ganglion and left crus failed to produce erection in experimental group. The mean pressure changes in the two groups, measured by stimulating the left crus, were (9.41 +/- 3.20) and (4.16 +/- 2.58) cmH(2)O 1 month afterwards, and (13.67 +/- 4.18) and (5.09 +/- 2.74) cmH(2)O 3 months afterwards, respectively (P < 0.05). An increased number of nNOS-containing nerve fibers in left crus was detected in experimental group 1 and 3 months later, compared with control one (218.7 +/- 24.5, 18.0 +/- 3.7; 183.2 +/- 19.7, 19.0 +/- 3.8; P < 0.05). Ultrastructure examination by transmission electron microscope confirmed the survival of the implanted ganglion. Major pelvic ganglion can survive in the corpus cavernosum, and it has significant effects on the number of nNOS-containing nerve fibers and the alteration of intracavernous pressure.

  19. Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins.

    Science.gov (United States)

    Zhang, Min-Min; Wilson, Michael J; Gajewiak, Joanna; Rivier, Jean E; Bulaj, Grzegorz; Olivera, Baldomero M; Yoshikami, Doju

    2013-05-01

    Adult rat dorsal root ganglion (DRG) neurons normally express transcripts for five isoforms of the α-subunit of voltage-gated sodium channels: NaV 1.1, 1.6, 1.7, 1.8 and 1.9. Tetrodotoxin (TTX) readily blocks all but NaV 1.8 and 1.9, and pharmacological agents that discriminate among the TTX-sensitive NaV 1-isoforms are scarce. Recently, we used the activity profile of a panel of μ-conotoxins in blocking cloned rodent NaV 1-isoforms expressed in Xenopus laevis oocytes to conclude that action potentials of A- and C-fibres in rat sciatic nerve were, respectively, mediated primarily by NaV 1.6 and NaV 1.7. We used three μ-conotoxins, μ-TIIIA, μ-PIIIA and μ-SmIIIA, applied individually and in combinations, to pharmacologically differentiate the TTX-sensitive INa of voltage-clamped neurons acutely dissociated from adult rat DRG. We examined only small and large neurons whose respective INa were >50% and >80% TTX-sensitive. In both small and large neurons, the ability of the toxins to block TTX-sensitive INa was μ-TIIIA NaV 1-isoforms, co-expressed with various NaV β-subunits in X. laevis oocytes, were consistent: NaV 1.1, 1.6 and 1.7 could account for all of the TTX-sensitive INa , with NaV 1.1 NaV 1.6 NaV 1.7 for small neurons and NaV 1.7 NaV 1.1 NaV 1.6 for large neurons. Combinations of μ-conotoxins can be used to determine the probable NaV 1-isoforms underlying the INa in DRG neurons. Preliminary experiments with sympathetic neurons suggest that this approach is extendable to other neurons. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  20. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  1. Dynamic Regulation of Delta-Opioid Receptor in Rat Trigeminal Ganglion Neurons by Lipopolysaccharide-induced Acute Pulpitis.

    Science.gov (United States)

    Huang, Jin; Lv, Yiheng; Fu, Yunjie; Ren, Lili; Wang, Pan; Liu, Baozhu; Huang, Keqiang; Bi, Jing

    2015-12-01

    Delta-opioid receptor (DOR) and its endogenous ligands distribute in trigeminal system and play a very important role in modulating peripheral inflammatory pain. DOR activation can trigger p44/42 mitogen-activated protein kinase (ERK1/2) and Akt signaling pathways, which participate in anti-inflammatory and neuroprotective effects. In this study, our purpose was to determine the dynamic changes of DOR in trigeminal ganglion (TG) neurons during the process of acute dental pulp inflammation and elucidate its possible mechanism. Forty rats were used to generate lipopolysaccharide-induced acute pulpitis animal models at 6, 12, and 24 hours and sham-operated groups. Acute pulpitis was confirmed by hematoxylin-eosin staining, and TG neuron activation was determined by anti-c-Fos immunohistochemistry. DOR protein and gene expression in TG was investigated by immunohistochemistry, Western blotting, and real-time polymerase chain reaction, and DOR expression in trigeminal nerves and dental pulp was also determined by immunohistochemistry. To further investigate the mechanism of DOR modulating acute inflammation, the change of pErk1/2 and pAkt in TG was examined by immunohistochemistry. Lipopolysaccharide could successfully induce acute pulpitis and activated TG neurons. Acute pulpitis could dynamically increase DOR protein and gene expression at 6, 12, and 24 hours in TG, and DOR dimerization was significantly increased at 12 and 24 hours. Acute pulpitis also induced the dynamic change of DOR protein in trigeminal nerve and dental pulp. Furthermore, ERK1/2 and Akt signaling pathways were inhibited in TG after acute pulpitis. Increased DOR expression and dimerization may play important roles in peripheral acute inflammatory pain. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  3. Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress.

    Science.gov (United States)

    Uğuz, Abdülhadi Cihangir; Nazıroğlu, Mustafa

    2012-08-01

    Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to cellular function and may present as an important cause of cellular oxidative stress generation and apoptosis. The aim of this study is to investigate the effects of selenium on lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), cytosolic Ca(2+) release, cell viability (MTT) and apoptosis values in dorsal root ganglion (DRG) sensory neurons of rats. DRG cells were divided into four groups namely control, H(2)O(2) (as a model substance used as a paradigm for oxidative stress), selenium, selenium + H(2)O(2). Moderate doses and times of H(2)O(2) and selenium were determined by MTT test. Cells were preterated 200 nM selenium for 30 h before incubatation with 1 μM H(2)O(2) for 2 h. Lipid peroxidation levels were lower in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. GSH-Px activities were higher in the selenium groups than in the H(2)O(2) group. GSH levels were higher in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. Cytosolic Ca(2+) release was higher in the H(2)O(2) group than in the control, selenium, selenium + H(2)O(2) groups. Cytosolic Ca(2+) release was lower in the selenium + H(2)O(2) group than in the H(2)O(2). In conclusion, the present study demonstrates that selenium induced protective effects on oxidative stress, [Ca(2+)](c) release and apoptosis in DRG cells. Since selenium deficiency is a common feature of oxidative stress-induced neurological diseases of sensory neurons, our findings are relevant to the etiology of pathology in oxidative stress-induced neurological diseases of the DRG neurons.

  4. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  5. Effect of TRPV4-p38 MAPK Pathway on Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion

    Directory of Open Access Journals (Sweden)

    Yu-Juan Qu

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4 and anisomycin (an agonist of p38, but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4 and SB203580 (an inhibitor of p38. The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.

  6. Expression of novel opsins and intrinsic light responses in the mammalian retinal ganglion cell line RGC-5. Presence of OPN5 in the rat retina.

    Directory of Open Access Journals (Sweden)

    Paula S Nieto

    Full Text Available The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC-5, by testing for the presence of visual and non-visual opsins and assessing expression of the immediate-early gene protein c-Fos and changes in intracellular Ca(2+ mobilization in response to brief light pulses. Cultured RGC-5 cells express a number of photopigment mRNAs such as retinal G protein coupled receptor (RGR, encephalopsin/panopsin (Opn3, neuropsin (Opn5 and cone opsin (Opn1mw but not melanopsin (Opn4 or rhodopsin. Opn5 immunoreactivity was observed in RGC-5 cells and in the inner retina of rat, mainly localized in the ganglion cell layer (GCL. Furthermore, white light pulses of different intensities and durations elicited changes both in intracellular Ca(2+ levels and in the induction of c-Fos protein in RGC-5 cell cultures. The results demonstrate that RGC-5 cells expressing diverse putative functional photopigments display intrinsic photosensitivity which accounts for the photic induction of c-Fos protein and changes in intracellular Ca(2+ mobilization. The presence of Opn5 in the GCL of the rat retina suggests the existence of a novel type of photoreceptor cell.

  7. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  8. Intracardiac and intracerebral thrombosis associated with ...

    African Journals Online (AJOL)

    Intracardiac and intracerebral thrombosis associated with methylenetetrahydrofolate reductase A1298C homozygote mutation in paediatric steroidresistant ... The patient was found to have a homozygote mutation in the methylenetetrahydrofolate reductase (MTHFR) gene as an additional risk factor for recurrent thrombosis.

  9. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma.

    Science.gov (United States)

    Kwong, Jacky M K; Vo, Nancy; Quan, Ann; Nam, Michael; Kyung, Haksu; Yu, Fei; Piri, Natik; Caprioli, Joseph

    2013-07-01

    Intraocular pressure (IOP) elevation is considered as a major risk factor causing the progression of vision deterioration in glaucoma. Although it is known that the IOP level changes widely throughout the day and night, how the dark or light phase IOP elevation contributes to retinal ganglion cell (RGC) degeneration is still largely unclear. To examine the profile of IOP, modified laser photocoagulation was applied to the trabecular meshwork of Brown Norway rats and both light and dark phase IOPs were monitored approximately 1-2 times a week. The relationship between IOP elevation and RGC degeneration was investigated while RGC body loss was analyzed with Rbpms immunolabeling on retinal wholemount and axonal injury in the optic nerve was semi-quantified. The baseline awake dark and light IOPs were 30.4 ± 2.7 and 20.2 ± 2.1 mmHg respectively. The average dark IOP was increased to 38.2 ± 3.2 mmHg for five weeks after the laser treatment on 270° trabecular meshwork. However, there was no significant loss of RGC body and axonal injury. After laser treatment on 330° trabecular meshwork, the dark and light IOPs were significantly increased to 43.8 ± 4.6 and 23 ± 3.7 mmHg respectively for 5 weeks. The cumulative dark and light IOP elevations were 277 ± 86 and 113 ± 50 mmHg days respectively while the cumulative total (light and dark) IOP elevation was 213 ± 114 mmHg days. After 5 weeks, regional RGC body loss of 29.5 ± 15.5% and moderate axonal injury were observed. Axonal injury and loss of RGC body had a high correlation with the cumulative total IOP elevation (R(2) = 0.60 and 0.65 respectively). There was an association between the cumulative dark IOP elevation and RGC body loss (R(2) = 0.37) and axonal injury (R(2) = 0.51) whereas the associations between neuronal damages and the cumulative light IOP elevation were weak (for RGC body loss, R(2) = 0.01; for axonal injury, R(2) = 0.26). Simple linear regression model

  10. The distribution of kisspeptin and its receptor GPR54 in rat dorsal root ganglion and up-regulation of its expression after CFA injection.

    Science.gov (United States)

    Mi, Wen-Li; Mao-Ying, Qi-Liang; Liu, Qiong; Wang, Xiao-Wei; Li, Xiu; Wang, Yan-Qing; Wu, Gen-Cheng

    2009-03-16

    Kisspeptin/GPR54 system plays a crucial role in the control of puberty onset and reproductive function. In the present study, we gave the first report that kisspeptin and GPR54 were expressed in the small- to large-sized neurons, and co-localized with Bandeiraea simplicifolia isolectin B4 (IB4), calcitonin-gene-related peptide (CGRP) and neurofilament 200 (NF200) in the L4/5 dorsal root ganglion (DRG) of naïve rats, detected by the double immunofluorescent staining. Interestingly, a marked elevation in the levels of KiSS-1 and GPR54 mRNA as well as protein was observed in the spinal dorsal horn and DRG 4 and 14 days following intra-articular injection of complete Freund's adjuvant (CFA), indicating a possible involvement of the kisspeptin/GPR54 system in chronic inflammatory pain.

  11. Spinorphin inhibits membrane depolarization- and capsaicin-induced intracellular calcium signals in rat primary nociceptive dorsal root ganglion neurons in culture.

    Science.gov (United States)

    Ayar, Ahmet; Ozcan, Mete; Kuzgun, Kemal Tuğrul; Kalkan, Omer Faruk

    2015-01-01

    Spinorphin is a potential endogenous antinociceptive agent although the mechanism(s) of its analgesic effect remain unknown. We conducted this study to investigate, by considering intracellular calcium concentrations as a key signal for nociceptive transmission, the effects of spinorphin on cytoplasmic Ca(2+) ([Ca(2+)]i) transients, evoked by high-K(+) (30 mM) depolariasation or capsaicin, and to determine whether there were any differences in the effects of spinorphin among subpopulation of cultured rat dorsal root ganglion (DRG) neurons. DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium sensitive dye fura-2 AM (1 µM). Intracellular calcium responses in individual DRG neurons were quantified using standard fura-2 based ratiometric calcium imaging technique. All data were analyzed by using unpaired t test, p nociceptive subtypes of this primary sensory neurons suggesting that peripheral site is involved in the pain modulating effect of this endogenous agent.

  12. [Effect of triptolide on iNOS and SP expressions in spinal dorsal horn and dorsal root ganglion of rats with adjuvant arthritis].

    Science.gov (United States)

    Chen, Wei; Zhang, Xu-Dong; Lu, Zhuo-Hui; Wei, Deng-Ming

    2014-05-01

    To observe the analgesic effect of triptolide (TP) of high, middle and low doses on rats with adjuvant arthritis (AA), and the expressions of inducible nitric oxide synthase (iNOS) and substance P (SP) in spinal dorsal horn and dorsal root ganglion (DRG) of corresponding sections, in order to discuss the possible mechanism for the analgesic effect of TP on rats with adjuvant arthritis. Fifty SD rats were selected and randomly divided into the normal group (group A), the model group (group B), and TP low (group C), middle (group D), high (group E) dose groups. Except for the group A, all of the remaining groups were injected with 0.1 mL of Freund's complete adjuvant through their right rear toes to establish the model. At 14 d after the model establishment, rats in C, D and E groups were intraperitoneally injected with different doses of TP (0.1 mg x kg(-1) for the group C, 0.2 mg x kg(-1) for the group D, 0.4 mg x kg(-1) for the group E) once a day for 9 days. Then the 50% mechanical withdraw threshold (MWT) was determined. And the expressions of iNOS and SP in lumbar5 (L5) spinal dorsal horn and DRG were detected with the immunohistochemical method. The 50% MWT of rats in the group B was significantly lower than that of the group A (P effect relationship. The immunohistochemical results indicated that the iNOS and SP expressions significantly increased in the group B (P effect relationship. TP shows a good analgesic effect on AA, and could inhibit the iNOS and SP expressions in spinal dorsal horn and DRG in rats with adjuvant arthritis, which may be one of action mechanisms for the analgesic effect of TP.

  13. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Warfvinge, K; Kruse, L S

    2016-01-01

    modify the neurogenic inflammatory response in the trigeminal ganglion. METHODS: Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were...

  14. 21 CFR 870.4430 - Cardiopulmonary bypass intracardiac suction control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass intracardiac suction....4430 Cardiopulmonary bypass intracardiac suction control. (a) Identification. A cardiopulmonary bypass intracardiac suction control is a device which provides the vacuum and control for a cardiotomy return sucker...

  15. An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl₂-induced apoptosis.

    Science.gov (United States)

    Men, Jie; Zhang, Xiaohui; Yang, Yang; Gao, Dianwen

    2012-05-01

    Some ocular diseases characterized by apoptotic death of retinal ganglion cells (RGCs) and Alzheimer's disease (AD) are chronic neurodegenerative disorders and have similarities in neuropathology. Humanin (HN) is known for its ability to suppress neuronal death induced by AD-related insults. In present study, we investigated the neuroprotective effects of HN on hypoxia-induced toxicity in RGC-5 cells. Hypoxia mimetic compound cobalt chloride (CoCl₂) could increase the cell viability loss and apoptosis, whereas HN can significantly attenuate these effects. This finding may provide new therapeutics for the retinal neurodegenerative diseases targeting neuroprotection.

  16. Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats.

    Directory of Open Access Journals (Sweden)

    Mohamed Farrag

    Full Text Available Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.

  17. [Resection of intracardiac myxoma. Case report].

    Science.gov (United States)

    Carmona-Delgado, Víctor Manuel; Deloya-Maldonado, Angélica María; Carranza-Bernal, María Lourdes; Hinojosa-Pérez, Arturo; Farías-Mayene, Leobardo

    2017-01-01

    Myxomas are the most common benign cardiac tumors, which are considered emergency surgery. The resection should not be delayed because 8-9% of affected patients may die due to intracardiac blood flow obstruction. We presente a clinical case of a 47 year old female, history of dyslipidemia. Disease starts with retrosternal oppression feeling, dyspnea on moderate exercise, dizziness, pain in joints hands. Arrhytmic heart sounds, diastolic mitral murmur II/IV, breth sounds present, no lymph. Laboratory: hemoglobin 11.0, leucocyte 9000, glucose 96 mg/dL, chest RX medium arch prominence cardiac silhouette. ECO transthoracic LVEF 60 %, with left atrial intracardiac tumor 13x11 cm, pedicle fixed the interatrial septum, the mitral valve bulges, with mild mitral valve. Half sternotomy is performed intracardiac tumor resection, pericardial placement interatrial with extracorporeal circulation support 65', aortic clamping time of 40'. Intracardiac tumor surgical findings interatrial septum fixed to left side, pedicle, rounded, yellow, multiloculated, soft, 13x10 cm in diameter. Histopathological diagnosis cardiac myxoma. We conclude that the tumor resection was carried in a timely manner with satisfactory evolution.

  18. Autologous nucleus pulposus transplantation to lumbar 5 dorsal root ganglion after epineurium dissection in rats: a modified model of non-compressive lumbar herniated intervertebral disc.

    Science.gov (United States)

    Zhang, Jin-jun; Song, Wu; Luo, Wen-ying; Wei, Ming; Sun, Lai-bao; Zou, Xue-nong; Liao, Wei-ming

    2011-07-05

    Nucleus pulposus of intervertebral discs has proinflammatory characteristics that play a key role in neuropathic pain in lumbar herniated intervertebral disc. One of the most commonly used animal models (the traditional model) of non-compressive lumbar herniated intervertebral disc is created by L4-L5 hemilaminectomy and the application of autologous nucleus pulposus to cover the left L4 and L5 nerve roots in rats. However, such procedures have the disadvantages of excessive trauma and low success rate. We proposed a modified model of non-compressive lumbar herniated intervertebral disc in which only the left L5 dorsal root ganglion is exposed and transplanted with autologous nucleus pulposus following incision of epineurium. We aimed to compare the modified model with the traditional one with regard to trauma and success rate. Thirty Sprague-Dawley male rats were randomized into three groups: sham operation group (n = 6), traditional group (n = 12), and modified group (n = 12). The amount of blood loss and operative time for each group were analyzed. The paw withdrawal threshold of the left hind limb to mechanical stimuli and paw withdrawal latency to heat stimuli were examined from the day before surgery to day 35 after surgery. Compared with the traditional group, the modified group had shorter operative time, smaller amount of blood loss, and higher success rate (91.7% versus 58.3%, P lumbar herniated intervertebral disc with less trauma and more stable pain ethology.

  19. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure.

    Science.gov (United States)

    Ren, Ruotong; Li, Ying; Liu, Zhiping; Liu, Kegao; He, Shigang

    2012-02-27

    To evaluate the ability of increased expression of brain-derived neurotrophic factor (BDNF) using adenoassociated viral (AAV) vector to prevent the loss of rat retinal ganglion cells (RGCs) and visual function after acute elevation of intraocular pressure (IOP). AAV vectors (expressing BDNF or GFP) were injected into the vitreous 6 hours after a transient IOP elevation to 130 mm Hg for 45 minutes. Protective effects were evaluated by counting RGCs retrogradely labeled with fluorogold (FG) from the superior colliculus, measuring the amplitude and the latency of the P1 component of the visual evoked potential (VEP), and observing the visual acuity and contrast sensitivity in awake and behaving animals. RGC numbers decreased continuously to 9 weeks after the elevation of IOP. FG-positive RGC loss was significantly decreased in the retinas treated with AAV-BDNF at 3, 6, and 9 weeks after the insult, with corresponding improvements in VEP parameters. Supplementing BDNF protein once to compensate for the slow onset of AAV-mediated gene expression rescued a larger number of RGCs and the parameters of the VEP. Visual acuity and contrast sensitivity were significantly improved in all treated groups, with the largest improvement in the combined-therapy group, and were maintained for up to 70 weeks. The authors further demonstrated that BDNF rescued the RGCs by activating TrkB receptors through both autocrine and paracrine mechanisms. AAV-mediated BDNF expression in the rat retina achieved a sustained rescue of RGCs and visual function after an acute elevation of IOP.

  20. Effects of niflumic acid on γ-aminobutyric acid-induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats.

    Science.gov (United States)

    Wang, Li-Jie; Wang, Yang; Chen, Meng-Jie; Tian, Zhen-Pu; Lu, Bi-Han; Mao, Ke-Tao; Zhang, Liang; Zhao, Lei; Shan, Li-Ya; Li, Li; Si, Jun-Qiang

    2017-08-01

    Niflumic acid (NFA) is a type of non-steroidal anti-inflammatory drug. Neuropathic pain is caused by a decrease in presynaptic inhibition mediated by γ-aminobutyric acid (GABA). In the present study, a whole-cell patch-clamp technique and intracellular recording were used to assess the effect of NFA on GABA-induced inward current in dorsal root ganglion (DRG) neurons of a chronic constriction injury (CCI) model. It was observed that 1-1,000 µmol/l GABA induced a concentration-dependent inward current in DRG neurons. Compared with pseudo-operated rats, the thermal withdrawal latency (TWL) of CCI rats significantly decreased (PNFA group (50 and 300 µmol/l) were significantly longer than that of the CCI group (PNFA (5.32±3.51, 33.8±5.20, and 52.2±6.32%, respectively; PNFA, respectively (PNFA exerted a strong inhibitory effect on the peak value of GABA-induced current, and the GABA-induced response was inhibited by the same concentrations of NFA (1, 10 and 100 µmol/l) in the control and CCI groups (PNFA reduced the primary afferent depolarization (PAD) associated with neuropathic pain and mediated by the GABAA receptor. NFA may regulate neuropathic pain by inhibiting dorsal root reflexes, which are triggered PAD.

  1. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats

    Directory of Open Access Journals (Sweden)

    Katagiri Ayano

    2012-03-01

    Full Text Available Abstract Background It has been reported that the P2Y12 receptor (P2Y12R is involved in satellite glial cells (SGCs activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP immunohistochemistries in the trigeminal ganglion (TG in a rat model of unilateral lingual nerve crush (LNC to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN-IR cells (i.e. neurons in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats

  2. Effects of Antipsychotic Drugs Haloperidol and Clozapine on Visual Responses of Retinal Ganglion Cells in a Rat Model of Retinitis Pigmentosa.

    Science.gov (United States)

    Jensen, Ralph J

    2016-12-01

    In the P23H rat model of retinitis pigmentosa, the dopamine D2 receptor antagonists sulpiride and eticlopride appear to improve visual responses of retinal ganglion cells (RGCs) by increasing light sensitivity of RGCs and transforming abnormal, long-latency ON-center RGCs into OFF-center cells. Antipsychotic drugs are believed to mediate their therapeutic benefits by blocking D2 receptors. This investigation was conducted to test whether haloperidol (a typical antipsychotic drug) and clozapine (an atypical antipsychotic drug) could similarly alter the light responses of RGCs in the P23H rat retina. Extracellular recordings were made from RGCs in isolated P23H rat retinas. Responses of RGCs to flashes of light were evaluated before and during bath application of a drug. Both haloperidol and clozapine increased light sensitivity of RGCs on average by ∼0.3 log unit. For those ON-center RGCs that exhibit an abnormally long-latency response to the onset of a small spot of light, both haloperidol and clozapine brought out a short-latency OFF response and markedly reduced the long-latency ON response. The selective serotonin 5-HT2A antagonist MDL 100907 had similar effects on RGCs. The effects of haloperidol on light responses of RGCs can be explained by its D2 receptor antagonism. The effects of clozapine on light responses of RGCs on the other hand may largely be due to its 5-HT2A receptor antagonism. Overall, the results suggest that antipsychotic drugs may be useful in improving vision in patients with retinitis pigmentosa.

  3. An ultrastructural study of the binding of an alpha-D-galactose specific lectin from Griffonia simplicifolia to trigeminal ganglion neurons and the trigeminal nucleus caudalis in the rat.

    Science.gov (United States)

    Ambalavanar, R; Morris, R

    1993-02-01

    The pattern of binding by the isolectin I-B4 from Griffonia simplicifolia to trigeminal ganglion neurons and the trigeminal nucleus caudalis has been investigated at the ultrastructural level in the rat. This lectin bound to small ganglion neurons with two different binding patterns. The majority of the ganglion cells labelled had reaction product throughout their cytoplasm and this was associated with the Golgi apparatus and endoplasmic reticulum. In a second group of small ganglion neurons the binding was only found on the surface plasma membrane of the cells. In the trigeminal tract the cytoplasm of many unmyelinated axons and a few small myelinated axons was found to bind this lectin. A very thin band of staining was also found on the inner and outer edges of the myelin sheaths of other myelinated axons. Staining of synapses was found throughout laminae I and II with the highest frequency in the inner part of laminae II. These synapses made both simple and complex connections with one or more dendrites, contained clear round vesicles and had asymmetric synaptic densities. Some of the glomerular synapses stained were observed to receive presynaptic synapses containing small clear flattened vesicles. Synapses containing both clear round and large dense core vesicles were unstained. Some staining was also found in dendrites. In weakly fixed tissue, staining was also found around some glial cells and on the luminal membranes of capillary endothelial cells. This lectin is a valuable tool for studies of the "non-peptide" group of C-fibre primary afferents.

  4. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats.

    Science.gov (United States)

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-07-30

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain.

  5. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  6. The Venom of the Spider Selenocosmia Jiafu Contains Various Neurotoxins Acting on Voltage-Gated Ion Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Zhaotun Hu

    2014-03-01

    Full Text Available Selenocosmia jiafu is a medium-sized theraphosid spider and an attractive source of venom, because it can be bred in captivity and it produces large amounts of venom. We performed reversed-phase high-performance liquid chromatography (RP-HPLC and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS analyses and showed that S. jiafu venom contains hundreds of peptides with a predominant mass of 3000–4500 Da. Patch clamp analyses indicated that the venom could inhibit voltage-gated Na+, K+ and Ca2+ channels in rat dorsal root ganglion (DRG neurons. The venom exhibited inhibitory effects on tetrodotoxin-resistant (TTX-R Na+ currents and T-type Ca2+ currents, suggesting the presence of antagonists to both channel types and providing a valuable tool for the investigation of these channels and for drug development. Intra-abdominal injection of the venom had severe toxic effects on cockroaches and caused death at higher concentrations. The LD50 was 84.24 μg/g of body weight in the cockroach. However, no visible symptoms or behavioral changes were detected after intraperitoneal injection of the venom into mice even at doses up to 10 mg/kg body weight. Our results provide a basis for further case-by-case investigations of peptide toxins from this venom.

  7. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant

    Directory of Open Access Journals (Sweden)

    Han Ji-Sheng

    2008-12-01

    Full Text Available Abstract Background The present study aims to investigate the role of transient receptor potential vanilloid 1 (TRPV1 in dorsal root ganglion (DRG neurons in chronic pain including thermal hyperalgesia and mechanical allodynia. Chronic inflammatory nociception of rats was produced by intraplantar injection of complete Freund's adjuvant (CFA and data was collected until day 28 following injection. Results Thermal hyperalgesia was evident from day 1 to day 28 with peak at day 7, while mechanical allodynia persisted from day 1 to day 14 and was greatest at day 7. Intrathecal administration of AMG 9810 at day 7, a selective TRPV1 antagonist, significantly reduced thermal hyperalgesia and mechanical allodynia. TRPV1 expression in DRG detected by Western blotting was increased relative to baseline throughout the observation period. Double labeling of TRPV1 with neuronal marker neurofilament 200 (NF200, calcitonin gene-related peptide (CGRP or isolectin B4 (IB4 was used to distinguish different subtypes of DRG neurons. TRPV1 expression was increased in the medium-sized myelinated A fiber (NF200 positive neurons and in small non-peptidergic (IB4 positive neurons from day 1 to day 14 and was increased in small peptidergic (CGRP positive neurons from day 1 to day 28. Conclusion TRPV1 expression increases in all three types of DRG neurons after CFA injection and plays a role in CFA-induced chronic inflammatory pain including thermal hyperalgesia and mechanical allodynia.

  8. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  9. Increase of sodium channels (nav 1.8 and nav 1.9) in rat dorsal root ganglion neurons exposed to autologous nucleus pulposus.

    Science.gov (United States)

    Watanabe, Kazuyuki; Larsson, Karin; Rydevik, Björn; Konno, Shin-Ichi; Nordborg, Claes; Olmarker, Kjell

    2014-01-01

    It has been assumed that nucleus pulposus-induced activation of the dorsal root ganglion (DRG) may be related to an activation of sodium channels in the DRG neurons. In this study we assessed the expression of Nav 1.8 and Nav 1.9 following disc puncture. Thirty female Sprague-Dawley rats were used. The L4/L5 disc was punctured by a needle (n=12) and compared to a sham group without disc puncture (n=12) and a naive group (n=6). At day 1 and 7, sections of the left L4 DRG were immunostained with anti-Nav 1.8 and Nav 1.9 antibodies. At day 1 after surgery, both Nav 1.8-IR neurons and Nav 1.9-IR neurons were significantly increased in the disc puncture group compared to the sham and naive groups (p<0.05), but not at day 7. The findings in the present study demonstrate a neuronal mechanism that may be of importance in the pathophysiology of sciatic pain in disc herniation.

  10. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    Science.gov (United States)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  11. [Evaluation of dermatomes in the hind paw of the rat using retrograde axonal transport].

    Science.gov (United States)

    Passagia, J G; Benabid, A L; Chirossel, J P; Bouchet, Y

    1993-12-01

    UV light fluorescent tracers (True Blue and Fast Blue) are placed in contact with sensitive receptors after dermabrasion. The abraded surfaces are limited to two hemidorsal areas and two hemi plantar areas on the animals' foot. A five days survival is allowed to enable the axonal retrograde transport of the tracers, then the animals are sacrificed and perfused with an intracardiac injection of 10% formaldehyde in phosphate buffer at 7.4 pH. The lumbar spinal ganglions are immediately dissected out, examined as a whole with a Leitz Dialux fluorescence microscope, then frozen and cut with a cryotome. The results of this analysis show that: i-only ipsilateral dorsal root ganglions are labeled by blue dye. ii-the number of fluorescent cells varies between 20 to 60 per ganglion. iii-a map of the distribution of the dermatomes on the rat hind foot can be deducted from the study of the labelled ganglions. They spread from L2 to L5 from the cranial to the caudal part, and from the medial to the lateral side of the rat foot, on both dorsal and plantar areas.

  12. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells.

    Science.gov (United States)

    Leaver, S G; Cui, Q; Plant, G W; Arulpragasam, A; Hisheh, S; Verhaagen, J; Harvey, A R

    2006-09-01

    We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal ganglion cell (RGC) survival and regeneration following (i) optic nerve (ON) crush or (ii) after ON cut and attachment of a peripheral nerve (PN). At 7 weeks after ON crush, quantification of betaIII-tubulin immunostaining revealed that, compared to AAV-GFP controls, RGC survival was not enhanced by AAV-GAP43-GFP but was increased in AAV-CNTF-GFP (mean RGCs/retina: 17 450+/-358 s.e.m.) and AAV-BDNF-GFP injected eyes (10 200+/-4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many betaIII-tubulin- and GFP-positive fibres proximal to the ON crush. However, only in the AAV-CNTF-GFP group were regenerating RGC axons seen in distal ON (1135+/-367 axons/nerve, 0.5 mm post-crush), some reaching the optic chiasm. RGCs were immunoreactive for CNTF and quantitative RT-PCR revealed a substantial increase in CNTF mRNA expression in retinas transduced with AAV-CNTF-GFP. The combination of AAV-CNTF-GFP transduction of RGCs with autologous PN-ON transplantation resulted in even greater RGC survival and regeneration. At 7 weeks after PN transplantation there were 27 954 (+/-2833) surviving RGCs/retina, about 25% of the adult RGC population. Of these, 13 352 (+/-1868) RGCs/retina were retrogradely labelled after fluorogold injections into PN grafts. In summary, AAV-mediated expression of CNTF promotes long-term survival and regeneration of injured adult RGCs, effects that are substantially enhanced by combining gene and cell-based therapies/interventions.

  13. Dorsal root ganglion neurons with dichotomizing axons projecting to the hip joint and the knee skin in rats: possible mechanism of referred knee pain in hip joint disease.

    Science.gov (United States)

    Miura, Yoko; Ohtori, Seiji; Nakajima, Takayuki; Kishida, Shinji; Harada, Yoshitada; Takahashi, Kazuhisa

    2011-11-01

    Patients who have hip joint diseases sometimes complain of knee pain as well as hip joint area pain. However, the precise sensory innervation pattern and correlation of the sensory nerves of the hip joint and knee are unknown. The purpose of this study was to investigate dorsal root ganglion (DRG) neurons with dichotomizing axons projecting to both the hip joint and the knee skin in rats using double fluorescent labeling techniques, and to examine characteristics of the DRG neurons with dichotomizing axons using immunohistochemical staining for inflammatory neuropeptides such as calcitonin gene-related peptide (CGRP). For 20 rats, two kinds of neurotracers, Fluoro-Gold (FG) and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI), were used in the double-labeling study. FG was injected into the left hip joint, and DiI was applied to the left medial portion of knee skin. Ten days after application, bilateral DRGs were harvested and immunohistochemically stained for CGRP. DRG neurons double labeled with FG and DiI were observed only from L2 to L4 on the left side. Approximately 1.6% of all DRG neurons innervating the hip joints had other axons that extended to the medial portion of knee skin, and 35% of double-labeled neurons were CGRP positive. Our results showed that the double-labeled neurons had peripheral axons that dichotomized into both the hip joint and the knee skin. CGRP-positive neurons of these dichotomizing fibers may play some role in the manifestation of referred knee pain with hip joint pain.

  14. Expression of BK Ca channels and the modulatory beta-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    (Ca) channel protein was visualized by western blotting and histochemistry. The presence of the modulatory beta1-beta 4 subunit mRNAs was investigated using RT-PCR. beta1-, beta2- and beta 4-subunit mRNAs were expressed in rat TG whereas beta2- and beta 4-subunits were detected in porcine TG. Western blotting...

  15. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  16. Intracardiac Thrombosis during Adult Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Marina Moguilevitch

    2013-01-01

    Full Text Available Intracardiac thrombosis (ICT and pulmonary embolism (PE during adult liver transplantation are rare but potentially lethal complications. They are often overlooked because of significant diagnostic challenges. The combination of hemodynamic compromise and transesophageal echocardiography (TEE findings allows for correct diagnosis. A large variety of putative risk factors for ICT and PE have been suggested, but these events are considered to be multifactorial. There are different proposed treatment modalities for these devastating complications. Unfortunately, in spite of growing knowledge in this area, intraoperative and postoperative mortalities remain very high. The retrospective nature of the study of these events makes the case reports extremely valuable.

  17. Pulsed and continuous radiofrequency current adjacent to the cervical dorsal root ganglion of the rat induces late cellular activity in the dorsal horn.

    NARCIS (Netherlands)

    Zundert, J. van; Louw, A.J. de; Joosten, E.A.J.; Kessels, A.G.H.; Honig, W.; Dederen, P.J.W.C.; Veening, J.G.; Vles, J.S.; Kleef, M. van

    2005-01-01

    BACKGROUND: Pulsed radiofrequency treatment has recently been described as a non-neurodestructive or minimally neurodestructive alternative to radiofrequency heat lesions. In clinical practice long-lasting results of pulsed radiofrequency treatment adjacent to the cervical dorsal root ganglion for

  18. Cytotoxic effect of commercially available methylprednisolone acetate with and without reduced preservatives on dorsal root ganglion sensory neurons in rats.

    Science.gov (United States)

    Knezevic, Nebojsa Nick; Candido, Kenneth D; Cokic, Ivan; Krbanjevic, Aleksandar; Berth, Sarah L; Knezevic, Ivana

    2014-01-01

    Epidural and intrathecal injections of methylprednisolone acetate (MPA) have become the most commonly performed interventional procedures in the United States and worldwide in the last 2 decades. However neuraxial MPA injection has been dogged by controversy regarding the presence of different additives used in commercially prepared glucocorticoids. We previously showed that MPA could be rendered 85% free of polyethylene glycol (PEG) by a simple physical separation of elements in the suspension. The objective of the present study was to explore a possible cytotoxic effect of commercially available MPA (with intact or reduced preservatives) on rat sensory neurons. We exposed primary dissociated rat dorsal root ganglia (DRG) sensory neurons to commercially available MPA for 24 hours with either the standard (commercial) concentration of preservatives or to different fractions following separation (MPA suspension whose preservative concentration had been reduced, or fractions containing higher concentrations of preservatives). Cells were stained with the TUNEL assay kit to detect apoptotic cells and images were taken on the Bio-Rad Laser Sharp-2000 system. We also detected expression of caspase-3, as an indicator of apoptosis in cell lysates. We exposed sensory neurons from rat DRG to different concentrations of MPA from the original commercially prepared vial. TUNEL assay showed dose-related responses and increased percentages of apoptotic cells with increasing concentrations of MPA. Increased concentrations of MPA caused 1.5 - 2 times higher caspase-3 expression in DRG sensory neurons than in control cells (ANOVA, P = 0.001). Our results showed that MPA with reduced preservatives caused significantly less apoptosis observed with TUNEL assay labeling (P neurons exposed to MPA from a commercially prepared vial or "clear phase" that contained higher concentrations of preservatives. Even though MPA with reduced preservatives caused 12.5% more apoptosis in DRG sensory

  19. The effects of neuroleptics on the GABA-induced Cl- current in rat dorsal root ganglion neurons: differences between some neuroleptics.

    Science.gov (United States)

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-03-01

    1. Several neuroleptics inhibited the 3 microM gamma-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. 2. The IC(50) for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 microM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 microM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. 3. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. 4. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 microM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. 5. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 microM)-current. However, haloperidol and quetiapine at 100 microM inhibited the desensitization at the beginning of application. 6. Blonanserin (AD-5423) at 30 and 50 microM potentiated the GABA (3 microM)-current to 170.1+/-6.9 and 192.0+/-10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. 7. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold.

  20. The effects of neuroleptics on the GABA-induced Cl− current in rat dorsal root ganglion neurons: differences between some neuroleptics

    Science.gov (United States)

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-01-01

    Several neuroleptics inhibited the 3 μM γ-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. The IC50 for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 μM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 μM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 μM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 μM)-current. However, haloperidol and quetiapine at 100 μM inhibited the desensitization at the beginning of application. Blonanserin (AD-5423) at 30 and 50 μM potentiated the GABA (3 μM)-current to 170.1±6.9 and 192.0±10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold. PMID:11906969

  1. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α, prevents retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Miin Roh

    Full Text Available Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor-α (TNF-α as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using a rat model of glaucoma, we investigated the source of elevated TNF-α and examined whether Etanercept, a TNF-α blocker that is in common clinical use for other indications, is protective against RGC death.Episcleral vein cauterization (EVC caused intraocular pressure (IOP to be elevated for at least 28 days. IOP elevation resulted in a dramatic increase in TNF-α levels within a few days, axonal degeneration, and a 38% loss of RGCs by 4 weeks. Immunostaining coupled with confocal microscopy showed that OHT induced robust induction of TNF-α in Iba-1-positive microglia around the optic nerve head (ONH. Despite persistent elevation of IOP, Etanercept reduced microglial activation, TNF-α levels, axon degeneration in the optic nerve, and the loss of RGCs.Ocular hypertension (OHT triggers an inflammatory response characterized by the appearance of activated microglia around the ONH that express TNF-α. Blocking TNF-α activity with a clinically approved agent inhibits this microglial response and prevents axonal degeneration and loss of RGCs. These findings suggest a new treatment strategy for glaucoma using TNF-α antagonists or suppressors of inflammation.

  2. Etanercept, a Widely Used Inhibitor of Tumor Necrosis Factor-α (TNF- α), Prevents Retinal Ganglion Cell Loss in a Rat Model of Glaucoma

    Science.gov (United States)

    Roh, Miin; Zhang, Yan; Murakami, Yusuke; Thanos, Aristomenis; Lee, Sung Chul; Vavvas, Demetrios G.; Benowitz, Larry I.; Miller, Joan W.

    2012-01-01

    Background Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC) axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP) are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor- α (TNF-α) as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using a rat model of glaucoma, we investigated the source of elevated TNF- α and examined whether Etanercept, a TNF-α blocker that is in common clinical use for other indications, is protective against RGC death. Methodology/Principal Findings Episcleral vein cauterization (EVC) caused intraocular pressure (IOP) to be elevated for at least 28 days. IOP elevation resulted in a dramatic increase in TNF-α levels within a few days, axonal degeneration, and a 38% loss of RGCs by 4 weeks. Immunostaining coupled with confocal microscopy showed that OHT induced robust induction of TNF-α in Iba-1-positive microglia around the optic nerve head (ONH). Despite persistent elevation of IOP, Etanercept reduced microglial activation, TNF-α levels, axon degeneration in the optic nerve, and the loss of RGCs. Conclusions/Significance Ocular hypertension (OHT) triggers an inflammatory response characterized by the appearance of activated microglia around the ONH that express TNF-α. Blocking TNF-α activity with a clinically approved agent inhibits this microglial response and prevents axonal degeneration and loss of RGCs. These findings suggest a new treatment strategy for glaucoma using TNF- α antagonists or suppressors of inflammation. PMID:22802951

  3. Comparative study of voltage-gated sodium channel α-subunits in non-overlapping four neuronal populations in the rat dorsal root ganglion.

    Science.gov (United States)

    Fukuoka, Tetsuo; Noguchi, Koichi

    2011-06-01

    Voltage-gated sodium channel α-subunit (Nav) is the major determinant of neuronal electrophysiological characters. In order to compare the composition of Navs among neurochemically different neurons in the rat dorsal root ganglion (DRG), we examined the expression of Nav transcripts in four non-overlapping neuronal populations, with (+) or without (-) N52 immunoreactivity, a marker of neurons with myelinated axons, and TrkA mRNA identified by in situ hybridization histochemistry. Both N52-/TrkA+ and N52-/TrkA- populations had high levels of signals for Nav1.7, Nav1.8, and Nav1.9 mRNAs, but rarely expressed Nav1.1 or Nav1.6. There was no significant difference in these signals, suggesting that C-fiber peptidergic and non-peptidergic neurons have similar electrophysiological characters with regard to sodium currents. N52+/TrkA+ neurons (putative A-fiber nociceptors) had similar high levels of signals for Nav1.7 and Nav1.8, but a significantly lower level of Nav1.9 signals, as compared to N52- neurons. Although, almost no N52+/TrkA- neurons had Nav1.8 or Nav1.9, half of this population expressed Nav1.7 at similar levels to other three populations and the other half completely lacked this channel. These data suggest that Nav1.8 is a common channel for both C- and A-fiber nociceptors, and Nav1.9 is rather selective for C-fiber nociceptors. Nav1.7 is the most universal channel while some functionally unknown N52+/TrkA- subpopulation selectively lacks it. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  4. Intracardiac Thrombosis in Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Marzieh Nikparvar

    2016-03-01

    Full Text Available In patients with sickle cell disease, thrombotic microangiopathy is a rare complication. Also in sickle cell disease, intracardiac thrombus formation without structural heart diseases or atrial arrhythmias is a rare phenomenon. We herein describe a 22-year-old woman, who was a known case of sickle cell-βthalassemia, had a history of recent missed abortion, and was admitted with a vaso-occlusive crisis. The patient had manifestations of microangiopathic hemolytic anemia, including laboratory evidence of hemolytic anemia, thrombocytopenia, respiratory distress, fever, jaundice, and abnormal liver function and coagulation tests, accompanied by clot formation on the Eustachian valve of the inferior vena cava in the right atrium and also a long and worm-like thrombus in the right ventricle. Therapeutic plasma exchange improved her clinical condition, and her intracardiac thrombus was completely resolved after 1 week. Echocardiography, as a simple and inexpensive imaging modality, had a significant role in the diagnosis and follow-up of this patient.

  5. New approach to intracardiac hemodynamic measurements in small animals

    DEFF Research Database (Denmark)

    Eskesen, Kristian; Olsen, Niels T; Dimaano, Veronica L

    2012-01-01

    Invasive measurements of intracardiac hemodynamics in animal models have allowed important advances in the understanding of cardiac disease. Currently they are performed either through a carotid arteriotomy or via a thoracotomy and apical insertion. Both of these techniques have disadvantages...

  6. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    Science.gov (United States)

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  7. Disseminated intravascular and intracardiac thrombosis after cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Deepak K Tempe

    2017-01-01

    Full Text Available Massive intracardiac and intravascular thrombosis is a rare complication following cardiopulmonary bypass (CPB. Most of the cases of the disseminated thrombosis have been reported in patients undergoing complex cardiac surgeries and those receiving antifibrinolytic agents during CPB. We report the occurrence of disseminated intravascular and intracardiac thrombosis after CPB in a patient undergoing mitral valve replacement in which no antifibrinolytic agent was used. The possible pathophysiology and management of the patient is discussed.

  8. Etanercept, a Widely Used Inhibitor of Tumor Necrosis Factor-α (TNF- α), Prevents Retinal Ganglion Cell Loss in a Rat Model of Glaucoma

    OpenAIRE

    Miin Roh; Yan Zhang; Yusuke Murakami; Aristomenis Thanos; Sung Chul Lee; Vavvas, Demetrios G.; Benowitz, Larry I.; Miller, Joan W.

    2012-01-01

    Background: Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC) axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP) are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor- α (TNF-α) as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using ...

  9. Intracardiac Echocardiography during Catheter-Based Ablation of Atrial Fibrillation.

    Science.gov (United States)

    Biermann, Jürgen; Bode, Christoph; Asbach, Stefan

    2012-01-01

    Accurate delineation of the variable left atrial anatomy is of utmost importance during anatomically based ablation procedures for atrial fibrillation targeting the pulmonary veins and possibly other structures of the atria. Intracardiac echocardiography allows real-time visualisation of the left atrium and adjacent structures and thus facilitates precise guidance of catheter-based ablation of atrial fibrillation. In patients with abnormal anatomy of the atria and/or the interatrial septum, intracardiac ultrasound might be especially valuable to guide transseptal access. Software algorithms like CARTOSound (Biosense Webster, Diamond Bar, USA) offer the opportunity to reconstruct multiple two-dimensional ultrasound fans generated by intracardiac echocardiography to a three-dimensional object which can be merged to a computed tomography or magnetic resonance imaging reconstruction of the left atrium. Intracardiac ultrasound reduces dwell time of catheters in the left atrium, fluoroscopy, and procedural time and is invaluable concerning early identification of potential adverse events. The application of intracardiac echocardiography has the great capability to improve success rates of catheter-based ablation procedures.

  10. Intracardiac Echocardiography during Catheter-Based Ablation of Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jürgen Biermann

    2012-01-01

    Full Text Available Accurate delineation of the variable left atrial anatomy is of utmost importance during anatomically based ablation procedures for atrial fibrillation targeting the pulmonary veins and possibly other structures of the atria. Intracardiac echocardiography allows real-time visualisation of the left atrium and adjacent structures and thus facilitates precise guidance of catheter-based ablation of atrial fibrillation. In patients with abnormal anatomy of the atria and/or the interatrial septum, intracardiac ultrasound might be especially valuable to guide transseptal access. Software algorithms like CARTOSound (Biosense Webster, Diamond Bar, USA offer the opportunity to reconstruct multiple two-dimensional ultrasound fans generated by intracardiac echocardiography to a three-dimensional object which can be merged to a computed tomography or magnetic resonance imaging reconstruction of the left atrium. Intracardiac ultrasound reduces dwell time of catheters in the left atrium, fluoroscopy, and procedural time and is invaluable concerning early identification of potential adverse events. The application of intracardiac echocardiography has the great capability to improve success rates of catheter-based ablation procedures.

  11. Retrieval of a Dislodged Catheter Using Combined Fluoroscopy and Intracardiac Echocardiography

    Directory of Open Access Journals (Sweden)

    Gus Mitsopoulos

    2015-01-01

    Full Text Available This report details a method of percutaneous, transluminal retrieval of an intracardiac foreign body using fluoroscopy in combination with intracardiac echocardiography. During retrieval, intracardiac echocardiography (ICE provided real-time anatomic localization of a constantly moving, almost radiolucent micropuncture coaxial dilator fragment with respect to the tricuspid and pulmonary valves. This method may serve as a crucial aid in retrieval of intracardiac foreign bodies that are difficult to see with fluoroscopy and which may be adjacent to cardiac valves.

  12. Technology update: intracardiac echocardiography – a review of the literature

    Directory of Open Access Journals (Sweden)

    Vitulano N

    2015-05-01

    Full Text Available Nicola Vitulano, Vincenzo Pazzano, Gemma Pelargonio, Maria Lucia Narducci Institute of Cardiology, Department of Cardiovascular Sciences, Catholic University of the Sacred Heart, Rome, Italy Abstract: The development of new imaging tools helps in better investigation of cardiac structures and function by showing detailed images during interventional procedures. Intracardiac echocardiography plays a pivotal role as an intraoperative real-time imaging tool during invasive cardiac procedures. Initially, this echocardiographic technique was particularly useful when transthoracic image quality was insufficient and to avoid general anesthesia for transesophageal imaging. Nowadays, intracardiac echocardiography is routinely used in several cardiac invasive laboratories to support several types of procedures, such as extraction and implantation of cardiac devices, electrophysiological mapping, ablation, and endomyocardial biopsies. This review gives an overview of the basic principles of intracardiac echocardiography and examines its applications in the different settings of invasive cardiology. Keywords: ICE, cardiovascular imaging, electrophysiology, invasive cardiology

  13. Treatment of ganglion cysts.

    Science.gov (United States)

    Suen, Matthew; Fung, B; Lung, C P

    2013-01-01

    Ganglion cysts are soft tissue swellings occurring most commonly in the hand or wrist. Apart from swelling, most cysts are asymptomatic. Other symptoms include pain, weakness, or paraesthesia. The two main concerns patients have are the cosmetic appearance of the cysts and the fear of future malignant growth. It has been shown that 58% of cysts will resolve spontaneously over time. Treatment can be either conservative or through surgical excision. This review concluded that nonsurgical treatment is largely ineffective in treating ganglion cysts. However, it advised to patients who do not surgical treatment but would like symptomatic relief. Compared to surgery, which has a lower recurrence rate but have a higher complication rate with longer recovery period. It has been shown that surgical interventions do not provide better symptomatic relief compared to conservative treatment. If symptomatic relief is the patient's primary concern, a conservative approach is preferred, whilst surgical intervention will decrease the likelihood of recurrence.

  14. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Zhang AL

    2017-02-01

    Full Text Available Ailiang Zhang, Kun Wang, Lianghua Ding, Xinnan Bao, Xuan Wang, Xubin Qiu, Jinbo Liu Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China Abstract: Lumbar disc herniation (LDH is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP was implanted in the left L5 dorsal root ganglion (DRG to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC, caspase-1, interleukin (IL-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. Keywords: pain, NLRP3, NF-κB, dorsal root ganglion, nucleus pulposus

  15. Anatomical Evidence for Intracardiac Blood Shunting in Marine Turtles

    African Journals Online (AJOL)

    Histological examination of the pulmonary arteries of four species of sea turtles revealed the presence of a muscular sphincter just distal to the origin of the ductus Botalli. This structure has not previously been described. Its presence suggests that right to left intra-cardiac blood shunts may be a feature of diving in sea turtles; ...

  16. Idiopathic hypereosinophilic syndrome associated with multiple intracardiac thrombi.

    Science.gov (United States)

    Kocaturk, Hasan; Yilmaz, Mustafa

    2005-09-01

    A 17-year-old man was referred for dyspnea, fatigue, and fever. Idiopathic hypereosinophilic syndrome was diagnosed. Transthoracic echocardiography demonstrated multiple intracardiac thrombi in the left ventricular apex. Dissolution of thrombi was not seen despite intensive medical therapy. The patient died because of cerebral embolus.

  17. Disruption of intracardiac flow patterns in the newborn infant.

    Science.gov (United States)

    Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David

    2012-04-01

    Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.

  18. [Intracardiac mycotic thrombosis in the course of permanent endocardial stimulation].

    Science.gov (United States)

    Klugmann, S; Silvestri, F; Giarelli, L; Camerini, F

    1977-01-01

    A case of intracardiac micotic thrombosis during permanent endocardial stimulation is reported. After a brief note on the pathogenesis of pocket infections, the AA. conclude that, in those cases, a medical treatment is insufficient and a surgical treatment is necessary to remove the micotic thrombus.

  19. Late termination of pregnancy by intracardiac potassium chloride ...

    African Journals Online (AJOL)

    Objectives. To report our experience with intracardiac potassium chloride (KCl) injection as a method of feticide for severe congenital abnormalities beyond 24 weeksf gestation. Method. A retrospective chart review. Patient demographics and types of fetal anomalies were analysed according to the groups that accepted

  20. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons.

    Science.gov (United States)

    Michel, Uwe; Malik, Ibrahim; Ebert, Sandra; Bähr, Mathias; Kügler, Sebastian

    2005-01-14

    Viral vector-based expression of small interfering RNAs is a promising tool for gene regulation, both in cultured cells and in animal models. In this study, we analysed the ability of adeno-associated virus-2 to function as an RNAi vector in cultured primary hippocampal neurons in vitro and in retinal ganglion cells in vivo. We demonstrate a long-lasting, highly efficient, and specific down-regulation of gene expression in vivo and in vitro by the use of bicistronic vectors. This is the first evidence of a cell type-specific long-term (more than three-month-long) RNAi in the eye. Furthermore, our results constitute the prerequisite for the use of this technique in models of neurodegeneration and neuroregeneration in vivo and in vitro.

  1. Effects of dragon's blood resin and its component loureirin B on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Xiangming, Liu; Su, Chen; Shijin, Yin; Zhinan, Mei

    2004-08-01

    Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragon's blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium currents were observed. The results show that both blood resin and loureirin B could suppress TTX-S voltage-gated sodium currents in a dose-dependent way. The peak current amplitudes and the steady-state activation and inactivation curves are also made to shift by 0.05% blood resin and 0.2 mmol/L loureirin B. These results demonstrate that the effects of blood resin on TTX-S sodium current may contribute to loureirin B in blood resin. Perhaps the analgesic effect of blood resin is caused partly by loureirin B directly interfering with the nociceptive transmission of primary sensory neurons.

  2. Inhibition of the TRPM2 and TRPV1 Channels through Hypericum perforatum in Sciatic Nerve Injury-induced Rats Demonstrates their Key Role in Apoptosis and Mitochondrial Oxidative Stress of Sciatic Nerve and Dorsal Root Ganglion

    Directory of Open Access Journals (Sweden)

    Fuat Uslusoy

    2017-05-01

    Full Text Available Sciatic nerve injury (SNI results in neuropathic pain, which is characterized by the excessive Ca2+ entry, reactive oxygen species (ROS and apoptosis processes although involvement of antioxidant Hypericum perforatum (HP through TRPM2 and TRPV1 activation has not been clarified on the processes in SNI-induced rat, yet. We investigated the protective property of HP on the processes in the sciatic nerve and dorsal root ganglion neuron (DRGN of SNI-induced rats. The rats were divided into five groups as control, sham, sham+HP, SNI, and SNI+HP. The HP groups received 30 mg/kg HP for 4 weeks after SNI induction. TRPM2 and TRPV1 channels were activated in the neurons by ADP-ribose or cumene peroxide and capsaicin, respectively. The SNI-induced TRPM2 and TRPV1 currents and intracellular free Ca2+ and ROS concentrations were reduced by HP, N-(p-amylcinnamoyl anthranilic acid (ACA, and capsazepine (CapZ. SNI-induced increase in apoptosis and mitochondrial depolarization in sciatic nerve and DRGN of SNI group were decreased by HP, ACA, and CapZ treatments. PARP-1, caspase 3 and 9 expressions in the sciatic nerve, DRGN, skin, and musculus piriformis of SNI group were also attenuated by HP treatment. In conclusion, increase of mitochondrial ROS, apoptosis, and Ca2+ entry through inhibition of TRPM2 and TRPV1 in the sciatic nerve and DRGN neurons were decreased by HP treatment. The results may be relevant to the etiology and treatment of SNI by HP.

  3. [Effect of Triptolide on expression of NMDAR1 and BSI-B4 binding sites in spinal dorsal horn and dorsal root ganglion in rats with adjuvant arthritis].

    Science.gov (United States)

    Wei, Yun-bo; Lin, Rong; Chen, Wei; Zhang, Xu-dong; Lu, Zhuo-hui; Jiang, Wen-wen; Wei, Deng-ming

    2014-11-01

    To study the analgesic effect of Triptolide(TP) in rats with adjuvant and the possible mechanism. Fifty healthy SD rats were randomly divided into normal control group (group A), model group (group B), and low(group C), middle (group D) and high(group E) dose TP treatment groups. Except the group A, each group of rats were reared by toe intradermal injection of 0. 1 mL Freund's complete adjuvant. After 14 days,rats in the C, D and E groups were taken different doses (0. 1 mg/kg group C, 0. 2mg/kg group D, and 0. 4 mg/kg group E) by intraperitoneal injection of TP for 9 days, and then thermal withdrawal latency and the expression of NMDAR1 and BSI-B4 binding sites in lumbar5 (L5) spinal dorsal horn and DRG were detected. Thermal withdrawal latency of rats in group B was significantly lower than that of group A (P effect relationship; NMDAR-1 and BSI-B4 binding sites expression levels were significantly increased in group B than those in group A (P effect of TP is related to reducing levels of expression of NMDAR1 and BSI-B4 binding sites in spinal dorsal horn and DRG in rats with adjuvant arthritis.

  4. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  5. Pathology of intracardiac nerves in experimental Chagas disease

    Directory of Open Access Journals (Sweden)

    Ribeiro Lídia Cristina Villela

    2002-01-01

    Full Text Available Severe destruction of intrinsic cardiac nerves has been reported in experimental acute Chagas myocarditis, followed by extensive regeneration during the chronic phase of the infection. To further study this subject, the sympathetic and para-sympathetic intracardiac nerves of mice infected with a virulent Trypanosoma cruzi strain were analyzed, during acute and chronic infection, by means of histological, histochemical, morphometric and electron microscopic techniques. No evidences of destructive changes were apparent. Histochemical demonstration for acetylcholinesterase and catecholamines did not reveal differences in the amount and distribution of intracardiac nerves, in mice with acute and chronic Chagas myocarditis or in non-infected controls. Mild, probably reversible ultrastructural neural changes were occasionally present, especially during acute myocarditis. Intrinsic nerves appeared as the least involved cardiac structure during the course of experimental Chagas disease in mice.

  6. Distribution, structure and projections of the frog intracardiac neurons.

    Science.gov (United States)

    Batulevicius, Darius; Skripkiene, Gertruda; Batuleviciene, Vaida; Skripka, Valdas; Dabuzinskiene, Anita; Pauza, Dainius H

    2012-05-21

    Histochemistry for acetylcholinesterase was used to determine the distribution of intracardiac neurons in the frog Rana temporaria. Seventy-nine intracardiac neurons from 13 frogs were labelled iontophoretically by the intracellular markers Alexa Fluor 568 and Lucifer Yellow CH to determine their structure and projections. Total neuronal number per frog heart was (Mean ± SE) 1374 ± 56. Largest collections of neurons were found in the interatrial septum (46%), atrioventricular junction (25%) and venal sinus (12%). Among the intracellularly labelled neurons, we found the cells of unipolar (71%), multipolar (20%) and bipolar (9%) types. Multiple processes originated from the neuron soma, hillock and proximal axon. These processes projected onto adjacent neuron somata and cardiac muscle fibers within the interatrial septum. Average total length of the processes from proximal axon was 348 ± 50 μm. Average total length of processes from soma and hillock was less, 118 ± 27 μm and 109 ± 24 μm, respectively. The somata of 59% of neurons had bubble- or flake-shaped extensions. Most neurons from the major nerves in the interatrial septum sent their axons towards the ventricle. In contrast, most neurons from the ventral part of the interatrial septum sent their axons towards the atria. Our findings contradict to a view that the frog intracardiac ganglia contain only non-dendritic neurons of the unipolar type. We conclude that the frog intracardiac neurons are structurally complex and diverse. This diversity may account for the complicated integrative functions of the frog intrinsic cardiac ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

    Science.gov (United States)

    Helley, M P; Abate, W; Jackson, S K; Bennett, J H; Thompson, S W N

    2015-12-03

    The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Decreased microRNA-125a-3p contributes to upregulation of p38 MAPK in rat trigeminal ganglions with orofacial inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Yingchun Dong

    Full Text Available Orofacial inflammatory pain is a difficult clinical problem, and the specific molecular mechanisms for this pain remain largely unexplained. The present study aimed to determine the differential expression of microRNAs (miRNAs and disclose the underlying role of miR-125a-3p in orofacial inflammatory pain induced by complete Freund's adjuvant (CFA. Thirty-two differentially expressed miRNAs were first screened using a microarray chip in ipsilateral trigeminal ganglions (TGs following CFA injection into the orofacial skin innervated by trigeminal nerve, and a portion of them, including miR-23a*, -24-2*, -26a, -92a, -125a-3p, -183 and -299 were subsequently selected and validated by qPCR. The target genes were predicted based on the miRWalk website and were further analyzed by gene ontology (GO. Further studies revealed miR-125a-3p expression was down-regulated, whereas both the expression of p38 MAPK (mitogen-activated protein kinase alpha and CGRP (calcitonin gene-related peptide were up-regulated in ipsilateral TGs at different time points after CFA injection compared with control. Furthermore, mechanistic study revealed that miR-125a-3p negatively regulates p38 alpha gene expression and is positively correlated with the head withdrawal threshold reflecting pain. Luciferase assay showed that binding of miR-125a-3p to the 3'UTR of p38 alpha gene suppressed the transcriptional activity, and overexpression of miR-125a-3p significantly inhibited the p38 alpha mRNA level in ND8/34 cells. Taken together, our results show that miR-125a-3p is negatively correlated with the development and maintenance of orofacial inflammatory pain via regulating p38 MAPK.

  9. Decreased microRNA-125a-3p contributes to upregulation of p38 MAPK in rat trigeminal ganglions with orofacial inflammatory pain.

    Science.gov (United States)

    Dong, Yingchun; Li, Pengfei; Ni, Yanhong; Zhao, Junjie; Liu, Zhiqiang

    2014-01-01

    Orofacial inflammatory pain is a difficult clinical problem, and the specific molecular mechanisms for this pain remain largely unexplained. The present study aimed to determine the differential expression of microRNAs (miRNAs) and disclose the underlying role of miR-125a-3p in orofacial inflammatory pain induced by complete Freund's adjuvant (CFA). Thirty-two differentially expressed miRNAs were first screened using a microarray chip in ipsilateral trigeminal ganglions (TGs) following CFA injection into the orofacial skin innervated by trigeminal nerve, and a portion of them, including miR-23a*, -24-2*, -26a, -92a, -125a-3p, -183 and -299 were subsequently selected and validated by qPCR. The target genes were predicted based on the miRWalk website and were further analyzed by gene ontology (GO). Further studies revealed miR-125a-3p expression was down-regulated, whereas both the expression of p38 MAPK (mitogen-activated protein kinase) alpha and CGRP (calcitonin gene-related peptide) were up-regulated in ipsilateral TGs at different time points after CFA injection compared with control. Furthermore, mechanistic study revealed that miR-125a-3p negatively regulates p38 alpha gene expression and is positively correlated with the head withdrawal threshold reflecting pain. Luciferase assay showed that binding of miR-125a-3p to the 3'UTR of p38 alpha gene suppressed the transcriptional activity, and overexpression of miR-125a-3p significantly inhibited the p38 alpha mRNA level in ND8/34 cells. Taken together, our results show that miR-125a-3p is negatively correlated with the development and maintenance of orofacial inflammatory pain via regulating p38 MAPK.

  10. Identification of the mononuclear cell infiltrate in the superior cervical ganglion of athymic nude and euthymic rats after guanethidine-induced sympathectomy

    DEFF Research Database (Denmark)

    Thygesen, P; Hougen, H P; Christensen, H B

    1990-01-01

    Guanethidine sulphate 40 mg/kg intraperitoneally for 14 days induced chromatolysis and nerve cell death in the superior cervical ganglia of athymic nude (rnu/rnu) LEW/Mol rats and their euthymic (+/rnu) LEW/Mol heterozygous littermates. Histologically the sympathetic ganglia were dominated...

  11. Expression of BKCa channels and the modulatory ß-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    (Ca) channel protein was visualized by western blotting and histochemistry. The presence of the modulatory beta1-beta 4 subunit mRNAs was investigated using RT-PCR. beta1-, beta2- and beta 4-subunit mRNAs were expressed in rat TG whereas beta2- and beta 4-subunits were detected in porcine TG. Western blotting...

  12. Behçet’s Disease and Intracardiac Thrombosis: A Report of Three Cases

    Directory of Open Access Journals (Sweden)

    Nurşen Düzgün

    2013-01-01

    Full Text Available We present three patients with Behçet’s disease associated with intracardiac thrombus and pulmonary vascular involvement. One of these patients had also Budd-Chiari syndrome. All patients were treated with corticosteroid plus monthly intravenous cyclophosphamide as first line treatment and with no recurrences. Immunosuppressive therapy was successful in the treatment of intracardiac thrombus and also in the regression of pulmonary vascular thromboses in these patients. Intracardiac thrombus in Behçet’s disease is rarely seen. Behçet’s disease should be remembered in the differential diagnosis of the patients with intracardiac mass, especially in patients from the Mediterranean and Middle East populations.

  13. Echocardiographic Monitoring of Intracardiac Hemodynamics in Neonatal Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    S. A. Perepelitsa

    2010-01-01

    Full Text Available Objective: to perform an early neonatal ultrasound study of intracardiac hemodynamics in premature neonates with respiratory distress syndrome (RDS during mechanical ventilation. Subjects and methods. The paper presents the results of ultrasound study of intracardiac hemodynamics in 51 premature neonates. Two patient groups were identified. Group 1 comprised 34 infants with severe RDS who received the exogenous surfactant Curosurf and Group 2 consisted of 17 apparently healthy premature newborn infants. Results. Functional tension of the cardiovascular system was characterized for premature neonates with RDS. There were signs of left ventricular systolic dysfunction within the first 24 hours of life and those of right ventricular dysfunction by day 5 of postnatal age. Within 5 days of life, there were echocardiographic signs of pump dysfunction of both ventricles: stroke volume, cardiac index, and blood minute volume. Analysis of changes in peak blood flow velocity and peak pressure gradient across the atrioventricular valves of the right and left ventricles indicated that 17.6% of the children showed increases in peak blood flow velocity and tricuspid valve pressure gradient in the systolic phase. The greatest peak blood flow velocity changes were recorded in the pulmonary artery trunk. By day 5 of life, signs of pulmonary hypertension concurrent with hydropericardium remained in 29.4% of cases. RDS – was shown to be accompanied by higher Qp/Qs ratio in premature neonates. The lower index was attended by the alleviated signs of respiratory failure. In RDS, mainly left-to-right blood shunt was accomplished through the open oval window, but the shunt intensity decreased when the pathological process was resolved in the lung. The functioning patent ductus arteriosus was hemodynami-cally significant in none case. Conclusion. The premature neonates with RDS were found to have intracardiac hemo-dynamic changes. By day 5 of postnatal age, there was

  14. Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression.

    Science.gov (United States)

    Fang, Xin; Djouhri, Laiche; McMullan, Simon; Berry, Carol; Waxman, Stephen G; Okuse, Kenji; Lawson, Sally N

    2006-07-05

    Binding to isolectin-B4 (IB4) and expression of tyrosine kinase A (trkA) (the high-affinity NGF receptor) have been used to define two different subgroups of nociceptive small dorsal root ganglion (DRG) neurons. We previously showed that only nociceptors have high trkA levels. However, information about sensory and electrophysiological properties in vivo of single identified IB4-binding neurons, and about their trkA expression levels, is lacking. IB4-positive (IB4+) and small dark neurons had similar size distributions. We examined IB4-binding levels in >120 dye-injected DRG neurons with sensory and electrophysiological properties recorded in vivo. Relative immunointensities for trkA and two TTX-resistant sodium channels (Nav1.8 and Nav1.9) were also measured in these neurons. IB4+ neurons were classified as strongly or weakly IB4+. All strongly IB4+ neurons were C-nociceptor type (C-fiber nociceptive or unresponsive). Of 32 C-nociceptor-type neurons examined, approximately 50% were strongly IB4+, approximately 20% were weakly IB4+ and approximately 30% were IB4-. Adelta low-threshold mechanoreceptive (LTM) neurons were weakly IB4+ or IB4-. All 33 A-fiber nociceptors and all 44 Aalpha/beta-LTM neurons examined were IB4-. IB4+ compared with IB4- C-nociceptor-type neurons had longer somatic action potential durations and rise times, slower conduction velocities, more negative membrane potentials, and greater immunointensities for Nav1.9 but not Nav1.8. Immunointensities of IB4 binding in C-neurons were positively correlated with those of Nav1.9 but not Nav1.8. Of 23 C-neurons tested for both trkA and IB4, approximately 35% were trkA+/IB4+ but with negatively correlated immunointensities; 26% were IB4+/trkA-, and 35% were IB4-/trkA+. We conclude that strongly IB4+ DRG neurons are exclusively C-nociceptor type and that high Nav1.9 expression may contribute to their distinct membrane properties.

  15. Plasticity of dorsal root ganglion neurons in a rat model of post-infectious gut dysfunction: potential implication of nerve growth factor.

    Science.gov (United States)

    Jardí, Ferran; Fernández-Blanco, Joan A; Martínez, Vicente; Vergara, Patri

    2014-11-01

    Intestinal infections are suggested as a risk factor for the development of irritable bowel syndrome (IBS)-like visceral hypersensitivity. The mechanisms implicated might involve long-term changes in visceral afferents, with implication of nerve growth factor (NGF). We explored plastic changes in dorsal root ganglia (DRGs) receiving innervation from the gut and the potential implication of NGF in a rat model of IBS-like post-infectious gut dysfunction. Rats were infected with Trichinella spiralis larvae. Thirty days post-infection, inflammatory markers, including interleukins (ILs) and mucosal mast cell infiltration (rat mast cell protease II [RMCPII]), and NGF and TrkA expression was determined in the jejunum and colon (RT-qPCR). In the same animals, morphometry (neuronal body size) and NGF content (immunofluorescence) were assessed in thoracolumbar DRG neurons. In infected animals, a low-grade inflammatory-like response, characterized by up-regulated levels of RMCPII and IL-6, was observed in the jejunum and colon. TrkA expression was increased in the jejunum, whereas the colon showed a slight reduction. NGF levels remained unaltered regardless the gut region. Overall, the mean cross-sectional area of DRG neurons was increased in T. spiralis-infected animals, with a reduction in both TrkA and NGF staining. Results suggest that during T. spiralis infection in rats, there is a remodeling of sensory afferents that might imply a NGF-mediated mechanism. Plastic changes in sensory afferents might mediate the long-lasting functional alterations that characterize this model of IBS. Similar mechanisms might be operating in patients with post-infectious-IBS.

  16. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury.

    Science.gov (United States)

    Fandel, Thomas M; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F; Lin, Ching-Shwun

    2012-01-01

    Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Sprague-Dawley rats (n=110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n=25) or vehicle (n=10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n=5), and 28 d (n=10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves, resulting in enhanced erectile response. Copyright © 2011 European Association of Urology. Published by Elsevier

  17. Recruitment of Intracavernously Injected Adipose-Derived Stem Cells to the Major Pelvic Ganglion Improves Erectile Function in a Rat Model of Cavernous Nerve Injury

    Science.gov (United States)

    Fandel, Thomas M.; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F.; Lin, Ching-Shwun

    2011-01-01

    Background Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. Objectives To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Design, setting, and participants Sprague-Dawley rats (n = 110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n = 25) or vehicle (n = 10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n = 5), and 28 d (n = 10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. Measurements IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. Results and limitations IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. Conclusions CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves

  18. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats.

    Directory of Open Access Journals (Sweden)

    Francisco M Nadal-Nicolás

    Full Text Available The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i untouched; ii fluorogold (FG tracing from both superior colliculli; iii FG-tracing from one superior colliculus; iv intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs and ipsilateral RGC sub-populations. Our results show that: i 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26% or Brn3b; ii the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv The vast majority of ip-RGCs do not express Brn3; v The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.

  19. [Changes in the expression of large-conductance calcium-activated potassium channels in dorsal root ganglion neurons after electrical injury in rats' sciatic nerves and its influence on sensory conduction function].

    Science.gov (United States)

    Wang, Guangning; Li, Xueyong; Xu, Xiaoli; Ren, Pan

    2016-06-01

    To study the changes in the expression of large-conductance calcium-activated potassium (BKCa) channels in dorsal root ganglion (DRG) neurons after electrical injury in rats' sciatic nerves and its influence on sensory conduction function. One-hundred and thirty-six adult SD rats were divided into normal control group, sham electrical injury group, and 75, 100, 125 V electrical injury groups according to the random number table, with 8 rats in normal control group and 32 rats in each of the rest 4 groups. Rats in normal control group were routinely fed without any treatment. Blunt dissection of the sciatic nerves of left hind leg of rats was performed in sham electrical injury group, while sciatic nerves of left hind leg of rats in electrical injury groups were electrically injured with corresponding voltage. Eight rats of normal control group fed for one week, and 8 rats from each of the rest four groups on post injury day (PID) 3 and in post injury week (PIW) 1, 2, 3 respectively were collected to detect the paw withdrawal mechanical threshold (PWMT). In addition, rats of 100 V electrical injury group in PIW 1 were collected and intrathecally injected with NS1619 after former PWMT detection, and PWMT was detected per 30 minutes within three hours post injection. The rats in each group at each time point were sacrificed after PWMT detection. The DRG of L4 to L6 segments of spinal cord was sampled to observe the BKCa channels distribution with immunohistochemical staining and to detect the protein and mRNA expressions of BKCa channels with Western blotting and reverse transcription-polymerase chain reaction respectively. Data were processed with one-way analysis of variance, analysis of variance of factorial design, and SNK test. (1) The PWMT values of rats in 75 and 100 V electrical injury groups on PID 3 and in PIW 1, 2, 3 were (5.8±0.6), (5.0±0.8), (4.2±0.3), (5.9±1.1) g; (5.3±1.3), (5.9±2.0), (4.5±2.7), (4.3±1.3) g, respectively, which were

  20. Ovariectomy-Induced Mitochondrial Oxidative Stress, Apoptosis, and Calcium Ion Influx Through TRPA1, TRPM2, and TRPV1 Are Prevented by 17β-Estradiol, Tamoxifen, and Raloxifene in the Hippocampus and Dorsal Root Ganglion of Rats.

    Science.gov (United States)

    Yazğan, Yener; Nazıroğlu, Mustafa

    2017-12-01

    Relative 17β-estradiol (E2) deprivation and excessive production of mitochondrial oxygen free radicals (OFRs) with a high amount of Ca2+ influx TRPA1, TRPM2, and TRPV1 activity is one of the main causes of neurodegenerative disease in postmenopausal women. In addition to the roles of tamoxifen (TMX) and raloxifene (RLX) in cancer and bone loss treatments, regulator roles in Ca2+ influx and mitochondrial oxidative stress in neurons have not been reported. The aim of this study was to evaluate whether TMX and RLX interactions with TRPA1, TRPM2, and TRPV1 in primary hippocampal (HPC) and dorsal root ganglion (DRG) neuron cultures of ovariectomized (OVX) rats. Forty female rats were divided into five groups: a control group, an OVX group, an OVX+E2 group, an OVX+TMX group, and an OVX+RLX group. The OVX+E2, OVX+TMX, and OVX+RLX groups received E2, TMX, and RLX, respectively, for 14 days after the ovariectomy. E2, ovariectomy-induced TRPA1, TRPM2, and TRPV1 current densities, as well as accumulation of cytosolic free Ca2+ in the neurons, were returned to the control levels by E2, TMX, and RLX treatments. In addition, E2, TMX, and RLX via modulation of TRPM2 and TRPV1 activity reduced ovariectomy-induced mitochondrial membrane depolarization, apoptosis, and cytosolic OFR production. TRPM2, TRPV1, PARP, and caspase-3 and caspase-9 expressions were also decreased in the neurons by the E2, TMX, and RLX treatments. In conclusion, we first reported the molecular effects of E2, TMX, and RLX on TRPA1, TRPM2, and TRPV1 channel activation in the OVX rats. In addition, we observed neuroprotective effects of E2, RLX, and TMX on oxidative and apoptotic injuries of the hippocampus and peripheral pain sensory neurons (DRGs) in the OVX rats. Graphical Abstract Possible molecular pathways of involvement of DEX in cerebral ischemia-induced apoptosis, oxidative stress, and calcium accumulation through TRPA1, TRPM2 and TRPV1 in the hippocampus and DRG neurons of rats. The N domain of the

  1. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms.

    Science.gov (United States)

    Qiu, Fang; Li, Yang; Fu, Qiang; Fan, Yong-Yan; Zhu, Chao; Liu, Yan-Hong; Mi, Wei-Dong

    2016-07-01

    Stromal cell-derived factor 1 (SDF-1)/chemokine CXC motif ligand 12 (CXCL12), a chemokine that is upregulated in dorsal root ganglion (DRG) during chronic pain models, has recently been found to play a central role in pain hypersensitivity. The purpose of present study is to investigate the functional impact of SDF-1 and its receptor, chemokine CXC motif receptor 4 (CXCR4), on two TTXR sodium channels in rat DRG using electrophysiological techniques. Preincubation with SDF-1 caused a concentration-dependent increase of Nav1.8 and Nav1.9 currents amplitudes in acutely isolated small diameter DRG neurons in short-term culture. As to Nav1.9, changes in current density and kinetic properties of Nav1.9 current evoked by SDF-1(50 ng/ml) was eliminated by CXCR4 antagonist AMD3100 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The increase in Nav1.9 current was also blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of Gi/o but not Gs subunits. As to Nav1.8, inhibitors (AMD3100, PTX, CTX, LY294002) used in present study didn't inhibit the increased amplitude of Nav1.8 current and shifted activation curve of Nav1.8 in a hyperpolarizing direction in the presence of SDF-1 (50 ng/ml). In conclusion, our data demonstrated that SDF-1 may excite primary nociceptive sensory neurons by acting on the biophysical properties of Nav1.8 and Nav1.9 currents but via different mechanisms.

  2. A ganglionic model of "learned helplessness".

    Science.gov (United States)

    Eisenstein, E M; Carlson, A D; Harris, J T

    1997-01-01

    The phenomenon known as "learned helplessness" (LH) is seen broadly across the animal kingdom. Some of the basic characteristics of this behavior are: failure to escape shock when it is possible to do so following non-escapable shock; reversion to non-escape behavior even after successful escape; if the animal is given escape/avoidance training prior to being given inescapable shocks, the latter will not interfere with its ability to later show normal escape/avoidance behavior (generally described as an immunization effect); following inescapable shock training the animals often become "passive and still" when confronted with an inescapable shock. These behaviors are seen in intact mammals, lower vertebrates, and invertebrates. In fact, the basic characteristics are even seen in a spinal rat and, with the exception of one characteristic not yet examined, in an isolated thoracic ganglion of an insect. The brain is evidently not essential either in mammals or in invertebrates for demonstrating this behavior. Not only can an insect ganglion show the behavioral characteristics of LH, but the neural information underlying the phenomenon of LH can be shown to transfer from one ganglion innervating one pair of legs to another ganglion innervating a different pair of legs. Thus, how CNS information underlying LH is coded and transferred from one site to another within the CNS can be examined in such a system. The LH model has provided valuable insights into the physiology of depression. This model suggests that human depression is caused by one's lack of control over traumatic events. It is supported by a number of parallels between depression and LH behavior. Tricyclic antidepressants, MAO inhibitors, and ECT, which are effective in treating depression, also can prevent and reverse LH in mammals. It would be important to find out if they are also effective in invertebrate models. The fact that the characteristics of the behavior called LH are seen in invertebrates such as

  3. Diagnosis of intracardiac space occupying lesion by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M.; Okabe, M.; Yada, I.; Kusagawa, M. (Mie Univ., Tsu (Japan). School of Medicine)

    1982-01-01

    We carried out CT photographing by the method of non-gated by the fourth generation computed tomographic scanner, using contrast medium positively for 25 patients including 1 patient of cardiac tumor and 24 patients of mitral valvular disease. And we studied the utility of CT examination in the diagnosis of intracardiac space occupying lesion comparing with operative findings and echocardiographic evaluation. In a case of right ventricular tumor, the region, the extensity and the properties of the tumor were evaluated with accuracy and usefulness for emergency cardiac surgery. In mitral valvular disease, 8 cases showed left atrial thrombi when operated upon. By CT examination before the operation, we could deny left atrial myxoma in the case of giant thrombus. Left atrial appendage mural thrombus of 15 mm in diameter and thrombi filling left atrial appendage, whose detections are thought to be difficult in the echocardiographic examination, were clearly delineated by CT examination. In the diagnosis of intracardiac space occupying lesion, therefore, CT examination is concluded to have more application value clinically than echocardiography.

  4. The venom of the fishing spider Dolomedes sulfurous contains various neurotoxins acting on voltage-activated ion channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Wang, Hengyun; Zhang, Fan; Li, Dan; Xu, Shiyan; He, Juan; Yu, Hai; Li, Jiayan; Liu, Zhonghua; Liang, Songping

    2013-04-01

    Dolomedes sulfurous is a venomous spider distributed in the south of China and characterized with feeding on fish. The venom exhibits great diversity and contains hundreds of peptides as revealed by off-line RP-HPLC/MALDI-TOF-MS analysis. The venom peptides followed a triple-modal distribution, with 40.7% of peptides falling in the mass range of 1000-3000 Da, 25.6% peptides in the 7000-9000 Da range and 23.5% peptides in the 3000-5000 Da range. This distribution modal is rather different from these of peptides from other spider venoms analyzed. The venom could inhibit voltage-activated Na(+), K(+) and Ca(2+) channels in rat DRG neurons as revealed by voltage-clamp analysis. Significantly, the venom exhibited inhibitory effects on TTX-R Na(+) and T-type Ca(2+) currents, suggesting that there exist both channel antagonists which might be valuable tools for investigation of both channels and drug development. Additionally, intrathoracically injection of venom could cause serve neurotoxic effects on zebrafish and death at higher concentrations. The LD50 value was calculated to be 28.8 μg/g body weight. Our results indicated that the venom of D. sulfurous contain diverse neurotoxins which serve to capture prey. Intensive studies will be necessary to investigate the structures and functions of specific peptides of the venom in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Tibial periosteal ganglion cyst: The ganglion in disguise

    Science.gov (United States)

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  6. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  7. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy.

    Science.gov (United States)

    Lyu, Chuang; Mulder, Jan; Barde, Swapnali; Sahlholm, Kristoffer; Zeberg, Hugo; Nilsson, Johanna; Århem, Peter; Hökfelt, Tomas; Fried, Kaj; Shi, Tie-Jun Sten

    2015-07-22

    Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1-4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI-X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic

  8. Ultrasound-Accelerated Thrombolysis in Patients With Intracardiac Thrombi: A Case Series.

    Science.gov (United States)

    Yadlapati, Ajay; Sweis, Ranya; Schimmel, Daniel

    2016-03-01

    We describe a case series of 3 patients presenting with intracardiac thrombi treated with standard anticoagulation therapy and intervention with ultrasound-accelerated thrombolysis therapy. Right-sided intracardiac thrombi portend significant mortality due to their susceptibility for embolization and pulmonary embolus despite the continuation of current standard of therapy of parenteral anticoagulation and surgical embolectomy if warranted. We demonstrate the safety and clinical efficacy of ultrasound-accelerated thrombolysis therapy with the EkoSonic Endovascular System infusion catheter system (EKOS Corporation) and highlight its use in resolving intracardiac thrombi and impeding the propagation of pulmonary emboli.

  9. Stereological analysis of Ca(2+)/calmodulin-dependent protein kinase II alpha -containing dorsal root ganglion neurons in the rat: colocalization with isolectin Griffonia simplicifolia, calcitonin gene-related peptide, or vanilloid receptor 1.

    Science.gov (United States)

    Carlton, Susan M; Hargett, Gregory L

    2002-06-17

    The enzyme Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is widely distributed in the nervous system. A previous report describes immunostaining for CaMKII alpha in dorsal root ganglion (DRG) neurons. In this study, CaMKII alpha is colocalized in the rat with three putative markers of nociceptive DRG neurons, isolectin Griffonia simplicifolia (I-B4), identifying small-diameter, "peptide-poor" neurons; calcitonin gene-related peptide (CGRP), identifying " peptide-rich" neurons; or the vanilloid receptor 1 (VR1), identifying neurons activated by heat, acid, and capsaicin. Lumbar 4 and 5 DRG sections were labeled using immunofluorescence or lectin binding histochemistry, and percentages of single and double-labeled CaMKIIalpha neurons were determined. Stereological estimates of total neuron number in the L4 DRG were 13,815 +/- 2,798 and in the L5 DRG were 14,111 +/- 4,043. Percentages of single-labeled L4 DRG neurons were 41% +/- 2% CaMKII alpha, 38% +/- 3% I-B4, 44% +/- 3% CGRP, and 32% +/- 6% VR1. Percentages of single-labeled L5 DRG neurons were 44% +/- 5% CaMKII alpha, 48% +/- 2% I-B4, 41% +/- 7% CGRP, and 39% +/- 14% VR1. For L4 and L5, respectively, estimates of double-labeled CaMKII alpha neurons showed 34% +/- 2% and 38% +/- 17% labeled for I-B4, 25% +/- 14% and 19% +/- 10% labeled for CGRP, and 37% +/- 7% and 38% +/- 5% labeled for VR1. Conversely, for L4 and L5, respectively, 39% +/- 14% and 38% +/- 7% I-B4 binding neurons, 24% +/- 12% and 23% +/- 10% CGRP neurons, and 42% +/- 7% and 35% +/- 7% VR1 neurons labeled for CaMKIIalpha. The mean diameter of CaMKII alpha - labeled neurons was approximately 27 microm, confirming that this enzyme was preferentially localized in small DRG neurons. The results indicate that subpopulations of DRG neurons containing CaMKII alpha are likely to be involved in the processing of nociceptive information. Thus, this enzyme may play a critical role in the modulation of nociceptor activity and plasticity of primary

  10. Intracardiac metastasis from non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Vivek eVerma

    2015-07-01

    Full Text Available A 56-year-old female with history of stage IIA adenosquamous lung carcinoma treated 13 months prior to presentation with lobectomy, mediastinal lymph node dissection, and adjuvant chemotherapy, presented for several weeks of worsening dyspnea. Exam was nonfocal aside from tachycardia. Computed tomography of the chest revealed a large 4 cm x 5 cm mass in the bilateral ventricular myocardium. There was also evidence of metastatic disease elsewhere in the body, including a supraclavicular lymph node that was positive for metastatic adenosquamous lung carcinoma. She started whole heart radiotherapy and was to commence chemotherapy but passed away. This report discusses important aspects of diagnosis of this not uncommon condition that many oncologists may come across. We also discuss differential diagnosis of an isolated intracardiac mass as first-diagnosis presentations, and discuss the great importance of multidisciplinary cardio-oncologic management and clinical prioritization.

  11. Intracardiac flow visualization: current status and future directions.

    Science.gov (United States)

    Rodriguez Muñoz, Daniel; Markl, Michael; Moya Mur, José Luis; Barker, Alex; Fernández-Golfín, Covadonga; Lancellotti, Patrizio; Zamorano Gómez, José Luis

    2013-11-01

    Non-invasive cardiovascular imaging initially focused on heart structures, allowing the visualization of their motion and inferring its functional status from it. Colour-Doppler and cardiac magnetic resonance (CMR) have allowed a visual approach to intracardiac flow behaviour, as well as measuring its velocity at single selected spots. Recently, the application of new technologies to medical use and, particularly, to cardiology has allowed, through different algorithms in CMR and applications of ultrasound-related techniques, the description and analysis of flow behaviour in all points and directions of the selected region, creating the opportunity to incorporate new data reflecting cardiac performance to cardiovascular imaging. The following review provides an overview of the currently available imaging techniques that enable flow visualization, as well as its present and future applications based on the available literature and on-going works.

  12. Correlation of Ventricular Arrhythmogenesis with Neuronal Remodeling of Cardiac Postganglionic Parasympathetic Neurons in the Late Stage of Heart Failure after Myocardial Infarction

    OpenAIRE

    Zhang, Dongze; Tu, Huiyin; Wang, Chaojun; Cao, Liang; Muelleman, Robert L.; Wadman, Michael C; Li, Yu-Long

    2017-01-01

    Introduction: Ventricular arrhythmia is a major cause of sudden cardiac death in patients with chronic heart failure (CHF). Our recent study demonstrates that N-type Ca2+ currents in intracardiac ganglionic neurons are reduced in the late stage of CHF rats. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Only AVG nerve terminals innervate the ventricular myocardium. In this study, we tested the correlation of electrical remodeling in AVG ...

  13. Dissolution of large intracardiac thrombus, potential role of the emerging oral fibrinolytic agent

    Directory of Open Access Journals (Sweden)

    Rony M. Candrasatria

    2016-04-01

    Full Text Available Intracardiac thrombus may persist in some cases even after anticoagulant therapy. This opens a possibility to add a potent thrombolytic agent into therapeutic regimen without increasing bleeding risk any further. Increasing evidence showed a promising efficacy and safety of oral fibrin specific lumbrokinase as a thrombolytic agent. To the best of our knowledge, report of the use of lumbrokinase on intracardiac thrombus is limited. We reported two cases of intracardiac thrombi. In first patient, after two-month therapy with lumbrokinase, the previous 8 cm2 left atrial thrombus was completely disappeared. Second patient had left ventricular thrombus due to low left ventricular ejection fraction caused by coronary artery disease. A significant dissolution in thrombus size on repeated follow-up was found. Both patients did not experience any significant adverse effect. This case series aims to present the potential use of lumbrokinase as as oral antithrombotic therapy in intracardiac thrombus.

  14. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Science.gov (United States)

    2010-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  15. Factors involved in correct analysis of intracardiac electrograms captured by Medtronic Inc. pacemakers during tachycardias

    Directory of Open Access Journals (Sweden)

    Masaru Takagaki, ME

    2013-08-01

    Conclusions: In Medtronic pacemakers with single intracardiac EGM channel recording capability, AEGM is the most useful of the 3 EGM channel settings; PVAB should also be set to a much shorter value to achieve a more accurate automatic diagnosis.

  16. Sphenopalatine ganglion neuromodulation in migraine

    DEFF Research Database (Denmark)

    Khan, Sabrina; Schoenen, Jean; Ashina, Messoud

    2014-01-01

    has gained increasing interest within recent years, as current treatment strategies often fail to provide adequate relief from this debilitating headache. Common migraine symptoms include lacrimation, nasal congestion, and conjunctival injection, all parasympathetic manifestations. In addition......, studies have suggested that parasympathetic activity may also contribute to the pain of migraineurs. The SPG is the largest extracranial parasympathetic ganglion of the head, innervating the meninges, lacrimal gland, nasal mucosa, and conjunctiva, all structures involved in migraine with cephalic...

  17. Coronary artery stent mimicking intracardiac thrombus on cardiac magnetic resonance imaging due to signal loss

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Vejlstrup, Niels Grove; Ahtarovski, Kiril Aleksov

    2012-01-01

    Since the introduction of percutaneous coronary intervention for coronary artery disease, thousands of patients have been treated with the implantation of coronary stents. Moreover, several of the patients with coronary stent undergo cardiac magnetic resonance (CMR) imaging every year. This case ...... the signal loss on MRI associated with implanted metallic devices is known, we report a case where an implanted coronary stent in the left circumflex artery led to an intracardiac signal loss mimicking intracardiac thrombus/tumor....

  18. Clinical and histologic effects of intracardiac administration of propofol for induction of anesthesia in ball pythons (Python regius).

    Science.gov (United States)

    McFadden, Michael S; Bennett, R Avery; Reavill, Drury R; Ragetly, Guillaume R; Clark-Price, Stuart C

    2011-09-15

    To assess the clinical differences between induction of anesthesia in ball pythons with intracardiac administration of propofol and induction with isoflurane in oxygen and to assess the histologic findings over time in hearts following intracardiac administration of propofol. Prospective randomized study. 30 hatchling ball pythons (Python regius). Anesthesia was induced with intracardiac administration of propofol (10 mg/kg [4.5 mg/lb]) in 18 ball pythons and with 5% isoflurane in oxygen in 12 ball pythons. Induction time, time of anesthesia, and recovery time were recorded. Hearts from snakes receiving intracardiac administration of propofol were evaluated histologically 3, 7, 14, 30, and 60 days following propofol administration. Induction time with intracardiac administration of propofol was significantly shorter than induction time with 5% isoflurane in oxygen. No significant differences were found in total anesthesia time. Recovery following intracardiac administration of propofol was significantly longer than recovery following induction of anesthesia with isoflurane in oxygen. Heart tissue evaluated histologically at 3, 7, and 14 days following intracardiac administration of propofol had mild inflammatory changes, and no histopathologic lesions were seen 30 and 60 days following propofol administration. Intracardiac injection of propofol in snakes is safe and provides a rapid induction of anesthesia but leads to prolonged recovery, compared with that following induction with isoflurane. Histopathologic lesions in heart tissues following intracardiac injection of propofol were mild and resolved after 14 days.

  19. Intracardiac metastasis of squamous cell carcinoma of the penis

    Directory of Open Access Journals (Sweden)

    Sheila Aparecida Coelho Siqueira

    2013-12-01

    Full Text Available Penile cancer shows variable incidence in different countries with a higher prevalence in developing countries. Squamous cell carcinoma represents the most common histologic type. The seventh decade of life corresponds to the mean age at diagnosis, but it is not an unusual diagnosis among young adults. Most cases present as “in situ” neoplasia or loco regional disease; however, systemic disseminated disease occurs via lymphatic and/or hematogeneous routes. The lymph nodes, liver, and lungs are the most frequently involved sites whereas the heart constitutes an exceptional and atypical site for penile cancer metastases. We report a case of a 79-year-old patient who presented a metastatic squamous cell carcinoma of the penis with intracardiac dissemination. The patient had a past history of cardiomyopathy, which required an artificial cardiac pacemaker implantation. He had been treated 1 year before with a partial penectomy but was admitted for emasculation due to the cancer relapse. During the postoperative period, he experienced sudden respiratory distress and died. The autopsy findings showed metastatic disease into the cardiac right chambers, pulmonary tumoral thrombi, and pulmonary hilar involvement. The authors call attention to the possibility of the presence of pacing leads, cardiomyopathy and the altered low blood flow in the right chambers, as predisposing factors for the tumoral seeding in this case.

  20. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Directory of Open Access Journals (Sweden)

    G. Carrault

    2008-09-01

    Full Text Available Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA. The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  1. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Science.gov (United States)

    Kachenoura, A.; Porée, F.; Hernández, A. I.; Carrault, G.

    2008-12-01

    Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs) are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG) from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA). The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  2. Intravascular and intracardiac stents used in congenital heart disease.

    Science.gov (United States)

    Okubo, M; Benson, L N

    2001-03-01

    Intravascular or intracardiac stenoses occur in many forms of congenital heart disease or after attempted surgical repair. Although balloon dilation is one option for management, restenosis can occur due to elastic recoil immediately after the procedure. To address to such stenotic lesions, many reports support implanting endovascular stents to provide a framework for vessel expansion. Both balloon-expandable fixed tubular mesh stainless steel devices, and self-expandable stents have had an extensive clinical application. In pediatric patients, stents are used for a variety of stenoses, such as systemic venous obstruction pathways (eg, Mustard, Fontan baffle, or bidirectional cavopulmonary connections), pulmonary artery, right ventricular to pulmonary conduits, aortic coarctation, the arterial duct, aorticopulmonary collaterals, or postoperative systemic to pulmonary shunts. Because of improvements in device profile, implantation rates have increased. Complications such as stent fracture, migration, aneurysm formation, and in-stent restenosis occur but only rarely. This latter event may be because of intimal hyperplasia and/or continued vessel (and patient) growth related to the stent diameter. As such, some instances require redilation to manage the acquired lesion. Stent application has importantly altered management algorithms in congenital heart disease.

  3. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  4. Ganglion Cyst of the Wrist and Hand

    Science.gov (United States)

    ... a weed which will grow back if the root is not removed. In many cases, the ganglion cyst returns a er an aspiration procedure. Aspiration procedures ... is called an excision. Surgery involves removing the cyst as well as part of the ... which is considered the root of the ganglion. Even a er excision, there ...

  5. Successful intracardiac robotic surgery: initial results from Japan.

    Science.gov (United States)

    Watanabe, Go

    2010-01-01

    : The purpose of this study is to report our 2-year experience of performing endoscopic intracardiac procedures using the da Vinci Surgical System. Our teams at Kanazawa University and Tokyo Medical University groups began using the da Vinci Surgical System (Intuitive Surgical, Inc, Sunnyvale, CA) in 2005. This series represents the first Japanese application of robotic technology for totally endoscopic open-heart surgery. : From January 2008 to February 2009, 10 patients (mean age: 46.8 ± 16.3 years, 70% women) underwent endoscopic atrial septal defect closure and resection of the left atrial myxoma using the da Vinci Surgical System and peripheral cardiopulmonary bypass technique. Of the 10 patients, nine were classified as New York Heart Association class II and 1 patient exhibited atrial arrhythmias. In addition, two patients required mitral valve plasty (n = 2) and tricuspid annuloplasty (n = 1). : Mean da Vinci Surgical System working time was 140.7 ± 57.4 minutes. Mean cardiopulmonary bypass and aortic cross clamp times were 103.1 ± 37.1 and 30.0 ± 16.9 minutes, respectively. There were no conversions to sternotomy or small thoracotomy. There were no hospital deaths. Mean intensive care unit and hospital stays were 1 day and 3.1 ± 0.3 days, respectively. All patients appreciated the cosmetic result and fast recovery. : Closed-chest atrial septal defect closure and myxoma resection performed using robotic techniques achieved excellent results and rapid postoperative recovery and provided an attractive cosmetic advantage over median sternotomy.

  6. Angiotensin II induces catecholamine release by direct ganglionic excitation.

    Science.gov (United States)

    Dendorfer, Andreas; Thornagel, Alexandra; Raasch, Walter; Grisk, Olaf; Tempel, Klaus; Dominiak, Peter

    2002-09-01

    Angiotensin II (ANG) is known to facilitate catecholamine release from peripheral sympathetic neurons by enhancing depolarization-dependent exocytosis. In addition, a direct excitation by ANG of peripheral sympathetic nerve activity has recently been described. This study determined the significance of the latter mechanism for angiotensin-induced catecholamine release in the pithed rat. Rats were anesthetized and instrumented for measuring either hemodynamics and renal sympathetic nerve activity or plasma catecholamine concentrations in response to successively increasing doses of angiotensin infusions. Even during ganglionic blockade by hexamethonium (20 mg/kg), angiotensin dose-dependently elevated sympathetic nerve activity, whereas blood pressure-equivalent doses of phenylephrine were ineffective. Independently of central nervous sympathetic activity and ganglionic transmission, angiotensin (0.1 to 1 microg/kg) also induced an up-to 27-fold increase in plasma norepinephrine levels, reaching 2.65 ng/mL. Preganglionic electrical stimulation (0.5 Hz) raised basal norepinephrine levels 11-fold and further enhanced the angiotensin-induced increase in norepinephrine (4.04 ng/mL at 1 microg/kg ANG). Stimulation of sympathetic nerve activity and norepinephrine release were suppressed by candesartan (1 mg/kg) or tetrodotoxin (100 microg/kg), respectively. Angiotensin enhanced plasma norepinephrine, heart rate, and sympathetic nerve activity at similar threshold doses (0.3 to 1 microg/kg), but raised blood pressure at a significantly lower dose (0.01 microg/kg). It is concluded that direct stimulation of ganglionic angiotensin type 1 (AT(1)) receptors arouses electrical activity in sympathetic neurons, leading to exocytotic junctional catecholamine release. In both the absence and presence of preganglionic sympathetic activity, this mechanism contributes significantly to ANG-induced enhancement of catecholamine release.

  7. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons

    Directory of Open Access Journals (Sweden)

    Crish Samuel D

    2011-01-01

    Full Text Available Abstract Background Brimonidine is a common drug for lowering ocular pressure and may directly protect retinal ganglion cells in glaucoma. The disease involves early loss of retinal ganglion cell transport to brain targets followed by axonal and somatic degeneration. We examined whether brimonidine preserves ganglion cell axonal transport and abates degeneration in rats with elevated ocular pressure induced by laser cauterization of the episcleral veins. Results Ocular pressure was elevated unilaterally by 90% for a period of 8 weeks post- cauterization. During this time, brimonidine (1mg/kg/day or vehicle (phosphate-buffered saline was delivered systemically and continuously via subcutaneous pump. Animals received bilateral intravitreal injections of fluorescent cholera toxin subunit β (CTB two days before sacrifice to assess anterograde transport. In retinas from the vehicle group, elevated pressure induced a 44% decrease in the fraction of ganglion cells with intact uptake of CTB and a 14-42% reduction in the number of immuno-labelled ganglion cell bodies, with the worst loss occurring nasally. Elevated pressure also caused a 33% loss of ganglion cell axons in vehicle optic nerves and a 70% decrease in CTB transport to the superior colliculus. Each of these components of ganglion cell degeneration was either prevented or significantly reduced in the brimonidine treatment group. Conclusions Continuous and systemic treatment with brimonidine by subcutaneous injection significantly improved retinal ganglion cell survival with exposure to elevated ocular pressure. This effect was most striking in the nasal region of the retina. Brimonidine treatment also preserved ganglion cell axon morphology, sampling density and total number in the optic nerve with elevated pressure. Consistent with improved outcome in the optic projection, brimonidine also significantly reduced the deficits in axonal transport to the superior colliculus associated with

  8. Phenytoin blocks retinal ganglion cell death after partial optic nerve crush.

    Science.gov (United States)

    Naskar, Rita; Quinto, Kristine; Romann, Ilka; Schuettauf, Frank; Zurakowski, David

    2002-06-01

    Phenytoin is a well-characterized sodium channel blocker in widespread use as an anticonvulsant. In 1972, Becker and co-workers reported that phenytoin could reverse visual field loss from glaucoma. The authors therefore explored whether phenytoin could protect retinal ganglion cells from optic nerve crush. The optic nerve of Long-Evans rats was partially crushed; animals were given a single dose of either intraperitoneal phenytoin or vehicle. A third group underwent sham optic nerve crush. In a second set of experiments, the effect of phenytoin was compared to the N -methyl- D -receptor antagonist, memantine. Retinal ganglion survival was evaluated 1 week later. In addition, the effect of memantine and phenytoin on glutamate-induced intracellular calcium fluxes was evaluated.Phenytoin and memantine significantly reduced ganglion cell loss after optic nerve crush, and blunted the rise in intracellular calcium seen after administration of glutamate. Co-administration of the two agents, however, did not increase ganglion cell survival, and had no effect on ganglion cell calcium fluxes. Phenytoin can preserve retinal ganglion cells after partial optic nerve crush. This effect was not additive with a glutamate antagonist, suggesting that both agents alone are equally protective at saving the same population of ganglion cells at risk. In fact, the neuroprotective effect of the combined administration of phenytoin and memantine was significantly less than either of the two drugs alone. Phenytoin is known to decrease neuronal firing and neurotransmitter release; this may underlie its ability to serve as a neuro-protectant in this experimental paradigm.

  9. Intracardiac thrombi in extracardiac disorders: an autopsy study.

    Science.gov (United States)

    Vaideeswar, Pradeep; Divate, Smita; Harke, Megha

    2012-01-01

    Intracardiac thrombi (ICT), more commonly encountered at autopsy, are well documented with underlying cardiovascular disease. Occurrence of ICT in systemic diseases without an intrinsic cardiac disorder is rare. The aim of this autopsy study was to highlight such an occurrence. From 1996 to 2010, cases with ICT unrelated to primary cardiac disorders were selected at autopsy and analyzed. Clinical and investigational data were obtained from the medical records. The location, morphology, size, and histological appearance of the thrombi were noted. The thrombi were then classified on the basis of their location, nature, and histology (fresh and/or organized); this was correlated with the clinical setting. Among a total of 11,724 autopsies performed in 15 years, 276 patients (2.4%) had ICT. Of these, 45 patients (0.4%) had ICT that were unrelated to primary cardiac diseases. There were 25 men and 20 women with a mean age of 46.1 years. Antemortem diagnosis was not made in any of these patients. Eight patients each (35.6%) showed isolated left-sided and multichambered involvement, while the rest of the hearts (64.4%) had thrombi in the right-sided chamber(s). The recognizable risk factors were underlying cancers (24.4%), prolonged immobilization (20%), systemic lupus erythematosus (6.7%), pregnancy (4.4%), nephropathy (4.4%), primary antiphospholipid antibody syndrome (2.2%), and ulcerative colitis (2.2%). However, 16 patients (35.7%) had no obvious predisposing factor, although investigations for prothrombotic markers had not been done. Diabetes mellitus, chronic alcoholism, and deep vein thrombosis of the lower limbs had been clinically documented in some of them. The cause of death in most patients (73.3%) had been related to pulmonary and/or systemic thromboembolism. This autopsy study emphasizes the great need for a higher index of suspicion of in situ thrombosis in the heart in hypercoagulable states so as to curtail the morbidity and mortality of the primary

  10. Dry Arthroscopic Excision of Dorsal Wrist Ganglion

    OpenAIRE

    Gray, Jason; Zuhlke, Todd; Eizember, Shane; Srinivasan, Ramesh

    2017-01-01

    Ganglions are common soft tissue masses of the hand. High recurrence rates are associated with nonsurgical treatment; thus, excision is often indicated. Arthroscopic excision and open excision have similar recurrence rates; however, the latter is associated with prolonged healing time and increased scarring. Recently, dry wrist arthroscopic techniques have been used. This technique allows easier confirmation of complete ganglion removal, easier conversion to open surgery, earlier return of mo...

  11. Benevolent Renal Angiomyolipoma with Intra-cardiac Extension-A Challenge in Diagnosis and Management.

    Science.gov (United States)

    Priyadarshini, Pratyusha; Bisoi, A K; Chauhan, Sandeep; Vyas, Surabhi; Gupta, S Datta; Chumber, Sunil

    2017-06-01

    While intra-caval and intra-cardiac extension of retroperitoneal tumors is extremely rare, it is almost unheard-of in benign tumors. We report the challenges in diagnosis and management of the first case of a renal angiomyolipoma (AML) with intra-ventricular extension in a young man who presented with pain and a lump in the abdomen.

  12. Intracardiac tumor: A risk factor for stroke in the young –A case report

    African Journals Online (AJOL)

    Intracardiac mass should be considered a possible risk factor for ischemic stroke in young adult, especially in the absence of other risk factors such as connective tissue disorders, HIV/AIDS, hemoglobinopathy or use of recreational drugs. High index of suspicion is required in order not to overlook such source of emboli.

  13. Post-traumatic extensive knee ganglion cyst

    Directory of Open Access Journals (Sweden)

    Mehran Mahvash

    2011-08-01

    Full Text Available A rare case of a posttraumatic extensive ganglion cyst of the anterolateral thigh with connection to the knee joint is presented. A 54- year-old man presented a palpable mass in the anterolateral region of his right thigh with a 15 months existing sense of fullness and tightness. He had an accident with his bicycle 21 months ago. Magnetic resonance imaging (MRI was performed showing a cyst inside the quadriceps femoris muscle between vastus lateralis and intermedius with connection to recessus suprapatellaris and knee joint. In addition MRI detected a traumatic lesion in the quadriceps femoris tendon in the near of the knee joint. The ganglion cyst was 18 cm long and was excised completely. Intraope - ratively, the knee joint connection was confirmed and excised as well. The ganglion cyst was filled with a gelatinous and viscous fluid.

  14. Nerve Growth Factor Regulates Synaptophysin Expression In Developing Trigeminal Ganglion Neurons In Vitro

    OpenAIRE

    Tarsa, L.; Balkowiec, A.

    2008-01-01

    The role of neuronal growth factors in synaptic maturation of sensory neurons, including trigeminal ganglion (TG) neurons, remains poorly understood. Here, we show that nerve growth factor (NGF) regulates the intracellular distribution of the synaptic vesicle protein synaptophysin (Syp) in newborn rat TG neurons in vitro. While reducing the number of Syp-positive cell bodies, NGF dramatically increases Syp immunoreactivity in both proximal and distal segments of the neurite. Intriguingly, the...

  15. Intracardiac thrombus in Behçet's disease: Two case reports

    Directory of Open Access Journals (Sweden)

    Brahem Radhia

    2005-07-01

    Full Text Available Abstract Intracardiac thrombus in Behçet's disease is an extremely rare manifestation. We report two such cases. A 20-year-old man presented with dyspnoea, cough and haemoptysis. Right heart thrombus associated with pulmonary artery aneurysm and thromboembolism was identified by helical CT and transoesophageal echocardiography. The second case was a 29-year-old male admitted for fever and chest pain. A diagnosis of right atrial thrombosis associated with pulmonary embolism and hyperhomocysteinemia was made. Due to the absence of haemodynamic compromise, medical management consisting of immunosupressive and anticoagulation therapy was adopted which resulted in complete dissolution of the thrombus with dramatic clinical improvement in both cases of clinical status. Conclusion intracardiac thrombus is a rare complication of Behçet's disease. As shown in our patients, medical treatment should be considered as the first line.

  16. Percutaneous Closure of an Iatrogenic Aorta to Right Ventricle Fistula Acquired Following Intracardiac Repair.

    Science.gov (United States)

    Rajasekhar, Durgaprasad; Vanajakshamma, Velam; Ranganayakulu, Kummaraganti Paramathma

    2016-05-01

    Iatrogenic aortocardiac fistulae have been described rarely following intracardiac repair. This 28 year-old-male presented to our facility with dyspnea going on 20 days after closure of ventricular septal defect (VSD) and resection of subaortic membrane. A communication was noticed between the aorta and the right ventricle (RV) upon transthoracic echocardiography. Cardiac catheterisation revealed a significant shunt and an aortogram revealed a 6 mm communication between aorta and right ventricle. Percutaneous closure of this defect was attempted under local anaesthesia through right femoral access. An alpha arteriovenous loop was formed despite repeated attempts, hence a retrograde approach for device delivery was considered. An 8 mm Amplatzer muscular VSD occluder device was deployed across the defect achieving a complete closure through an 8F delivery sheath. To the best of our knowledge this is the first report of an iatrogenic aorta to RV fistula occurring in a patient following an intracardiac repair which has been successfully treated percutaneously.

  17. Intratendinous Ganglion of the Extensor Tendon of the Hand.

    Science.gov (United States)

    Lee, Hyun-Joo; Kim, Poong-Taek; Chang, Hyo-Won

    2015-01-01

    Ganglion is a common benign lesion that usually arises adjacent to the joints or tendons of the hand. However, an intratendinous ganglion is a rare condition. We report two cases of intratendinous ganglion of the extensor tendon of the hand which were treated with excision.

  18. Study of intracardiac blood flow by MRI using gradient echo method

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato; Morita, Ruriko; Kusuoka, Hideo; Fujii, Kenshi; Kitabatake, Akira; Takizawa, Osamu.

    1988-06-01

    In order to investigate the possibility of MR imaging for the evaluation of intracardiac blood flow especially valvular regurgitant flow, we obtained MR images using a 1.5 tesla superconductive magnet system (Siemens Medical) in 3 healthy volunteers, 3 patients with hypertrophic cardiomyopathy and 8 patients with valvular heart disease. Rapid FLASH (Fast Low-Angle Shot) imaging technique was applied to collect 11 time frames per section throughout one cardiac cycle in axial, coronal, saggital and oblique sections. Then these sequential frames were displayed in a cine mode on CRT. (1) Intracardiac and intravascular blood flow were visualized with high signal intensity in each frame and cardiac structures such as atria, ventricles, and aorta were also identified in all subjects. (2) Ventricular ejection flow was easily visualized in coronal section as the signal loss in the ascending aorta. Ventricularfilling was visualized in axial and oblique sections as the high signal influx of atrial blood into the ventricle. (3) In 3 patients with aortic regurgitation, regurgitant flow was detected during diastole as the teardrop shaped signal loss originating from aortic valve cusps. (4) Both mitral and tricuspid regurgitant flow were detected during systole as the signal loss in atrium in axial and oblique sections in 2 patients with MR and 2 patients with TR. (5) Pulmonary regurgitant flow was observed in oblique section along the long axis of right ventricular outflow tract. These results indicate that intracardiac forward and regurgitant flow could be identified with rapid FLASH imaging in normal subjects and in patients with valvular heart diseases, and cine mode MR imaging is a useful tool for the evaluation of intracardiac blood flow.

  19. Electrical Stimulation of Mammalian Retinal Ganglion Cells Using Dense Arrays of Small-Diameter Electrodes

    Science.gov (United States)

    Sekirnjak, Chris; Hottowy, Pawel; Sher, Alexander; Dabrowski, Wladyslaw; Litke, Alan M.; Chichilnisky, E. J.

    Current epiretinal implants contain a small number of electrodes with diameters of a few hundred microns. Smaller electrodes are desirable to increase the spatial resolution of artificial sight. To lay the foundation for the next generation of retinal prostheses, we assessed the stimulation efficacy of micro-fabricated arrays of 61 platinum disk electrodes with diameters 8-12 μm, spaced 60 μm apart. Isolated pieces of rat, guinea pig, and monkey retina were placed on the multi-electrode array ganglion cell side down and stimulated through individual electrodes with biphasic, charge-balanced current pulses. Spike responses from retinal ganglion cells were recorded either from the same or a neighboring electrode. Most pulses evoked only 1-2 spikes with short latencies (0.3-10 ms), and rarely was more than one recorded ganglion cell stimulated. Threshold charge densities for eliciting spikes in ganglion cells were typically below 0.15 mC/cm2 for pulse durations between 50 and 200 μs, corresponding to charge thresholds of ˜ 100 pC. Stimulation remained effective after several hours and at frequencies up to 100 Hz. Application of cadmium chloride did not abolish evoked spikes, implying direct activation. Thus, electrical stimulation of mammalian retina with small-diameter electrodes is achievable, providing high temporal and spatial precision with low charge densities.

  20. Piriformis ganglion: An uncommon cause of sciatica.

    Science.gov (United States)

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    Directory of Open Access Journals (Sweden)

    Nicolas Froger

    Full Text Available Retinal ganglion cell (RGC degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats. After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%, whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  2. Retinal ganglion cells electrophysiology: the effect of cell morphology on impulse waveform.

    Science.gov (United States)

    Maturana, Matias I; Wong, Raymond; Cloherty, Shaun L; Ibbotson, Michael R; Hadjinicolaou, Alex E; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; O'Brien, Brendan J; Kameneva, Tatiana

    2013-01-01

    There are 16 morphologically defined classes of rats retinal ganglion cells (RGCs). Using computer simulation of a realistic anatomically correct A1 mouse RGC, we investigate the effect of the cell's morphology on its impulse waveform, using the first-, and second-order time derivatives as well as the phase plot features. Using whole cell patch clamp recordings, we recorded the impulse waveform for each of the rat RGCs types. While we found some clear differences in many features of the impulse waveforms for A2 and B2 cells compared to other cell classes, many cell types did not show clear differences.

  3. Edible wild vegetable, Gymnaster koraiensis protects retinal ganglion cells against oxidative stress.

    Science.gov (United States)

    Kim, Kyung-A; Kang, Kui Dong; Lee, Eun Ha; Nho, Chu Won; Jung, Sang Hoon

    2011-09-01

    This study was conducted to determine whether Gymnaster koraiensis is effective at blunting the negative influence of N-methyl-D-aspartate (NMDA) on the retinas of rats and on oxidative stress induced cell death in transformed retinal ganglion cells (RGC-5). The ethyl acetate fraction of G. koraiensis (EAGK) and the isolated compound, 3,5-di-O-caffeoylquinic acid (3,5-DCQA), were shown to significantly attenuate the negative effect of H(2)O(2) on the RGC-5 cells tested by various procedures. The inclusion of EAGK or 3,5-DCQA in the culture reduced the reactive oxygen species (ROS) and replenished the reduced glutathione levels caused by various radical species such as H(2)O(2,) O(2)()(-) or ()OH. Moreover, EAGK or 3,5-DCQA inhibited lipid peroxidation caused by sodium nitroprusside (SNP) in rat brain homogenates. From in vivo experiments, the presence of NMDA in the retina affected the thickness of the inner plexiform layer (IPL) and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in positive ganglion cells. EAGK or 3,5-DCQA protected the thinning of the IPL and increased TUNEL positive cells in the ganglion cell layer (GCL). Our results clearly demonstrate the neuroprotective effect of EAGK both in vitro and in vivo. Moreover, 3,5-DCQA is suggested to be the active compound of EAGK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Retinal ganglion cell topography in elasmobranchs.

    Science.gov (United States)

    Bozzano, A; Collin, S P

    2000-04-01

    Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths. The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm(2) with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field. Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is non-uniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly

  5. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Salvatore, Christopher A; Johansson, Sara

    2015-01-01

    ) and related this to the expression of CGRP and its receptor in rhesus trigeminal ganglion. Pituitary adenylate cyclase-activating polypeptide (PACAP) and glutamate were examined and related to the CGRP system. Furthermore, we examined if the trigeminal ganglion is protected by the blood-brain barrier (BBB......), and the distribution of PACAP and glutamate in rhesus and rat TG. Evans blue was used to examine large molecule penetration into the rat TG. High receptor binding densities were found in rhesus TG. Immunofluorescence revealed expression of CGRP, CLR and RAMP1 in trigeminal cells. CGRP positive neurons expressed PACAP...... but not glutamate. Some neurons expressing CLR and RAMP1 co-localized with glutamate. Evans blue revealed that the TG is not protected by BBB. This study demonstrates CGRP receptor binding sites and expression of the CGRP receptor in rhesus and rat TG. The expression pattern of PACAP and glutamate suggests...

  6. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling.

    Science.gov (United States)

    Fahrenkrug, Jan; Falktoft, Birgitte; Georg, Birgitte; Hannibal, Jens; Kristiansen, Sarah B; Klausen, Thomas K

    2014-12-19

    The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca(2+) response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca(2+) response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Phosphorylation of Rat Melanopsin at Ser-381 and Ser-398 by Light/Dark and Its Importance for Intrinsically Photosensitive Ganglion Cells (ipRGCs) Cellular Ca2+ Signaling*

    Science.gov (United States)

    Fahrenkrug, Jan; Falktoft, Birgitte; Georg, Birgitte; Hannibal, Jens; Kristiansen, Sarah B.; Klausen, Thomas K.

    2014-01-01

    The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca2+ response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca2+ response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent. PMID:25378407

  8. Clinical evaluation of the use of an intracardiac electrocardiogram to guide the tip positioning of peripherally inserted central catheters.

    Science.gov (United States)

    Zhao, Ruiyi; Chen, Chunfang; Jin, Jingfen; Sharma, Komal; Jiang, Nan; Shentu, Yingqin; Wang, Xingang

    2016-06-01

    The use of peripherally inserted central catheters (PICCs) provides important central venous accesses for clinical treatments, tests and monitoring. Compared with the traditional methods, intracardiac electrocardiogram (ECG)-guided method has the potential to guide more accurate tip positioning of PICCs. This study aimed to clinically evaluate the effectiveness of an intracardiac ECG to guide the tip positioning by monitoring characteristic P-wave changes. In this study, eligible patients enrolled September 2011 to May 2012 according to the inclusion and exclusion criteria received the catheterization monitored by intracardiac ECG. Then chest radiography was performed to check the catheter position. The results revealed that, with 117 eligible patients, all bar one patient who died (n = 116) completed the study, including 60 males and 56 females aged 51.2 ± 15.1 years. Most (n = 113, > 97%) had characteristic P-wave changes. The intracardiac ECG-guided positioning procedure achieved correct placement for 112 patients (96.56%), demonstrating 99.12% sensitivity and 100% specificity. In conclusion, the intracardiac ECG can be a promising technique to guide tip positioning of PICCs. However, since the sample size in this study is limited, more experience and further study during clinical practice are needed to demonstrate achievement of optimal catheterization outcomes. © 2015 John Wiley & Sons Australia, Ltd.

  9. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma.

    Directory of Open Access Journals (Sweden)

    Pete A Williams

    Full Text Available Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cell death. Using the DBA/2J mouse model of glaucoma this investigation aims to elucidate the impact of increasing intraocular pressure on retinal ganglion cell dendrites using DBA/2J mice that express YFP throughout the retinal ganglion cells driven by Thy1 (DBA/2J.Thy1(YFP and DiOlistically labelled retinal ganglion cells in DBA/2J mice. Here we show retinal ganglion cell dendritic degeneration in DiOlistically labelled DBA/2J retinal ganglion cells but not in the DBA/2J.Thy1(YFP retinal ganglion cells suggesting that a potential downregulation of Thy1 allows only 'healthy' retinal ganglion cells to express YFP. These data may highlight alternative pathways to retinal ganglion cell loss in DBA/2J glaucoma.

  10. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  11. Simultaneous bilateral contrast transcranial doppler monitoring in patients with intracardiac and intrapulmonary shunts.

    Science.gov (United States)

    Horner, S; Ni, X S; Weihs, W; Harb, S; Augustin, M; Duft, M; Niederkorn, K

    1997-09-01

    The prevalence of a right-to-left intracardiac shunt, demonstrated by echocardiography and transcranial Doppler sonography has been shown to be higher in stroke patients than in normal controls. The aim of this study was to assess the sensitivity and specificity of contrast transcranial Doppler sonography in comparison to transesophageal echocardiography in the detection and differentiation of intracardiac and intrapulmonary shunts and to correlate the transcranial Doppler findings with clinical outcome and morphological findings. Forty five consecutive stroke patients with suspected paradoxical embolism were entered into the study. In all 25 patients with middle cerebral artery stroke of the left (56%) or right (44%) territory and echocardiographic demonstrated patent foramen ovale (80%) or intrapulmonary shunt (20%), simultaneous bilateral transcranial Doppler sonography of the middle cerebral arteries was performed after contrast medium injection during rest and valsalva straining under standardized and optimized conditions. Overall sensitivity for the detection of a right-to-left shunt by contrast transcranial Doppler sonography was 97% and overall specificity was 70%. Bilateral appearance of microbubbles, microbubble count and time delay of microbubble appearance significantly increased after valsalva straining. In patients with intracardiac shunts, a significantly higher microbubble count (32 vs. 13 in patients with an intrapulmonary shunt) and a shorter time interval of microbubble appearance (11 vs. 14 s in patients with intrapulmonary shunts) was observed. There was no correlation between the side and numerical distribution of microbubble count and the location and severity of the current clinical symptoms, as well as between microbubble count and presence and hemispherical distribution of brain infarcts. Transcranial Doppler sonography is a highly sensitive method for the detection of right-to-left shunts, whether of cardiac or pulmonary location. However

  12. Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: A pilot study.

    Science.gov (United States)

    Stopyra, Jason P; Winslow, James E; Fitzgerald, David M; Bozeman, William P

    2017-11-01

    Case reports of cardiac arrest in temporal proximity to Conducted Electrical Weapon(CEW) exposure raise legitimate concerns about this as a rare possibility. In this pilot study, we respectfully navigate the oversight and regulatory hurdles and demonstrate the intra-shock electrocardiographic effects of an intentional transcardiac CEW discharge using subcutaneous probes placed directly across the precordium of patients with a previously implanted intracardiac EKG sensing lead. Adults scheduled to undergo diagnostic EP studies or replacement of an implanted cardiac device were enrolled. Sterile subcutaneous electrodes were placed at the right sternoclavicular junction and the left lower costal margin at the midclavicular line. A standard police issue TASER Model X26 CEW was attached to the subcutaneous electrodes and a 5 s discharge was delivered. Continuous surface and intracardiac EKG monitoring was performed. A total of 157 subjects were reviewed for possible inclusion and 21 were interviewed. Among these, 4 subjects agreed and completed the study protocol. All subjects tolerated the 5 s CEW discharge without clinical complications. There were no significant changes in mean heart rate or blood pressure. Interrogation of the devices after CEW discharge revealed no ventricular pacing, dysrhythmias, damage or interference with the implanted devices. In this pilot study, we have successfully navigated the regulatory hurdles and demonstrated the feasibility of performing intracardiac EKG recording during intentional precordial CEW discharges in humans. While no CEW-associated dysrhythmias were noted, the size of this preliminary dataset precludes making conclusions about the risk of such events. Larger studies are warranted and should consider exploring variations of the CEW electrode position in relation to the cardiac silhouette. Copyright © 2017. Published by Elsevier Ltd.

  13. (18)F-FDG-PET Scanning Confirmed Infected Intracardiac Device-Leads with Abiotrophia defectiva.

    Science.gov (United States)

    van Roeden, Sonja; Hartog, Hans; Bongers, Vivian; Thijsen, Steven; Sankatsing, Sanjay

    2016-01-01

    Abiotrophia species are relatively slow growing pathogens, which may be present as commensal flora. However, invasive infections are frequently reported, like endocarditis, septic arthritis, osteomyelitis, and many other types of infection. In this case report we describe a 65-year-old male patient with an intracardiac device- (ICD-) lead infection caused by Abiotrophia defectiva. Diagnosis was confirmed by (18)F-FDG-PET scanning. This is remarkable, since Abiotrophia defectiva is a slow growing pathogen causing low-grade infections. This case demonstrates that although infection of ICD-leads cannot be excluded in case of (18)F-FDG-PET-negative findings, positive findings are highly suggestive for infection.

  14. Diagnostic dilemma: Intracardiac mass in a woman with Behçet's syndrome.

    Science.gov (United States)

    Núñez-Cabarcas, Edilberto; López-Ruiz, Nilson; Ramírez-Rincón, Alex

    2014-01-01

    Intracardiac thrombosis is a rare manifestation of cardiac involvement in Behçet's disease, and it may be mistaken for a heart tumor. In this letter we present the case of a patient diagnosed with Behçet's disease who was incidentally found to have a mass in the right atrium suspicious of a cardiac tumor. Nevertheless, cardiac magnetic resonance showed a cardiac thrombus. Immunosuppressive therapy and anticoagulation were effective for thrombus resolution. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  15. Intraneural ganglion in superficial radial nerve mimics de quervain tenosynovitis.

    Science.gov (United States)

    Haller, Justin M; Potter, Michael Q; Sinclair, Micah; Hutchinson, Douglas T

    2014-11-01

    Background Intraneural ganglions in peripheral nerves of the upper extremity are extremely rare and poorly understood. Case Description We report a patient with symptoms consistent with de Quervain tenosynovitis who was found to have an intraneural ganglion in the superficial radial nerve. The ganglion did not communicate with the wrist joint. We removed the intraneural ganglion, and the patient's symptoms resolved. At her 6-month postoperative follow-up, she remained asymptomatic.  There is only one case report of intraneural ganglion in the superficial radial nerve. In that case, the patient had symptoms consistent with nerve irritation, including radiating pain and paresthesias. In contrast to that previous report, the patient in the current case had only localized pain, no paresthesias, and a physical exam consistent with de Quervain tenosynovitis. Clinical Relevance This case demonstrates that an intraneural ganglion cyst can mimic the symptoms of de Quervain tenosynovitis without the more usual presentation of painful paresthesias.

  16. Prevalence of asymptomatic and electrically undetectable intracardiac inside-out abrasion in silicon-coated Riata® and Riata® ST implantable cardioverter-defibrillator leads.

    Science.gov (United States)

    Schmutz, Mathieu; Delacrétaz, Etienne; Schwick, Nicola; Roten, Laurent; Fuhrer, Jürg; Boesch, Claudia; Tanner, Hildegard

    2013-07-15

    Recently, several cases of symptomatic and/or electrically detectable intracardiac inside-out abrasions in silicon-coated Riata® and Riata® ST leads have been described. However, the prevalence in asymptomatic patients with unremarkable implantable cardioverter defibrillator (ICD) interrogation is unknown. The aim of this study was to determine the prevalence of asymptomatic and electrically undetectable intracardiac inside-out abrasion in silicon-coated Riata® and Riata® ST leads. All 52 patients with an active silicone-coated Riata® and Riata® ST lead followed up in our outpatient clinic were scheduled for a premature ICD interrogation and a biplane chest radiograph. When an intracardiac inside-out abrasion was suspected, this finding was confirmed by fluoroscopy. Mean time since implantation was 71 ± 18 months. An intracardiac inside-out abrasion was confirmed by fluoroscopy in 6 patients (11.5%). Mean time from lead implantation to detection of intracardiac inside-out abrasion was 79 ± 14 months. In all patients with an intracardiac inside-out abrasion, ICD interrogation showed normal and stable electrical parameters. Retrospectively, in 4 of these 6 patients, a coronary angiography performed 25 ± 18 months before diagnosis of intracardiac inside-out abrasion already showed the defect. Despite undetected intracardiac inside-out abrasion, 2 of these 4 patients experienced adequate antitachycardia pacing and ICD-shocks. ICD leads were replaced in all 6 patients. The prevalence of asymptomatic intracardiac inside-out abrasion in silicon-coated Riata® and Riata® ST leads is higher than 10% when assessed by fluoroscopy, and most intracardiac inside-out abrasions are not detectable by ICD interrogation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Pigment epithelium-derived factor protects retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Fleenor Debra L

    2007-01-01

    Full Text Available Abstract Background Retinal ganglion cells (RGCs are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors. Results Cultured adult rat RGCs exposed to glutamate for 3 days showed signs of cytotoxicity and death. The toxic effect of glutamate was concentration-dependent (EC50 = 31 μM. In the presence of 100 μM glutamate, RGC number decreased to 55 ± 4% of control (mean ± SEM, n = 76; P 50 values of 13.6 ng/mL (glutamate and 3.4 ng/mL (trophic factor withdrawal, respectively. At 100 ng/mL, PEDF completely protected the cells from both insults. Inhibitors of the nuclear factor κB (NFκB and extracellular signal-regulated kinases 1/2 (ERK1/2 significantly reduced the protective effects of PEDF. Conclusion We demonstrated that PEDF potently and efficaciously protected adult rat RGCs from glutamate- and trophic factor withdrawal-mediated cytotoxicity, via the activation of the NFκB and ERK1/2 pathways. The neuroprotective effect of PEDF represents a novel approach for potential treatment of retinopathies, such as glaucoma.

  18. Identification of intracardiac thrombi in stroke patients with indium-111 platelet scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, C.; Henningsen, H.; Reuther, R.; Kimmig, B.; Roesch, M.

    1987-01-01

    Platelet scintigraphy (PSC) with indium-111 labelled platelets has been confirmed as an adequate method for the detection of intracardiac thrombi in patients with heart disease. We performed PSC of the heart and the neck vessels in 27 stroke patients with suspected cardiac embolism and as control on 10 patients with atherosclerotic lesions of the carotid arteries without evidence of heart disease. The carotid PSC was positive in 6 of 10 patients with carotid disease, and twice in the 27 with suspected cardiac embolism. In these 27 the PSC of the heart indicated pathological conditions 13 times. Pathological platelet accumulations could be visualized in 3 cases in the atrial space, in 9 cases in the region of the left ventricle, and once at the aortic valve. Scintigraphy was negative in all 10 patients with atherosclerosis of the neck vessels. The two-dimensional echocardiography revealed pathological findings in 8 of the 13 patients with positive heart PSC (3 with intraventricular thrombi, 3 with valvular disease, 2 with decreased ventricular contractility) and was normal in the 10 control patients. Open-heart surgery was performed in 2 patients with pathological PSC and revealed an intracardiac thrombus. Three of 4 patients with positive atrial PSC showed mitral or aortic valve disease. These results suggest that PSC can provide a valuable method for detecting cardiac thrombi in stroke patients.

  19. Detection of intracardiac thrombi by scintiphotography with /sup 111/In-labeled autologous platelets

    Energy Technology Data Exchange (ETDEWEB)

    Yui, T.; Uchida, T.; Matsuda, S. (Fukushima Medical Coll. (Japan))

    1982-04-01

    Detection of intracardiac thrombi by scintigraphy with In-111-oxine labeled autologous platelets was studied in 14 patients with various heart diseases. The results of platelet scintigraphy were compared with those of two dimensional echocardiography. In 4 of the 14 patients, the findings on platelet scintigraphy and echocardiography were both positive. Left atrial thrombi were detected in 3 patients with mitral valve disease (MVD), and left ventricular thrombus in a patient with myocardial infarction with left ventricular aneurysm (MI). The scintigraphy after antiplatelet therapy in the patient with MI did not show any radioactivity on the thrombus. In one of the 14 patients with MVD, the finding on platelet scintigraphy was positive, on the other hand echocardiography was negative. In one of the 14 patients with MVD, the finding on platelet scintigraphy was negative, on the other hand that on echocardiography was positive. The thrombus in this case may be hematologically nonactive thrombus. In-111 platelet scintigraphy is considered to be an excellent method for the diagnosis and in vivo assessment of antithrombotic therapy on intracardiac thrombosis.

  20. Mitral valve implantation using off-pump closed beating intracardiac surgery: a feasibility study.

    Science.gov (United States)

    Guiraudon, Gerard M; Jones, Douglas L; Bainbridge, Daniel; Peters, Terry M

    2007-10-01

    We have developed the Universal Cardiac Introducer (UCI) with the aim of modernizing the off-pump, closed, beating, intracardiac approach. This paper reports our ongoing experience with positioning of a prosthetic MV, under image-guidance, substituting for direct vision. The UCI is comprised of two detachable parts: an attachment-cuff and an airlock-introductory chamber for bulky tools. A prosthetic MV was introduced into the left atrium in 12 pigs via the UCI (LA appendage). Transesophageal and 4D epicardial ultrasound were used for guidance. Limitations of ultrasound imaging prompted the development of a multimodality virtual reality (VR) system introduced in the last three animals. There were no complications associated with cardiac access, while achieving proper valve positioning. TEE contributed to navigating, while 4D epicardial ultrasound was adequate for positioning the prosthesis into the MV orifice. VR provided a 3D context for real-time US imaging with precise navigation and positioning using augmented reality representation of the valve. We demonstrated the feasibility of positioning MV prostheses via the UCI. These results suggest the tremendous potential of virtual reality in making access safe and effective for many intracardiac targets, with the ultimate goal of a safe, versatile, clinical application.

  1. An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle.

    Science.gov (United States)

    Horvath, Markus A; Wamala, Isaac; Rytkin, Eric; Doyle, Elizabeth; Payne, Christopher J; Thalhofer, Thomas; Berra, Ignacio; Solovyeva, Anna; Saeed, Mossab; Hendren, Sara; Roche, Ellen T; Del Nido, Pedro J; Walsh, Conor J; Vasilyev, Nikolay V

    2017-09-01

    We introduce an implantable intracardiac soft robotic right ventricular ejection device (RVED) for dynamic approximation of the right ventricular (RV) free wall and the interventricular septum (IVS) in synchrony with the cardiac cycle to augment blood ejection in right heart failure (RHF). The RVED is designed for safe and effective intracardiac operation and consists of an anchoring system deployed across the IVS, an RV free wall anchor, and a pneumatic artificial muscle linear actuator that spans the RV chamber between the two anchors. Using a ventricular simulator and a custom controller, we characterized ventricular volume ejection, linear approximation against different loads and the effect of varying device actuation periods on volume ejection. The RVED was then tested in vivo in adult pigs (n = 5). First, we successfully deployed the device into the beating heart under 3D echocardiography guidance (n = 4). Next, we performed a feasibility study to evaluate the device's ability to augment RV ejection in an experimental model of RHF (n = 1). RVED actuation augmented RV ejection during RHF; while further chronic animal studies will provide details about the efficacy of this support device. These results demonstrate successful design and implementation of the RVED and its deployment into the beating heart. This soft robotic ejection device has potential to serve as a rapidly deployable system for mechanical circulatory assistance in RHF.

  2. Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness

    Science.gov (United States)

    Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT

    2013-01-01

    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474

  3. Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation.

    Science.gov (United States)

    Xie, Wenrui; Tan, Zhi-Yong; Barbosa, Cindy; Strong, Judith A; Cummins, Theodore R; Zhang, Jun-Ming

    2016-04-01

    High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.

  4. Sensory Neurons in the Human Geniculate Ganglion.

    Science.gov (United States)

    Sato, Tadasu; Yamaguma, Yu; Sasaki, Yu; Kanda, Noriyuki; Sasahara, Nobuyuki; Kokubun, Souichi; Yajima, Takehiro; Ichikawa, Hiroyuki

    2017-01-01

    The geniculate ganglion (GG) contains visceral and somatic sensory neurons of the facial nerve. In this study, the number and cell size of sensory neurons in the human GG were investigated. The estimated number of GG neurons ranged from 1,580 to 2,561 (mean ± SD = 1,960 ± 364.6). The cell size of GG neurons ranged from 393.0 to 2,485.4 μm2 (mean ± SD = 1,067.4 ± 99.5 μm2). Sensory neurons in the GG were significantly smaller in size than those in the dorsal root (range = 326.6-5343.4 μm2, mean ± SD = 1,683.2 ± 203.8 μm2) or trigeminal ganglia (range = 349.6-4,889.28 μm2, mean ± SD = 1,529.0 ± 198.48 μm2). Sensory neurons had similar cell body sizes in the GG and nodose ganglion (range = 357.2-3,488.33 μm2, mean ± SD = 1,160.4 ± 156.61 μm2). These findings suggest that viscerosensory neurons have smaller cell bodies than somatosensory neurons. In addition, immunohistochemistry for several neurochemical substances was performed on the human GG. In the ganglion, sensory neurons were mostly immunoreactive for secreted protein, acidic and rich in cysteine-like 1 (94.3%). One third of GG neurons showed vesicular glutamate transporter 2 immunoreactivity (31.3%). Only 7.3% of GG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1. Sensory neurons in the human GG may respond to gustatory, nociceptive, and/or mechanoreceptive stimuli from tongues, soft palates, and external auditory canals. © 2017 S. Karger AG, Basel.

  5. Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons

    NARCIS (Netherlands)

    Hellstrom, M.; Muhling, J.; Ehlert, E.M.; Verhaagen, J.; Pollett, M.A.; Hu, Y.; Harvey, A.R.

    2011-01-01

    Intravitreal injections of recombinant ciliary neurotrophic factor (rCNTF) protect adult rat retinal ganglion cells (RGCs) after injury and stimulate regeneration, an effect enhanced by co-injection with a cAMP analogue (CPT-cAMP). This effect is partly mediated by PKA and associated signaling

  6. Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration

    NARCIS (Netherlands)

    Hu, Ying; Leaver, Simone G; Plant, Giles W; Hendriks, William T J; Niclou, Simone P; Verhaagen, J.; Harvey, Alan R; Cui, Qi

    We recently described a method for reconstituting peripheral nerve (PN) sheaths using adult Schwann cells (SCs). Reconstructed PN tissue grafted onto the cut optic nerve supports the regeneration of injured adult rat retinal ganglion cell (RGC) axons. To determine whether genetic manipulation of

  7. Intra-cardiac and peripheral levels of biochemical markers of fibrosis in patients undergoing catheter ablation for atrial fibrillation

    DEFF Research Database (Denmark)

    Begg, Gordon A; Karim, Rashed; Oesterlein, Tobias

    2017-01-01

    ) have all been suggested as possible biomarkers for this indication, but studies assessing whether peripheral levels reflect intra-cardiac levels are scarce. Methods and results: We studied 93 patients undergoing ablation for paroxysmal atrial fibrillation (AF) (n = 63) or non-paroxysmal AF (n = 30...

  8. Sciatica and claudication caused by ganglion cyst.

    Science.gov (United States)

    Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen

    2013-12-15

    Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.

  9. Anterior cruciate ligament ganglion: case report

    Directory of Open Access Journals (Sweden)

    André Pedrinelli

    Full Text Available CONTEXT: A ganglion is a cystic formation close to joints or tendinous sheaths, frequently found in the wrist, foot or knee. Intra-articular ganglia of the knee are rare, and most of them are located in the anterior cruciate ligament. The clinical picture for these ganglia comprises pain and movement restrictions in the knee, causing significant impairment to the patient. Symptoms are non-specific, and anterior cruciate ligament ganglia are usually diagnosed through magnetic resonance imaging or arthroscopy. Not all ganglia diagnosed through magnetic resonance imaging need to undergo surgical treatment: only those that cause clinical signs and symptoms do. Surgical results are considered good or excellent in the vast majority of cases. CASE REPORT: A 29-year-old male presented with pain in the left knee during a marathon race. Physical examination revealed limitation in the maximum range of knee extension and pain in the posterior aspect of the left knee. Radiographs of the left knee were normal, but magnetic resonance imaging revealed a multi-lobed cystic structure adjacent to the anterior cruciate ligament, which resembled a ganglion cyst. The mass was removed through arthroscopy, and pathological examination revealed a synovial cyst. Patient recovery was excellent, and he resumed his usual training routine five months later.

  10. 18F-FDG-PET Scanning Confirmed Infected Intracardiac Device-Leads with Abiotrophia defectiva

    Directory of Open Access Journals (Sweden)

    Sonja van Roeden

    2016-01-01

    Full Text Available Abiotrophia species are relatively slow growing pathogens, which may be present as commensal flora. However, invasive infections are frequently reported, like endocarditis, septic arthritis, osteomyelitis, and many other types of infection. In this case report we describe a 65-year-old male patient with an intracardiac device- (ICD- lead infection caused by Abiotrophia defectiva. Diagnosis was confirmed by 18F-FDG-PET scanning. This is remarkable, since Abiotrophia defectiva is a slow growing pathogen causing low-grade infections. This case demonstrates that although infection of ICD-leads cannot be excluded in case of 18F-FDG-PET-negative findings, positive findings are highly suggestive for infection.

  11. Phased-array intracardiac echocardiographic imaging of acute cardiovascular emergencies: Experimental studies in dogs.

    Science.gov (United States)

    Yamada, Elina; Zhang, Yi; Davies, Ray; Coddington, William; Kerber, Richard E

    2002-10-01

    We evaluated a newly developed phased-array intracardiac echocardiographic catheter. Our aim was to evaluate the imaging capability of this new ICE catheter in an animal model simulating acute cardiovascular abnormalities. ICE images were obtained from the right atrium during (1) acute left ventricular dysfunction; (2) acute coronary occlusion; (3) pericardial effusion and tamponade; and (4) pulmonary embolism. Left ventricular dysfunction, induced experimentally by halothane inhalation, resulted in a fall in echocardiography-calculated ejection fraction from 47% +/- 11% to 25% +/- 10%, P small as 15 mL. Right ventricular and atrial compression and respiratory variation in right ventricular inflow during tamponade were demonstrated. After injection of intravenous thrombin to create venous thromboembolism, we demonstrated right ventricular dilatation and dysfunction and thrombi attached to the tricuspid and pulmonary valves and in the pulmonary artery. This new phased-array ICE catheter may be a useful clinical tool for the diagnosis of heart failure, ischemia, tamponade, and pulmonary embolism.

  12. Intracardiac Leakage of Cement During Kyphoplasty and Vertebroplasty: A Case Report.

    Science.gov (United States)

    Audat, Ziad A; Alfawareh, Mohammad D; Darwish, Fayeq T; Alomari, Ali A

    2016-05-13

    Intracardiac leakage of bone cement after kyphoplasty and vertebroplasty is a rare and life-threatening complication. Cortoss, which is an injectable, non-absorbable, polymer composite that is designed to mimic cortical bone, can be used instead of cement. Here, we present the case of a patient with right intra-cardiac Cortoss embolization. A 28-year-old man known to have ulcerative colitis since the age of 15 and treated with corticosteroids for more than 4 years and with anti-immune drugs presented to our hospital complaining of back pain and decreased body height due to osteomalacia with failed conservative treatment. Kyphoplasty and vertebroplasty of the thoracic 10-12 and first lumbar vertebrae were done with any complications. Three months later, the patient underwent kyphoplasty and vertebroplasty of lumbar 2-5 vertebrae by injecting Cortoss instead of cement, which was complicated with paravertebral intravascular leakage. We stopped surgery and transferred him to the recovery room, where he had slight chest pain that resolved spontaneously without neurological deficit. Two days later he developed severe chest pain and chest X-ray showed a large white shadow at the right side of the heart and another 2 small shadows just lateral to it. Sudden deterioration of patient status necessitated an emergency echocardiogram, which showed pericardial tamponade and a perforated right ventricle. Aspiration of pericardial blood and emergency open heart surgery were done. He was discharged 4 days later and was followed up at an outpatient clinic. Cardiac embolism is a serious condition that can complicate vertebral kyphoplasty; it requires a high level of suspicion and immediate action, and may need open heart surgery to save the patient's life.

  13. Quantitative evaluation of atrial radio frequency ablation using intracardiac shear-wave elastography.

    Science.gov (United States)

    Kwiecinski, Wojciech; Provost, Jean; Dubois, Rémi; Sacher, Frédéric; Haïssaguerre, Michel; Legros, Mathieu; Nguyen-Dinh, An; Dufait, Rémi; Tanter, Mickaël; Pernot, Mathieu

    2014-11-01

    Radio frequency catheter ablation (RFCA) is a well-established clinical procedure for the treatment of atrial fibrillation (AF) but suffers from a low single-procedure success rate. Recurrence of AF is most likely attributable to discontinuous or nontransmural ablation lesions. Yet, despite this urgent clinical need, there is no clinically available imaging modality that can reliably map the lesion transmural extent in real time. In this study, the authors demonstrated the feasibility of shear-wave elastography (SWE) to map quantitatively the stiffness of RFCA-induced thermal lesions in cardiac tissues in vitro and in vivo using an intracardiac transducer array. SWE was first validated in ex vivo porcine ventricular samples (N = 5). Both B-mode imaging and SWE were performed on normal cardiac tissue before and after RFCA. Areas of the lesions were determined by tissue color change with gross pathology and compared against the SWE stiffness maps. SWE was then performed in vivo in three sheep (N = 3). First, the stiffness of normal atrial tissues was assessed quantitatively as well as its variation during the cardiac cycle. SWE was then performed in atrial tissue after RFCA. A large increase in stiffness was observed in ablated ex vivo regions (average shear modulus across samples in normal tissue: 22 ± 5 kPa, average shear-wave speed (ct): 4.5 ± 0.4 m s(-1) and in determined ablated zones: 99 ± 17 kPa, average ct: 9.0 ± 0.5 m s(-1) for a mean shear modulus increase ratio of 4.5 ± 0.9). In vivo, a threefold increase of the shear modulus was measured in the ablated regions, and the lesion extension was clearly visible on the stiffness maps. By its quantitative and real-time capabilities, Intracardiac SWE is a promising intraoperative imaging technique for the evaluation of thermal ablation during RFCA.

  14. Clinical significance of thrombosis in an intracardiac blind pouch after a Fontan operation.

    Science.gov (United States)

    Lee, Sang Yun; Baek, Jae Suk; Kim, Gi Beom; Kwon, Bo Sang; Bae, Eun Jung; Noh, Chung Il; Choi, Jung Yun; Lim, Hong Kuk; Kim, Woong Han; Lee, Jeong Ryul; Kim, Yong Jin

    2012-01-01

    The univentricular heart after the Fontan operation may have a blind pouch formed by the pulmonary stump or rudimentary ventricle according to the anatomy before surgery. Thrombosis in an intracardiac blind pouch of patients with a univentricular heart is a hazardous complication. Because only a few reports have described this complication, the authors evaluated the clinical significance of thrombosis in an intracardiac blind pouch of a univentricular heart. They performed a retrospective review of medical records from August 1986 to December 2007. Four patients were confirmed as having thrombosis in a pulmonary artery stump and one patient as having thrombosis in a rudimentary ventricle shown by cardiac computed tomography (CT). This represents 1.85% (5/271) of patients with ongoing regular follow-up evaluation after the Fontan operation. The median age at diagnosis was 14.2 years. Two of the five patients were taking aspirin and one patient was taking warfarin when they were identified for the development of thrombosis. None of the patients demonstrated thrombosis in the Fontan tract or venous side of the circulation. Brain magnetic resonance imaging (MRI) showed that three patients had cerebral infarction and one patient had suggestive old ischemia. Three patients with thrombus in the pulmonary stump underwent pulmonary artery stump thrombectomy and pulmonary valve obliteration. One patient with thrombus in the rudimentary ventricle underwent ventricular septal defect (VSD) closure with thrombectomy. Thrombus in a blind pouch could cause systemic thromboembolism despite little blood communication. Therefore, surgical modification of the pulmonary stump and VSD closure of the rudimentary ventricle are required to reduce the risk of later thrombus formation. Clinicians should not overlook the possibility of thrombus in a ligated pulmonary artery stump or a rudimentary ventricle after the Fontan operation, which may increase the risk of embolic stroke for patients

  15. Surface morphology of the endolymphatic duct in the rat. A scanning electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    Following intracardiac vascular perfusion fixation of 8 rats with glutaraldehyde in a buffered and oxygenated blood substitute, the vestibular aqueduct and endolymphatic duct were opened by microsurgery of the resulting 16 temporal bones. Optimum preservation of the epithelium for scanning electron...

  16. Diagnostic imaging of tibial periosteal ganglion

    Energy Technology Data Exchange (ETDEWEB)

    Valls, R. [Department of Diagnostic Imaging, Consorci Hospitalari del Parc Tauli, Sabadell (Spain); Melloni, P. [Department of Diagnostic Imaging, Consorci Hospitalari del Parc Tauli, Sabadell (Spain); Darnell, A. [Department of Diagnostic Imaging, Consorci Hospitalari del Parc Tauli, Sabadell (Spain); Munoz, J. [Department of Orthopaedic Surgery, Consorci Hospitalari del Parc Tauli, Sabadell (Spain); Canalies, J. [Department of Diagnostic Imaging, Consorci Hospitalari del Parc Tauli, Sabadell (Spain)

    1997-02-01

    A case of a soft tissue tumor situated in the anterior surface of the proximal end of the tibia in an adult patient is demonstrated by conventional radiographs, CT, and MRI. The lesion was well defined with respect to the adjacent soft tissue. The CT exam showed a soft tissue mass with external cortical erosion and thick spicules by periosteal reaction. On T1-weighted images the mass was homogeneous and of low signal intensity, whereas on T2-weighted images it showed a high signal intensity, with some septa in the mass. The differential considerations include a periosteal chondroma, a lipoma, a subperiosteal hematoma, an inflammatory process, a giant cell tumor of tendon sheath, and a parosteal osteosarcoma. The CT and MR features of these entities are reviewed as an aid in differential diagnosis of the periosteal ganglion. (orig.). With 4 figs.

  17. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  18. Neurogenic inflammation: a study of rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Edvinsson, Lars

    2010-01-01

    -activated protein kinases (MAPKs) primarily in neurons, (3) CGRP can induce expression of some cytokines and (4) cytokine expression is still upregulated following MAPK pathway inhibition by MEK inhibitor U0126 and pp38 inhibitor SB202192, but the cytokine expression is abolished when co-incubating with the JNK...

  19. Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Hypothesis: Intratympanic steroid treatment prevents hearing loss and cochlear damage in a rat model of pneumococcal meningitis. Background: Sensorineural hearing loss is a long-term complication of meningitis affecting up to a third of survivors. Streptococcus pneumoniae is the bacterial species...... treatment prevents long-term spiral ganglion neuron loss in experimental pneumococcal meningitis. This finding is clinically relevant in relation to postmeningitic hearing rehabilitation by cochlear implantation. However, the drug instillation in the middle ear induced local fibrosis and a concurrent low...... most often associated with a hearing loss. Methods: Rats were randomly assigned to 3 treatment groups: a group treated with intratympanic betamethasone and 2 control groups treated with either intratympanic or systemic saline. Treatment was initiated 21 hours after infection and repeated once a day...

  20. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration

    Directory of Open Access Journals (Sweden)

    Valeria Colafrancesco

    2011-01-01

    Full Text Available The aim of this study was to investigate the effect of nerve growth factor (NGF administration on retinal ganglion cells (RGCs in experimentally induced glaucoma (GL and diabetic retinopathy (DR. GL was induced in adult rats by injection of hypertonic saline into the episcleral vein of the eye and diabetes (DT was induced by administration of streptozoticin. Control and experimental rats were treated daily with either ocular application of NGF or vehicle solution. We found that both animal models present a progressive degeneration of RGCs and changing NGF and VEGF levels in the retina and optic nerve. We then proved that NGF eye drop administration exerts a protective effect on these models of retinal degeneration. In brief, our findings indicate that NGF can play a protective role against RGC degeneration occurring in GL and DR and suggest that ocular NGF administration might be an effective pharmacological approach.

  1. Acetylation preserves retinal ganglion cell structure and function in a chronic model of ocular hypertension.

    Science.gov (United States)

    Alsarraf, Oday; Fan, Jie; Dahrouj, Mohammad; Chou, C James; Yates, Phillip W; Crosson, Craig E

    2014-10-30

    The current studies investigate if the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), can limit retinal ganglion cell (RGC) degeneration in an ocular-hypertensive rat model. Intraocular pressure (IOP) was elevated unilaterally in Brown Norway rats by hypertonic saline injection. Rats received either vehicle or VPA (100 mg/kg) treatment for 28 days. Retinal ganglion cell function and number were assessed by pattern electroretinogram (pERG) and retrograde FluoroGold labeling. Western blotting and a fluorescence assay were used for determination of histone H3 acetylation and HDAC activity, respectively, at 3-day, 1-week, and 2-week time points. Hypertonic saline injections increased IOPs by 7 to 14 mm Hg. In vehicle-treated animals, ocular hypertension resulted in a 29.1% and 39.4% decrease in pERG amplitudes at 2 and 4 weeks, respectively, and a 42.9% decrease in mean RGC density at 4 weeks. In comparison, VPA treatment yielded significant amplitude preservation at 2 and 4 weeks and showed significant RGC density preservation at 4 weeks. No significant difference in RGC densities or IOPs was measured between control eyes of vehicle- and VPA-treated rats. In ocular-hypertensive eyes, class I HDAC activity was significantly elevated within 1 week (13.3 ± 2.2%) and histone H3 acetylation was significantly reduced within 2 weeks following the induction of ocular hypertension. Increase in HDAC activity is a relatively early retinal event induced by elevated IOP, and suppressing HDAC activity can protect RGCs from ocular-hypertensive stress. Together these data provide a basis for developing HDAC inhibitors for the treatment of optic neuropathies. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  2. Ionic channel changes in glaucomatous retinal ganglion cells: multicompartment modeling.

    Science.gov (United States)

    Maturana, Matias I; Turpin, Andrew; McKendrick, Allison M; Kameneva, Tatiana

    2014-01-01

    This research takes a step towards discovering underlying ionic channel changes in the glaucomatous ganglion cells. Glaucoma is characterized by a gradual death of retinal ganglion cells. In this paper, we propose a hypothesis that the ionic channel concentrations change during the progression of glaucoma. We use computer simulation of a multi-compartment morphologically correct model of a mouse retinal ganglion cell to verify our hypothesis. Using published experimental data, we alter the morphology of healthy ganglion cells to replicate glaucomatous cells. Our results suggest that in glaucomatous cell, the sodium channel concentration decreases in the soma by 30% and by 60% in the dendrites, calcium channel concentration decreases by 10% in all compartments, and leak channel concentration increases by 40% in the soma and by 100% in the dendrites.

  3. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  4. Melanopsin retinal ganglion cell loss in Alzheimer's disease

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Koronyo, Yosef

    2015-01-01

    OBJECTIVE: Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer's disease (AD). We investigated mRGCs in AD, hypothesizing their contribution to circadian dysfunction. METHODS: We assessed retinal nerve...

  5. Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties

    Directory of Open Access Journals (Sweden)

    Romain Bachy

    2014-12-01

    Full Text Available We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.

  6. Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties

    OpenAIRE

    Romain Bachy; Qasim Zaidi

    2014-01-01

    We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.

  7. Resolution of intracardiac and pulmonary thrombi without anticoagulation in a patient with Behçet's disease: a case report.

    Science.gov (United States)

    Samrah, Shaher M; Saadeh, Salwa S; Alawneh, Kaldoon M

    2013-01-01

    Intracardiac and pulmonary thrombi are rare but serious manifestations of Behçet's disease, the treatment of such cases is a challenge to the treating physician and use of anticoagulants can hold a great risk to some patients. We report a patient who was found to have multiple right intraventricular and bilateral pulmonary artery thrombi and was clinically diagnosed with Behçet's disease. Early in the course of his treatment, the patient developed massive haemoptysis which precluded the further use of anticoagulants. The patient was treated with immunosuppressants alone and had complete resolution of his symptoms and documented resolution of the thrombi. In a review of the literature, only 3 out of around 50 patients reported to have intracardiac thrombi complicating Behçet's disease were treated without anticoagulants (1, 2) even though there is no clear evidence to support the benefit of anticoagulation to treat arterial or thrombotic lesions (3). We conclude that intracardiac thrombi in patients with Behçet's disease may resolve with immunosuppressants without anticoagulation, which is especially important in patients with contraindication to anticoagulation.

  8. Recombinant Tissue Plasminogen Activator in the Treatment of Neonates with Intracardiac and Great Vessels Thrombosis.

    Science.gov (United States)

    El-Segaier, Milad; Khan, Muhammad A; Khan, Zaheer Ullah; Momenah, Tarek; Galal, Mohammed Omar

    2015-12-01

    Life-threatening intracardiac and great vessels thrombi are rare in neonates. Recombinant tissue plasminogen activator (rTPA) is used in adults to stimulate fibrinolysis and facilitate thrombus resolution. Its use in neonates, along with heparin, remains controversial because of potential risk of serious bleeding. We aim to present our experience with the use of thrombolytic agents in seven neonates and young infants. In a retrospective study, over a period of 6 years, the medical records of neonates and young infants, who were diagnosed with intracardiac and great vessels thrombi, were reviewed. The following factors were collected: demographic data, primary diagnosis, thrombus site, risk factors, method of diagnosis, thrombolytic and/or anticoagulation agent, route, dose and duration of treatment, complications, and outcome. Six neonates and one 45-day-old infant were analyzed. Age ranged from 5 to 45 days (median age 12 days), and median weight was 2.9 kg (range 0.9-3.8 kg). The thrombi were diagnosed by echocardiography in five and by angiography in two cases. All patients had life-threatening thrombi; four were treated with rTPA (0.5 mg kg(-1) h(-1)) and heparin infusions with complete dissolution of the thrombi, within a median time of 60 h (6-72 h), and without complications. The remaining three patients (two who were premature, at 28 and 34 weeks of gestation, and the third who had a deranged coagulation profile) were treated with unfractionated heparin due to fear of bleeding. The thrombi dissolved in the premature babies (within 2 weeks and 3 months, respectively) but embolized and resulted in the death of the third infant after 2 weeks of treatment. The current case series confirmed the effectiveness and safety of intravenous rTPA infusion, at the dosages used, in neonates and young infants with life-threatening thrombi.

  9. [Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans].

    Science.gov (United States)

    Zivković, Vladimir; Stefanović, Natalija; Durović-Filipović, Tatjana; Pavlović, Snezana; Stojanović, Vesna; Bakić, Mirjana; Kundalić, Braca; Pavlović, Miljana

    2008-10-01

    Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC) (postganglionic sympathetic cell bodies) of superior cervical ganglion in humans during ageing. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive) sections 5 microm thick were made and stained with hematoxylin and eosin method (HE), silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent), unipolar type (lipofuscin granules were grouped at the end of the cell), bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell), annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus) and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one). Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells completely filled with lipofuscin, but

  10. MR Imaging of the Superior Cervical Ganglion and Inferior Ganglion of the Vagus Nerve: Structures That Can Mimic Pathologic Retropharyngeal Lymph Nodes.

    Science.gov (United States)

    Yokota, H; Mukai, H; Hattori, S; Yamada, K; Anzai, Y; Uno, T

    2017-11-09

    The superior cervical ganglion and inferior ganglion of the vagus nerve can mimic pathologic retropharyngeal lymph nodes. We studied the cross-sectional anatomy of the superior cervical ganglion and inferior ganglion of the vagus nerve to evaluate how they can be differentiated from the retropharyngeal lymph nodes. This retrospective study consists of 2 parts. Cohort 1 concerned the signal intensity of routine neck MR imaging with 2D sequences, apparent diffusion coefficient, and contrast enhancement of the superior cervical ganglion compared with lymph nodes with or without metastasis in 30 patients. Cohort 2 used 3D neurography to assess the morphology and spatial relationships of the superior cervical ganglion, inferior ganglion of the vagus nerve, and the retropharyngeal lymph nodes in 50 other patients. All superior cervical ganglions had homogeneously greater enhancement and lower signal on diffusion-weighted imaging than lymph nodes. Apparent diffusion coefficient values of the superior cervical ganglion (1.80 ± 0.28 × 10-3mm2/s) were significantly higher than normal and metastatic lymph nodes (0.86 ± 0.10 × 10-3mm2/s, P vagus nerve (P vagus nerve and the superior cervical ganglion (P vagus nerve formed a line from anteromedial to posterolateral. The superior cervical ganglion and the inferior ganglion of the vagus nerve can be almost always differentiated from retropharyngeal lymph nodes on MR imaging by evaluating the signal, size, and position. © 2018 by American Journal of Neuroradiology.

  11. New generation of electro-anatomic mapping: full intracardiac ultrasound image integration.

    Science.gov (United States)

    Packer, Douglas L; Johnson, Susan B; Kolasa, Mark W; Bunch, Thomas J; Henz, Benhur D; Okumura, Yasuo

    2008-11-01

    Surrogate electro-anatomic-derived geometries are used as the three-dimensional (3D) basis for mapping of cardiac arrhythmias. While merged computed tomography (CT) imaging may provide stellar pulmonary vein (PV) and left atrial (LA) anatomy, the applied scans must be obtained prior to ablation, and may not reflect physiologic conditions at the time of intervention. Patient-specific, ultrasound-derived 3D imaging has been developed as an alternative basis for new generation electro-anatomic mapping. An electro-anatomic sensor positioned at the tip of the phased-array intracardiac ultrasound catheter, provides the means to specify both location and orientation of each image as the 'context' for creating the 3D volumes for co-registration with electro-anatomic mapping. Specific anatomic details such as the pulmonary veins, membranous fossa, papillary muscles, or valve structures derived from real-time imaging can also be integrated into each segmented volume. This presentation reviews the basis and methods for this novel multi-modality image fusion for the creation of robust, nearly real-time anatomic images for guiding electro-anatomic mapping and ablation without requiring pre-acquired CT image sets, with accompanying limitations.

  12. Percutaneous retrieval of an intracardiac central venous port fragment using snare with triple loops

    Directory of Open Access Journals (Sweden)

    Mehdi Ghaderian

    2015-01-01

    Full Text Available Peripherally inserted venous ports fracture with embolization in patients who received chemotherapy is a serious and rare complication, and few cases have been reported in children. We report a successful endovascular technique using a snare for retrieving broken peripherally inserted venous ports in a child for chemotherapy. Catheter fragments may cause complications such as cardiac perforation, arrhythmias, sepsis, and pulmonary embolism. A 12-year-old female received chemotherapy for acute lymphocytic leukemia through a central venous port implanted into her right subclavian area. The patient completed chemotherapy without complications 6 months ago. Venous port was accidentally fractured during its removal. Chest radiographs of the patient revealed intracardiac catheter fragment extending from the right subclavian to the right atrium (RA and looping in the RA. The procedure was performed under ketamine and midazolam anesthesia and fluoroscopic guidance using a percutaneous femoral vein approach. A snare with triple loops (10 mm in diameter was used to successfully retrieve the catheter fragments without any complication. Percutaneous transcatheter retrieval of catheter fragments is occasionally extremely useful and should be considered by interventional cardiologists for retrieving migrated catheters and can be chosen before resorting to surgery, which has potential risks related to thoracotomy, cardiopulmonary bypass, and general anesthesia.

  13. Neonatal atrial flutter after insertion of an intracardiac umbilical venous catheter

    Directory of Open Access Journals (Sweden)

    Marcos Moura de Almeida

    2016-03-01

    Full Text Available Abstract Objective: To describe a case of neonatal atrial flutter after the insertion of an intracardiac umbilical venous catheter, reporting the clinical presentation and reviewing the literature on this subject. Case description: A late-preterm newborn, born at 35 weeks of gestational age to a diabetic mother and large for gestational age, with respiratory distress and rule-out sepsis, required an umbilical venous access. After the insertion of the umbilical venous catheter, the patient presented with tachycardia. Chest radiography showed that the catheter was placed in the position that corresponds to the left atrium, and traction was applied. The patient persisted with tachycardia, and an electrocardiogram showed atrial flutter. As the patient was hemodynamically unstable, electric cardioversion was successfully applied. Comments: The association between atrial arrhythmias and misplaced umbilical catheters has been described in the literature, but in this case, it is noteworthy that the patient was an infant born to a diabetic mother, which consists in another risk factor for heart arrhythmias. Isolated atrial flutter is a rare tachyarrhythmia in the neonatal period and its identification is essential to establish early treatment and prevent systemic complications and even death.

  14. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    Directory of Open Access Journals (Sweden)

    Jaeseong Jang

    2016-01-01

    Full Text Available For the assessment of the left ventricle (LV, echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data from the forward simulation (or measurement. Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle.

  15. Low-Grade Endometrial Stromal Sarcoma with Intravenous and Intracardiac Extension: A Multidisciplinary Approach

    Directory of Open Access Journals (Sweden)

    Wataru Kudaka

    2016-01-01

    Full Text Available Background. A rare case of low-grade endometrial stromal sarcoma (LG-ESS extending to inferior vena cava (IVC and cardiac chambers. Case Report. A 40-year-old woman had IVC tumor, which was incidentally detected by abdominal ultrasonography during a routine medical checkup. CT scan revealed a tumor in IVC, right iliac and ovarian veins, which was derived from the uterus and extended into the right atrium and ventricle. The operation was performed, the heart and IVC were exposed, and cardiopulmonary bypass was initiated. A right atriotomy was performed, and the intracardiac mass was removed. Then the tumor in IVC and the right internal iliac vein were removed after longitudinal venotomies in the suprarenal and infrarenal vena cava, the right common iliac vein. Next the pelvis was explored. Tumors were found originating from the posterior wall of the uterus and continuing into both the right uterine and ovarian vein. The patient underwent total hysterectomy with bilateral salpingooophorectomy. Complete tumor resection was achieved. Histopathological analysis confirmed a diagnosis of LG-ESS. She showed no evidence of disease for 2 years and 3 months. Conclusions. Our case highlights the importance of a multidisciplinary approach in treating this rare cardiovascular pathological condition through preoperative assessment to final operation.

  16. The effectiveness of FDG PET/CT for evaluation of intracardiac mass and pericardiac lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H. S [Hallym Medical Center, Anyang (Korea, Republic of); Yun, M. J.; Lee, J. D [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2004-07-01

    Fluorodeoxyglucose positron emission tomography has been known to be useful in diagnosis and staging of malignancy. FDG PET has high sensitivity and easily detects malignant lesions that are missed and overlooked in anatomic imaging modality. We assessed the impact of FDG PET/CT compared to echocardiogram and enhanced CT scan. Five patients of intra- and pericardiac lesions were included in this study. All patients underwent PET/CT(GE Discovery ST), enhanced CT scan and echocardiogram. Two patients were non-small cell lung cancer, one of RV metastatic mass, the other of pericardial metastasis in RV region. One of melanoma with systemic metastases, had RA malignant masses. One of suspicious lung cancer and intracardiac mass, has proved to benign LA thrombosis. One of lymphoma showed suspicious cardiac mass, but revealed no abnormality in echocardiogram. FDG PET/CT is sensitive and useful method to detect intra- and pericardiac mass in patients with suspected malignancy. All patients except lymphoma were correctly diagnosed using FDG PET/ICT.

  17. "Cristal tachycardias": origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography.

    Science.gov (United States)

    Kalman, J M; Olgin, J E; Karch, M R; Hamdan, M; Lee, R J; Lesh, M D

    1998-02-01

    We sought to use intracardiac echocardiography (ICE) to identify the anatomic origin of focal right atrial tachycardias and to define their relation with the crista terminalis (CT). Previous studies using ICE during mapping of atrial flutter and inappropriate sinus tachycardia have demonstrated an important relation between endocardial anatomy and electrophysiologic events. Recent studies have suggested that right atrial tachycardias may also have a characteristic anatomic distribution. Twenty-three consecutive patients with 27 right atrial tachycardias were included in the study. ICE was used to facilitate activation mapping in relation to endocardial structures. A 20-pole catheter was positioned along the CT under ICE guidance. ICE was also used to assist in guiding detailed mapping with the ablation catheter in the right atrium. Of 27 focal right atrial tachycardias, 18 (67%, 95% confidence interval [CI] 46% to 83%) were on the CT (2 high medial, 8 high lateral, 6 mid and 2 low). ICE identified the location of the tip of the ablation catheter in immediate relation to the CT in all 18 cases. The 20-pole mapping catheter together with echocardiographic visualization of the CT provided a guide to the site of tachycardia origin along this structure. Radiofrequency ablation was successful in 26 (96%) of 27 (95% CI 81% to 100%) right atrial tachycardias. This study demonstrates that approximately two thirds of focal right atrial tachycardias occurring in the absence of structural heart disease will arise along the CT. Recognition of this common distribution may potentially facilitate mapping and ablation of these tachycardias.

  18. Left ventricle myocardial border detection in three-dimensional intracardiac ultrasound images

    Science.gov (United States)

    Liang, Weidong; Kanani, Prapti; Allan, John; Kerber, Richard; McKay, Charles R.; Sonka, Milan

    1997-05-01

    We have previously reported an automated approach to detection of endocardial and epicardial borders in individual intracardiac ultrasound (ICUS) images. Here, we report the method's extension to 3D ICUS image data sets. Our method is based on fully automated detection of epicardial and endocardial borders inside a single interactively identified region of interest. BOrder detection is based on an optimal graph-searching approach that utilizes a priori knowledge about left ventricular (LV) anatomy and ultrasound imaging physics. Eight cadaveric pig hearts were used for validation. Two ICUS sequences were obtained from each heart, with a 10 MHz CVIS 10F catheter positioned in the LV across (1) the aortic valve and (2) the mitral valve. Performance of the 3D automated border detection method was assessed by comparing the observer- defined and computer-determined quantitative indices of LV volume and by border positioning errors. The 3D reconstruction of the lV was performed from the sequences of the detected epicardial and endocardial borders using shape- based interpolation and surface rendering.

  19. Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model.

    Science.gov (United States)

    Eriksson, Jonas; Jablonski, Aleksandra; Persson, Anna-Karin; Hao, Jing-Xia; Kouya, Poli Francois; Wiesenfeld-Hallin, Zsuzsanna; Xu, Xiao-Jun; Fried, Kaj

    2005-12-15

    We used a photochemical method to generate a partial ischemic injury to the infraorbital branch of the trigeminal nerve in rats. Following injury, rats developed a bilateral persistent hypersensitivity to mechanical stimulation in the territory innervated by the infraorbital nerve. In addition, spread of mechanical hypersensitivity beyond the facial region was noted. Heat hypersensitivity was also present, although to a lesser extent and of a shorter duration. In some rats, excessive facial grooming/scratching were observed. Morphological examination revealed a graded damage to the irradiated portion of the infraorbital nerve that was related to the duration of laser irradiation. Investigations of gene expression changes in injured trigeminal ganglion neurons of animals with behavioral signs of neuropathic pain demonstrated that the sodium channel alpha-subunit Na(v)1.3-absent in sham-operated animals-was expressed to a limited extent. mRNAs for Na(v)1.8 and Na(v)1.9 were reduced both with respect to proportions of expressing neurons and to intensities, whereas the beta 3 subunit was markedly upregulated. mRNA levels of p11, a regulatory factor that facilitates the surface expression of Na(v)1.8, were unchanged. Previous findings have shown that injury to the trigeminal nerve branches may elicit responses that differ from those of segmental spinal nerves. Despite this we conclude that the key sodium channel regulations that are reported as consequences of nerve damage in the dorsal root ganglia seem to appear also in the trigeminal ganglion. Thus, novel analgesic drugs designed to target the sodium channel subtypes involved could be of use for the treatment of orofacial pain.

  20. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina

    Science.gov (United States)

    Rodriguez, Allen R.; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C.

    2014-01-01

    There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On Western blots these antibodies recognize a single band at ~24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit and monkey retina. RBPMS immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semi-quantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1) immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at three weeks, and all Brn3a, SMI-32 and melanopsin immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to CFP-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs. PMID:24318667

  1. Interactions of suboesophageal ganglion and frontal ganglion motor patterns in the locust.

    Science.gov (United States)

    Rand, David; Gueijman, Ariel; Zilberstein, Yael; Ayali, Amir

    2008-05-01

    Although locust feeding has been well studied, our understanding of the neural basis of feeding-related motor patterns is still far from complete. This paper focuses on interactions between the pattern of rhythmic movements of the mouth appendages, governed by the suboesophageal ganglion (SOG), and the foregut movements, controlled by the frontal ganglion (FG), in the desert locust. In vitro simultaneous extracellular nerve recordings were made from totally isolated ganglia as well as from fully interconnected SOG-FG and brain-SOG-FG preparations. SOG-confined bath application of the nitric oxide donor, SNP, or the phosphodiesterase antagonist, IBMX, each followed by the muscarinic agonist pilocarpine, consistently induced robust fictive motor patterns in the SOG. This was observed in both isolated and interconnected preparations. In the brain-SOG-FG configuration the SOG-confined modulator application had an indirect excitatory effect on spontaneous FG rhythmic activity. Correlation between fictive motor patterns of the two ganglia was demonstrated by simultaneous changes in burst frequency. These interactions were found to be brain-mediated. Our results indicate the presence of intricate neuromodulation-mediated circuit interactions, even in the absence of sensory inputs. These interactions may be instrumental in generating the complex rhythmic motor patterns of the mandibles and gut muscles during locust feeding or ecdysis-related air swallowing.

  2. Ganglion cysts in the paediatric wrist: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Jennifer; Bartlett, Murray [Royal Children' s Hospital, Medical Imaging Department, Melbourne, VIC (Australia)

    2013-12-15

    The majority of published literature on ganglion cysts in children has been from a surgical perspective, with no dedicated radiologic study yet performed. Our aim was to assess the magnetic resonance (MR) imaging appearance of ganglion cysts in a series of paediatric MR wrist examinations. Ninety-seven consecutive paediatric MR wrist examinations were retrospectively reviewed for the presence of ganglion cysts. Only those studies with wrist ganglia were included. Cysts were assessed for location, size, internal characteristics and secondary effect(s). Forty-one ganglion cysts (2-32 mm in size) were seen in 35/97 (36%) patients (24 female, 11 male), mean age: 13 years 11 months (range: 6 years 3 months-18 years). The majority were palmar (63.4%) with the remainder dorsal. Of the cysts, 43.9% were related to a wrist ligament(s), 36.6% to a joint and 17.1% to the triangular fibrocartilage complex. Of the patients, 91.4% had wrist symptoms: pain (n=29, 82.9%), swelling (n=7, 20%) and/or palpable mass (n=4, 11.4%); 71.4% patients had significant additional wrist abnormalities. Ganglion cysts were frequently found in children referred for wrist MRI. (orig.)

  3. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  4. Segmentation of left atrial intracardiac ultrasound images for image guided cardiac ablation therapy

    Science.gov (United States)

    Rettmann, M. E.; Stephens, T.; Holmes, D. R.; Linte, C.; Packer, D. L.; Robb, R. A.

    2013-03-01

    Intracardiac echocardiography (ICE), a technique in which structures of the heart are imaged using a catheter navigated inside the cardiac chambers, is an important imaging technique for guidance in cardiac ablation therapy. Automatic segmentation of these images is valuable for guidance and targeting of treatment sites. In this paper, we describe an approach to segment ICE images by generating an empirical model of blood pool and tissue intensities. Normal, Weibull, Gamma, and Generalized Extreme Value (GEV) distributions are fit to histograms of tissue and blood pool pixels from a series of ICE scans. A total of 40 images from 4 separate studies were evaluated. The model was trained and tested using two approaches. In the first approach, the model was trained on all images from 3 studies and subsequently tested on the 40 images from the 4th study. This procedure was repeated 4 times using a leave-one-out strategy. This is termed the between-subjects approach. In the second approach, the model was trained on 10 randomly selected images from a single study and tested on the remaining 30 images in that study. This is termed the within-subjects approach. For both approaches, the model was used to automatically segment ICE images into blood and tissue regions. Each pixel is classified using the Generalized Liklihood Ratio Test across neighborhood sizes ranging from 1 to 49. Automatic segmentation results were compared against manual segmentations for all images. In the between-subjects approach, the GEV distribution using a neighborhood size of 17 was found to be the most accurate with a misclassification rate of approximately 17%. In the within-subjects approach, the GEV distribution using a neighborhood size of 19 was found to be the most accurate with a misclassification rate of approximately 15%. As expected, the majority of misclassified pixels were located near the boundaries between tissue and blood pool regions for both methods.

  5. Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells

    OpenAIRE

    YAMAMOTO Yoshio"; Hatakeyama, Taku; TANIGUCHI, Kazuyuki

    2009-01-01

    TREK belongs to a subfamily of tandem pore domain K+ channels, and consists of three subunits, TREK-1, TREK-2 and TRAAK. We examined the distribution of TREK-1, TREK-2 and TRAAK immunoreactive neurons in rat trigeminal sensory neurons. In the trigeminal ganglia, 31%, 43% and 60% of neurons were immunoreactive for TREK-1, TREK-2 and TRAAK, respectively. Mean sizes of TREK-1, TREK-2 and TRAAK immunoreactive trigeminal ganglion neurons were 447 ± 185, 445 ± 23 and 492 ± 12 mm2, respectively. Fur...

  6. Intracardiac and intracerebral thrombosis associated with methylenetetrahydrofolate reductase A1298C homozygote mutation in paediatric steroidresistant nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Rahime Renda

    2016-12-01

    Full Text Available Thromboembolic complications are a significant cause of morbidity and mortality in cases of nephrotic syndrome. Hereditary thrombophilias are also known to increase vascular thrombosis. We present a case that has been followed up for steroid-resistant nephrotic syndrome (NS in which intracardiac and intracranial thrombosis subsequently developed. The patient was found to have a homozygote mutation in the methylenetetrahydrofolate reductase (MTHFR gene as an additional risk factor for recurrent thrombosis. MTHFR mutation with NS was considered to have an important effect on the development of life-threatening thrombosis.

  7. Atypical Presentation of Intracardiac Floating Thrombi in Hypereosinophilic Syndrome Complicated With Stroke and Systemic Embolization: A Case Report.

    Science.gov (United States)

    Lai, Chih-Hung; Chang, Szu-Ling; Lin, Wei-Wen; Hsiung, Ming-Chon; Juan, Yu-Hsiang; Wang, Tzu-Lin

    2015-10-01

    Hypereosinophilic syndrome (HES) describes a disorder characterized by persistent peripheral blood eosinophilia with evidence of multiple target organs damage caused by eosinophilia. HES most commonly involves the heart, and cardiac involvement typically presents in the form of endomyocarditis or myocarditis with apical mural thrombus formation.We present a case with atypical cardiac presentation with massive intracardiac fragile thrombi, causing peripheral emboli and strokes.HES can present as floating thrombi with thin attachment to the left ventricle, and clinicians should also be vigilant of thromboembolic complications and initiate early therapy to prevent or reduce the potential complications of HES.

  8. File list: Pol.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  9. File list: DNS.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical ...Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: ALL.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervic...al Ganglion SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: Pol.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: Oth.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cerv...ical Ganglion SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: Pol.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: Oth.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cerv...ical Ganglion SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: Unc.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervic...al Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  16. File list: DNS.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical ...Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  17. File list: His.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ga...nglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  18. File list: ALL.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervic...al Ganglion SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  19. File list: DNS.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical ...Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  20. File list: ALL.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervic...al Ganglion SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  1. File list: His.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ga...nglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  2. File list: ALL.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervic...al Ganglion SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  3. File list: Oth.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cerv...ical Ganglion SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  4. File list: Pol.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  5. File list: Oth.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cerv...ical Ganglion SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  6. File list: His.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ga...nglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  7. File list: DNS.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical ...Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  8. File list: Unc.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervic...al Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  9. File list: Unc.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervic...al Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: Unc.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervic...al Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  11. A Rare Cause of Compression Neuropathy of Upper Limbs – Ganglionic Cysts

    Directory of Open Access Journals (Sweden)

    Wai-Yin Mak

    2013-06-01

    Full Text Available We report a 51-year-old Chinese male with a ganglion in the Guyon canal causing ulnar nerve palsy and a 54-year-old Chinese male with a ganglion in the elbow causing posterior interosseous nerve (PIN palsy. Exploration and excision of the ganglions were performed. Both patients made a good recovery.

  12. Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Dorothy S. K. Ng

    2015-01-01

    Full Text Available Purpose. To assess the repeatability of spectral-domain optical coherence tomography to measure macular and perimacular ganglion cell complex thicknesses and compare retinal ganglion cell parameters between algorithms. Methods. Ninety-two nonglaucomatous eyes from 92 participants underwent macular and perimacular ganglion cell complex thickness measurement using OCT-HS100 Glaucoma 3D algorithm and these measurements were repeated for 34 subjects. All subjects also had macular ganglion cell-inner plexiform layer thickness measured by Cirrus HD-OCT Ganglion Cell Analysis algorithm. Intraclass correlation coefficient and Pearson’s correlation analyses were performed. Results. Subfields of both macular and perimacular ganglion cell complex thicknesses had high intraclass correlation coefficient values between 0.979 (95% confidence interval [CI]: 0.958–0.989 and 0.981 (95% CI: 0.963, 0.991 and between 0.70 (95% CI: 0.481–0.838 and 0.987 (95% CI: 0.956–0.989, respectively. The overall average ganglion cell complex and macular average ganglion cell-inner plexiform layer thicknesses were strongly correlated (r=0.83, P<0.001.  Conclusions. The assessment of macular and perimacular retinal ganglion cell parameters by OCT-HS100 Glaucoma 3D algorithm is highly repeatable, and strongly correlates to retinal ganglion cell parameters assessed by Ganglion Cell Analysis algorithm. A comprehensive evaluation of retinal ganglion cells may be possible with OCT-HS100.

  13. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    Directory of Open Access Journals (Sweden)

    Katharina Leitmeyer

    2015-01-01

    Full Text Available Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR by blocking the mTOR complex 1 (mTORC1. mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp. are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  14. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The a...

  15. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  16. A Comparative Analysis of Ganglion Cell Complex Parameters in ...

    African Journals Online (AJOL)

    Dr femi Oderinlo

    glaucoma. It is also valuable for evaluating the retinal anatomy in several macular diseases, including macular hole, age-related macular degeneration and macular oedema. OCT provides high resolution and reproducible images of the RNFL that discriminate glaucomatous from healthy subjects. Ganglion cell loss is best ...

  17. Bilateral ganglion cyst of the common peroneal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Pedrazzini, Massimo; Cusmano, Ferdinando; Armaroli, Sara; Pavone, Paolo [Institute of Radiology, University of Parma, Viale Gramsci 14, 43100 Parma (Italy); Pogliacomi, Francesco; Rinaldi, Elio [Institute of Clinical Orthopedics and Traumatology, University of Parma, Viale Gramsci 14, 43100 Parma (Italy)

    2002-11-01

    Ganglion cysts of the common peroneal nerve are rarely described in the literature and a bilateral lesion has not been previously reported. We present a case of a 41-year-old man with a bilateral cyst of the common peroneal nerve diagnosed with ultrasound and magnetic resonance imaging. (orig.)

  18. A Comparative Analysis of Ganglion Cell Complex Parameters in ...

    African Journals Online (AJOL)

    Aim: To evaluate the differences between ganglion cell complex (GCC) of primary open angle glaucoma and ocular disorders affecting the macula. Methods and Materials: Forty-seven patients diagnosed with primary open angle glaucoma and 27 patients with macular diseases of different aetiology were enrolled in this ...

  19. Detection of intracardiac thrombi and evaluation of antithrombotic therapy using /sup 111/In-oxine labelled autologous platelets

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Tokuo; Uchida, Tatsumi; Muroi, Shuichi; Matsuda, Shin; Kariyone, Shigeo (Fukushima Medical Coll. (Japan))

    1982-12-01

    Detection of intracardiac thrombi by scintiphotography using In-111-oxine labelled autologous platelets was done in patients with various heart diseases. Their results were compared with those of two dimensional echocardiography. 1) Left atrial thrombi in 3 patients with mitral valve disease and left ventricular thrombus in a patient with myocardial infarction could be detected by the both methods. In 2 out of above 3 patients with mitral valve disease, 30 and 21 g of left atrial thrombus were certified at surgery. In the patient with myocardial infarction, no radioactivity on the thrombus was shown in the second scintiphotogram during antiplatelet therapy. 2) In a case with mitral stenosis, the image of thrombus by scintiphotography was observed, while none of abnormal echo by two dimensional echocardiography was detected. In this case, only 0.3 g of left atrial thrombus was confirmed at surgery. 3) In an another case of mitral stenosis, the image of thrombus by scintiphotography was not observed, while abnormal echo by two dimensional echocardiography was detected. The thrombus in this case may be hamatologicaly nonactive thrombus. Scintiphotography with In-111-oxine labelled platelets is considered to be an excellent method for the detection of intracardiac thrombi and for the evaluation of antithrombotic therapy in vivo.

  20. Petrosal Ganglion: a more complex role than originally imagined.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-12-01

    Full Text Available The petrosal ganglion is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties petrosal ganglion neurons can be ascribed to one of two categories: i neurons with action potentials presenting an inflection (hump on its repolarizing phase and ii neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite cells that prevents the formation of chemical or electrical synapses between neurons. Thus, petrosal ganglion neurons are regarded as mere wires that communicate the periphery (i.e., carotid body and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of petrosal ganglion neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  1. Quantitative studies on myelinated and unmyelinated nerve fibres in the interatrial septal region of aged rat hearts.

    Science.gov (United States)

    Atkinson, C J; Santer, R M

    1999-09-24

    Intracardiac nerve fibres from the interatrial septum were studied quantitatively and qualitatively by electron microscopy of transversely sectioned nerve bundles in male Wistar rats of 4 and 24 months. No significant changes were found in the myelinated fibre diameters, myelinated axon diameters, myelin sheath thicknesses, g ratios, myelinated fibre areas, unmyelinated axon diameters and unmyelinated axon areas. However, there was evidence of structural changes to the nerve fibres and Schwann cells at 4 and 24 months, increasing in prevalence with age: some myelinated fibres showed infolds, disruptions and clefts of the myelin sheath and accumulation of electron dense myelin-like fragments in the axoplasm. Unmyelinated axons showed fewer changes in structure but also contained similar fragments in the axoplasm. The numbers of neurotubules and neurofilaments per microm2 in unmyelinated intracardiac axons was significantly greater than in those in samples of the cervical vagal trunk. This may be an adaptation to the continuous mechanical stress experienced by these intracardiac nerves. It is concluded that there is little structural evidence to suggest that the conductive properties of intracardiac nerve fibres are adversely affected in aged rats.

  2. An inhibition of post-ganglionic motor transmission in the mammalian vas deferens by D-lysergic acid diethylamide.

    Science.gov (United States)

    Ambache, N; Dunk, L P; Verney, J; Zar, M A

    1973-06-01

    1. Under certain conditions D-lysergic acid diethylamide (LSD), 10(-9)-10(-6) g/ml., exerted an immediate, prolonged and slowly reversible inhibitory effect upon the post-ganglionic motor transmission in desheathed guinea-pig vas deferens preparations.2. The most critical factor influencing this action of LSD appeared to be the train length. With short trains of less than 4 or 5 pulses the twitch inhibition produced by LSD was often total. With longer trains (5-20 pulses), the degree of inhibition declined with increase in train length. These results suggest the existence of two components in the motor response to post-ganglionic stimulation, distinguished by their susceptibility to LSD.3. The inhibition of the LSD-susceptible component was related to the dose of LSD in the range 10(-9)-10(-6) g/ml., reaching a maximum at 0.5-1 x 10(-6) g/ml. The response remnants elicited by trains of more than 5 pulses under these conditions could not be reduced further by a ten- to twenty-fold increase in LSD concentration to 10(-5) g/ml. and were in fact slightly potentiated.4. The inhibition of post-ganglionic motor transmission by LSD was not explicable on the basis of an alpha-adrenoceptor blockade because it was not associated with any reduction in motor responses to noradrenaline.5. The use of propranolol excluded mediation of the LSD-inhibition by beta-adrenoceptors.6. The LSD effect was not due to a non-specific smooth muscle depression because it was not associated with any reduction in motor responses to acetylcholine, ATP or bradykinin.7. The inhibitory effect of LSD on post-ganglionic transmission resembled that of noradrenaline in that it was antagonized by phentolamine; another alpha-adrenoceptor blocking agent, phenoxybenzamine, was less effective than phentolamine in this respect.8. The LSD-inhibition was obtained in preparations taken from reserpinized guinea-pigs.9. The inhibition of motor transmission in the vas deferens by LSD was confirmed in rats, Meriones

  3. An inhibition of post-ganglionic motor transmission in the mammalian vas deferens by D-lysergic acid diethylamide

    Science.gov (United States)

    Ambache, N.; Dunk, Linda P.; Verney, J.; Zar, M. Aboo

    1973-01-01

    1. Under certain conditions D-lysergic acid diethylamide (LSD), 10-9-10-6 g/ml., exerted an immediate, prolonged and slowly reversible inhibitory effect upon the post-ganglionic motor transmission in desheathed guinea-pig vas deferens preparations. 2. The most critical factor influencing this action of LSD appeared to be the train length. With short trains of less than 4 or 5 pulses the twitch inhibition produced by LSD was often total. With longer trains (5-20 pulses), the degree of inhibition declined with increase in train length. These results suggest the existence of two components in the motor response to post-ganglionic stimulation, distinguished by their susceptibility to LSD. 3. The inhibition of the LSD-susceptible component was related to the dose of LSD in the range 10-9-10-6 g/ml., reaching a maximum at 0·5-1 × 10-6 g/ml. The response remnants elicited by trains of more than 5 pulses under these conditions could not be reduced further by a ten- to twenty-fold increase in LSD concentration to 10-5 g/ml. and were in fact slightly potentiated. 4. The inhibition of post-ganglionic motor transmission by LSD was not explicable on the basis of an α-adrenoceptor blockade because it was not associated with any reduction in motor responses to noradrenaline. 5. The use of propranolol excluded mediation of the LSD-inhibition by β-adrenoceptors. 6. The LSD effect was not due to a non-specific smooth muscle depression because it was not associated with any reduction in motor responses to acetylcholine, ATP or bradykinin. 7. The inhibitory effect of LSD on post-ganglionic transmission resembled that of noradrenaline in that it was antagonized by phentolamine; another α-adrenoceptor blocking agent, phenoxybenzamine, was less effective than phentolamine in this respect. 8. The LSD-inhibition was obtained in preparations taken from reserpinized guinea-pigs. 9. The inhibition of motor transmission in the vas deferens by LSD was confirmed in rats, Meriones shawii and

  4. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  5. Meta-analysis of validity of echogenic intracardiac foci for calculating the risk of Down syndrome in the second trimester of pregnancy

    Directory of Open Access Journals (Sweden)

    Ana María Rubio Lorente

    2017-02-01

    Full Text Available Echogenic intracardiac foci are a second trimester marker associated with aneuploidy in high-risk populations. The objective of this study is to assess the validity of echogenic intracardiac foci for Down syndrome detection in the second trimester ultrasound scan. A systematic search in major bibliographic databases was carried out (MEDLINE, EMBASE, CINAHL. Twenty-five studies about echogenic intracardiac foci were selected for statistical synthesis in this systematic review. Those 25 considered to be relevant were then subjected to critical reading, following the Critical Appraisal Skills Programme criteria, by at least three independent observers. Then, the published articles were subjected to a meta-analysis. A global sensitivity of 21.8% and a 4.1% false positive rate were obtained. The positive likelihood ratio was 5.08 (95% confidence interval, 4.04–6.41. The subgroups analysis did not reveal statistically significant differences. In conclusion, echogenic intracardiac foci as an isolated marker could be a tool to identify—rather than exclude—the high-risk group of Down syndrome, although it should be noted that it shows low sensitivity.

  6. The effects of ropivacaine hydrochloride on the expression of CaMK II mRNA in the dorsal root ganglion neurons.

    Science.gov (United States)

    Wen, Xianjie; Lai, Xiaohong; Li, Xiaohong; Zhang, Tao; Liang, Hua

    2016-12-01

    In this study, we identified the subtype of Calcium/calmodulin-dependent protein kinase II (CaMK II) mRNA in dorsal root ganglion neurons and observed the effects of ropivacaine hydrochloride in different concentration and different exposure time on the mRNA expression. Dorsal root ganglion neurons were isolated from the SD rats and cultured in vitro. The mRNA of the CaMK II subtype in dorsal root ganglion neurons were detected by real-time PCR. As well as, the dorsal root ganglion neurons were treated with ropivacaine hydrochloride in different concentration (1mM,2mM, 3mM and 4mM) for the same exposure time of 4h, or different exposure time (0h,2h,3h,4h and 6h) at the same concentration(3mM). The changes of the mRNA expression of the CaMK II subtype were observed with real-time PCR. All subtype mRNA of the CaMK II, CaMK IIα, CaMK IIβ, CaMK II δ, CaMK IIγ, can be detected in dorsal root ganglion neurons. With the increased of the concentration and exposure time of the ropivacaine hydrochloride, all the subtype mRNA expression increased. Ropivacaine hydrochloride up-regulate the CaMK IIβ, CaMK IIδ, CaMK IIg mRNA expression with the concentration and exposure time increasing. The nerve blocking or the neurotoxicity of the ropivacaine hydrochloride maybe involved with CaMK II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease

    Directory of Open Access Journals (Sweden)

    Clarissa R. Nascimento

    2017-08-01

    Full Text Available During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2. Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR/endothelin B receptor (ETBR] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein–kinin system (KKS. Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs and the KKS by topically exposing the hamster cheek pouch (HCP tissues to dextran sulfate (DXS, a potent “contact” activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK. Guided by this mechanistic insight, we next exposed TCTs to “leaky” HCP—forged by low dose histamine application—and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream and FXII-mediated generation of BK (downstream. We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i. in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT

  8. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    Science.gov (United States)

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. Copyright © 2014 the American Physiological Society.

  9. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  10. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    Science.gov (United States)

    Li, Qian

    between the recording electrode distance and the measured AE signal amplitude in gel phantoms and excised porcine heart tissue using a clinical intracardiac catheter. Sensitivity of UCSDI with catheter was 4.7 microV/mA (R2 = 0.999) in cylindrical gel (0.9% NaCl), and 3.2 microV/mA (R2 = 0.92) in porcine heart tissue. The AE signal was detectable more than 25 mm away from the source in cylindrical gel (0.9% NaCl). Effect of transducer properties on UCSDI sensitivity is also investigated using simulation. The optimal ultrasound transducer parameters chosen for cardiac imaging are center frequency = 0.5 MHz and f/number = 1.4. Last but not least, this dissertation shows the result of implementing the optimized ultrasound parameters in live rabbit heart preparation, the comparison of different recording electrode configuration and multichannel UCSDI recording and reconstruction. The AE signal detected using the 0.5 MHz transducer was much stronger (2.99 microV/MPa) than the 1.0 MHz transducer (0.42 microV/MPa). The clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without being too invasive. 3-dimensional cardiac activation maps of the live rabbit heart using only one pair of recording electrodes were also demonstrated for the first time. Cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing were calculated based on the activation maps. The future outlook of this dissertation includes integrating UCSDI with 2-dimensional ultrasound transducer array for fast imaging, and developing a multi-modality catheter with 4-dimensional UCSDI, multi-electrode recording and echocardiography capacity.

  11. Effects of lysergic acid diethylamide on autonomic post-ganglionic transmission.

    Science.gov (United States)

    Ambache, N; Killick, S W; Srinivasan, V; Zar, M A

    1975-04-01

    1. Six sites of autonomic post-ganglionic transmission were examined for susceptibility to LSD. Inhibition of transmission by LSD was confined to the three sympathetic junctions. 2. Inhibition of sympathetic transmission was maximal with short trains of pulses and declined considerably as train length was increased. 3. Evidence for a presynaptic mode of action was obtained. This was the predominant effect of LSD in the rat anococcygeus and dog retractor penis because alpha-adrenoceptor-blocking properties were feeble or absent; but in dog splenic strips LSD produced marked post-synaptic alpha-blockade. 4. The presynaptic inhibitory effect of LSD was unrelated to its 5-hydroxytryptamine-blocking property because it was not shared by methysergide. Neither was it mediated by prostaglandin release because it was unaltered by indomethacin, which suppresses prostaglandin synthesis. 5. In the rat anococcygeus and dog retractor penis larger doses of LSD induced slow contractions and, as a result of the concurrent block of motor transmission, revealed relaxation responses on transmural stimulation, caused by the excitation of sacral inhibitory fibres present in these muscles. 6. The LSD contractions were due to stimulation of post-synaptic alpha-adrenoceptors because they were abolished by phentolamine or yohimbine but were present as usual in preparations taken from reserpinized animals. 7. LSD blocked presynaptic alpha-adrenoceptors in the cholinergic motor fibres to the longitudinal muscle of the guinea-pig ileum.

  12. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  13. Feedback stimulation strategy: control of retinal ganglion cells activation.

    Science.gov (United States)

    Kameneva, Tatiana; Grayden, David B; Meffin, Hamish; Burkitt, Anthony N

    2014-01-01

    It is possible to cause a sensation of light in patients who have lost photoreceptors due to degenerative eye diseases by targeting surviving neurons with electrical stimulation by means of visual prosthetic devices. All stimulation strategies in currently used visual prostheses are open-loop, that is, the stimulation parameters do not depend on the level of activation of neurons surrounding stimulating electrodes. In this paper, we investigate a closed-loop stimulation strategy using computer simulations of previously constrained models of ON and OFF retinal ganglion cells. Using a proportional-integral-type controller we show that it is possible to control activation level of both types of retinal ganglion cells. We also demonstrate that the controller tuned for a particular combination of synaptic currents continues to work during retina degeneration when excitatory currents are reduced by 20%.

  14. Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

    Directory of Open Access Journals (Sweden)

    Kenneth S. Shindler

    2009-11-01

    Full Text Available A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

  15. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  16. Ganglionic cysts related to the scapula: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ae Kyeong; Kim, Sung Moon; Kim, Kyung Sook; Shin, Myung Jin; Chun, Jae Myeung [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of); Ahn, Joong Mo [Sungkyunkwan Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-07-01

    To evaluate the magnetic resonance (MR) imaging characteristics of ganglionic cysts related to the scapula. We retrospectively reviewed 15 ganglionic cysts diagnosed by MR imaging in 14 patients who subsequently underwent surgical excision (n=8) or needle aspiration (n=1). Five other patients whose lesion-related symptoms were not too severe to manage underwent conservative treatment. We analyzed MR findings with regard to the size, shape and presence of internal septa, the location and signal intensity of the lesion, and associated findings such as change of rotator cuff muscle, labral tear and bone erosion. We also evaluated the presence of tear of rotator cuff tendon, tendinosis, and subacromial enthesophyte. The diameter of ganglionic cysts was 0.5-5.5 (mean, 2.8)cm, and they were round (n=2), ovoid (n=6), or elongated (n=7). Where internal septa were present (n=13), cysts were lobulated. Lesions were located in both scapular and spinoglenoid notches (n=9), only in the scapular notch (n=2), only in the spinoglenoid notch (n=2) or within the bone (n=2). In eleven cases they were very close to the superoposterior aspect of the glenoid labrum (n=11). On T1-weighted images, all lesions were seen to be iso- or hypointense to muscle, while on T2-weighted images, they were hyperintense, resembling joint fluid (n=14), except in one patient with hemorrhage. Associated findings were edema of the infraspinatus muscle (n=4), pressure erosion of the scapular neck (n=1), and labral tear (n=1). A torn supraspinatus tendon (n=2), supraspinatus tendinosis (n=3), and subacromial enthesophyte (n=2) were also present. MR imaging was helpful in diagnosing ganglionic cysts and detecting associated lesions.

  17. Uterine intravenous leiomyomatosis with intracardiac extension and pulmonary benign metastases on FDG PET/CT: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui Chun; Wang, Yu Bin; Chen, Xiao Hong; Cu, Lan Lan [PET/CT Center, Gansu Provincial Hospital, Lanzhou (China)

    2016-04-15

    A 48-year-old woman presented with a 50-day history of irregular vaginal bleeding and lower abdominal pain. Ultrasound indicated an extremely large occupying lesion in the pelvic cavity that was highly suggestive of malignancy. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) was performed to further assess the nature of pelvic abnormality. PET/CT images demonstrated a diffusely lobulated mass ranging from cervix up to the inferior pole of kidneys with mild FDG uptake. Simultaneously, multiple nodules in bilateral lungs and a hypodense lesion in the right ventricle were shown without FDG-avidity. Based on the imaging results, the presumptive diagnosis was uterine intravenous leiomyomatosis with intracardiac extension and pulmonary benign metastases, which was subsequently confirmed by MRI and the lesion biopsy.

  18. Extensive Intracardiac and Deep Venous Thromboses in a Young Woman with Heparin-Induced Thrombocytopenia and May-Thurner Syndrome

    Directory of Open Access Journals (Sweden)

    Yekaterina Kim

    2017-01-01

    Full Text Available A 38-year-old woman with a history of recurrent deep venous thromboses (DVTs on chronic anticoagulation presented with acute left leg swelling. The patient was diagnosed with an acute left lower extremity (LLE DVT in the setting of May-Thurner syndrome for which treatment with unfractionated heparin was started. Her hospital course was complicated by a new diagnosis of heparin-induced thrombocytopenia (HIT, with an incidental discovery of a large tricuspid valve mobile mass on a transthoracic echocardiogram (TTE. Subsequent imaging confirmed multiple right atrial thrombi along with LLE venous stent thrombosis and a new right LE acute DVT. Anticoagulation with argatroban for HIT thrombosis was started. She underwent a right atrial percutaneous thrombectomy and bilateral lower extremity thrombectomy with directed angioplasty and stent placement. This presentation is a rare manifestation of HIT with extensive intracardiac and deep venous thrombi, with successful staged interventions.

  19. Forward-looking intracardiac ultrasound imaging using a 1-D CMUT array integrated with custom front-end electronics.

    Science.gov (United States)

    Nikoozadeh, Amin; Wygant, Ira O; Lin, Der-Song; Oralkan, Omer; Ergun, A Sanli; Stephens, Douglas N; Thomenius, Kai E; Dentinger, Aaron M; Wildes, Douglas; Akopyan, Gina; Shivkumar, Kalyanam; Mahajan, Aman; Sahn, David J; Khuri-Yakub, Butrus T

    2008-12-01

    Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forward-looking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm x 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/ receive circuitry, measuring 2.1 mm x 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system.

  20. Stereoscopic vision display technology in real-time three-dimensional echocardiography-guided intracardiac beating-heart surgery.

    Science.gov (United States)

    Vasilyev, Nikolay V; Novotny, Paul M; Martinez, Joseph F; Loyola, Hugo; Salgo, Ivan S; Howe, Robert D; del Nido, Pedro J

    2008-06-01

    Stereoscopic vision display technology has been shown to be a useful tool in image-guided surgical interventions. However, the concept has not been applied to 3-dimensional echocardiography-guided cardiac procedures. We evaluated stereoscopic vision display as an aid for intracardiac navigation during 3-dimensional echocardiography-guided beating-heart surgery in a model of atrial septal defect closure. An atrial septal defect (6 mm) was created in 6 pigs using 3-dimensional echocardiography guidance. The defect was then closed using a catheter-based patch delivery system, and the patch was attached with tissue mini-anchors. Stereoscopic vision was generated with a high-performance volume renderer with stereoscopic glasses. Three-dimensional echocardiography with stereoscopic vision display was compared with 3-dimensional echocardiography with standard display for guidance of surgical repair. Task performance measures for each anchor placement (N = 32 per group) were completion time, trajectory of the tip of the anchor deployment device, and accuracy of the anchor placement. The mean time of the anchor deployment for stereoscopic vision display group was shorter by 44% compared with the standard display group: 9.7 +/- 0.9 seconds versus 17.2 +/- 0.9 seconds (P display group versus 2.3 +/- 0.3 mm for the standard display group. Stereoscopic vision display combined with 3-dimensional echocardiography improved the visualization of 3-dimensional echocardiography ultrasound images, decreased the time required for surgical task completion, and increased the precision of instrument navigation, potentially improving the safety of beating-heart intracardiac surgical interventions.

  1. Forward-Looking Intracardiac Ultrasound Imaging Using a 1-D CMUT Array Integrated With Custom Front-End Electronics

    Science.gov (United States)

    Nikoozadeh, Amin; Wygant, Ira O.; Lin, Der-Song; Oralkan, Ömer; Ergun, A. Sanlı; Stephens, Douglas N.; Thomenius, Kai E.; Dentinger, Aaron M.; Wildes, Douglas; Akopyan, Gina; Shivkumar, Kalyanam; Mahajan, Aman; Sahn, David J.; Khuri-Yakub, Butrus T.

    2009-01-01

    Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forward-looking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm × 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/receive circuitry, measuring 2.1 mm × 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system. PMID:19126489

  2. An ethnic predilection for fetal echogenic intracardiac focus identified during targeted midtrimester ultrasound examination: A retrospective review

    Directory of Open Access Journals (Sweden)

    Monda Susan

    2004-06-01

    Full Text Available Abstract Background Echogenic intracardiac focus (EIF has been identified as a common ultrasound finding in association with fetal aneuploidy. Little is known about the association of this soft marker aneuploidy in various ethnic groups. Although it is commonly thought Asians in general have a higher incidence of EIF, it is unknown whether this also applies to Japanese as a subpopulation. The purpose of this study is to determine the antenatal incidence and postnatal significance of EIF observed during sonography in Japanese patients. Methods A cohort of Japanese patients who underwent ultrasound screening from 1997 to 1999 in the ultrasound unit at the New York University School of Medicine was identified. Variables included age, gestational age, serum markers, and the presence or absence of aneuploidy. Patients with first degree paternal or maternal Japanese ancestry were included for analysis. Examinations were performed between 14 and 24 weeks gestation. The prevalence of EIF was calculated. The control group was based on previously published data in the U.S (7.3% prevalence. Results A total of 154 subjects were identified, 148 were available for final analysis. Twenty-two fetuses had an EIF, 19 (86.4% left-sided, 3 (13.6% right-sided. Seventeen patients had other sonographic markers associated with aneuploidy. The mean maternal age at diagnosis was 30.7 ± 3.9 years and the mean gestational age was 19.8 ± 1.6 weeks. The prevalence of EIF was 14.8%. Compared to published population prevalence, there was a statistically significant difference (p Conclusion Asians of Japanese origin may have a higher prevalence of echogenic intracardiac foci, thus affecting the positive predictive value of this sonographic marker for aneuploidy.

  3. KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia.

    Science.gov (United States)

    Abd-Elsayed, Alaa A; Ikeda, Ryo; Jia, Zhanfeng; Ling, Jennifer; Zuo, Xiaozhuo; Li, Min; Gu, Jianguo G

    2015-07-31

    Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K(+) channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nociceptive cold-sensing trigeminal afferent fibers and if so, whether they are therapeutic targets for orofacial cold hyperalgesia, an intractable trigeminal neuropathic pain. Patch-clamp recording technique was used to study M-currents and neuronal excitability of cold-sensing trigeminal ganglion neurons. Orofacial operant behavioral assessment was performed in animals with trigeminal neuropathic pain induced by oxaliplatin or by infraorbital nerve chronic constrictive injury. We showed that KCNQ channels were expressed on and mediated M-currents in rat nociceptive cold-sensing trigeminal ganglion (TG) neurons. The channels were involved in setting both resting membrane potentials and rheobase for firing action potentials in these cold-sensing TG neurons. Inhibition of KCNQ channels by linopirdine significantly decreased resting membrane potentials and the rheobase of these TG neurons. Linopirdine directly induced orofacial cold hyperalgesia when the KCNQ inhibitor was subcutaneously injected into rat orofacial regions. On the other hand, retigabine, a KCNQ channel potentiator, suppressed the excitability of nociceptive cold-sensing TG neurons. We further determined whether KCNQ channel could be a therapeutic target for orofacial cold hyperalgesia. Orofacial cold hyperalgesia was induced in rats either by the administration of oxaliplatin or by infraorbital nerve chronic constrictive injury. Using the orofacial operant test, we showed that retigabine dose-dependently alleviated orofacial cold hyperalgesia in both animal models. Taken together, these findings indicate that KCNQ channel plays a

  4. Striatal grafts in a rat model of Huntington's disease

    DEFF Research Database (Denmark)

    Guzman, R; Meyer, M; Lövblad, K O

    1999-01-01

    Survival and integration into the host brain of grafted tissue are crucial factors in neurotransplantation approaches. The present study explored the feasibility of using a clinical MR scanner to study striatal graft development in a rat model of Huntington's disease. Rat fetal lateral ganglionic...... eminences grown as free-floating roller-tube cultures can be successfully grafted in a rat Huntington model and that a clinical MR scanner offers a useful noninvasive tool for studying striatal graft development....

  5. Ganglion cyst of the foot treated with electroacupuncture: A case report.

    Science.gov (United States)

    Woitzik, Erin; Kissel, Jaclyn

    2013-12-01

    To present the clinical management of a ganglion cyst presenting on the dorsolateral aspect of the foot. A 45-year-old female cyclist complaining of ganglion cyst following training period. Patient was treated with high-frequency electroacupuncture in four consecutive sessions over four weeks, and reported resolution of the cyst following therapeutic intervention. Ganglion cysts of the foot are relatively rare connective tissue tumours with variable treatment approaches. Electroacupuncture may be a novel and non-invasive conservative approach for the treatment of ganglion cysts. Further evaluation of the efficacy of such treatment is warranted.

  6. Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells.

    Science.gov (United States)

    Yamamoto, Yoshio; Hatakeyama, Taku; Taniguchi, Kazuyuki

    2009-04-24

    TREK belongs to a subfamily of tandem pore domain K+ channels, and consists of three subunits, TREK-1, TREK-2 and TRAAK. We examined the distribution of TREK-1, TREK-2 and TRAAK immunoreactive neurons in rat trigeminal sensory neurons. In the trigeminal ganglia, 31%, 43% and 60% of neurons were immunoreactive for TREK-1, TREK-2 and TRAAK, respectively. Mean sizes of TREK-1, TREK-2 and TRAAK immunoreactive trigeminal ganglion neurons were 447+/-185, 445+/-23 and 492+/-12 mm2, respectively. Furthermore, TREK channels were colocalized with cationic TRP channels, TRPV1, TRPV2 and TRPM8. TREK-1 immunoreactive neurons were colocalized with TRPV1 (57%), TRPV2 (11%) and TRPM8 (33%). TREK-2-immunoreactive neurons were colocalized with TRPV1 (33%), TRPV2 (9%) and TRPM8 (19%). TRAAK immunoreactive neurons were colocalized with TRPV1 (47%), TRPV2 (10%) and TRPM8 (22%). The present results revealed that TREK-1, TREK-2 and TRAAK channels colocalized with thermosensitive TRP channels in some small trigeminal ganglion neurons.

  7. Astaxanthin Attenuates the Apoptosis of Retinal Ganglion Cells in db/db Mice by Inhibition of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiao-Li Kang

    2013-03-01

    Full Text Available Diabetic retinopathy is a common diabetic eye disease caused by changes in retinal ganglion cells (RGCs. It is an ocular manifestation of systemic disease, which affects up to 80% of all patients who have had diabetes for 10 years or more. The genetically diabetic db/db mouse, as a model of type-2 diabetes, shows diabetic retinopathy induced by apoptosis of RGCs. Astaxanthin is a carotenoid with powerful antioxidant properties that exists naturally in various plants, algae and seafood. Here, astaxanthin was shown to reduce the apoptosis of RGCs and improve the levels of oxidative stress markers, including superoxide anion, malondialdehyde (MDA, a marker of lipid peroxidation, 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage and MnSOD (manganese superoxide dismutase activity in the retinal tissue of db/db mouse. In addition, astaxanthin attenuated hydrogen peroxide(H2O2-induced apoptosis in the transformed rat retinal ganglion cell line RGC-5. Therefore, astaxanthin may be developed as an antioxidant drug to treat diabetic retinopathy.

  8. Phantom Extremity Pain Responding to Stellate Ganglion Blockage: Case Report

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2013-04-01

    Full Text Available Phantom extremity pain is that which continues to be felt in a non-existent extremity after amputation. The pathophysiological mechanism and etiology of phantom extremity pain are not exactly known, Phantom extremity pain affects the patients in physical and psycho-social aspects. This paper presents a patient with phantom extremity pain that had not responded to medical treatment. A stellate ganglion blockage was performed using lidocaine, bupivacaine and fentanyl and the patient%u2019s pain was observed to be reduced.

  9. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis

    DEFF Research Database (Denmark)

    Britze, Josefine; Pihl-Jensen, Gorm; Frederiksen, Jette Lautrup

    2017-01-01

    The aim of this study was to summarise existing findings regarding optical coherence tomography (OCT) measurements of ganglion cell layer (GCL) alterations in optic neuritis (ON) and multiple sclerosis (MS). Peer-reviewed studies published prior to April 2016 were searched using PubMed, EMBASE, Web...... in MS patients both with and without previous ON compared to healthy controls. GCL thinning was associated with visual function in most studies (n = 10) and expanded disability status scale (EDSS) scores (n = 6). In acute ON, thinning of the GCL is measurable prior to RNFL thinning, and GCL thickness...

  10. Cortico-basal ganglionic degeneration a case report

    Directory of Open Access Journals (Sweden)

    J. Teotônio de Oliveira

    1992-06-01

    Full Text Available The case of a Brazilian patient with cortico-basal ganglionic degeneration (CBGD is presented. Since three years ago, a 71-year old male displays asymmetric ideomotor apraxia, gait apraxia, cortical sensory impairment, myoclonus, limp dystonia and rigidity. His mental status is spared. There is neither consanguinity nor similar cases in his family. The differential diagnosis of CBGD is discussed. A brief review of the literature is made stressing the clinical and pathological features of CBGD. This disease is poorly known and probably underdiagnosed. Its diagnosis can be safely made based on clinical grounds.

  11. Ultrasound-guided intracardiac xenotransfusion of canine packed red blood cells and epinephrine to the left ventricle of a severely anemic cat during cardiopulmonary resuscitation.

    Science.gov (United States)

    Oron, Liron; Bruchim, Yaron; Klainbart, Sigal; Kelmer, Efrat

    2017-03-01

    To describe the use of an ultrasound-guided intracardiac xenotransfusion of canine packed red blood cells (pRBC) to the left ventricle of a severely anemic cat during cardiopulmonary resuscitation (CPR). An 8-year-old previously healthy neutered female cat was presented with severe weakness after she had disappeared for 1 month. On presentation, the cat was in hypovolemic shock, laterally recumbent, and severely anemic with massive flea infestation. Within minutes of admission, the cat became agonal and suffered cardiopulmonary arrest. CPR was immediately initiated; however, attempts to gain IV access during CPR were unsuccessful. As the cat's blood type was yet unknown, 10 mL of canine pRBC was transfused directly into the left ventricular chamber using ultrasound guidance, as well as 0.02 mg/kg of epinephrine using a similar technique. The cat regained cardiac activity and once the jugular vein was cannulated it received 20 additional mL of canine pRBC intravenously. The packed cell volume and total plasma protein following the intracardiac transfusion were 0.09 L/L [9%] and 30 g/L [3.0 g/dL], respectively. Subsequent blood typing revealed the cat had type B blood. The cat was discharged 3 days post-CPR and was alive and doing well 3 months following discharge. This is the first reported case of ultrasound-guided intracardiac canine-to-feline xenotransfusion during CPR. © Veterinary Emergency and Critical Care Society 2017.

  12. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  13. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion -- interaction with the sensory system

    DEFF Research Database (Denmark)

    Csati, Anett; Tajti, Janos; Tuka, Bernadett

    2012-01-01

    , but not in neurons. RAMP1 immunoreactivity was localized in many neurons and SGCs. Thus, the two CGRP receptor components together were found in the SGCs. In addition, Western blot revealed the presence of RAMP1 and CLR in rat SPG. Our results suggest a possible sensory influence in the parasympathetic cranial......Clinical studies have suggested a link between the sensory trigeminal system and the parasympathetic ganglia. Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide which plays an important role in vasodilatation and pain transmission in craniocervical structures. The present study...... was designed to examine if CGRP and CGRP receptor components are present in the human sphenopalatine ganglion (SPG) in order to reveal an interaction between the sensory and parasympathetic systems. Indirect immunofluorescence technique was used for immunohistochemical demonstration of CGRP, the calcitonin...

  14. Estradiol upregulates voltage-gated sodium channel 1.7 in trigeminal ganglion contributing to hyperalgesia of inflamed TMJ

    Science.gov (United States)

    Bi, Rui-Yun; Meng, Zhen; Zhang, Peng; Wang, Xue-Dong

    2017-01-01

    Background Temporomandibular disorders (TMDs) have the highest prevalence in women of reproductive age. The role of estrogen in TMDs and especially in TMDs related pain is not fully elucidated. Voltage-gated sodium channel 1.7 (Nav1.7) plays a prominent role in pain perception and Nav1.7 in trigeminal ganglion (TG) is involved in the hyperalgesia of inflamed Temporomandibular joint (TMJ). Whether estrogen could upregulate trigeminal ganglionic Nav1.7 expression to enhance hyperalgesia of inflamed TMJ remains to be explored. Methods Estrous cycle and plasma levels of 17β-estradiol in female rats were evaluated with vaginal smear and enzyme linked immunosorbent assay, respectively. Female rats were ovariectomized and treated with 17β-estradiol at 0 μg, 20 μg and 80 μg, respectively, for 10 days. TMJ inflammation was induced using complete Freund’s adjuvant. Head withdrawal thresholds and food intake were measured to evaluate the TMJ nociceptive responses. The expression of Nav1.7 in TG was examined using real-time PCR and western blot. The activity of Nav1.7 promoter was examined using luciferase reporter assay. The locations of estrogen receptors (ERα and ERβ), the G protein coupled estrogen receptor (GPR30), and Nav1.7 in TG were examined using immunohistofluorescence. Results Upregulation of Nav1.7 in TG and decrease in head withdrawal threshold were observed with the highest plasma 17β-estradiol in the proestrus of female rats. Ovariectomized rats treated with 80 μg 17β-estradiol showed upregulation of Nav1.7 in TG and decrease in head withdrawal threshold as compared with that of the control or ovariectomized rats treated with 0 μg or 20 μg. Moreover, 17β-estradiol dose-dependently potentiated TMJ inflammation-induced upregulation of Nav1.7 in TG and also enhanced TMJ inflammation-induced decrease of head withdrawal threshold in ovariectomized rats. In addition, the estrogen receptor antagonist, ICI 182,780, partially blocked the 17

  15. Target recognition and synapse formation by ciliary-ganglion neurons in tissue culture

    NARCIS (Netherlands)

    Stevens, W.F.; Slaaf, D.W.; Hooisma, J.; Magchielse, T.; Meeter, E.

    1978-01-01

    A less complicated source of neurons suitable for this type of studies is the parasympathetic ciliary ganglion. In the pigeon and in the chick this ganglion is known to contain only two classes of neurons, both of which are cholinoceptive and cholinergic and that innervate the muscle fibres of the

  16. Cercal sensory regulation of ganglionic protein metabolism in the field cricket, Gryllotalpa africana.

    Science.gov (United States)

    Sekhar, V; Dayanand, Y; Madhusudhuna, L; Srinivasulu, Y; Reddy, G R

    1991-07-01

    The effect of cercal deafferentation (cercectomy) on the ganglionic protein metabolism of the cricket, Gryllotalpa africana was studied. Significant changes in the activities of the enzymes acetylcholinesterase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase were observed in the terminal ganglion following unilateral and bilateral cercectomy.

  17. Neuronal Survival, Morphology and Outgrowth of Spiral Ganglion Neurons Using a Defined Growth Factor Combination.

    Directory of Open Access Journals (Sweden)

    Jana Schwieger

    Full Text Available The functionality of cochlear implants (CI depends, among others, on the number and excitability of surviving spiral ganglion neurons (SGN. The spatial separation between the SGN, located in the bony axis of the inner ear, and the CI, which is inserted in the scala tympani, results in suboptimal performance of CI patients and may be decreased by attracting the SGN neurites towards the electrode contacts. Neurotrophic factors (NTFs can support neuronal survival and neurite outgrowth.Since brain-derived neurotrophic factor (BDNF is well known for its neuroprotective effect and ciliary neurotrophic factor (CNTF increases neurite outgrowth, we evaluated if the combination of BDNF and CNTF leads to an enhanced neuronal survival with extended neurite outgrowth. Both NTFs were added in effective high concentrations (BDNF 50 ng/ml, CNTF 100 ng/ml, alone and in combination, to cultured dissociated SGN of neonatal rats for 48 hours.The neuronal survival and neurite outgrowth were significantly higher in SGN treated with the combination of the two NTFs compared to treatment with each factor alone. Additionally, with respect to the morphology, the combination of BDNF and CNTF leads to a significantly higher number of bipolar neurons and a decreased number of neurons without neurites in culture.The combination of BDNF and CNTF shows a great potential to increase the neuronal survival and the number of bipolar neurons in vitro and to regenerate retracted nerve fibers.

  18. Stanniocalcin-1 protects retinal ganglion cells by inhibiting apoptosis and oxidative damage.

    Directory of Open Access Journals (Sweden)

    Sang Jin Kim

    Full Text Available Optic neuropathy including glaucoma is one of the leading causes of irreversible vision loss, and there are currently no effective therapies. The hallmark of pathophysiology of optic neuropathy is oxidative stress and apoptotic death of retinal ganglion cells (RGCs, a population of neurons in the central nervous system with their soma in the inner retina and axons in the optic nerve. We here tested that an anti-apoptotic protein stanniocalcin-1 (STC-1 can prevent loss of RGCs in the rat retina with optic nerve transection (ONT and in cultures of RGC-5 cells with CoCl2 injury. We found that intravitreal injection of STC-1 increased the number of RGCs in the retina at days 7 and 14 after ONT, and decreased apoptosis and oxidative damage. In cultures, treatment with STC-1 dose-dependently increased cell viability, and decreased apoptosis and levels of reactive oxygen species in RGC-5 cells that were exposed to CoCl2. The expression of HIF-1α that was up-regulated by injury was significantly suppressed in the retina and in RGC-5 cells by STC-1 treatment. The results suggested that intravitreal injection of STC-1 might be a useful therapy for optic nerve diseases in which RGCs undergo apoptosis through oxidative stress.

  19. Orexin affects dorsal root ganglion neurons: a mechanism for regulating the spinal nociceptive processing.

    Science.gov (United States)

    Yan, J-A; Ge, L; Huang, W; Song, B; Chen, X-W; Yu, Z-P

    2008-01-01

    Orexins (orexin A and B) are initially known to be a hypothalamic peptide critical for feeding and normal wakefulness. In addition, emerging evidence from behavioral tests suggests that orexins are also involved in the regulation of nociceptive processing, suggesting a novel potential therapeutic approach for pain treatment. Both spinal and supraspinal mechanisms appear to contribute to the role of orexin in nociception. In the spinal cord, dorsal root ganglion (DRG) neurons are primary afferent neurons that transmit peripheral stimuli to the pain-processing areas. Morphological results show that both orexin A and orexin-1 receptor are distributed in DRG neurons. Moreover, by using whole-cell patch-clamp recordings and calcium imaging measurements we found that orexin A induced excitability and intracellular calcium concentration elevation in the isolated rat DRG neurons, which was mainly dependent on the activation of spinal orexin-1 receptor. Based on these findings, we propose a hypothesis that the direct effect of orexin A on DRG neurons would represent a possible mechanism for the orexinergic modulation of spinal nociceptive transmission.

  20. Lumbosacral intraspinal extradural ganglion cyst in a cat

    Directory of Open Access Journals (Sweden)

    Francesca de Strobel

    2015-09-01

    Full Text Available Case summary A 16-year-old neutered female domestic shorthair cat was referred for chronic history of reluctance to jump, stiffness of the tail and lower back pain. Mild pelvic limb ataxia, reduced perianal reflex and lumbosacral discomfort were present on neurological examination. On magnetic resonance imaging, a well-defined rounded structure of 3 mm in diameter was identified on the right dorsal aspect of the epidural space at L7–S1, causing displacement of the cauda equina. The lesion was hyperintense to spinal cord parenchyma on T2-weighted images and hypointense on T1-weighted images, consistent with a fluid-filled structure. A Lumbosacral dorsal laminectomy was performed. A clear fluid-containing structure was identified between the right L7 nerve root and the cauda equina. Following surgical excision, histopathology confirmed the cystic nature of the lesion and revealed thick disorganised sheaths of fibrocollagenous tissue and flattened mesenchymal cells lining the luminal part of the cyst wall. A diagnosis of intraspinal ganglion cyst was made. The cat recovered uneventfully. Seven months after surgery euthanasia was performed for unrelated reasons; no neurological deficits were present. Relevance and novel information This is the first reported case of intraspinal ganglion cyst in a cat. Intraspinal extradural cysts should be considered among other differential diagnoses for cats with lumbosacral myelopathy/radiculopathy.

  1. Intraneural ganglion cyst: a 200-year-old mystery solved.

    Science.gov (United States)

    Spinner, Robert J; Vincent, Jean-François; Wolanskyj, Alexandra P; Scheithauer, Bernd W

    2008-10-01

    We describe the first reported case of an intraneural ganglion cyst, an ulnar ("cubital") intraneural cyst, which, on literature review, dated to 1810. For over 80 years, its original brief description by Beauchêne was wrongly attributed to Duchenne, effectively making the reference and specimen inaccessible to scrutiny. Fortunately, the intact cyst had been safely housed in the Musée Dupuytren, Paris, France, thus permitting its examination. Although originally described as a "serous" cyst, our present understanding of the anatomy of the ulnar nerve and of peripheral nerve pathology allowed us to reinterpret it as a mucin-filled, elbow-level, ulnar intraneural ganglion cyst. In addition to its description as a fusiform cystic enlargement of the nerve, we documented similar enlargement of a lumen-bearing branch, the articular branch at the level of the elbow. Based on our assessment of the specimen and with a modern perspective, we concluded that the origin of the cyst was from the postero-medial aspect of the elbow joint and that its fluid content, having dissected through a capsular defect, followed the path of the articular branch into the parent ulnar nerve. The purpose of this report is to clarify historical misconceptions regarding the pathogenesis of this controversial entity. (c) 2008 Wiley-Liss, Inc.

  2. Ganglion and Synovial Cyst of the Temporomandibular Joint: A Case Report and Literature Review.

    Science.gov (United States)

    Steen, M Willemijn; Hofstede, Diederik J

    2015-09-01

    Ganglion and synovial cysts of the temporomandibular joint (TMJ) are rare. Although histopathological findings differ, clinical presentation is comparable. This study adds a case report of a ganglion of the TMJ to existing literature and a review of all available case reports on ganglion and synovial cysts of the TMJ. Including our own case report, we reviewed 49 cases of ganglion and synovial cysts of the TMJ. They occurred in a female:male ratio of 3:1, at an median age of 46 years (range, 11-64 years). Patients mainly presented with preauricular swelling and pain. After imaging, the ganglion or synovial cyst was most commonly excised under general anesthesia. No recurrences were described.

  3. Comparison of the neuroprotective effects of brimonidine tartrate and melatonin on retinal ganglion cells.

    Science.gov (United States)

    Marangoz, Deniz; Guzel, Elif; Eyuboglu, Signem; Gumusel, Asli; Seckin, Ismail; Ciftci, Ferda; Yilmaz, Bayram; Yalvac, Ilgaz

    2017-11-20

    We aimed to compare the neuroprotective effects of brimonidine tartrate (BRT) and melatonin (MEL) on retinal ganglion cells (RGCs) in a rat glaucoma model. Thirty-six adult Wistar albino rats were allocated into six groups: control (C), glaucoma (G), BRT, MEL, G + BRT and G + MEL. After establishing the glaucoma model, intraocular pressure (IOP) of all animals measured at day 4 and day 30 was compared statistically with day 0 and day 4, respectively. Prior to sacrification at day 30 for histological evaluation and TUNEL analysis, retrograde labeling of non-apoptotic RGCs with 3% Fluorogold was performed and RGCs were evaluated under fluorescein microscope. IOP measurements at day 4 were significantly higher than basal measurements in all glaucoma groups. BRT alone induced a time-dependent decrease in IOP (p < 0.05), while MEL alone failed to reduce IOP. However, both BRT and MEL reduced IOP in the presence of glaucoma at day 30 (p < 0.05). BRT treatment significantly reversed the reduced non-apoptotic RGC counts (p < 0.01) and increased TUNEL-positive RGCs (p < 0.001) to control group levels in the presence of glaucoma. However, no statistical significance was found between groups G and G + MEL considering 3% Fluorogold-labeled cell counts and apoptotic index values. Our study revealed that systemic administration of BRT also has an IOP reducing effect. MEL has no neuroprotective effect on RGCs; on the other hand, BRT acts as a neuroprotective agent against glaucomatous injury, when applied systemically.

  4. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    Directory of Open Access Journals (Sweden)

    Durham Paul L

    2010-12-01

    Full Text Available Abstract Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization.

  5. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2007-06-01

    Full Text Available Abstract Active regulation of gene expression in the nervous system plays an important role in the development and/or maintenance of inflammatory pain. MicroRNA (miRNA negatively regulates gene expression via posttranscriptional or transcriptional inhibition of specific genes. To explore the possible involvement of miRNA in gene regulation during inflammatory pain, we injected complete Freund's adjuvant (CFA unilaterally into the rat masseter muscle and quantified changes in neuron-specific mature miRNAs in the trigeminal ganglion (TG. Real-time reverse-transcription polymerase chain reaction revealed significant, but differential, downregulation of mature miR-10a, -29a, -98, -99a, -124a, -134, and -183 in the ipsilateral mandibular division (V3 of the TG within 4 hr after CFA. In contrast, levels of tested miRNAs did not change significantly in the contralateral V3 or the ipsilateral ophthalmic and maxillary divisions of the TG from inflamed rats, nor in the ipsilateral V3 of saline-injected animals. The downregulated miRNAs recovered differentially to a level equal to or higher than that in naive animals. Full recovery time varied with miRNA species but was at least 4 days. Expression and downregulation of some miRNAs were further confirmed by in situ hybridization of TG neurons that innervate the inflamed muscle. Although neurons of all sizes expressed these miRNAs, their signals varied between neurons. Our results indicate that miRNA species specific to neurons are quickly regulated following inflammatory muscle pain.

  6. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    Science.gov (United States)

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  7. Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.

    Science.gov (United States)

    Fohlmeister, Jürgen F; Cohen, Ethan D; Newman, Eric A

    2010-03-01

    Trains of action potentials of rat and cat retinal ganglion cells (RGCs) were recorded intracellularly across a temperature range of 7-37 degrees C. Phase plots of the experimental impulse trains were precision fit using multicompartment simulations of anatomically reconstructed rat and cat RGCs. Action potential excitation was simulated with a "Five-channel model" [Na, K(delayed rectifier), Ca, K(A), and K(Ca-activated) channels] and the nonspace-clamped condition of the whole cell recording was exploited to determine the channels' distribution on the dendrites, soma, and proximal axon. At each temperature, optimal phase-plot fits for RGCs occurred with the same unique channel distribution. The "waveform" of the electrotonic current was found to be temperature dependent, which reflected the shape changes in the experimental action potentials and confirmed the channel distributions. The distributions are cell-type specific and adequate for soma and dendritic excitation with a safety margin. The highest Na-channel density was found on an axonal segment some 50-130 microm distal to the soma, as determined from the temperature-dependent "initial segment-somadendritic (IS-SD) break." The voltage dependence of the gating rate constants remains invariant between 7 and 23 degrees C and between 30 and 37 degrees C, but undergoes a transition between 23 and 30 degrees C. Both gating-kinetic and ion-permeability Q10s remain virtually constant between 23 and 37 degrees C (kinetic Q10s = 1.9-1.95; permeability Q10s = 1.49-1.64). The Q10s systematically increase for T channels were consistently "sleepy" (non-Arrhenius) for T <8 degrees C, with a loss of spiking for T <7 degrees C.

  8. File list: NoD.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  9. File list: NoD.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: NoD.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: InP.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervi...cal Ganglion SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: InP.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervi...cal Ganglion SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: NoD.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cerv...ical Ganglion http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: InP.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervi...cal Ganglion SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: InP.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervi...cal Ganglion SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  16. Evaluation of aspirin therapy on intracardiac thrombi using indium-111-oxine platelet scintigraphy, two-dimensional echocardiography and left ventriculography

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masanori; Irino, Tadayoshi; Yoshioka, Toshiharu; Sugimoto, Tsuyoshi (Osaka Univ. (Japan). Faculty of Medicine); Tsuji, Kazuo; Naka, Masashi; Arai, Hidekazu

    1984-10-01

    Left ventriculography (LVG), two-dimensional echocardiography (2-DE) and indium-111-oxine platelet scintigraphy were performed in five patients with intracardiac thrombi. Thrombi were visible in 7 sites (5 in the ventricle and 2 in the atrium) by platelet scintigraphy, in 4 sites (3 in the ventricle and 1 in the atrium) by 2-DE, and in 4 sites (4 in the ventricle) by LVG. When aspirin was administered to the patients, platelet scintigraphy had become negative for thrombi in 5 sites and false-negative for them in 2 sites. However, thrombi were detected in 6 sites after the withdrawal of aspirin. On the other hand, thrombi were detected in 4 sites by 2-DE, irrespective of the administration of aspirin. Indium-111-oxine platelet scintigraphy has proved to not only have higher sensitivity for detecting thrombi but also to be capable of observing the coagulation status of platelets on the thrombi. It is therefore considered very helpful in assessing anticoagulation therapy.

  17. Over-expression of TRESK K(+ channels reduces the excitability of trigeminal ganglion nociceptors.

    Directory of Open Access Journals (Sweden)

    Zhaohua Guo

    Full Text Available TWIK-related spinal cord K(+ (TRESK channel is abundantly expressed in trigeminal ganglion (TG and dorsal root ganglion neurons and is one of the major background K(+ channels in primary afferent neurons. Mutations in TRESK channels are associated with familial and sporadic migraine. In rats, both chronic nerve injury and inflammation alter the expression level of TRESK mRNA. Functional studies indicate that reduction of endogenous TRESK channel activity results in hyper-excitation of primary afferent neurons, suggesting that TRESK is a potential target for the development of new analgesics. However, whether and how enhancing TRESK channel activity would decrease the excitability of primary afferent neurons has not been directly tested. Here, we over-expressed TRESK subunits in cultured mouse TG neurons by lipofectamine-mediated transfection and investigated how this altered the membrane properties and the excitability of the small-diameter TG population. To account for the heterogeneity of neurons, we further divided small TG neurons into two groups, based on their ability to bind to fluorescently-labeled isolectin B (IB4. The transfected TG neurons showed a 2-fold increase in the level of TRESK proteins. This was accompanied by a significant increase in the fraction of lamotrigine-sensitive persistent K(+ currents as well as the size of total background K(+ currents. Consequently, both IB4-positive and IB4-negative TG neurons over-expressing TRESK subunits exhibited a lower input resistance and a 2-fold increase in the current threshold for action potential initiation. IB4-negative TG neurons over-expressing TRESK subunits also showed a significant reduction of the spike frequency in response to supra-threshold stimuli. Importantly, an increase in TRESK channel activity effectively inhibited capsaicin-evoked spikes in TG neurons. Taken together, our results suggest that potent and specific TRESK channel openers likely would reduce the

  18. Association Between Regular Cannabis Use and Ganglion Cell Dysfunction.

    Science.gov (United States)

    Schwitzer, Thomas; Schwan, Raymund; Albuisson, Eliane; Giersch, Anne; Lalanne, Laurence; Angioi-Duprez, Karine; Laprevote, Vincent

    2017-01-01

    Because cannabis use is a major public health concern and cannabis is known to act on central neurotransmission, studying the retinal ganglion cells in individuals who regularly use cannabis is of interest. To determine whether the regular use of cannabis could alter the function of retinal ganglion cells in humans. For this case-control study, individuals who regularly use cannabis, as well as healthy controls, were recruited, and data were collected from February 11 to October 28, 2014. Retinal function was used as a direct marker of brain neurotransmission abnormalities in complex mental phenomena. Amplitude and implicit time of the N95 wave on results of pattern electroretinography. Twenty-eight of the 52 participants were regular cannabis users (24 men and 4 women; median age, 22 years [95% CI, 21-24 years]), and the remaining 24 were controls (20 men and 4 women; median age, 24 years [95% CI, 23-27 years]). There was no difference between groups in terms of age (P = .13) or sex (P = .81). After adjustment for the number of years of education and alcohol use, there was a significant increase for cannabis users of the N95 implicit time on results of pattern electroretinography (median, 98.6 milliseconds [95% CI, 93.4-99.5]) compared with controls (median, 88.4 milliseconds [95% CI, 85.0-91.1]), with 8.4 milliseconds as the median of the differences (95% CI, 4.9-11.5; P cannabis users and controls in their corresponding group. The positive predictive value was 78.6% (95% CI, 60.5%-89.8%), and the negative predictive value was 75.0% (95% CI, 55.1%-88.0%). Our results demonstrate a delay in transmission of action potentials by the ganglion cells in regular cannabis users, which could support alterations in vision. Our findings may be important from a public health perspective since they could highlight the neurotoxic effects of cannabis use on the central nervous system as a result of how it affects retinal processing.

  19. Expression of interleukin-1 beta in rat dorsal root ganglia

    NARCIS (Netherlands)

    Copray, JCVM; Mantingh, [No Value; Brouwer, N; Biber, K; Kust, BM; Liem, RSB; Huitinga, [No Value; Tilders, FJH; Van Dam, AM; Boddeke, HWGM

    2001-01-01

    The expression of interleukin-lp was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in Situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1 beta mRNA: about 80% of these DRG neurons

  20. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  1. Cluster headache attack remission with sphenopalatine ganglion stimulation

    DEFF Research Database (Denmark)

    Barloese, Mads C J; Jürgens, Tim P; May, Arne

    2016-01-01

    ; p = 0.2188). Post-remission headache disability (HIT-6) was significantly improved versus baseline (67.7 ± 6.0 before, 55.2 ± 11.4 after; p = 0.0118). Six of the 10 remission patients experienced clinical improvements in their preventive medication use. At 24 months post insertion headache...... in a subset of these. Some patients experiencing remission were also able to reduce or stop their preventive medication and remissions were accompanied by an improvement in headache disability.......Background: Cluster headache (CH) is a debilitating headache disorder with severe consequences for patient quality of life. On-demand neuromodulation targeting the sphenopalatine ganglion (SPG) is effective in treating the acute pain and a subgroup of patients experience a decreased frequency of CH...

  2. Neuropeptides associated with the frontal ganglion of larval Lepidoptera.

    Science.gov (United States)

    Audsley, Neil; Matthews, June; Weaver, Robert J

    2005-01-01

    The occurrence of neuropeptides in the frontal ganglia of larvae of the tobacco hawkmoth, Manduca sexta, the tomato moth, Lacanobia oleracea and the cotton leafworm, Spodoptera littoralis was investigated using reversed-phase high performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and enzyme-linked immunosorbent assay (ELISA). Only three types of peptides could be identified or assigned from frontal ganglion extracts; M. sexta allatostatin (Manse-AS), M. sexta allatotropin (Manse-AT), and F/YXFGL-NH2 allatostatins. The peptide profiles of frontal ganglion of L. oleracea and S. littoralis were similar, with ten identical [M+H]+ ions, seven of which could be assigned to known lepidopteran peptides (Manse-AT, cydiastatin 2, 3, 4 and helicostatin 1, 5, 9). In addition, mass ions corresponding to helicostatin 7 (which was confirmed by MALDI-post source decay analysis) and Manse-AS were present in frontal ganglia of L. oleracea and helicostatin 6 in frontal ganglia of S. littoralis. Only four mass ions from M. sexta frontal ganglia corresponded to known peptides, cydiastatin 3 and 4, helicostatin 1, and Manse-AT. The only difference between the profiles of frontal ganglia from different stages of L. oleracea were mass ions which could not be assigned, and no differences were observed in the allatoregulatory peptides present. In HPLC fractions of M. sexta frontal ganglia, F/YXFGL-NH2 allatostatin-like immunoreactivity was widespread suggesting that more allatostatins were present than were identified.

  3. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  4. Depicting the pterygopalatine ganglion on 3 Tesla magnetic resonance images.

    Science.gov (United States)

    Bratbak, Daniel Fossum; Folvik, Mari; Nordgård, Ståle; Stovner, Lars Jacob; Dodick, David W; Matharu, Manjit; Tronvik, Erling

    2017-12-22

    The pterygopalatine ganglion has yet not been identified on medical images in living humans. The primary aim of this study was to evaluate whether the pterygopalatine ganglion could be identified on 3 T MR imaging. This study was performed on medical images of 20 Caucasian subjects on both sides (n = 40 ganglia) with an exploratory design. 3 T MR images were assessed by two physicians for the presence and size of the pterygopalatine ganglion. The distance from the pterygopalatine ganglion to four bony landmarks was registered from fused MR and CT images. In an equivalence analysis, the distances were compared to those obtained in an anatomical cadaveric study serving as historical controls (n = 50). A structure assumed to be the pterygopalatine ganglion was identified on MR images in all patients on both sides by both physicians. The mean size was depth 2.1 ± 0.5 mm, width 4.2 ± 1.1 mm and height 5.1 ± 1.4 mm, which is in accordance with formerly published data. Equivalence of the measurements on MR images and the historical controls was established, suggesting that the structure identified on the MR images is the pterygopalatine ganglion. Our findings suggest that the pterygopalatine ganglion can be detected on 3 T MR images. Identification of the pterygopalatine ganglion may be important for image-guided interventions targeting the pterygopalatine ganglion, and has the potential to increase the efficacy, safety and reliability for these treatments.

  5. Utility of intracardiac echocardiography for catheter ablation of complex cardiac arrhythmias in a medium-volume training center.

    Science.gov (United States)

    Filgueiras-Rama, David; de Torres-Alba, Fernando; Castrejón-Castrejón, Sergio; Estrada, Alejandro; Figueroa, Jorge; Salvador-Montañés, Óscar; López, Teresa; Moreno-Yanguela, Mar; López Sendón, José L; Merino, José L

    2015-04-01

    New electrophysiology tools like intracardiac echocardiography (ICE) might help to minimize and early detect complications during cardiac ablation procedures. The aim of the study was to assess the utility and vascular safety of ICE during catheter ablation of complex cardiac arrhythmias in a medium-volume training center. Prospective, observational study consisted of consecutive patients who underwent catheter-based ablation of complex cardiac arrhythmias. All procedures were performed using three-dimensional electro-anatomical mapping and routine cannulation of right and left femoral veins. The ICE probe was initially positioned at the mid-level of the right atrium and properly moved to monitor different steps of the procedure and identify complications. All procedure-related vascular complications were registered. One hundred two patients (age 61.4 ± 13.1 years, 69 male) underwent 110 ablation procedures. Pulmonary vein isolation was the most common ablation substrate (55.4%). Ventricular tachycardia (17.2%) and left atrial flutter procedures (16.4%) were also common. The use of ICE enabled us to early initiate anticoagulation and to optimize the transseptal puncture. It also provided the capability to early detect life-threatening complications such as tamponade (3.6%), along with important information during the procedure such as exact catheter location, lesion formation, and stability during radiofrequency delivery. Such benefits were not associated with a higher number of vascular complications. The use of ICE during catheter-based ablation of complex cardiac substrates provides technical features that may decrease complications and increase accuracy while applying radiofrequency, especially in training centers where fellows start to perform complex procedures. © 2014, Wiley Periodicals, Inc.

  6. Catheter Ablation of Ventricular Tachycardia in the Presence of an Old Endocavitary Thrombus Guided by Intracardiac Echocardiography.

    Science.gov (United States)

    Peichl, Petr; Wichterle, Dan; Čihák, Robert; Aldhoon, Bashar; Kautzner, Josef

    2016-06-01

    Catheter ablation of ventricular tachycardia (VT) in patients with structural heart disease (SHD) is effective in prevention of arrhythmia recurrences. However, endocardial ablation may be challenging in the presence of organized left ventricular (LV) endocavitary thrombus. Our goal was to analyze the results of VT ablation in patients with identified old thrombus. We reviewed clinical and procedural data of 344 consecutive patients who underwent VT ablation for SHD. Old endocavitary thrombus was identified in four patients by preprocedural transthoracic echocardiography (TTE) and in four more patients by intracardiac echocardiography (ICE). All together, the case series of eight patients with detectable thrombus is reported. All patients (one woman, age: 67 ± 7 years) had postinfarction aneurysm (20 ± 8 years after the index myocardial infarction) and the thrombus was well organized without mobile structures. Arrhythmogenic substrate could not be obviously targeted beneath the base of thrombus; however, catheter ablation was successfully performed in the close vicinity. A total of 2.4 ± 1.2 procedures were necessary to abolish VT recurrences. Epicardial ablation was performed in three of eight (38%) patients as a second elective procedure. No procedural or periprocedural complications were observed. During the follow-up of 14 ± 15 months, two patients (25%) had sporadic VT recurrences. ICE seems to be more sensitive for the detection of LV thrombi compared to TTE and is helpful in real-time navigation of mapping/ablation catheter. Besides potential thromboembolic risk, large thrombus may prevent accessibility to the "critical" portion of arrhythmia circuit and epicardial ablation is required in selected cases. © 2016 Wiley Periodicals, Inc.

  7. Real-time integration of 2D intracardiac echocardiography and 3D electroanatomical mapping to guide ventricular tachycardia ablation.

    Science.gov (United States)

    Khaykin, Yaariv; Skanes, Allan; Whaley, Bonnie; Hill, Carol; Beardsall, Marianne; Seabrook, Catherine; Wulffhart, Zaev; Oosthuizen, Richard; Gula, Lorne; Verma, Atul

    2008-10-01

    Ablation of left ventricular tachycardia (LV VT) involves point-by-point reconstruction of the three-dimensional (3D) virtual anatomy. It is time consuming and requires substantial fluoroscopy exposure. Two-dimensional (2D) intracardiac echocardiography (ICE) affords real-time imaging of the cardiac structures. This study sought to evaluate a mapping system integrating ICE with 3D mapping to guide VT ablation. Seventeen patients (16 men, 62 +/- 11 years, LV ejection fraction 40% +/- 15%) had ablation of nonidiopathic VT guided using a system integrating 3D mapping and ICE. ICE probe with a location sensor tracked by the mapping system was positioned in the right heart. Endocardial contours traced on gated images of the LV were used to generate a registered 3D map. Regional wall motion abnormalities (WMA) were tagged. 3D maps were created in 26 +/- 8 min, before entering the LV and without fluoroscopy. Maps were built from 23 +/- 7 contours. Regional WMA corresponded to low bipolar voltage (ICE was 172 +/- 119 cm(3) versus 164 +/- 112 cm(3) for the point-by-point maps (P = .5). Scar area by ICE was 33 +/- 32 cm(2) versus 36 +/- 33 cm(2) for voltage mapping (P = .4). At 5 +/- 4 months, 12 patients (71%) were free of VT. A system combining 2D ICE and 3D mapping can reconstruct a 3D shell of the LV, including a substrate map based on regional WMA without the need to enter the LV. VT ablation guided using this approach is safe and effective.

  8. Intracardiac echo-guided radiofrequency catheter ablation of atrial fibrillation in patients with atrial septal defect or patent foramen ovale repair: a feasibility, safety, and efficacy study.

    Science.gov (United States)

    Lakkireddy, Dhanunjaya; Rangisetty, Umamahesh; Prasad, Subramanya; Verma, Atul; Biria, Mazda; Berenbom, Loren; Pimentel, Rhea; Emert, Martin; Rosamond, Thomas; Fahmy, Tamer; Patel, Dimpi; Di Biase, Luigi; Schweikert, Robert; Burkhardt, David; Natale, Andrea

    2008-11-01

    Intracardiac Echo-Guided Radiofrequency Catheter. Patients with atrial septal defect (ASD) are at higher risk for atrial fibrillation (AF) even after repair. Transseptal access in these patients is perceived to be difficult. We describe the feasibility, safety, and efficacy of pulmonary vein antral isolation (PVAI) in these patients. We prospectively compared post-ASD/patent foramen ovale (PFO) repair patients (group I, n = 45) with age-gender-AF type matched controls (group II, n = 45). All the patients underwent PVAI through a double transseptal puncture with a roving circular mapping catheter technique guided by intracardiac echocardiography (ICE). The short-term (3 months) and long-term (12 month) failure rates were assessed. In group I, 23 (51%) had percutaneous closure devices and 22 (49%) had a surgical closure. There was no significant difference between group I and II in the baseline characteristics. Intracardiac echo-guided double transseptal access was obtained in 98% of patients in group I and in 100% of patients in group II. PVAI was performed in all patients, with right atrial flutter ablation in 7 patients in group I and in 4 patients in group II. Over a mean follow-up of 15 +/- 4 months, group I had higher short-term (18% vs 13%, P = 0.77) and long-term recurrence (24% vs 18%, P = 0.6) than group II. There was no significant difference in the perioperative complications between the two groups. Echocardiography at 3 months showed interatrial communication in 2 patients in group I and 1 patient in group II, which resolved at 12 months. Percutaneous AF ablation using double transseptal access is feasible, safe, and efficacious in patients with ASD and PFO repairs.

  9. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y

    2008-01-01

    Occupational overuse syndrome (OOS) can present as Guyon\\'s canal syndrome in computer keyboard users. We report a case of Guyon\\'s canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS.

  10. Effects of ACTH4–10 on synaptic transmission in frog sympathetic ganglion

    NARCIS (Netherlands)

    Wouters, W.; Bercken, J. van den

    1979-01-01

    The influenced of ACHT4−10, a behaviourally active fragment of adrenocorticotropic hormone (ACTH) devoid of endocrine activity, on synaptic transmission in the paravertebral sympathetic ganglion of the frog was investigated. Postsynaptic potentials evoked by electrical stimulation of preganglionic

  11. Case Report: Intraneural Intracanalicular Ganglion Cyst of the Hypoglossal Nerve Treated by Extradural Transcondylar Approach.

    Science.gov (United States)

    Bilgin-Freiert, Arzu; Fugleholm, Kåre; Poulsgaard, Lars

    2015-07-01

    We report a case of an intraneural ganglion cyst of the hypoglossal canal. The patient presented with unilateral hypoglossal nerve palsy, and magnetic resonance imaging showed a small lesion in the hypoglossal canal with no contrast enhancement and high signal on T2-weighted imaging. The lesion was assumed to be a cystic schwannoma of the hypoglossal nerve. Stereotactic irradiation was considered, but in accordance with the patient's wishes, surgical exploration was performed. This revealed that, rather than a schwannoma, the patient had an intraneural ganglion cyst, retrospectively contraindicating irradiation as an option. This case illustrates a very rare location of an intraneural ganglion cyst in the hypoglossal nerve. To our knowledge there are no previous reports of an intraneural ganglion cyst confined to the hypoglossal canal.

  12. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    Science.gov (United States)

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.

  13. Cortical Proteins are Chemokinetic to Cells from the Medial Ganglionic Eminence

    Science.gov (United States)

    2011-05-28

    Neuroscience Program Director During embryonic development, a majority of neocortical interneurons originate from the medial ganglionic eminence (MGE...day vaginal plug is seen) EGF Epidermal growth factor ErbB EGF receptor GABA Gamma-aminobutyric acid GE Ganglionic eminence HGF Hepatocyte...species, all mammals have GABAergic precursors residing in the GE producing neurons that migrate along the same tangential route to the neocortex

  14. Nimodipine Aggravates Systemic Kainic Acid Toxicity in Retinal Ganglion Cells of Intact Mice

    OpenAIRE

    GEPDIREMEN, Akçahan

    2000-01-01

    The aim of the present study was to investigate the role of the L-type voltage dependent Ca2+ channel blocker, nimodipine, in kainate induced toxicity in retinal ganglion cells of mice. Kainate in 10mg/kg was administered intraperitoneally following the vehicle or nimodipine. Nimodipine, 45 minutes prior to kainate in 10, 15, 25, 50, 100 and 250 mg/kg doses was administered intraperitoneally. Surprisingly, nimodipine potentiated the ganglional cell death induced by kainate, with re...

  15. Ganglion cyst in the lumbar anterior epidural space:a case report

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sung Chan; Park, Dong Woo; Lee, Seoung Ro; Joo, Kyung Bin [Hanyang Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-03-01

    A ganglion cyst is a tumor-like lesion that contains mucous or myxoid material in the fibrous capsule. We report a case of ganglion cyst located in the lumbar anterior epidural space and causing lumbar radiculopathy. Computed tomography and magnetic resonance imaging revealed the cyst as a cystic lesion with wall enhancement. Myelography showed that it was not filled with contrast medium and not connected with the dura, nerve root, or facet joint.

  16. Dorsal root ganglion compression as an animal model of sciatica and low back pain

    OpenAIRE

    Lin, Xiao-Yu; Yang, Jing; LI, HUI-MING; Hu, San-Jue; Xing, Jun-Ling

    2012-01-01

    As sciatica and low back pain are among the most common medical complaints, many studies have duplicated these conditions in animals. Chronic compression of the dorsal root ganglion (CCD) is one of these models. The surgery is simple: after exposing the L4/L5 intervertebral foramina, stainless steel rods are implanted unilaterally, one rod for each vertebra, to chronically compress the lumbar dorsal root ganglion (DRG). Then, CCD can be used to simulate the clinical conditions caused by steno...

  17. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-03-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO/sub 2/) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO/sub 2/, and oxygen extraction fraction were measured by the positron emission tomography using /sup 15/O/sub 2/, C/sup 15/O/sub 2/ inhalation technique. In addition to reduction of CBF and CMRO/sub 2/ in the basal ganglionic region, CBF and CMRO/sub 2/ decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO/sub 2/ decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO/sub 2/ was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO/sub 2/ were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia.

  18. Large Ganglion Cyst with Unusual Location on the Back-A Case Report

    DEFF Research Database (Denmark)

    Schoellhammer, Liv; Nielsen, Thomas Wagner; Berg, Jais Oliver

    2016-01-01

    A ganglion cyst is a soft tissue tumor-like lesion filled with colloid material commonly located on the hand and wrist. We report a case of a large ganglion cyst with an unusual location on the back. The patient presented with a mass growing over 2 months measuring 11.2 × 4.7 × 7.2 cm on magnetic...

  19. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  20. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.

    Science.gov (United States)

    Maturana, Matias I; Apollo, Nicholas V; Garrett, David J; Kameneva, Tatiana; Cloherty, Shaun L; Grayden, David B; Burkitt, Anthony N; Ibbotson, Michael R; Meffin, Hamish

    2018-02-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell's spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear.

  1. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  2. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons.

    Science.gov (United States)

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-06-01

    The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain.

    Science.gov (United States)

    Zhao, Yuanting; Qin, Yue; Liu, Tuanjiang; Hao, Dingjun

    2015-12-01

    Neuropathic pain, which is characterized by hyperalgesia, allodynia and spontaneous pain, is one of the most painful symptoms that can be experienced in the clinic. It often occurs as a result of injury to the peripheral nerves, dorsal root ganglion (DRG), spinal cord or brain. The renin-angiotensin system (RAS) plays an important role in nociception. As an essential component of the RAS, the angiotensin (Ang)-(1-7)/Mas axis may be involved in antinociception. The aim of the present study was to explore the expression pattern of Mas in DRG neurons following chronic nerve injury and examine the effects of Mas inhibition and activation on neuropathic pain in a chronic constriction injury (CCI) rat model. The results showed, that compared with the sham group, CCI caused a time-dependent induction of Mas expression at both the mRNA and the protein levels in DRG neurons. Consistent with the results, isolated DRG neurons showed a time-dependent increase in Ang-(1-7) binding on the cell membrane following the CCI surgery, but not the sham surgery. Compared with the sham control groups, CCI significantly decreased the paw withdrawal latency and threshold, and this was markedly improved and aggravated by intrathecal injection of the selective Mas agonist Ang-(1-7) and the selective Mas inhibitor D-Pro7-Ang-(1-7), respectively. In conclusion, this study has provided the first evidence, to the best of our knowledge, that the Mas expression in DRG neurons is time-dependently induced by chronic nerve injury and that the intrathecal activation and inhibition of Mas can improve and aggravate CCI-induced neuropathic pain, respectively. This study has provided novel insights into the pathophysiological process of neuropathic pain and suggests that the Ang-(1-7)/Mas axis could be an effective therapeutic target for neuropathic pain, warranting further study.

  4. Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection.

    Science.gov (United States)

    Fu, Qing-Ling; Hu, Bing; Wu, Wutian; Pepinsky, R Blake; Mi, Sha; So, Kwok-Fai

    2008-03-01

    LINGO-1 is a functional member of the Nogo66 receptor (NgR1)/p75 and NgR1/TROY signaling complexes that prevent axonal regeneration through RhoA in the central nervous system. LINGO-1 also promotes cell death after neuronal injury and spinal cord injury. The authors sought to examine whether blocking LINGO-1 function with LINGO-1 antagonists promotes retinal ganglion cell (RGC) survival after ocular hypertension and optic nerve transection. An experimental ocular hypertension model was induced in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. LINGO-1 expression in the retinas was investigated using immunohistochemistry and Western blotting. Soluble LINGO-1 protein (LINGO-1-Fc) and anti-LINGO-1 mAb 1A7 were injected into the vitreous body to examine their effects on RGC survival after ocular hypertension and optic nerve transection. Signal transduction pathways mediating neuroprotective LINGO-1-Fc effects were characterized using Western blotting and specific kinase inhibitors. LINGO-1 was expressed in RGCs and up-regulated after intraocular pressure elevation. Blocking LINGO-1 function with LINGO-1 antagonists, LINGO-1-Fc and 1A7 significantly reduced RGC loss 2 and 4 weeks after ocular hypertension and also promoted RGC survival after optic nerve transection. LINGO-1-Fc treatment blocked the RhoA, JNK pathway and promoted Akt activation. LINGO-1-Fc induced Akt phosphorylation, and the survival effect of LINGO-1 antagonists was abolished by Akt phosphorylation inhibitor. The authors demonstrated that blocking LINGO-1 function with LINGO-1 antagonists rescues RGCs from cell death after ocular hypertension and optic nerve transection. They also delineated the RhoA and PI-3K/Akt pathways as the predominant mediator of LINGO-1-Fc neuroprotection in this paradigm of RGC death.

  5. A new neurological rat mutant "mutilated foot".

    OpenAIRE

    Jacobs, J M; Scaravilli, F; Duchen, L W; Mertin, J

    1981-01-01

    A new autosomal recessive mutant rat (mutilated foot) with a neurological disorder is described. Affected animals become ataxic and the feet, generally of the hind limbs, are mutilated. Quantitative studies show a severe reduction in numbers of sensory ganglion cells and fibres, including unmyelinated fibres. The numbers of ventral root fibres, particularly those of small diameter, are also reduced. Markedly decreased numbers of spindles are found in the limb muscles. These quantitative abnor...

  6. Focal loss volume of ganglion cell complex in diabetic neuropathy.

    Science.gov (United States)

    Srinivasan, Sangeetha; Pritchard, Nicola; Sampson, Geoff P; Edwards, Katie; Vagenas, Dimitrios; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2016-11-01

    The aim was to investigate the relationship between diabetic peripheral neuropathy (DPN) and abnormalities in ganglion cell complex (GCC); specifically, focal loss volume (FLV) and global loss volume (GLV). The ganglion cell complex was evaluated using optical coherence tomography on 193 individuals (84 with type 1 diabetes, 67 with type 2 diabetes and 42 without diabetes). In those with diabetes, 88 had diabetes but no diabetic retinopathy (no DR group) and 63 had diabetes with diabetic retinopathy (DR group). Seventeen individuals in the no DR group and 27 in the DR group had diabetic peripheral neuropathy according to the neuropathy disability score (NDS). The probability of FLV and GLV being abnormal was determined. Forty four individuals had diabetic peripheral neuropathy (NDS of three or greater). Binary logistic regression analysis was performed, adjusting for the presence of diabetic retinopathy, age, sex, type of diabetes, duration of diabetes and HbA1c levels. Twenty-five per cent of individuals with diabetic peripheral neuropathy had abnormal FLV compared to 11 per cent of those with diabetes but no diabetic peripheral neuropathy and five per cent in the control group (p = 0.011). Fourteen per cent of individuals with diabetic peripheral neuropathy, 10 per cent without diabetic peripheral neuropathy and two per cent in the control group had abnormal GLV (p = 0.185). For every unit increase in the neuropathy disability score, the odds of having an abnormal FLV increased by a factor of 1.25 (p = 0.007), after adjusting for potentially confounding factors. Abnormal GCC FLV is an independent predictor of diabetic neuropathy, (odds ratio = 2.94, 95 per cent CI [1.16, 7.40], p = 0.023). Diabetic peripheral neuropathy is associated with abnormal GCC FLV at the macula, which is independent of diabetic retinopathy, age, sex, type of diabetes, duration of diabetes and HbA1c levels. An abnormality in GCC FLV is an independent predictor of diabetic peripheral

  7. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Electrogramas intracardíacos en tiempo real en el diagnóstico de fallas de marcapasos Real time intracardiac electrograms for the diagnosis of pacemaker malfunction

    Directory of Open Access Journals (Sweden)

    Adrián Baranchuk

    2008-02-01

    Full Text Available El desplazamiento crónico del catéter ventricular es una complicación infrecuente del implante de marcapasos. Es infrecuente que un catéter desplazado sense y capture en una cámara donde no fue implantado originalmente. Se presenta el caso de un paciente con marcapasos doble cámara en el que el catéter ventricular se desplazó hacia la aurícula derecha. El catéter desplazado permite sensar y capturar la aurícula. El diagnóstico inicial se realizó mediante el análisis deductivo conjunto de los electrogramas en tiempo real y los eventos en los canales de registro ("marker channel". La radiografía de tórax confirmó el diagnóstico presuntivo.Chronic ventricular lead dislodgement is an infrequent complication of pacemaker implantation. Occasionally, the dislodged lead may sense and capture a chamber in which the lead was not originally positioned. Intracardiac real time electrograms and channel markers are useful tools for the diagnosis of pacemaker malfunction. We present the case of a patient with a ventricular lead dislodgement into the atrium. The ventricular lead was able to sense and capture the atrium. Initial diagnosis was performed based on the deductive analysis of intracardiac real time electrograms and channel markers and confirmed by chest X-ray.

  9. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hirtler, Daniel [University Hospital Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology (Heart Center, University of Freiburg), Freiburg (Germany); Garcia, Julio; Barker, Alex J. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Geiger, Julia [University Childrens' Hospital Zurich, Department of Radiology, Zurich (Switzerland)

    2016-10-15

    To comprehensively and quantitatively analyse flow and vorticity in the right heart of patients after repair of tetralogy of Fallot (rTOF) compared with healthy volunteers. Time-resolved flow-sensitive 4D MRI was acquired in 24 rTOF patients and 12 volunteers. Qualitative flow evaluation was based on consensus reading of two observers. Quantitative analysis included segmentation of the right atrium (RA) and ventricle (RV) in a four-chamber view to extract volumes and regional haemodynamic information for computation of regional mean and peak vorticity. Right heart intra-atrial, intraventricular and outflow tract flow patterns differed considerably between rTOF patients and volunteers. Peak RA and mean RV vorticity was significantly higher in patients (p = 0.02/0.05). Significant negative correlations were found between patients' maximum and mean RV and RA vorticity and ventricular volumes (p < 0.05). The main pulmonary artery (MPA) regurgitant flow was associated with higher RA and RV vorticity, which was significant for RA maximum and RV mean vorticity (p = 0.01/0.03). The calculation of vorticity based on 4D flow data is an alternative approach to assess intracardiac flow changes in rTOF patients compared with qualitative flow visualization. Alterations in intracardiac vorticity could be relevant with regard to the development of RV dilation and impaired function. (orig.)

  10. Assessment of radiographer CT-guided dorsal ganglion block

    Energy Technology Data Exchange (ETDEWEB)

    Booth, T.C., E-mail: tombooth@doctors.org.uk [Department of Radiology, Royal Free Hospital NHS Trust, Pond Street, London NW3 2QG (United Kingdom); Edwards, D.; Platts, A.D.; Savy, L.E. [Department of Radiology, Royal Free Hospital NHS Trust, Pond Street, London NW3 2QG (United Kingdom)

    2011-08-15

    Purpose: Radiographer-performed, CT-guided, therapeutic dorsal ganglion block (DGB) for lumbar radiculopathy was prospectively evaluated for firstly, short-term pain outcomes and secondly, complications. Methods: A prospective outcome audit was undertaken for all patients with radiculopathic pain undergoing radiographer-performed CT-guided DGB over a 12 month period. The indicators and standards were derived from published evidence. The complications were analysed by a neuroradiologist retrospectively. Findings: The pain indicator was defined as 'the percentage of patients referred for CT-guided DGB experiencing improvement or resolution of pain at two weeks post-procedure'. The standard chosen was 64% thus with an outcome of 67% the target was achieved. The complication indicator was defined as 'the percentage of all patients referred for CT-guided DGB who were complication-free over two weeks'. The standard chosen was 97% thus with an outcome of 81% the target was not achieved. Complications resulted from positioning or inaccurate nerve root selection. Conclusion: Radiographer CT-guided DGB is effective in improving or removing pain at two weeks post-procedure. It is safe and not associated with major complications. However, less patients were complication-free following DGB than would be expected. Pre-procedural review of the patient's MRI by a neuroradiologist is recommended to avoid incorrect nerve root selection.

  11. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells.

    Science.gov (United States)

    Wong, Kwoon Y; Dunn, Felice A; Berson, David M

    2005-12-22

    A rare type of mammalian retinal ganglion cell (RGC) expresses the photopigment melanopsin and is a photoreceptor. These intrinsically photosensitive RGCs (ipRGCs) drive circadian-clock resetting, pupillary constriction, and other non-image-forming photic responses. Both the light responses of ipRGCs and the behaviors they drive are remarkably sustained, raising the possibility that, unlike rods and cones, ipRGCs do not adjust their sensitivity according to lighting conditions ("adaptation"). We found, to the contrary, that ipRGC sensitivity is plastic, strongly influenced by lighting history. When exposed to a constant, bright background, the background-evoked response decayed, and responses to superimposed flashes grew in amplitude, indicating light adaptation. After extinction of a light-adapting background, sensitivity recovered progressively in darkness, indicating dark adaptation. Because these adjustments in sensitivity persisted when synapses were blocked, they constitute "photoreceptor adaptation" rather than "network adaptation." Implications for the mechanisms generating various non-image-forming visual responses are discussed.

  12. High pressure-induced mtDNA alterations in retinal ganglion cells and subsequent apoptosis

    Directory of Open Access Journals (Sweden)

    Sheng-Hai Zhang

    2016-11-01

    Full Text Available Purpose: Our previous study indicated that mitochondrial DNA (mtDNA damage and mutations are crucial to the progressive loss of retinal ganglion cells (RGCs in a glaucomatous rat model. In this study, we examined whether high pressure could directly cause mtDNA alterations and whether the latter could lead to mitochondrial dysfunction and RGC death.Methods: Primary cultured rat RGCs were exposed to 30 mm Hg of hydrostatic pressure (HP for 12, 24, 48, 72, 96, and 120 hours. mtDNA alterations and mtDNA repair/replication enzymes OGG1, MYH and POLG expressions were also analyzed. The RGCs were then infected with a lentiviral small hairpin RNA (shRNA expression vector targeting POLG (POLG-shRNA, and mtDNA alterations as well as mitochondrial function, including complex I/III activities and ATP production were subsequently studied at appropriate times. Finally, RGC apoptosis and the mitochondrial-apoptosis pathway-related protein cleaved caspase-3 were detected using a Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL assay and western blotting, respectively. Results: mtDNA damage was observed as early as 48 hours after the exposure of RGCs to HP. At 120 h after HP, mtDNA damage and mutations significantly increased, reaching >40% and 4.8±0.3-fold, respectively, compared with the control values. Twelve hours after HP, the expressions of OGG1, MYH and POLG mRNA in the RGCs were obviously increased 5.02±0.6-fold (p<0.01, 4.3±0.2-fold (p<0.05, and 0.8±0.09-fold p<0.05. Western blot analysis showed that the protein levels of the three enzymes decreased at 72 and 120 hours after HP (p<0.05. After interference with POLG-shRNA, the mtDNA damage and mutations were significantly increased (p<0.01, while complex I/III activities gradually decreased (p<0.05. Corresponding decreases in membrane potential and ATP production appeared at 5 and 6 days after POLG-shRNA transfection respectively (p<0.05. Increases in the apoptosis of RGCs and

  13. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody.

    Science.gov (United States)

    Mavlyutov, Timur A; Duellman, Tyler; Kim, Hung Tae; Epstein, Miles L; Leese, Charlotte; Davletov, Bazbek A; Yang, Jay

    2016-09-07

    Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. [Feasibility study of transplantation of penile corpus cavernosum and major pelvic ganglion in renal subserous region].

    Science.gov (United States)

    Xu, Y D; Guan, R L; Wu, Y Y; Lei, H E; Yang, B C; Li, H X; Wang, L; Guo, Y L; Xin, Z C

    2016-08-18

    To study the feasibility of transplantation of normal rat penile corpus cavernosum and major pelvic ganglion (MPG) into the renal subserous region of a Nu/Nu mouse based on allograft technology. Penile corpus cavernosum and MPG, harvested from Sprague-Dawley (SD) rats under sterile condition, were transplanted underneath the kidney capsule of Nu/Nu mice through the microsurgery instruments and surgery microscope. The histopathologic changes and cellular proliferation in the transplanted penile corpus cavernosum and MPG were then analyzed at the end of 1week and 4 weeks after transplantation. Histological staining and immunohistochemical staining were used to evaluate the main outcome measures. After 1 week, the tissue morphology of the transplanted corpus cavernosum underneath the kidney capsule of Nu/Nu mice was consistent with normal penile corpus cavernosum, and blood could be observed in the penis cavernous sinus of the graft; after 4 weeks, the mophorlogy of the tranplanted corpus cavernosum near the kidney was consistent with normal penile corpus cavernosum, while fibrosis was noteworthy in the graft away from the kidney, but blood could still be seen in the penis cavernous sinus. After 1 week, the tissue morphology of the transplanted MPG was consistent with normal MPG, multiple islet-like cell clusters could be seen in the transplanted MPG in the renal subserous region, and angiogenesis could be observed near the kidney; after 4 weeks, a network of blood vessels was clearly visible away from the kidney, and islet-like cell clusters were still clearly observed in the transplanted MPG. In addition, ki67 positive cells were observed in the transplanted penile corpus cavernosum and MPG after 4 weeks of transplantation, which indicated that there was still cell proliferation activity in the grafts. The transplanted corpus cavernosum and MPG underneath the kidney capsule of Nu/Nu mice could survive at least 4 weeks. Moreover, the inner structure of the

  15. CT-guided injection for ganglion impar blockade: a radiological approach to the management of coccydynia

    Energy Technology Data Exchange (ETDEWEB)

    Datir, A., E-mail: apdatir@gmail.co [Jackson Memorial Hospital, Miami, FL (United States); Connell, D. [Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex (United Kingdom)

    2010-01-15

    Aim: To evaluate the role of computed tomography (CT) in needle placement for ganglion impar blocks, and to determine the efficacy of CT-guided ganglion impar blocks in the management of coccydynia. Materials and methods: The results of ganglion impar blockade in eight patients with coccydynia secondary to trauma or unknown cause were reviewed. The diagnosis of coccydynia was based on clinical history, location of pain, and response to previous diagnostic and therapeutic procedures. The eight patients were treated with CT-guided ganglion impar blocks to manage their coccyx pain after conservative procedures, including oral medication and cushions, failed to provide relief. All patients were subjected to ganglion impar blocks under a thin-section CT-guided technique for needle placement, using a mixture of bupivacaine and triamcinolone. The patients were followed-up for a period of 6-months. Results: Eight patients were treated in this study with a total of 11 injections. A technical success of 100% was achieved in all cases with accurate needle placement without any complications and all the patients tolerated the procedure well. Out of eight, three patients (37%) had complete relief of pain on the follow-up intervals up to 6 months. Three out of eight patients (37%), had partial relief of symptoms and a second repeat injection was given at the 3 month interval of the follow-up period. At the end of the 6-month follow-up period, six out of eight patients (75%) experienced symptomatic relief (four complete relief and two partial relief) without any additional resort to conventional pain management. Twenty-five percent (two out of eight) did not have any symptomatic improvement. The mean visual analogue score (VAS) pre-procedure was 8 (range 6-10) and had decreased to 2 (range 0-5) in six out of eight patients. Conclusion: CT can be used as an imaging method to identify the ganglion and guide the needle in ganglion impar blockade. The advantages of CT

  16. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  17. Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development.

    Science.gov (United States)

    Renna, Jordan M; Chellappa, Deepa K; Ross, Christopher L; Stabio, Maureen E; Berson, David M

    2015-09-01

    Melanopsin ganglion cells express the photopigment melanopsin and are the first functional photoreceptors to develop in the mammalian retina. They have been shown to play a variety of important roles in visual development and behavior in the early postnatal period (Johnson et al., 2010; Kirkby and Feller, 2013; Rao et al., 2013; Renna et al., 2011). Here, we probed the maturation of the dendritic arbors of melanopsin ganglion cells during this developmental period in mice. We found that some melanopsin ganglion cells (mainly the M1-subtype) transiently extend their dendrites not only into the inner plexiform layer (where they receive synaptic inputs from bipolar and amacrine cells) but also into the outer plexiform layer, where in mature retina, rod and cone photoreceptors are thought to contact only bipolar and horizontal cells. Thus, some immature melanopsin ganglion cells are biplexiform. This feature is much less common although still present in the mature retina. It reaches peak incidence 8-12 days after birth, before the eyes open and bipolar cells are sufficiently mature to link rods and cones to ganglion cells. At this age, some outer dendrites of melanopsin ganglion cells lie in close apposition to the axon terminals of cone photoreceptors and express a postsynaptic marker of glutamatergic transmission, postsynaptic density-95 protein (PSD-95). These findings raise the possibility of direct, monosynaptic connections between cones and melanopsin ganglion cells in the early postnatal retina. We provide a detailed description of the developmental profile of these processes and consider their possible functional and evolutionary significance. © 2015 Wiley Periodicals, Inc.

  18. MR-guided perineural injection of the ganglion impar: technical considerations and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Marker, David R.; Carrino, John A.; Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Baltimore, MD (United States); U-Thainual, Paweena [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Ungi, Tamas; Fichtinger, Gabor [Queen' s University, School of Computing, Kingston, ON (Canada); Flammang, Aaron J. [Siemens Corporate Research, Center for Applied Medical Imaging, Baltimore, MD (United States); Iordachita, Iulian I. [Johns Hopkins University, Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Baltimore, MD (United States)

    2016-05-15

    Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation. (orig.)

  19. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  20. Differential protection of injured retinal ganglion cell dendrites by brimonidine.

    Science.gov (United States)

    Lindsey, James D; Duong-Polk, Karen X; Hammond, Dustin; Chindasub, Panida; Leung, Christopher Kai-Shun; Weinreb, Robert N

    2015-01-29

    To determine whether brimonidine protects against the retraction and loss of retinal ganglion cell (RGC) dendrites after optic nerve crush (ONC). Fluorescent RGCs of mice expressing yellow fluorescent protein (YFP) under the control of the Thy-1 promoter (Thy1-YFP mice) were imaged in vivo and assigned to one of six groups according to dendrite structure. The mice then received brimonidine every other day starting 2 days before, or 2 or 6 days after, unilateral ONC. Control animals received vehicle every other day starting 2 days before ONC. Control animals received vehicle every other day starting 2 days before ONC. Total dendrite length, dendrite branching complexity, and the time until complete loss of dendrites were assessed weekly for 4 weeks. Overall, brimonidine treatment significantly slowed the complete loss of RGC dendrites and significantly slowed the reduction of total dendrite length and branching complexity. Separate analysis of each RGC group showed brimonidine significantly delayed the time until complete loss of dendrites in four of the RGC groups. These delays generally were similar when treatment started either 2 days before or 2 days after ONC, but were smaller or absent when treatment started 6 days after ONC Protection against loss of total dendrite length and loss of branching complexity was observed in three of the RGC groups. In two of these RGC groups, protective effects persisted until the end of the study. Brimonidine protects many RGC types against dendrite retraction, loss of branching complexity, and complete loss of dendrites following ONC. However, the pattern and magnitude of this protection differs substantially among different RGC types. These results indicate that requirements for RGC-protective therapies following optic nerve injury may differ among RGC types. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  1. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    Science.gov (United States)

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Interaural comparison of spiral ganglion cell counts in profound deafness.

    Science.gov (United States)

    Seyyedi, Mohammad; Eddington, Donald K; Nadol, Joseph B

    2011-12-01

    This study is designed to measure the degree to which spiral ganglion cell (SGC) survival in the left and right ears is similar in profoundly hearing-impaired human patients with symmetric (right/left) etiology and sensitivity. This is of interest because a small difference between ears would imply that one ear could be used as a control ear in temporal bone studies evaluating the impact on SGC survival of a medical intervention in the other ear. Forty-two temporal bones from 21 individuals with bilaterally symmetric profound hearing impairment were studied. Both ears in each individual were impaired by the same etiology. Rosenthal's canal was reconstructed in two dimensions and segmental and total SGCs were counted. Correlation analysis and t-tests were used to compare segmental and total counts of left and right ears. Statistical power calculations illustrate how the results can be used to estimate the effect size (right/left difference in SGC count) that can be reliably identified as a function of sample size. Left counts (segmental and total) were significantly correlated with those in the right ears (p total count were respectively 0.64, 0.91, 0.93, 0.91 and 0.98. The hypothesis that mean segmental and total counts of right and left are the same could not be rejected by paired t-test. The variance in the between-ear difference across the temporal bones studied indicates that useful effect sizes can be reliably identified using subject numbers that are practical for temporal bone studies. For instance, there is 95% likelihood that an interaural difference in SGC count of approximately 1000 cells associated with a treatment/manipulation of one ear will be reliably detected in a bilaterally-symmetric profound hearing loss population of temporal bones from approximately 10 subjects. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Sphenopalatine ganglion stimulation for the treatment of cluster headache.

    Science.gov (United States)

    Láinez, Miguel J A; Puche, Miguel; Garcia, Ana; Gascón, Francisco

    2014-05-01

    Cluster headache is a severe, debilitating disorder with pain that ranks among the most severe known to humans. Patients with cluster headaches have few therapeutic options and further, 10-20% develop drug-resistant attacks. The often brief duration of cluster attacks makes abortive therapy a challenge, and preventive medications are almost always provided to patients, but the side effects of these preventive medications can be significant. The sphenopalatine ganglion (SPG) is believed to play a role in headache pain and cranial autonomic symptoms associated with cluster headache, which is a result of activation of the trigeminal-autonomic reflex. For over 100 years, the SPG has been a clinical target to treat primary headache disorders using pharmacologic and nonpharmacologic methods. Radiofrequency lesioning and nerve-resection therapies, while initially beneficial, are irreversible procedures, and the use of neurostimulation provides one method of interfacing with the neural pathways without causing permanent damage to neural tissue. SPG neurostimulation is both reversible and adjustable, and has recently been tested in both proof-of-concept work and in a randomized, sham-controlled trial for the treatment of cluster headache. A randomized, sham-controlled study of 32 patients was performed to evaluate further the use of SPG stimulation for the acute treatment of chronic cluster headache. Of the 32 patients, 28 completed the randomized experimental period. Overall, 68% of patients experienced an acute response, a frequency response, or both. In this study the majority of adverse events were related to the implantation procedure, which typically resolved or remained mild in nature at 3 months following the implant procedure. This and other studies highlight the promise of using SPG stimulation to treat the pain-associated cluster headache. SPG stimulation could be a safe and effective option for chronic cluster headache.

  4. INTRACARDIAC ATRIAL DEFIBRILLATION

    Science.gov (United States)

    Dosdall, Derek J.; Ideker, Raymond E.

    2007-01-01

    Intravascular ventricular defibrillation and intravascular atrial defibrillation have many similarities, some of which are as follows. An important factor influencing the outcome of the shock is the potential gradient field created throughout the ventricles or the atria by the shock. A minimum potential gradient is required throughout the ventricles and probably the atria to defibrillate. The value of this minimum potential gradient is affected by several factors including the duration, tilt, and number of phases of the waveform. For shock strengths near the defibrillation threshold, earliest activation following failed shocks arises in a region in which the potential gradient is low. The defibrillation threshold energy can be decreased by adding a third and even a fourth defibrillation electrode in regions where the shock potential gradient is low for the shock field created by the first two defibrillation electrodes and giving two sequential shocks, each through a different set of electrodes. However, the addition of more electrodes and sequential shocks complicates both the device and its implantation. Since patients are conscious when the atrial defibrillation shock is given, they experience pain during the shock, which is one of the main drawbacks of intravascular atrial defibrillation. Unfortunately, the pain threshold for defibrillation shocks is so low that a shock of less than 1 Joule is uncomfortable and is not much less painful than shocks several times stronger. Therefore, even though electrode configurations exist that have lower atrial defibrillation threshold energy requirements than the atrial defibrillation threshold with standard defibrillation electrode configurations used in implantable cardioverter/defibrillators (ICDs) for ventricular defibrillation, they are not clinically practical because their shocks are almost as painful as with the standard ICD electrode configurations and they would cause the ICD to be more complicated and to take longer and be more difficult to implant. PMID:17336885

  5. Ganglion cysts of the cruciate ligaments. MR findings with clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G.S.; Hsueh, C.-J.; Juan, C.J.; Chen, C.Y. [Tri-Service General Hospital and National Defense Medical Center, Taipei (China). Dept. of Radiology; Lee, C.H. [Tri-Service General Hospital and National Defense Medical Center, Taipei (China). Dept. of Orthopedic Surgery; Chan, W.P. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Radiology; Taylor, J.A.M. [New York Chiropractic College, Seneca Falls, NY (United States). Dept. of Diagnosis; Yu, J.S. [Ohio State Univ. Medical Center, Columbus, OH (United States). Dept. of Radiology

    2002-07-01

    Purpose: To evaluate the MR findings of ganglion cysts of the cruciate ligaments in correlation with clinical findings. Material and Methods:We reviewed 12 patients with ganglion cysts of the cruciate ligaments obtained from a medical record of 4153 consecutive patients referred for knee MR examinations. All patients presented with chronic knee pain and 4 had restriction of knee motion. The MR imaging findings of the cysts were evaluated and correlated with clinical manifestations. Results:Seven ganglion cysts were found in the posterior cruciate ligaments and 5 in the anterior cruciate ligaments. All cysts were lobulated (n=7) or fusiform (n=5) in shape, 1.8-4.5 cm in size, along the posterior surface in the proximal or distal end of the ligaments. Ten patients had arthroscopic resection or aspiration of their cysts, became symptom free and had no recurrence on follow-up MR examinations. Two cysts reduced in size spontaneously by conservative treatment. Conclusion:MR imaging can offer useful information in detection and diagnosis of patients with chronic knee pain due to ganglion cysts of the cruciate ligaments. The size and location of the ganglion cysts can attribute to the clinical manifestations.

  6. Extra-articular soft tissue ganglion cyst around the knee: focus on the associated findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jee-Young; Jung, Sun-Ah; Park, Young-Ha [Department of Radiology, St. Vincent' s Hospital, Catholic University of Korea, 93-6 Ji-dong, Paldal-ku, Suwon, 442-723, Kyounggi-do (Korea); Sung, Mi-Sook [Department of Radiology, Holy Family Hospital, Catholic University of Korea, Sosa-dong, Puchun (Korea); Kang, Yong-Koo [Department of Orthopedic Surgery, St. Vincent' s Hospital, Catholic University of Korea, 93-6 Ji-dong, Paldal-ku, Suwon, 442-723, Kyounggi-do (Korea)

    2004-01-01

    The aim of this study was to evaluate MR imaging findings of the associated findings in surrounding tissues of the extra-articular soft tissue ganglion cysts around the knee. We retrospectively reviewed MR images of 30 patients who had surgically confirmed extra-articular soft tissue ganglion cysts around the knee with focus on the associated findings in surrounding tissues, such as muscle, subcutaneous fat, bone, and nerve. The most common associated finding was the visualization of channel between ganglion cyst and the joint, which was demonstrated in 20 cases (continuous type in 12 cases and discontinuous type in 8 cases). Other associated findings were seen in 15 cases; pericystic edema (n=9), bony remodelling (n=3), and nerve involvement (n=3). The bony remodelling involved the proximal metaphysis of tibia in all 3 cases. Two patients with nerve involvement had deep peroneal nerve in subacute phase and one involved common peroneal nerve in chronic phase. The MR imaging is a useful imaging modality to evaluate the associated findings in extra-articular soft tissue ganglion cysts around the knee. The evaluation of these associated findings is helpful for the differentiation of ganglion cysts from other cystic lesions around the knee. (orig.)

  7. Endoscopically-assisted transmastoid approach to the geniculate ganglion and labyrinthine facial nerve.

    Science.gov (United States)

    Jufas, Nicholas; Bance, Manohar

    2017-08-22

    Endoscopic transcanal approaches to the facial nerve allow excellent exposure of the tympanic facial nerve. This approach becomes limited when access is required to the more proximal geniculate ganglion and labyrinthine portion of the facial nerve. The aim of this report was to determine the feasibility of a transmastoid endoscopically assisted approach to the geniculate ganglion and labyrinthine facial nerve. This is an endoscopic cadaveric dissection and video review at a university anatomical laboratory. A total of 12 endoscopic cadaveric dissections were performed. A cortical mastoidectomy and perilabyrinthine air cell removal was performed using an operating microscope. Beyond this, dissection was performed with an endoscope. In all dissections, an endoscopically assisted transmastoid approach allowed complete access to the geniculate ganglion, and at least 1.5 mm of the distal labyrinthine facial nerve. Further transcrusal drilling through the anterior crus of the superior semicircular canal allowed access to the entire labyrinthine facial nerve. The entire geniculate ganglion and labyrinthine facial nerve is difficult to access with microscopic techniques. Adding endoscopic visualization allows for complete visualization of the geniculate ganglion. Clinical reports will further strengthen these preliminary cadaveric results.

  8. Ganglion cysts of the cruciate ligaments: a series of 31 cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Mao Yongtao

    2012-08-01

    Full Text Available Abstract Background A case series for ganglion cyst of the cruciate ligament with MRI findings, clinical presentation, and management options along with review of literature is presented. Methods Of 8663 consecutive patients referred for knee MR imaging, 31 were diagnosed with ganglion cysts of the cruciate ligaments, including 21 men and 10 women of ages 12 to 73 years (mean: 37. A review of charts revealed that knee pain was the chief complaint in all cases. Arthroscopic debridement of ganglion cyst was performed in 11 patients. Results MRI proved to be a valuable tool in diagnosing and deciding management of these cases. All 11 patients who underwent arthroscopic treatment were symptom-free on a minimum follow-of one year. Conclusion Cyst formation associated with cruciate ligament of the knee is an infrequent cause of knee pain. MR imaging was important in confirming the cyst lesions and provided useful information prior to arthroscopy. Arthroscopic debridement of ganglion cyst produced excellent outcome without recurrence. This study describes the pertinent MRI and intraoperative findings of ganglion cyst.

  9. Hypothermia Protects and Prolongs the Tolerance Time of Retinal Ganglion Cells against Ischemia.

    Directory of Open Access Journals (Sweden)

    Maximilian Schultheiss

    Full Text Available Hypothermia has been shown to be neuroprotective in the therapy of ischemic stroke in the brain. To date no studies exist on the level of the inner retina and it is unclear if hypothermia would prolong the ischemic tolerance time of retinal ganglion cells, which are decisive in many ischemic retinopathies.Bovine eyes were enucleated and stored either at 21°C or 37°C for 100 or 340 minutes, respectively. Afterwards the globes were dissected, the retina was prepared and either the spontaneous ganglion cell responses were measured or the retina was incubated as an organotypic culture for additional 24 hours. After incubation the retina was either processed for histology (H&E and DAPI staining or real-time PCR (Thy-1 expression was performed.Hypothermia prolonged ganglion cell survival up to 340 minutes under ischemic conditions. In contrast to eyes kept at 37°C the eyes stored at 21°C still showed spontaneous ganglion cell spiking (56.8% versus 0%, a 5.8 fold higher Thy-1 mRNA expression (not significant, but a trend and a preserved retinal structure after 340 minutes of ischemia.Hypothermia protects retinal ganglion cells against ischemia and prolongs their ischemic tolerance time.

  10. Pseudotumoral ganglion cyst of a finger with unexpected remote origin: multimodality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleau, Loic; Malghem, Jacques; Omoumi, Patrick; Simoni, Paolo; Vande Berg, Bruno C.; Lecouvet, Frederic E. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Barbier, Olivier [Universite Catholique de Louvain, Department of Orthopaedic Surgery, Cliniques Universitaires Saint-Luc, Brussels (Belgium)

    2010-04-15

    The case of a ganglion cyst in the pulp of a fifth finger in an elderly woman initially mimicking a soft tissue tumor is described. Most typical sites of ganglion cysts are well documented at the wrist and in the vicinity of inter-phalangeal and metacarpo-phalangeal joints. In this case, ultrasonography (US) and magnetic resonance imaging (MRI) demonstrated a cystic lesion within the pulp of the fifth finger and indicated carpal osteoarthritis as the distant - and unexpected - origin of the lesion. The suggested diagnosis of ganglion cyst was confirmed by computed tomography arthrography (CT arthrography) of the wrist, which showed opacification of the cyst on delayed acquisitions after intra-articular injection into the mid-carpal joint, through the fifth flexor digitorum tendon sheath. The communications between the degenerative carpal joint, the radio-ulnar bursa, the fifth flexor digitorum tendon sheath and the pedicle of the cyst were well demonstrated. (orig.)

  11. Tibial nerve intraneural ganglion cyst in a 10-year-old boy

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Judy H. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati, OH (United States); Emery, Kathleen H.; Johnson, Neil [Cincinnati Children' s Hospital Medical Center, Division of Radiology, Cincinnati, OH (United States); Sorger, Joel [Cincinnati Children' s Hospital Medical Center, Division of Orthopedics, Cincinnati, OH (United States)

    2014-04-15

    Intraneural ganglion cysts are uncommon cystic lesions of peripheral nerves that are typically encountered in adults. In the lower extremity, the peroneal nerve is most frequently affected with involvement of the tibial nerve much less common. This article describes a tibial intraneural ganglion cyst in a 10-year-old boy. Although extremely rare, intraneural ganglion cysts of the tibial nerve should be considered when a nonenhancing cystic structure with intra-articular extension is identified along the course of the nerve. This report also details the unsuccessful attempt at percutaneous treatment with US-guided cyst aspiration and steroid injection, an option recently reported as a viable alternative to open surgical resection. (orig.)

  12. Ulnar Nerve Compression in the Cubital Tunnel by an Epineural Ganglion: A Case Report

    Science.gov (United States)

    Dimitriou, Christos G.

    2006-01-01

    Epineural ganglia are considered to be a usual cause of peripheral nerve compression. In this report, we present a rare case of ulnar nerve compression by an epineural ganglion in the cubital tunnel. A 28-year-old right-handed female secretary developed progressive pain, numbness, and weakness in her right elbow, forearm, and hand for 6 months. Atrophy of the adductor pollicis and the first dorsal interosseous muscles was apparent. Clinical examination revealed a cystic mass at the posterior side of the elbow. Magnetic resonance imaging identified a ganglion while electrophysiologic studies revealed a severe conduction block of the ulnar nerve at the elbow. During surgery a 2-cm diameter epineural ganglion was identified compressing the ulnar nerve and was excised using microsurgery techniques. Two months postoperatively, the clinical recovery of the patient was very satisfactory, although the postoperative electrophysiologic studies demonstrated a less dramatic improvement. PMID:18780042

  13. A quantitative study of ganglion cells in the German shepherd dog retina.

    Science.gov (United States)

    Gonzalez-Soriano, J; Rodriguez-Veiga, E; Martinez-Sainz, P; Mayayo-Vicente, S; Marin-Garcia, P

    1995-03-01

    As in the number of mammals, the most prominent feature of the ganglion-cell layer in the retina of the German shepherd dog is the sharp increase in the density of ganglion cells in the central area. There is an area of maximum density and also a 'cat-like' visual streak, located dorsal to the optic disc. The isodensity lines of ganglion-cell distribution is roughly concentric. Their values vary from 5300-13,000 cells/mm2 in the central area, with the cells densely packed, to 1000 cells/mm2 or less in the periphery, where the cells are sparsely distributed. There were some individual differences amongst the animals studied, although all of them were pure-bred dogs. This suggests that the configuration of the retina in the canine species is not only dependent on the breed itself but also on some other parameters such as phylogenetic heritage, environment, aptitude, lifestyle, or even training.

  14. Effects of lumbar sympathetic ganglion block for a patient with amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Kitoh, Takeshi; Kobayashi, Koichi; Ina, Hiroaki; Ofusa, Yukihiro; Otagiri, Tetsutaro; Tanaka, Satoshi; Ono, Koichi

    2006-01-01

    A 59-year-old man with amyotrophic lateral sclerosis (ALS) received lumbar epidural and sympathetic ganglion blocks to increase regional blood flow and improve his clinical symptoms. After a lumbar epidural block (0.5% mepivacaine), the skin temperature of his affected lower extremities rose by 7.0 degrees C and became close to that of the intact side, and the distance he was able to walk with his cane increased from 2 to 8 m. The clinical effects produced by the lumbar sympathetic ganglion block (99.5% alcohol) were sustained for approximately 8 weeks after the first block and for approximately 6 weeks after the second block. There were no particular adverse effects or complications associated with these nerve block procedures. Epidural and sympathetic ganglion blocks for an ALS patient, albeit their effects are of a transient nature, may improve related clinical symptoms, and were thought to play a contributory role in improving our patient's quality of life.

  15. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expressed...

  16. Ganglion block. When and how?; Ganglienblockade. Wann und wie?

    Energy Technology Data Exchange (ETDEWEB)

    Bale, R. [Medizinische Universitaet Innsbruck, Sektion fuer Mikroinvasive Therapie Universitaetsklinik fuer Radiologie, Innsbruck (Austria)

    2015-10-15

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [German] Anatomische und physiologische Kenntnisse ueber die Funktion von Schmerzbahnen fuehrten zur Entwicklung chirurgischer und perkutaner destruktiver Verfahren, um einzelne Komponenten afferenter Schmerzbahnen anzusteuern bzw. auszuschalten. Neben anderen nervalen Strukturen gelten Hinterstrangganglien und insbesondere die Ganglien des autonomen Nervensystems als Ziele fuer radiologische Interventionen. Das vegetative Nervensystem ist fuer die Organfunktion durch Regulation des Gefaesstonus und fuer die Leitung

  17. Tetrandrine protects mouse retinal ganglion cells from ischemic injury

    Directory of Open Access Journals (Sweden)

    Li WY

    2014-03-01

    Full Text Available Weiyi Li,1,2 Chen Yang,2 Jing Lu,2 Ping Huang,1 Colin J Barnstable,2 Chun Zhang,1 Samuel S Zhang2,3 1Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, People's Republic of China; 2Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA; 3Singapore Eye Research Institute, Singapore National Eye Centre, Singapore Abstract: This study aimed to determine the protective effects of tetrandrine (Tet on murine ischemia-injured retinal ganglion cells (RGCs. For this, we used serum deprivation cell model, glutamate and hydrogen peroxide (H2O2-induced RGC-5 cell death models, and staurosporine-differentiated neuron-like RGC-5 in vitro. We also investigated cell survival of purified primary-cultured RGCs treated with Tet. An in vivo retinal ischemia/reperfusion model was used to examine RGC survival after Tet administration 1 day before ischemia. We found that Tet affected RGC-5 survival in a dose- and time-dependent manner. Compared to dimethyl sulfoxide treatment, Tet increased the numbers of RGC-5 cells by 30% at 72 hours. After 48 hours, Tet protected staurosporine-induced RGC-5 cells from serum deprivation-induced cell death and significantly increased the relative number of cells cultured with 1 mM H2O2 (P<0.01. Several concentrations of Tet significantly prevented 25-mM-glutamate-induced cell death in a dose-dependent manner. Tet also increased primary RGC survival after 72 and 96 hours. Tet administration (10 µM, 2 µL 1 day before retinal ischemia showed RGC layer loss (greater survival, which was less than those in groups with phosphate-buffered saline intravitreal injection plus ischemia in the central (P=0.005, n=6, middle (P=0.018, n=6, and peripheral (P=0.017, n=6 parts of the retina. Thus, Tet conferred protective effects on serum deprivation models of staurosporine-differentiated neuron-like RGC-5 cells and primary cultured murine RGCs. Furthermore, Tet showed

  18. Ganglion cervicale superius: eine anatomische Besonderheit. Variationen der A. carotis interna als Risiko einer akzidentellen intravasalen Injektion?

    NARCIS (Netherlands)

    Wirz, S.; Wartenberg, H. C.; Nadstawek, J.; Kinsky, I.

    2008-01-01

    A variation of the cranial carotid artery is demonstrated in an anatomical specimen revealing possible complications of ganglionic local opioid analgesia at the superior cervical ganglion. Located in the area of the puncture site, a loop of the aberrant carotid artery adheres closely to the

  19. Development of an Electrophysiology (EP)-Enabled Intracardiac Ultrasound Catheter Integrated With NavX 3-Dimensional Electrofield Mapping for Guiding Cardiac EP Interventions

    Science.gov (United States)

    Li, Xiao Kui; Pemberton, James; Thomenius, Kai; Dentinger, Aaron; Lowe, Robert I.; Ashraf, Muhammad; Shung, K. Kirk; Chia, Raymond; Stephens, Douglas N.; O'Donnell, Matthew; Mahajan, Aman; Balaji, Seshadri; Shivkumar, Kalyanam; Sahn, David J.

    2015-01-01

    Objective We have developed an integrated high-resolution intracardiac echocardiography (ICE) catheter for electrophysiology (EP) testing, which can be coregistered in 3-dimensional space with EP testing and ablation catheters using electrofield sensing. Methods Twelve open-chest pigs (34–55 kg) and 3 closed-chest pigs were studied. After introduction from the jugular or femoral venous locations, the 9F side-looking, highly steerable (0°–180°), 64-element array catheters could be manipulated easily throughout the right side of the heart. Multisite cardiac pacing was performed for assessing left ventricular (LV) synchrony using tissue Doppler methods. Also, in the open-chest pigs, right atrial (RA) and right ventricular (RV) ablations were performed with a separate radio frequency catheter under fluoroscopic guidance and visualized with ICE to characterize the changes. In the 3 closed-chest pigs, electrofield NavX 3-dimensional coregistration (St Jude Medical Corp, Minneapolis, MN) allowed us to test whether this additional feature could shorten the time necessary to perform 4 targeted ablations in each animal while imaging the ablation catheter and the adjacent region by ICE. Results Intracardiac anatomy, tricuspid, aortic, pulmonary, and mitral valve function, and pulmonary vein flow were all imaged reproducibly from scanning locations in the RA or RV in all animals, along with assessment of cardiac motion and the effects of multisite pacing. Three-dimensional electrofield displays detailed the spatial relationship between the ICE catheter and ablation catheters such that the time to visualize and ablate 4 sites in each of the 3 closed-chest animals was reduced. Conclusions This new technology is a first step in the integration of ICE with EP procedures. PMID:17957051

  20. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.

    Science.gov (United States)

    Zhang, Yi; Yue, Jing; Ai, Midan; Ji, Zhigang; Liu, Zhiguo; Cao, Xuehong; Li, Li

    2014-07-01

    We used optogenetic techniques in spinal cord and dorsal root ganglion (DRG) neuron studies. This study investigated changes in channelrhodopsin-2 (ChR2) expression in the spinal cord and DRG neurons using optogenetic techniques. The results show the possibility of using optogenetics to treat neuropathic pain. Previous studies have shown that activated ChR2 induces an increase in DRG neuron action potential. Western blot analysis was used to measure ChR2 protein levels in the spinal cord and DRG neurons or rats intrathecally injected with ChR2 lentivirus. Electrophysiology recording was used to detect differences in action potential levels in the spinal cord and calcium channel currents in the DRG neurons. Our studies showed that ChR2 expression increased the action potential in the spinal cord and increased calcium channel currents in DRG neurons. We successfully expressed the ChR2 protein in the spinal cord and DRG neurons. We also found that ChR2 increased the action potential in the spinal cord and activated the calcium channel in DRG neurons. These findings support the research possibilities of using optogenetic studies to improve treatment for neuropathic pain. N/A.

  1. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Jan Christoph Koch

    2014-09-01

    Full Text Available The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV to specifically downregulate RhoA via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC grown on the inhibitory substrate CSPG as well as neurite regeneration of primary midbrain neurons after scratch lesion. In the rat optic nerve crush model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGCs transduced with AAV expressing RhoA-shRNA was substantially increased at two weeks after optic nerve axotomy.Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK2, the specific effects of RhoA downregulation shown here were more pronounced in regard to promoting RGC survival while the stimulatory effects on neurite outgrowth were rather moderate. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush.

  2. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells.

    Science.gov (United States)

    Koch, Jan Christoph; Tönges, Lars; Michel, Uwe; Bähr, Mathias; Lingor, Paul

    2014-01-01

    The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush.

  3. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    Directory of Open Access Journals (Sweden)

    Cécile eTravo

    2012-06-01

    Full Text Available In a previous study (Brugeaud et al., 2007, we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fundamental trait of altered vestibular endorgans and to decipher the cellular mechanisms that support such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa’s ganglion from young and adult rodents. We demonstrate that under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. This reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.

  4. Glial cell line-derived neurotrophic factor modulates the excitability of nociceptive trigeminal ganglion neurons via a paracrine mechanism following inflammation.

    Science.gov (United States)

    Takeda, Mamoru; Takahashi, Masayuki; Hara, Norifumi; Matsumoto, Shigeji

    2013-02-01

    Previous our report indicated that acute application of glial cell line-derived neurotrophic factor (GDNF) enhances the neuronal excitability of adult rat small-diameter trigeminal ganglion (TRG) neurons, which innervate the facial skin in the absence of neuropathic and inflammatory conditions. This study investigated whether under in vivo conditions, GDNF modulates the excitability of nociceptive Aδ-TRG neurons innervating the facial skin via a paracrine mechanism following inflammation. We used extracellular electrophysiological recording with multibarrel-electrodes in this study. Spontaneous Aδ-TRG neuronal activity was induced in control rats after iontophoretic application of GDNF into the trigeminal ganglia (TRGs). Noxious and non-noxious mechanical stimuli evoked Aδ-TRG neuronal firing rate were significantly increased by iontophoretic application of GDNF. The mean mechanical threshold of nociceptive TRG neurons was significantly decreased by GDNF application. The increased discharge frequency and decreased mechanical threshold induced by GDNF were antagonized by application of the protein tyrosine kinase inhibitor, K252b. The number of Aδ-TRG neurons with spontaneous firings and their firing rates in rats with inflammation induced by Complete Freund's Adjuvant were significantly higher than control rats. The firing rates of Aδ-TRG spontaneous neuronal activity were significantly decreased by iontophoretic application of K252b in inflamed rats. K252b also inhibited Aδ-TRG neuron activity evoked by mechanical stimulation in inflamed rats. These results suggest that in vivo GDNF enhances the excitability of nociceptive Aδ-TRG neurons via a paracrine mechanism within TRGs following inflammation. GDNF paracrine mechanism could be important as a therapeutic target for trigeminal inflammatory hyperalgesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Superficial peroneal nerve paresis in a dancer caused by a midfoot ganglion: case report.

    Science.gov (United States)

    Martin, Darrell; Dowling, Jamie; Rowan, Fiachra; Casey, Mary; O'Grady, Paul

    2015-06-01

    Ganglion cysts are common benign masses, usually occurring in the hands and feet. This report describes the case of a young female Irish dancer who presented with paresthesia of her foot due to a ganglion in near proximity to the superficial peroneal nerve. Midfoot ganglia in young girls engaged in Irish dance can limit their ability to participate. This pathology requires further epidemiological studies to investigate its prevalence. In the event of failed conservative management, surgical intervention to excise the cyst and decompress the nerve is an effective treatment to facilitate return to dancing.

  6. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    Science.gov (United States)

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  7. MR imaging findings of neurosarcoidosis of the gasserian ganglion: an unusual presentation

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Mercedes; Iglesias, Alfonso; Vila, Oscar; Brasa, Jose [Unidad de Resonancia Magnetica (MEDTEC), Hospital Xeral-Cies, 36204 Vigo (Spain); Conde, Cesareo [Servicio de Neurocirugia, Hospital Xeral-Cies, 36204 Vigo (Spain)

    2002-11-01

    We report the MR imaging findings of an unusual case of neurosarcoidosis of the gasserian ganglion associated with trigeminal neuralgia. No other neurological or extraneurological localization was found. Magnetic resonance imaging demonstrated a mass in the Meckel's diverticulum that was isointense on T1-weighted images and hypointense on T2-weighted images. Gadolinium-enhanced MR imaging showed heterogeneous enhancement. Although rare, sarcoid infiltration of the gasserian ganglion must be considered in the differential diagnosis of an isolated mass in this localization in patients with trigeminal neuralgia. (orig.)

  8. One is the loneliest number: a review of the ganglion impar and its relation to pelvic pain syndromes.

    Science.gov (United States)

    Walters, Andrew; Muhleman, Mitchel; Osiro, Stephen; Bubb, Kathleen; Snosek, Michael; Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios

    2013-10-01

    The ganglion impar is often overlooked as a component of the sympathetic nervous system. Despite its obscurity, this ganglion provides a pathway for neurons by accommodating postganglionic sympathetics, visceral afferents, and somatic fibers traveling to and from the pelvis. Its classic anatomic location as described in the 1720's held up until recently, with the current literature now revealing a great deal of anatomical variability. This variation becomes important when the ganglion impar is used as a treatment target for patients with chronic pelvic pain - its primary clinical implication. The aim of this review was to provide a better understanding of the anatomy of ganglion impar, accounting for variation in size, shape, and location. In addition, the clinical importance and treatment modalities associated with the ganglion impar are outlined. Copyright © 2013 Wiley Periodicals, Inc.

  9. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells.

    Science.gov (United States)

    Raymond, Iona D; Pool, Angela L; Vila, Alejandro; Brecha, Nicholas C

    2009-11-01

    A DBA/2J (D2) transgenic mouse line with cyan fluorescent protein (CFP) reporter expression in ganglion cells was developed for the analysis of ganglion cells during progressive glaucoma. The Thy1-CFP D2 (CFP-D2) line was created by congenically breeding the D2 line, which develops pigmentary glaucoma, and the Thy1-CFP line, which expresses CFP in ganglion cells. Microsatellite marker analysis of CFP-D2 progeny verified the genetic inclusion of the D2 isa and ipd loci. Specific mutations within these loci lead to dysfunctional melanosomal proteins and glaucomatous phenotype in D2 mice. Polymerase chain reaction analysis confirmed the inclusion of the Thy1-CFP transgene. CFP-fluorescent ganglion cells, 6-20 microm in diameter, were distributed in all retinal regions, CFP processes were throughout the inner plexiform layer, and CFP-fluorescent axons were in the fiber layer and optic nerve head. Immunohistochemistry with antibodies to ganglion cell markers NF-L, NeuN, Brn3a, and SMI32 was used to confirm CFP expression in ganglion cells. Immunohistochemistry with antibodies to amacrine cell markers HPC-1 and ChAT was used to confirm weak CFP expression in cholinergic amacrine cells. CFP-D2 mice developed a glaucomatous phenotype, including iris disease, ganglion cell loss, attrition of the fiber layer, and elevated intraocular pressure. A CFP-D2 transgenic line with CFP-expressing ganglion cells was developed, which has (1) a predominantly D2 genetic background, (2) CFP-expressing ganglion cells, and (3) age-related progressive glaucoma. This line will be of value for experimental studies investigating ganglion cells and their axons in vivo and in vitro during the progressive development of glaucoma.

  10. Oxytocin innervation of spinal preganglionic neurons projecting to the superior cervical ganglion in the rat

    NARCIS (Netherlands)

    Teclemariam-Mesbah, R.; Kalsbeek, A.; Buijs, R. M.; Pévet, P.

    1997-01-01

    The paraventricular nucleus of the hypothalamus is a major integrative nucleus for relaying information from the suprachiasmatic nucleus to the autonomic system. The precise pathway by which this information can influence autonomic functions, such as melatonin synthesis in the pineal gland, is not

  11. Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons

    NARCIS (Netherlands)

    Lirk, Philipp; Poroli, Mark; Rigaud, Marcel; Fuchs, Andreas; Fillip, Patrick; Huang, Chun-Yuan; Ljubkovic, Marko; Sapunar, Damir; Hogan, Quinn

    2008-01-01

    Chronic neuropathic pain resulting from neuronal damage remains difficult to treat, in part, because of incomplete understanding of underlying cellular mechanisms. We have previously shown that inward Ca2+ flux (I(Ca)) across the sensory neuron plasmalemma is decreased in a rodent model of chronic

  12. INCREASED EXPRESSION OF RECEPTORS FOR OREXIGENIC FACTORS IN NODOSE GANGLION OF DIET-INDUCED OBESE RATS

    Science.gov (United States)

    The vagal afferent pathway is important in short-term regulation of food intake and decreased activation of this neural pathway with long-term ingestion of a high fat diet may contribute to hyperphagic weight gain. We test the hypothesis that expression of genes encoding receptors for orexigenic fac...

  13. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets

    DEFF Research Database (Denmark)

    Steinberg, Anna; Frederiksen, Simona D.; Blixt, Frank W

    2016-01-01

    BACKGROUND: Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating fr...

  14. Is FDG-PET a useful tool in clinical practice for diagnosing corticobasal ganglionic degeneration?

    NARCIS (Netherlands)

    Coulier, IMF; de Vries, JJ; Leenders, KL

    2003-01-01

    Seven consecutive patients were suspected to suffer from corticobasal ganglionic degeneration (CBGD) and were studied with F-[18]-fluorodeoxyglucose (FDG) PET imaging of the brain. At the time of their FDG-PET scan, 4 of 7 patients fulfilled the clinical criteria of CBGD as proposed by Lang and

  15. Stellate-ganglion block as a treatment for severe postmenopausal flushing

    NARCIS (Netherlands)

    Gastel, P. van; Kallewaard, J.W.; Zanden, M. van der; Boer, H. de

    2013-01-01

    OBJECTIVE: Hormone replacement therapy is the most effective treatment for postmenopausal flushing. Unfortunately, its use is often contraindicated. A limited amount of uncontrolled data suggests that stellate-ganglion block (SGB) may be useful for the treatment of hot flushes. In the present study,

  16. Retinal ganglion cell topography in juvenile Pacific bluefin tuna Thunnus orientalis (Temminck and Schlegel).

    Science.gov (United States)

    Miyazaki, Taeko

    2014-02-01

    The retinal ganglion cell distribution, which is known to reflect fish feeding behavior, was investigated in juvenile Pacific bluefin tuna Thunnus orientalis. During the course of examination, regularly arrayed cells with a distinctive larger soma, which may be regarded as motion-sensitive cells, were found. The topographical distribution of ordinary-sized ganglion cells, which is usually utilized to estimate fish visual axis and/or visual field characteristics, showed that the highest-density area, termed the area centralis, was localized in the ventral-temporal retina. The retinal topography of ordinary-sized ganglion cells seems to reflect the bluefin tuna's foraging behavior; while cruising, cells in the area centralis may signal potential prey, such as small schooling pelagic fishes or squids, that are present in the upward-forward direction. Judging from morphological characteristics, the large ganglion cells localized in the small temporal retinal area seem to be equivalent to physiologically categorized off-center Y-cells of cat, which are stimulated by a transient dark spot in a bright visual field. It was inferred that presumed large off-center cells in the temporal retina detect movements of agile prey animals escaping from bluefin tuna as a silhouette against environmental light.

  17. Post-Ganglionic Horner’s Syndrome: An Unusual Presentation of Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Lucilene Silva Ruiz e Resende

    2012-02-01

    Full Text Available In this paper, we present the rare case of a patient with cervical lymphadenopathy diagnosed as a T-cell-rich B-cell non-Hodgkin lymphoma that manifested Horner’s syndrome due to a post-ganglionic sympathetic neuron lesion caused by the tumor.

  18. Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1

    DEFF Research Database (Denmark)

    Schoenen, Jean; Jensen, Rigmor Højland; Lantéri-Minet, Michel

    2013-01-01

    BackgroundThe pain and autonomic symptoms of cluster headache (CH) result from activation of the trigeminal parasympathetic reflex, mediated through the sphenopalatine ganglion (SPG). We investigated the safety and efficacy of on-demand SPG stimulation for chronic CH (CCH).MethodsA multicenter, m...

  19. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    Science.gov (United States)

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  20. The clinico-anatomic explanation for tibial intraneural ganglion cysts arising from the superior tibiofibular joint.

    Science.gov (United States)

    Spinner, Robert J; Mokhtarzadeh, Ali; Schiefer, Terry K; Krishnan, Kartik G; Kliot, Michel; Amrami, Kimberly K

    2007-04-01

    To demonstrate that tibial intraneural ganglia in the popliteal fossa are derived from the posterior portion of the superior tibiofibular joint, in a mechanism similar to that of peroneal intraneural ganglia, which have recently been shown to arise from the anterior portion of the same joint. Retrospective clinical study and prospective anatomic study. The clinical records and MRI findings of three patients with tibial intraneural ganglion cysts were analyzed and compared with those of one patient with a tibial extraneural ganglion cyst and one volunteer. Seven cadaveric limbs were dissected to define the articular anatomy of the posterior aspect of the superior tibiofibular joint. The condition of the three patients with intraneural ganglia recurred because their joint connections were not identified initially. In two patients there was no cyst recurrence when the joint connection was treated at revision surgery; the third patient did not wish to undergo additional surgery. The one patient with an extraneural ganglion had the joint connection identified at initial assessment and had successful surgery addressing the cyst and the joint connection. Retrospective evaluation of the tibial intraneural ganglion cysts revealed stereotypic features, which allowed their accurate diagnosis and distinction from extraneural cases. The intraneural cysts had tubular (rather than globular) appearances. They derived from the postero-inferior portion of the superior tibiofibular joint and followed the expected course of the articular branch on the posterior surface of the popliteus muscle. The cysts then extended intra-epineurially into the parent tibial nerves, where they contained displaced nerve fascicles. The extraneural cyst extrinsically compressed the tibial nerve but did not directly involve it. All cadaveric specimens demonstrated a small single articular branch, which derived from the tibial nerve to the popliteus. The branch coursed obliquely across the posterior

  1. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells

    OpenAIRE

    Raymond, Iona D.; POOL, ANGELA L.; Vila, Alejandro; Nicholas C Brecha

    2009-01-01

    A DBA/2J (D2) transgenic mouse line with cyan fluorescent protein (CFP) reporter expression in ganglion cells was developed for the analysis of ganglion cells during progressive glaucoma. The Thy1-CFP D2 (CFP-D2) line was created by congenically breeding the D2 line, which develops pigmentary glaucoma, and the Thy1-CFP line, which expresses CFP in ganglion cells. Microsatellite marker analysis of CFP-D2 progeny verified the genetic inclusion of the D2 isa and ipd loci. Specific mutations with...

  2. Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis

    NARCIS (Netherlands)

    Giger, Roman J; Wolfer, D P; De Wit, G M; Verhaagen, J

    1996-01-01

    Semaphorin III/collapsin-1 (semaIII/coll-1) is a chemorepellent that exhibits a repulsive effect on growth cones of dorsal root ganglion neurons. To identify structures that express semaIII/coll-1 in developing mammals, we cloned the rat homologue and performed in situ hybridization on embryonic,

  3. Resección guiada por ecografía de gangliones dorsales de muñeca. [Ultrasound-Guided resection of dorsal wrist ganglion

    Directory of Open Access Journals (Sweden)

    Damián G. Bustos

    2015-01-01

    Full Text Available In­tro­duc­ción: el objetivo de este trabajo fue evaluar prospectivamente los resultados del drenaje de gangliones dorsales de muñeca y la ruptura de su pedículo guiada por ecografía, y determinar su tasa de recidiva, las complicaciones y los resultados subjetivos. Materiales ­y ­Métodos: se evaluaron prospectivamente 32 pacientes con gangliones dorsales sintomáticos de muñeca tratados mediante punción guiada por ecografía, aspiración del contenido y ruptura del pedículo con un trocar, entre enero de 2010 y junio de 2011. La edad de los pacientes promedió 31 años. Todos realizaban tareas administrativas, y retornaron a sus tareas habituales al día siguiente del procedimiento. El puntaje DASH previo al procedimiento fue, en promedio, de 2,90. El dolor previo al procedimiento promedió 7,75 puntos. Se separó a los pacientes en dos grupos, gangliones primarios (grupo 1: 19 pacientes y gangliones recurrentes con cirugía previa (grupo 2: 13 pacientes. Resultados: once pacientes tuvieron recidivas (34,3% al año de seguimiento: 5 del grupo 1 (26,31% y 6 del grupo 2 (46,1%. El puntaje DASH a los 6 meses promedió 1,91 (rango 1,02-3,98. El dolor a los 6 meses promedió 1,53 puntos (rango 0-4. Ningún paciente presentó complicaciones neurológicas o tendinosas, infección o hematomas (seguimiento promedio 6 meses. Conclusión:­ la técnica bajo control ecográfico es mínimamente invasiva con una tasa de recurrencia aceptable (26% en pacientes sin antecedente quirúrgico, considerando que plantea menores riesgos que los procedimientos quirúrgicos al igual que un menor costo y bajo costo laboral.

  4. Three dimensional-magnetic resonance imaging of dorsal root. Ganglion in lumbosacral disease

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Gaku [Tokyo Medical Coll. (Japan)

    1997-07-01

    Magnetic resonance imaging (MRI) is commonly used for the diagnosis of lumbosacral disease. However, there are certain pitfalls in the use of this imaging technique. In particular, MRI is inadequate for accurate diagnosis of lateral spinal root lesions. Furthermore, it is also difficult to show the root ganglion of both sides on a plane by classical 2D-MRI. Moreover 2D-coronal views do not show several roots in one image because each lumbosacral nerve root is on a different plane. We have developed a new method of three-dimensional MRI (3D-MRI) which enables a stereoscopic view of the spinal cord and both sides of spinal nerve roots in one image. We evaluated three techniques of 3D-MRI, including rapid imaging spin echo (RISE), small tip angle gradient echo (STAGE) and short TI inversion recovery (STIR), in 30 patients with lumbar disc herniation. In a separate anatomical study lumbosacral nerve roots and dorsal root ganglion (DRG) were investigated by 3D-MRI in 20 normal subjects. In a pathophysiological study the use of 3D-MRI defects the signal changes following damage to the spinal nerve roots or ganglion in 70 patients. Our results indicated that the STIR method is the best for identifying abnormalities of the spinal cord, roots and intervertebral disc. It was possible to image the lateral part of damaged nerve roots. The S1 angulations and length were significantly smaller than those of others (p<0.05). The S1 DRG was oval and was the largest. With regard to signal changes in damaged root ganglion, a good correlation between root compression and root edema was detected by basic experiments. We are currently examining the relationship between the damaged root ganglion, pain and sensory disturbance. This study showed that the dorsal root ganglion plays an important role in sensory control of radiculopathy. In conclusion, our new data show a close relationship between sensory loss, pain and DRG finding on 3D-MRI. (author)

  5. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

    Science.gov (United States)

    Zuo, Wen-Qi; Hu, Yu-Juan; Yang, Yang; Zhao, Xue-Yan; Zhang, Yuan-Yuan; Kong, Wen; Kong, Wei-Jia

    2015-05-29

    With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but

  6. Intracerebroventricular metformin attenuates salt-induced hypertension in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Petersen, J S; Andersen, D; Muntzel, M S

    2001-01-01

    , the decrease in MAP in response to ganglionic blockade with hexamethonium, 30 mg/kg iv, was determined once weekly. In vehicle treated rats, MAP increased by 27+/-4 mm Hg, whereas in rats treated with a low dose of metformin (25 microg/day), MAP increased only by 7+/-3 mm Hg (P hypotensive response...... post mortem. Fast-Fourier transformation of MAP revealed increased variability within the 0.15 to 0.6 Hz frequency range in rats treated with neurotoxic doses of metformin, suggesting impaired sympathetic control of BP in these animals. In conclusion, long-term icv infusion with apparently nontoxic...... doses of metformin attenuates hypertension and decreases the hypotensive responses to ganglionic blockade in SHR, suggesting a centrally elicited sympathoinhibitory action....

  7. Enlarged superior cervical sympathetic ganglion mimicking a metastatic lymph node in the retropharyngeal space: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Jin Na; Kim, Se Hoon; Choi, Eun Chang [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The superior cervical sympathetic ganglion, the largest and most cranial of the three cervical sympathetic ganglia, transfers sympathetic signals to specific targets on the head and neck. This ganglion is located just lateral to the retropharyngeal space along the medial margin of the carotid sheath. Located thus, an enlarged superior cervical sympathetic ganglion can mimic a metastatic lymph node in the retropharyngeal space of the suprahyoid neck in head and neck cancer patients. However, this is often disregarded by radiologists due to lack of interest in its anatomic location. We present a case of an enlarged superior cervical sympathetic ganglion mimicking a retropharyngeal metastatic lymph node in a 42-year-old man with oral tongue cancer.

  8. Studies of Scleral Biomechanical Behavior Related to Susceptibility for Retinal Ganglion Cell Loss in Experimental Mouse Glaucoma

    OpenAIRE

    Nguyen, Cathy; Cone, Frances E.; Nguyen, Thao D.; Coudrillier, Baptiste; Pease, Mary E.; Steinhart, Matthew R.; Ericka N Oglesby; Joan L Jefferys; Quigley, Harry A.

    2013-01-01

    With chronic experimental glaucoma, B6 mice are less resistant to ganglion cell loss than CD1 mice. The two strains are shown to differ in the mechanical properties of the sclera and its change in thickness with glaucoma.

  9. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury.

    Science.gov (United States)

    Chen, Xi; Pang, Rui-Ping; Shen, Kai-Feng; Zimmermann, Manfred; Xin, Wen-Jun; Li, Yong-Yong; Liu, Xian-Guo

    2011-02-01

    The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Science.gov (United States)

    Wang, Junming; Ma, Hai-Ying; Krishnamoorthy, Raghu R; Yorio, Thomas; He, Shaoqing

    2017-01-01

    c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby

  11. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Junming Wang

    Full Text Available c-Jun, c-Jun N-terminal kinase(JNK and endothelin B (ETB receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP. In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE. The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression

  12. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  13. Single-Cell Resolution Imaging of Retinal Ganglion Cell Apoptosis In Vivo Using a Cell-Penetrating Caspase-Activatable Peptide Probe

    Science.gov (United States)

    Qiu, Xudong; Johnson, James R.; Wilson, Bradley S.; Gammon, Seth T.; Piwnica-Worms, David; Barnett, Edward M.

    2014-01-01

    Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging

  14. Infective endocarditis with left to right intracardiac fistula due to Streptococcus anginosus - a rare complication caused by an even rarer bacterium

    Directory of Open Access Journals (Sweden)

    Robert Forster

    2013-12-01

    Full Text Available Although infective endocarditis (IE has been described in reports dating from the Renaissance, the diagnosis still challenges and the outcome often surprises. In the course of time, diagnostic criteria have been updated and validated to reduce misdiagnosis. Some risk factors and epidemiology have shown dynamic changes since degenerative valvular disease became more predominant in developed countries, and the mean age of the affected population increased. Despite streptococci have been being well known as etiologic agents, some groups, although rare, have been increasingly reported (e.g., Streptococcus milleri. Intracardiac complications of IE are common and have a worse prognosis, frequently requiring surgical treatment. We report a case of a middle-aged diabetic man who presented with prolonged fever, weight loss, and ultimately severe dyspnea. IE was diagnosed based on a new valvular regurgitation murmur, a positive blood culture for Streptococcus anginosus, an echocardiographic finding of an aortic valve vegetation, fever, and pulmonary thromboembolism. Despite an appropriate antibiotic regimen, the patient died. Autopsy findings showed vegetation attached to a bicuspid aortic valve with an associated septal abscess and left ventricle and aortic root fistula connecting with the pulmonary artery. A large thrombus was adherent to the pulmonary artery trunk and a pulmonary septic thromboemboli were also identified.

  15. Reply to the commentary by Hillman et al. on: "Vascular distensibilities have minor effects on intracardiac shunt patterns in reptiles" by Filogonio et al. (2017).

    Science.gov (United States)

    Filogonio, Renato; Costa Leite, Cléo Alcantara; Wang, Tobias

    2017-06-01

    Our meta-analysis (Filogonio et al., 2017) on central vascular blood flows in a snake (Crotalus durissus) and a turtle (Trachemys scripta) was motivated by Hillman et al.'s (2014) analysis on amphibians to investigate whether cardiac shunt patterns depend on cardiac output and vascular distensibilities. In contrast to Hillman et al. (2014), we did not uncover a general trend that supports the notion that cardiac shunts in reptiles are dictated by vascular distensibilities. In addition to our response to the criticism raised by Hillman et al. (2017), we suggest that future experiments should consider (i) both compliance and distensibility of the major arteries; (ii) differences in volume of the systemic and pulmonary circuits to account for the accommodation of stroke volume; and (iii) an evaluation of the pulsatile pressures in both the ventricle and the major arteries to consider the timing of the ventricular ejection provided by opening of the ventricular valves. We hope these suggestions may help future clarification of the relative importance of passive arterial mechanical properties compared to autonomic regulation in determining intracardiac shunts in both amphibians and reptiles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Progressive decrease in amplitude of intracardiac ventricular electrogram and higher left ventricular ejection fraction are associated with conductors' externalization in Riata leads.

    Science.gov (United States)

    Kubala, Maciej; Traullé, Sarah; Leborgne, Laurent; Hermida, Jean-Sylvain

    2013-08-01

    Increased rates of structural abnormalities including externalized conductors have been reported in the Riata family of implantable cardioverter-defibrillator leads (St Jude Medical). Little is known about their reliability and the time lag for emergence of functional or structural abnormalities. Thirty-six patients who received small-caliber leads of the Riata family and who completed face-profile flouroscopies, repeated at every 6 months were included. We assessed the prevalence of conductors' externalization and its relation to abnormal electrical parameters or adverse events. Thirty-six patients, mean age = 64 ± 10 years, with at least 7-month completed fluoroscopy follow-up were included in the analysis. Externalized conductors were identified in 12 (33%) patients after a 53-month (13-114) mean delay. A higher left ventricular ejection fraction (LVEF): 47 ± 13 vs. 33 ± 12%, P = 0.04, and a progressive decrease (≥30% of the initial value) in amplitude of ventricular electrogram 9/12 (75%) vs. 4/24 (17%), P = 0.03 were independently associated with the fluoroscopic failures. Detection of the conductors' externalization was preceded by an electrical lead abnormality in 10 (83%) patients. Repeated face-profile fluoroscopies allowed detection of conductors' externalization in 33% of patients implanted with Riata leads. Better LVEF and a progressive decrease in amplitude of intracardiac ventricular electrogram were independently associated with externalized conductors. The structural abnormality was preceded by an electrical lead dysfunction 83% of patients.

  17. Abrasions of the outer silicone insulation of endocardial leads in their intracardiac part: a new mechanism of lead-dependent endocarditis.

    Science.gov (United States)

    Kolodzinska, Kołodzińska; Kutarski, Andrzej; Grabowski, Marcin; Jarzyna, Ingeborga; Małecka, Barbara; Opolski, Grzegorz

    2012-06-01

    The aim of the study was to identify and characterize the morphology of abrasions and to establish the frequency of the phenomena and their association with infective endocarditis (IE). A total of 212 endocardial leads removed from 141 consecutive patients-due to IE (32), pocket infection (37), and non-infective indications (72)-were analysed with a stereomicroscope and a scanning electron microscope. The presence of abrasions in the intracardiac part (IP) of the atrial (P leads, regardless of its advancement, was strongly associated with IE. There were associations between abrasions in the IP of the ventricular (P leads and two or more implanted endocardial leads. In atrial leads, there was an association between the presence of any abrasion and passive fixation (P leads. The abrasion of the outer insulation in the IP of silicone leads was significant regardless of the level of degradation and is associated with IE. The abrasions observed in the IP of the leads were similar to those observed in the intravenous and pocket parts, with predomination of the third level of degradation. There was an association between the presence of any abrasion in the IP of the leads and the number of leads, and in the case of atrial leads between abrasions and fixation type, dwell time, and number of procedures until explantation.

  18. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  19. Chronic Compression of the Dorsal Root Ganglion Enhances Mechanically Evoked Pain Behavior and the Activity of Cutaneous Nociceptors in Mice.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG. Previous studies discovered that a chronic compression of the DRG (CCD induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD. After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA, while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN. We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli.

  20. Staining of fluorogold-prelabeled retinal ganglion cells with calcein-AM: A new method for assessing cell vitality.

    Science.gov (United States)

    Grieshaber, Philippe; Lagrèze, Wolf Alexander; Noack, Christian; Boehringer, Daniel; Biermann, Julia

    2010-10-15

    The number of retinal ganglion cells (RGC) is often used as an outcome measure in neuroprotection. The gold standard for staining RGC is retrograde labeling, e.g. with fluorogold (FG). However, this method alone does not permit to differentiate between viable and dead cells, because dying cells only avoid being counted once they have undergone complete microglial-phagocytosis. To differentiate between viable and dead but still existent RGC, we additionally stained FG-labeled RGC with calcein-acetoxymethylester (CAM). The left optic nerves of rats were crushed 6 days after stereotactical injection of FG into both superior colliculi. The right eyes served as controls. Retinal whole mounts were prepared 2, 5, 8 or 11 days after optic nerve crush (ONC), and incubated for 30min in culture media containing 0.01% CAM. RGC densities were determined in defined areas at different eccentricities under a fluorescence microscope using the appropriate filters. Twice-positive RGC were counted after merging both filters. The loss of RGC induced by ONC is identified earlier when these cells are detected by FG+CAM rather than by FG-labeling alone. The percentages of FG-positive RGC stained with CAM were 83% in controls, 68% on day 2, 48% on day 5, 26% on day 8, and 9% on day 11 after ONC. The decay rate of FG-prelabeled RGC appears accelerated and becomes more linear when only viable RGC positive for CAM are counted. The staining of FG-prelabeled RGC with CAM permits the discrimination between dead and viable RGC in retinal whole mounts, which enables to quantify RGC degeneration earlier after injury than by using microglial-phagocytosis-dependant retrograde labeling alone. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Brimonidine Enhances the Electrophysiological Response of Retinal Ganglion Cells through the Trk-MAPK/ERK and PI3K Pathways in Axotomized Eyes.

    Science.gov (United States)

    Yukita, Masayoshi; Omodaka, Kazuko; Machida, Shigeki; Yasuda, Masayuki; Sato, Kota; Maruyama, Kazuichi; Nishiguchi, Koji M; Nakazawa, Toru

    2017-01-01

    To investigate changes in retinal ganglion cell (RGC) activity by measuring the positive scotopic threshold response (pSTR) of the electroretinogram (ERG) in axotomized eyes after brimonidine injection. In 50 adult Sprague-Dawley rats, the left eye was axotomized and injected with phosphate buffered saline (PBS) or brimonidine and the contralateral right eye was left untreated. Scotopic ERGs were recorded simultaneously from both eyes on days 1, 2, 3, 7, and 10 after the intravitreal injection, and the amplitude of the a- and b-waves and the pSTR were measured. Surviving RGCs in the flat-mounted retinas were counted 10 days after axotomy. In addition to brimonidine, K252a (an inhibitor of tyrosine kinase phosphorylation of the Trk receptors), U0126 (a MAPK/ERK kinase inhibitor), and LY294002 (phosphoinositide 3-kinases [PI3Ks]) were also injected intravitreally into the left eye, and ERGs were recorded using the same protocol. The pSTR amplitude increased significantly in the axotomized eyes with brimonidine, to 122.9 ± 5.0%, 161.8 ± 8.3%, and 133.6 ± 8.1% on days 1, 2, and 3 (P brimonidine (P brimonidine enhanced the survival and electrophysiological activity of the RGCs in rats. The mechanism of this electrophysiological change may involve activation of the Trk-MAPK/ERK and Trk-PI3K signals.

  2. A Learning Model for L/M Specificity in Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  3. Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    for 3 days. Hearing loss and cochlear damage were assessed by distortion product otoacoustic emissions, auditory brainstem response at 16 kHz, and spiral ganglion neuron density. Results: Fifty-six days after infection, auditory brainstem response showed no significant differences between groups......, and distortion product otoacoustic emissions showed significant hearing loss at the low frequencies in animals treated with intratympanic steroid compared with animals treated with systemic saline (p neurons...... treatment prevents long-term spiral ganglion neuron loss in experimental pneumococcal meningitis. This finding is clinically relevant in relation to postmeningitic hearing rehabilitation by cochlear implantation. However, the drug instillation in the middle ear induced local fibrosis and a concurrent low...

  4. Histopathological findings of hemorrhagic ganglion cyst causing acute radicular pain: a case report.

    Science.gov (United States)

    Park, Jong-Hyun; Im, Soo Bin; Kim, Hee Kyung; Hwang, Sun Chul; Shin, Dong-Seung; Shin, Won Han; Kim, Bum-Tae

    2013-12-01

    Although juxtafacet cysts of the lumbar spine are being reported with increasing frequency, hemorrhage from a ganglion cyst is rare, and the pathophysiologic mechanism of the hemorrhage from the cyst is still unclear. A 75-year-old male presented with sudden radicular leg pain caused by hemorrhage from the ganglion cyst. Computed tomography revealed bony erosion of vertebral body and multiple punched-out lesions on facets. Magnetic resonance imaging showed the neural structure was compressed by a sharply delineating mass. Capsule and old hematoma with elastic consistency that extended to the epidural space were removed through a paramedian transforaminal approach, which led to the resolution of the patient's symptoms. Histopathologically, chronic inflammation with neovascularization and myxoid degeneration were present in the capsule. Alcian blue staining demonstrated the mixture of mucin and hematoma. The probable pathogenesis of hemorrhage from the cyst was discussed from the unique histopathological findings of surgical specimen.

  5. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    La Morgia, C; Ross-Cisneros, F.N.; Sadun, A.A.

    2010-01-01

    Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal....... We studied the integrity of the retinohypothalamic tract in five patients with Leber hereditary optic neuropathy, in four with dominant optic atrophy and in nine controls by testing the light-induced suppression of nocturnal melatonin secretion. This response was maintained in optic neuropathy...... subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case...

  6. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release.

    Directory of Open Access Journals (Sweden)

    Julia Stifter

    Full Text Available Retinal ischemia induces apoptosis leading to neurodegeneration and vision impairment. Carbon monoxide (CO in gaseous form showed cell-protective and anti-inflammatory effects after retinal ischemia-reperfusion-injury (IRI. These effects were also demonstrated for the intravenously administered CO-releasing molecule (CORM ALF-186. This article summarizes the results of intravitreally released CO to assess its suitability as a neuroprotective and neuroregenerative agent.Water-soluble CORM ALF-186 (25 μg, PBS, or inactivated ALF (iALF (all 5 μl were intravitreally applied into the left eyes of rats directly after retinal IRI for 1 h. Their right eyes remained unaffected and were used for comparison. Retinal tissue was harvested 24 h after intervention to analyze mRNA or protein expression of Caspase-3, pERK1/2, p38, HSP70/90, NF-kappaB, AIF-1 (allograft inflammatory factor, TNF-α, and GAP-43. Densities of fluorogold-prelabeled retinal ganglion cells (RGC were examined in flat-mounted retinae seven days after IRI and were expressed as mean/mm2. The ability of RGC to regenerate their axon was evaluated two and seven days after IRI using retinal explants in laminin-1-coated cultures. Immunohistochemistry was used to analyze the different cell types growing out of the retinal explants.Compared to the RGC-density in the contralateral right eyes (2804±214 RGC/mm2; data are mean±SD, IRI+PBS injection resulted in a remarkable loss of RGC (1554±159 RGC/mm2, p<0.001. Intravitreally injected ALF-186 immediately after IRI provided RGC protection and reduced the extent of RGC-damage (IRI+PBS 1554±159 vs. IRI+ALF 2179±286, p<0.001. ALF-186 increased the IRI-mediated phosphorylation of MAP-kinase p38. Anti-apoptotic and anti-inflammatory effects were detectable as Caspase-3, NF-kappaB, TNF-α, and AIF-1 expression were significantly reduced after IRI+ALF in comparison to IRI+PBS or IRI+iALF. Gap-43 expression was significantly increased after IRI+ALF. i

  7. Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina.

    Science.gov (United States)

    Moritoh, Satoru; Komatsu, Yusuke; Yamamori, Tetsuo; Koizumi, Amane

    2013-01-01

    The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a "super-model" of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina.

  8. Eugenol inhibits the GABAA current in trigeminal ganglion neurons.

    Science.gov (United States)

    Lee, Sang Hoon; Moon, Jee Youn; Jung, Sung Jun; Kang, Jin Gu; Choi, Seung Pyo; Jang, Jun Ho

    2015-01-01

    Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol on the GABA-induced current in rat trigeminal ganglia (TG) neurons and in human embryonic kidney (HEK) 293 cells expressing the GABAA receptor α1β2γ2 subtype using the whole-cell patch clamp technique. RT-PCR and Western blot analysis were used to confirm the expression of GABAA receptor γ2 subunit mRNA and protein in the TG and hippocampus. Eugenol decreased the amplitude ratio of the GABA-induced current to 27.5 ± 3.2% (p eugenol inhibited GABA-induced currents in a dose-dependent manner. Application of eugenol also decreased the GABA response in the presence of a G-protein blocker. Eugenol pretreatment with different concentrations of GABA resulted in similar inhibition of the GABA-induced current in a non-competitive manner. In conclusion, eugenol inhibits the GABA-induced current in TG neurons and HEK 293 cells expressing the GABAA receptor in a reversible, dose-dependent, and non-competitive manner, but not via the G-protein pathway. We suggest that the GABAA receptor could be a molecular target for eugenol in the modulation of nociceptive information.

  9. The Formation of a Pretibial Ganglion Cyst After the Reconstruction of an Anterior Cruciate Ligament

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seok Jin; Park, Ji Seon; Yoon, Kyung Ho; Park, Yong Goo; Ryu, Kyung Nam [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Park, So Young; Jin, Wook [Kyung Hee University East-West NEO Medical Center, Seoul (Korea, Republic of)

    2010-02-15

    The formation of a pretibial ganglion cyst after the reconstruction of an anterior cruciate ligament is an uncommon complication which may be a result of the degradation of the biodegradable screw or a variety of other reasons. The authors report a case of a significantly large pretibial cyst, which probably occurred as a result of no treatment over a long period, along with a description of the clinical manifestations and radiologic findings

  10. Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons

    Science.gov (United States)

    Horwitz, Geoffrey C.; Risner-Janiczek, Jessica R.

    2014-01-01

    The hyperpolarization-activated, cyclic nucleotide–sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1–4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell–afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery. PMID:24638995

  11. Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird.

    Directory of Open Access Journals (Sweden)

    Christine Nießner

    Full Text Available Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.

  12. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Patients With Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Obara, Elisabeth Anne; Hannibal, Jens; Heegaard, Steffen

    2017-01-01

    Purpose: Photo-entrainment of the circadian clock is mediated by melanopsin-expressing retinal ganglion cells (mRGCs) located in the retina. Patients suffering from diabetic retinopathy (DR) show impairment of light regulated circadian activity such as sleep disorders, altered blood pressure...... nuclear layer (INL), respectively. Conclusions: Our findings show that DR affects the expression of mRGCs in the human retina and could explain the abnormal circadian activity observed in patients with DR....

  13. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions.

    Science.gov (United States)

    Litherland, Lenore; Collin, Shaun P

    2008-01-01

    The topographic analysis of retinal ganglion and photoreceptor cell distributions yields valuable information for assessing the visual capabilities and behavioral ecology of vertebrates. This study examines whole-mounted retinas of four elasmobranch species, the ornate wobbegong, Orectolobus ornatus; the whitetip reef shark, Triaenodon obesus; the epaulette shark, Hemiscyllium ocellatum; and the east Australia shovelnose ray, Aptychotrema rostrata, for regional specializations mediating zones of improved visual ability. These species represent a range of lifestyles: benthic, mid-water, diurnal, and nocturnal. Both photoreceptors (visualized using differential interference contrast optics) and ganglion cells (stained with cresyl violet) in the retina are extensively sampled, and their spatial distribution is found to be nonuniform, exhibiting areae or In general, the topographic distributions of both cell populations are in register and match well with respect to the location of regions of high density. However, the location of peaks in rod and cone densities can vary within a retina, indicating that preferential sampling of different regions of the visual field may occur in photopic and scotopic vision. Anatomical measures of the optical limits of resolving power, indicated by intercone spacing, range from 3.8 to 13.1 cycles/deg. Spatial limits of resolving power, calculated from ganglion cell spacing, range from 2.6 to 4.3 cycles/deg. Summation ratios, assessed by direct comparison of cell densities of photoreceptors (input cells) and ganglion cells (output cells), at more than 150 different loci across the retina, show topographic differences in signal convergence (ranging from 25:1 to over 70:1). Species-specific retinal specializations strongly correlate to the habitat and feeding behavior of each species.

  14. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius).

    Science.gov (United States)

    Coimbra, João Paulo; Bertelsen, Mads F; Manger, Paul R

    2017-08-01

    The river hippopotamus (Hippopotamus amphibius), one of the closest extant relatives to cetaceans, is a large African even-toed ungulate (Artiodactyla) that grazes and has a semiaquatic lifestyle. Given its unusual phenotype, ecology, and evolutionary history, we sought to measure the topographic distribution of retinal ganglion cell density using stereology and retinal wholemounts. We estimated a total of 243,000 ganglion cells of which 3.4% (8,300) comprise alpha cells. The topographic distribution of both total and alpha cells reveal a dual topographic organization of a temporal and nasal area embedded within a well-defined horizontal streak. Using maximum density of total ganglion cells and eye size (35 mm, axial length), we estimated upper limits of spatial resolving power of 8 cycles/deg (temporal area, 1,800 cells/mm2 ), 7.7 cycles/deg (nasal area, 1,700 cells/mm2 ), and 4.2 cycles/deg (horizontal streak, 250 cells/mm2 ). Enhanced resolution of the temporal area toward the frontal visual field may facilitate grazing, while resolution of the horizontal streak and nasal area may help the discrimination of objects (predators, conspecifics) in the lateral and posterior visual fields, respectively. Given the presumed role of alpha cells to detect brisk transient stimuli, their similar distribution to the total ganglion cell population may facilitate the detection of approaching objects in equivalent portions of the visual field. Our finding of a nasal area in the river hippopotamus retina supports the notion that this specialization may enhance visual sampling in the posterior visual field to compensate for limited neck mobility as suggested for rhinoceroses and cetaceans. © 2017 Wiley Periodicals, Inc.

  15. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum).

    Science.gov (United States)

    Coimbra, João Paulo; Manger, Paul R

    2017-08-01

    This study sought to determine whether the retinal organization of the white rhinoceros (Ceratotherium simum), a large African herbivore with lips specialized for grazing in open savannahs, relates to its foraging ecology and habitat. Using stereology and retinal wholemounts, we estimated a total of 353,000 retinal ganglion cells. Their density distribution reveals an unusual topographic organization of a temporal (2,000 cells/mm2 ) and a nasal (1,800 cells/mm2 ) area embedded within a well-defined horizontal visual streak (800 cells/mm2 ), which is remarkably similar to the retinal organization in the black rhinoceros. Alpha ganglion cells comprise 3.5% (12,300) of the total population of ganglion cells and show a similar distribution pattern with maximum densities also occurring in the temporal (44 cells/mm2 ) and nasal (40 cells/mm2 ) areas. We found higher proportions of alpha cells in the dorsal and ventral retinas. Given their role in the detection of brisk transient stimuli, these higher proportions may facilitate the detection of approaching objects from the front and behind while grazing with the head at 45 °. Using ganglion cell peak density and eye size (29 mm, axial length), we estimated upper limits of spatial resolving power of 7 cycles/deg (temporal area), 6.6 cycles/deg (nasal area), and 4.4 cycles/deg (horizontal streak). The resolution of the temporal area potentially assists with grazing, while the resolution of the streak may be used for panoramic surveillance of the horizon. The nasal area may assist with detection of approaching objects from behind, potentially representing an adaptation compensating for limited neck and head mobility. J. Comp. Neurol., 525:2484-2498, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Intraosseous ganglion of the talus with extension in the subtalar joint

    Directory of Open Access Journals (Sweden)

    Pulak Sharma

    2014-01-01

    Full Text Available Intraosseous ganglion is a benign bony cyst that mainly involves the epiphysis and metaphysis of long bones. Intraosseous ganglions are rare in talus, and in all the cases reported in literature, the patients had symptoms pertaining to the ankle joint. No case has been reported where the lesion in the talus has caused symptoms specific to the subtalar joint. A 20-year-old female presented to our hospital with pain in the right foot from last 6 months. Ankle joint movements were within normal limits, but the subtalar movement were significantly reduced. Plain radiographs of the foot and ankle were normal. Computed tomography (CT scan of the foot and ankle showed a cystic lesion (0.5 × 0.5 cm involving the base of the talar body which communicated with the subtalar joint. The patient was treated by curettage of the lesion through a curvilinear incision over the medial aspect of the subtalar joint. The clinical results after 3 months were excellent. The patient returned to her regular and light recreational activities with full, painless range of motion. There was no recurrence of symptoms at 6 months. Intraosseous ganglion is of talus is a rare entity. Symptomatic patient should be treated surgically.

  17. Vision Recovery Despite Retinal Ganglion Cell Loss in Leber's Hereditary Optic Neuropathy.

    Science.gov (United States)

    Webber, Ann L

    2016-12-01

    To report vision recovery in a single case of Leber's hereditary optic neuropathy (LHON) (mtDNA14484/ND6 mutation) with longitudinal documentation of retinal ganglion cell layer by ocular coherence tomography (OCT) that includes the pre-onset, acute, and chronic stages of vision loss. We report LHON in a 16-year-old male patient with Type 1 diabetes and known and documented family history of LHON. The patient presented with best-corrected visual acuities of right eye 20/150 and left eye 20/25-. His retinal nerve fiber layer had thickened compared with baseline measures obtained 19 months before the onset of vision loss. Vision rapidly reduced to "hand movements" vision in each eye over the following 2 months. Despite OCT-documented significant recalcitrant loss of ganglion cell layer, visual acuity remarkably recovered to right eye 20/40+ left eye 20/50+ 16 months after onset of neuropathy. A selective loss of ganglion cells and nerve fiber layer can be documented in LHON. Significant recovery of visual acuity can occur without apparent structural recovery.

  18. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients.

    Science.gov (United States)

    Ban, Norimitsu; Siegfried, Carla J; Lin, Jonathan B; Shui, Ying-Bo; Sein, Julia; Pita-Thomas, Wolfgang; Sene, Abdoulaye; Santeford, Andrea; Gordon, Mae; Lamb, Rachel; Dong, Zhenyu; Kelly, Shannon C; Cavalli, Valeria; Yoshino, Jun; Apte, Rajendra S

    2017-05-04

    Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice.

  19. A ganglion of the patellar tendon in patellar tendon-lateral femoral condyle friction syndrome.

    Science.gov (United States)

    Touraine, Sébastien; Lagadec, Matthieu; Petrover, David; Genah, Idan; Parlier-Cuau, Caroline; Bousson, Valérie; Laredo, Jean-Denis

    2013-09-01

    Intratendinous ganglia are rare. We report the case of a sedentary woman with chronic mechanical anterolateral pain of the knee and an extensive ganglion of the patellar tendon as indicated on magnetic resonance (MR) and ultrasound (US) examinations. There was evidence of a high-riding patella, patellar malalignment and patellar tendon-lateral femoral condyle friction syndrome with significantly close contact between the patellar tendon and the lateral facet of the femoral trochlea. The ultrasound-guided aspiration of the ganglion enabled a localized injection of an anti-inflammatory drug (cortivazol) and the cytopathological examination of the fluid, which confirmed the diagnosis. Clinical improvement was maintained with knee rehabilitation and was satisfactory at follow-up after 1 year. To our knowledge, we report the first case of a ganglion of the patellar tendon subsequent to patellar tendon-lateral femoral condyle friction syndrome. We found that this case was illustrative of mucoid degeneration in connective tissue due to chronic repetitive microtraumas. Additionally, this case provided the opportunity to discuss the management of this condition in a sedentary individual with a high-riding patella and patellar malalignment.

  20. Expression of Nav1.9 channels in human dental pulp and trigeminal ganglion.

    Science.gov (United States)

    Wells, Jason E; Bingham, Val; Rowland, Kevin C; Hatton, John

    2007-10-01

    There is a higher incidence of local anesthetic failure in endodontic patients experiencing pulpal hyperalgesia. Up-regulation of Nav1.9, a voltage-gated sodium channel isoform, might play a key role in local anesthetic failure because Nav1.9 channels increase neuronal excitability and have low sensitivity to blockade by local anesthetics. Immunocytochemistry was used to examine Nav1.9 channel expression in axons of symptomatic (painful) versus asymptomatic human dental pulp and to determine Nav1.9 expression levels in neuronal somata of the human trigeminal ganglion. Nav1.9 channel immunoreactivity on pulpal axons was significantly increased in painful teeth. Nav1.9 channels were expressed in membranes and cytoplasm of human trigeminal ganglion neurons, with the highest expression in small neuronal somata. Nav1.9 expression in the trigeminal ganglion coupled with increased expression in symptomatic pulp might contribute to hypersensitivity of inflamed pulps and local anesthetic failure. Furthermore, the present study suggests that Nav1.9 channels are potential targets for novel anesthetics.

  1. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Hennessy Michael J

    2008-02-01

    Full Text Available Abstract Background Occupational overuse syndrome (OOS can present as Guyon's canal syndrome in computer keyboard users. We report a case of Guyon's canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS. Case presentation A 54-year-old female secretary was referred with a six-month history of right little finger weakness and difficulty with adduction. Prior to her referral, she was diagnosed by her general practitioner and physiotherapist with a right ulnar nerve neuropraxia at the level of the Guyon's canal. This was thought to be secondary to computer keyboard use and direct pressure exerted on a wrist support. There was obvious atrophy of the hypothenar eminence and the first dorsal interosseous muscle. Both Froment's and Wartenberg's signs were positive. A nerve conduction study revealed that both the abductor digiti minimi and the first dorsal interosseus muscles showed prolonged motor latency. Ulnar conduction across the right elbow was normal. Ulnar sensory amplitude across the right wrist to the fifth digit was reduced while the dorsal cutaneous nerve response was normal. Magnetic resonance imaging of the right wrist showed a ganglion in Guyon's canal. Decompression of the Guyon's canal was performed and histological examination confirmed a ganglion. The patient's symptoms and signs resolved completely at four-month follow-up. Conclusion Clinical history, occupational history and examination alone could potentially lead to misdiagnosis of OOS when a computer user presents with these symptoms and we recommend that nerve conduction or imaging studies be performed.

  2. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  3. Erythropoietin protects adult retinal ganglion cells against NMDA-, trophic factor withdrawal-, and TNF-α-induced damage.

    Directory of Open Access Journals (Sweden)

    Zhi-Yang Chang

    Full Text Available PURPOSE: This study aimed to evaluate the neuroprotective effect of EPO in the presence of N-methyl-d-aspartate (NMDA-, trophic factor withdrawal (TFW-, and tumor necrosis factor-alpha (TNF-α-induced toxicity on total, small, and large retinal ganglion cells (RGCs. METHODS: Retinal cells from adult rats were cultured in a medium containing brain-derived neurotrophic factor (BDNF, ciliary neurotrophic factor (CNTF, basic fibroblast growth factor (bFGF, and forskolin. Expression of RGC markers and EPOR was examined using immunocytochemistry. RGCs were classified according to their morphological properties. Cytotoxicity was induced by NMDA, TFW, or TNF-α. RGC survival was assessed by counting thy-1 and neurofilament-l double-positive cells. RESULTS: EPO offered dose-dependent (EC₅₀ = 5.7 ng/mL protection against NMDA toxicity for small RGCs; protection was not significant for large RGCs. Time-course analysis showed that the presence of EPO either before or after NMDA exposure gave effective protection. For both small and large RGCs undergoing trophic factor withdrawal, EPO at concentrations of 1, 10, or 100 ng/mL improved survival. However, EPO had to be administered soon after the onset of injury to provide effective protection. For TNF-α-induced toxicity, survival of small RGCs was seen only for the highest examined concentration (100 ng/mL of EPO, whereas large RGCs were protected at concentrations of 1, 10, or 100 ng/mL of EPO. Time-course analysis showed that pretreatment with EPO provided protection only for large RGCs; early post-treatment with EPO protected both small and large RGCs. Inhibitors of signal transduction and activators of transcription such as (STAT-5, mitogen-activated protein kinases (MAPK/extracellular-regulated kinase (ERK, and phosphatidyl inositol-3 kinase (PI3K/Akt impaired the protective effect of EPO on RGCs exposed to different insults. CONCLUSION: EPO provided neuroprotection to cultured adult rat RGCs

  4. Integration of intracardiac echocardiography and computed tomography during atrial fibrillation ablation: Combining ultrasound contours obtained from the right atrium and ventricular outflow tract.

    Science.gov (United States)

    Nakamura, Kohki; Naito, Shigeto; Kaseno, Kenichi; Nakatani, Yosuke; Sasaki, Takehito; Anjo, Naofumi; Yamashita, Eiji; Kumagai, Koji; Funabashi, Nobusada; Kobayashi, Yoshio; Oshima, Shigeru

    2017-02-01

    We aimed to optimize the acquisition of the left atrial (LA) and pulmonary vein (PV) ultrasound contours for more accurate integration of intracardiac echocardiography (ICE) and computed tomography (CT) using the CARTO® 3 system during atrial fibrillation (AF) ablation. Eighty-five AF patients underwent integration of ICE and CT using (1) the LA roof and posterior wall contours acquired from the right atrium (RA), (2) all LA/PV contours from the RA (Whole-RA-integration), (3) the LA roof/posterior wall contours from the RA and right ventricular outflow tract (RVOT) (Posterior-RA/RV-integration), and (4) all LA/PV contours from the RA and RVOT (Whole-RA/RV-integration). The integration accuracy was compared using the (1) surface registration error, (2) distances between the three-dimensional CT and eight specific sites on the anterior, posterior, superior, and inferior aspects of the right and left circumferential PV isolation lines, and (3) registration score: a score of 0 or 1 was assigned for whether or not each specific site was visually aligned with the CT, and summed for each method (0 best, 8 worst). Posterior-RA/RV-integration revealed a significantly lower surface registration error (1.30±0.15mm) than Whole-RA- and Whole-RA/RV-integration (pintegration (median 1.26mm and 2, respectively) were significantly smaller than those for the other integration approaches (pintegration with the LA roof and posterior wall contours acquired from the RA and RVOT may provide greater accuracy for catheter navigation with three-dimensional CT during AF ablation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    Science.gov (United States)

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  6. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  7. [Progression of nerve fiber layer defects in retrobulbar optic neuritis by the macular ganglion cell complex].

    Science.gov (United States)

    Hong, D; Bosc, C; Chiambaretta, F

    2017-11-01

    Recent studies with SD OCT had shown early axonal damage to the macular ganglion cell complex (which consists of the three innermost layers of the retina: Inner Plexiform Layer [IPL], Ganglion Cell Layer [GCL], Retinal Nerve Fibre layer [RNFL]) in optic nerve pathology. Retrobulbar optic neuritis (RBON), occurring frequently in demyelinating diseases, leads to atrophy of the optic nerve fibers at the level of the ganglion cell axons, previously described in the literature. The goal of this study is to evaluate the progression of optic nerve fiber defects and macular ganglion cell complex defects with the SPECTRALIS OCT via a reproducible method by calculating a mean thickness in each quadrant after an episode of retrobulbar optic neuritis. This is a prospective monocentric observational study including 8 patients at the Clermont-Ferrand university medical center. All patients underwent ocular examination with macular and disc OCT analysis and a Goldmann visual field at the time of inclusion (onset or recurrence of RBON), at 3 months and at 6 months. Patients were 40-years-old on average at the time of inclusion. After 6 months of follow-up, there was progression of the atrophy of the macular ganglion cell complex in the affected eye on (11.5% or 11μm) predominantly inferonasally (13.9% or 16μm) and superonasally (12.9% or 14μm) while the other eye remained stable. The decrease in thickness occurred mainly in the most internal 3 layers of the retina. On average, the loss in thickness of the peripapillary RNFL was predominantly inferotemporal (24.9% or 39μm) and superotemporal (21.8% or 28μm). In 3 months of progression, the loss of optic nerve fibers is already seen on macular and disc OCT after an episode of RBON, especially in inferior quadrants in spite of the improvement in the Goldmann visual field and visual acuity. Segmentation by quadrant was used here to compare the progression of the defect by region compared to the fovea in a global and reproducible

  8. Nitric oxide in the rat vestibular system.

    Science.gov (United States)

    Harper, A; Blythe, W R; Zdanski, C J; Prazma, J; Pillsbury, H C

    1994-10-01

    Nitric oxide is known to function as a neurotransmitter in the central nervous system. It is also known to be involved in the central nervous system excitatory amino acid neurotransmission cascade. Activation of excitatory amino acid receptors causes an influx of calcium, which activates nitric oxide synthase. The resulting increase in intracellular nitric oxide activates soluble guanylate cyclase, leading to a rise in cyclic guanosine monophosphate. The excitatory amino acids glutamate and aspartate are found in the vestibular system and have been postulated to function as vestibular system neurotransmitters. Although nitric oxide has been investigated as a neurotransmitter in other tissues, no published studies have examined the role of nitric oxide in the vestibular system. Neuronal NADPH-diaphorase has been characterized as a nitric oxide synthase. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing nitric oxide during the reaction. We used a histochemical stain characterized by Hope et al. (Proc Natl Acad Sci 1991;88:2811) as specific for neuronal nitric oxide synthase to localize the enzyme in the rat vestibular system. An immunocytochemical stain was used to examine rat inner ear tissue for the presence of the enzyme's end product, L-citrulline, thereby demonstrating nitric oxide synthase activity. Staining of vestibular ganglion sections showed nitric oxide synthase presence and activity in ganglion cells and nerve fibers. These results indicate the presence of active nitric oxide synthase in these tissues and suggest modulation of vestibular neurotransmission by nitric oxide.

  9. Impaired Sympathoadrenal Axis Function Contributes to Enhanced Insulin Secretion in Prediabetic Obese Rats

    Directory of Open Access Journals (Sweden)

    Ana Eliza Andreazzi

    2011-01-01

    Full Text Available The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.

  10. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes.

    Science.gov (United States)

    Hauzman, Einat; Bonci, Daniela M O; Grotzner, Sonia R; Mela, Maritana; Liber, André M P; Martins, Sonia L; Ventura, Dora F

    2014-01-01

    The diurnal Dipsadidae snakes Philodryas olfersii and P. patagoniensis are closely related in their phylogeny but inhabit different ecological niches. P. olfersii is arboreal, whereas P. patagoniensis is preferentially terrestrial. The goal of the present study was to compare the density and topography of neurons, photoreceptors, and cells in the ganglion cell layer in the retinas of these two species using immunohistochemistry and Nissl staining procedures and estimate the spatial resolving power of their eyes based on the ganglion cell peak density. Four morphologically distinct types of cones were observed by scanning electron microscopy, 3 of which were labeled with anti-opsin antibodies: large single cones and double cones labeled by the antibody JH492 and small single cones labeled by the antibody JH455. The average densities of photoreceptors and neurons in the ganglion cell layer were similar in both species (∼10,000 and 7,000 cells·mm(-2), respectively). The estimated spatial resolving power was also similar, ranging from 2.4 to 2.7 cycles·degree(-1). However, the distribution of neurons had different specializations. In the arboreal P. olfersii, the isodensity maps had a horizontal visual streak, with a peak density in the central region and a lower density in the dorsal retina. This organization might be relevant for locomotion and hunting behavior in the arboreal layer. In the terrestrial P. patagoniensis, a concentric pattern of decreasing cell density emanated from an area centralis located in the naso-ventral retina. Lower densities were observed in the dorsal region. The ventrally high density improves the resolution in the superior visual field and may be an important adaptation for terrestrial snakes to perceive the approach of predators from above. © 2014 S. Karger AG, Basel.

  11. Density, proportion, and dendritic coverage of retinal ganglion cells of the common marmoset (Callithrix jacchus jacchus

    Directory of Open Access Journals (Sweden)

    F.L. Gomes

    2005-06-01

    Full Text Available We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm² at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm² at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.

  12. Treatment of patients with painful blind eye using stellate ganglion block

    Directory of Open Access Journals (Sweden)

    Tatiana Vaz Horta Xavier

    2016-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: management of pain in painful blind eyes is still a challenge. Corticosteroids and hypotensive agents, as well as evisceration and enucleation, are some of the strategies employed so far that are not always effective and, depending on the strategy, cause a deep emotional shock to the patient. Given these issues, the aim of this case report is to demonstrate a new and viable option for the management of such pain by treating the painful blind eye with the stellate ganglion block technique, a procedure that has never been described in the literature for this purpose. CASE REPORT: six patients with painful blind eye, all caused by glaucoma, were treated; in these patients, VAS (visual analogue scale for pain assessment, in which 0 is the absence of pain and 10 is the worst pain ever experienced ranged from 7 to 10. We opted for weekly sessions of stellate ganglion block with 4 mL of bupivacaine (0.5% without vasoconstrictor and clonidine 1 mcg/kg. Four patients had excellent results at VAS, ranging between 0 and 3, and two remained asymptomatic (VAS = 0, without the need for additional medication. The other two used gabapentin 300 mg every 12 h. CONCLUSION: currently, there are several therapeutic options for the treatment of painful blind eye, among which stand out the retrobulbar blocks with chlorpromazine, alcohol and phenol. However, an effective strategy with low rate of serious complications, which is non-mutilating and improves the quality of life of the patient, is essential. Then, stellate ganglion block arises as a demonstrably viable and promising option to meet this demand.

  13. PERCUTANEOUS BALLOON COMPRESSION OF GASSERIAN GANGLION FOR THE TREATMENT OF TRIGEMINAL NEURALGIA: AN EXPERIENCE FROM INDIA.

    Science.gov (United States)

    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V

    2015-02-01

    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the

  14. Radiofrequency ablation of stellate ganglion in a patient with complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Chinmoy Roy

    2014-01-01

    Full Text Available Complex regional pain syndrome (CRPS is characterized by a combination of sensory, motor, vasomotor, pseudomotor dysfunctions and trophic signs. We describe the use of radiofrequency (RF ablation of Stellate ganglion (SG under fluoroscopy, for long-term suppression of sympathetic nervous system, in a patient having CRPS-not otherwise specified. Although the effects of thermal RF neurolysis may be partial or temporary, they may promote better conditions toward rehabilitation. The beneficial effect obtained by the RF neurolysis of SG in this particular patient strongly advocates the use of this mode of therapy in patients with CRPS.

  15. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    OpenAIRE

    Keith P. Johnson; Lei Zhao; Daniel Kerschensteiner

    2018-01-01

    The spike trains of retinal ganglion cells (RGCs) are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC). PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive ...

  16. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy.

    Science.gov (United States)

    Majander, A; Robson, A G; João, C; Holder, G E; Chinnery, P F; Moore, A T; Votruba, M; Stockman, A; Yu-Wai-Man, P

    2017-09-01

    Leber inherited optic neuropathy (LHON) is characterized by subacute bilateral loss of central vision due to dysfunction and loss of retinal ganglion cells (RGCs). Comprehensive visual electrophysiological investigations (including pattern reversal visual evoked potentials, pattern electroretinography and the photopic negative response) performed on 13 patients with acute and chronic LHON indicate early impairment of RGC cell body function and severe axonal dysfunction. Temporal, spatial and chromatic psychophysical tests performed on 7 patients with acute LHON and 4 patients with chronic LHON suggest severe involvement or loss of the midget, parasol and bistratified RGCs associated with all three principal visual pathways. Copyright © 2017. Published by Elsevier B.V.

  17. Distribution pattern of dorsal root ganglion neurons synthesizing nitric oxide synthase in different animal species.

    Science.gov (United States)

    Kolesár, Dalibor; Kolesárová, Mária; Kyselovič, Ján

    2017-04-01

    The main aim of the present review is to provide at first a short survey of the basic anatomical description of sensory ganglion neurons in relation to cell size, conduction velocity, thickness of myelin sheath, and functional classification of their processes. In addition, we have focused on discussing current knowledge about the distribution pattern of neuronal nitric oxide synthase containing sensory neurons especially in the dorsal root ganglia in different animal species; hence, there is a large controversy in relation to interpretation of the results dealing with this interesting field of research.

  18. Compression Neuropathy of the Peroneal Nerve Secondary to a Ganglion Cyst

    Directory of Open Access Journals (Sweden)

    Eyup Cagatay Zengin

    2016-01-01

    Full Text Available An 43-year-old man presented to our outpatient clinic with a three-month history of pain over the fibular head area and gait difficulty and foot drop. Physical examination and electromyogram studies verified a peroneal nerve palsy. Magnetic resonance imaging revealed a lobulated, multilocular, cystic-appearing mass extending around the fibular neck. Surgical decompression of the nerve with removal of the mass and careful articular branch ligation was performed. Surgical pathology reports confirmed the diagnosis of a ganglion cyst. The patient regained full motor function within six months of the decompression.

  19. Sphenopalatine ganglion stimulation induces changes in cardiac autonomic regulation in cluster headache

    DEFF Research Database (Denmark)

    Barloese, MC; Petersen, Anja Sofie; Guo, Song

    2017-01-01

    -frequency stimulation, there was a greater increase in heart rate compared to sham (Pattacks were reported (six following low......INTRODUCTION: Cluster headache is characterized by attacks of severe unilateral pain accompanied by cranial and systemic autonomic changes. Our knowledge of the latter is imperfect. This study aimed to investigate the effect of low-frequency sphenopalatine ganglion stimulation on cardiac autonomic...... regulation. MATERIALS AND METHODS: In a double-blind, randomized, sham-controlled crossover design, patients received low-frequency and sham stimulation. RR intervals were recorded, and heart rate variability was analysed (time-domain, frequency-domain, nonlinear parameters). Headache characteristics...

  20. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina.

    Science.gov (United States)

    BARLOW, H B; HILL, R M

    1963-02-01

    Among the ganglion cells in the rabbit's retina there is a class that responds to movement of a stimulus in one direction, and does not respond to movement in the opposite direction. The same directional selectivity holds over the whole receptive field of one such cell, but the selected direction differs in different cells. The discharge is almost uninfluenced by the intensity of the stimulus spot, and the response occurs for the same direction of movement when a black spot is substituted for a light spot.

  1. Differentiation of human neural progenitor cell-derived spiral ganglion-like neurons: a time-lapse video study.

    Science.gov (United States)

    Edin, Fredrik; Liu, Wei; Boström, Marja; Magnusson, Peetra U; Rask-Andersen, Helge

    2014-05-01

    Human neural progenitor cells can differentiate into spiral ganglion-like cells when exposed to inner ear-associated growth factors. The phenotype bears resemblance to human sphere-derived neurons. To establish an in vitro model for the human auditory nerve to replace and complement in vivo animal experiments and ultimately human in vivo transplantation. Human neural progenitors were differentiated under conditions developed for in vitro survival of human primary spiral ganglion culture with media containing growth factors associated with inner ear development. Differentiation was documented using time-lapse video microscopy. Time-dependent marker expression was evaluated using immunocytochemistry with fluorescence and laser confocal microscopy. Within 14 days of differentiation, neural progenitors adopted neural phenotype and expressed spiral ganglion-associated markers.

  2. [Effect of raw and cooked nopal (Opuntia ficus indica) ingestion on growth and profile of total cholesterol, lipoproteins, and blood glucose in rats].

    Science.gov (United States)

    Cárdenas Medellín, M L; Serna Saldívar, S O; Velazco de la Garza, J

    1998-12-01

    Two different concentrations (approx. 6 and 12%) and two presentations (raw and cooked) of dehydrated nopal were fed to laboratory rats and growth and serum total cholesterol, lipoprotein profile and glucose determined. Samples of raw and cooked nopal were chemically characterized for moisture, protein, ash, crude fiber, ether extract, total dietary fiber, reducing sugars, amino acids, minerals and gross energy. Cooking slightly affected some of the nutrients analyzed. After one month feeding, blood was withdrawn via intracardiac puncture and serum glucose, total cholesterol, HDL, LDL, and VLDL were determined. Rats fed 12% nopal had lower weight gains (P nopal or the control diet. Consumption of nopal did not affect (P > 0.05) glucose, total cholesterol and HDL cholesterol levels. However, rats fed raw nopal at the 12% concentration level had a 34% reduction in LDL cholesterol levels; thus, it was concluded that raw nopal had a potentially beneficial effect for hypercholesterolemic individuals.

  3. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina.

    Science.gov (United States)

    Raymond, Iona D; Vila, Alejandro; Huynh, Uyen-Chi N; Brecha, Nicholas C

    2008-08-25

    To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.

  4. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma.

    Science.gov (United States)

    Fu, Q-L; Li, X; Yip, H K; Shao, Z; Wu, W; Mi, S; So, K-F

    2009-08-18

    Glaucoma is a progressive neuropathy characterized by loss of vision as a result of retinal ganglion cell (RGC) death. There are no effective neuroprotectants to treat this disorder. Brain-derived neurotrophic factor (BDNF) is well known to transiently delay RGC death in ocular hypertensive eyes. The CNS-specific leucine-rich repeat protein LINGO-1 contributes to the negative regulation to some trophic pathways. We thereby examined whether BDNF combined with LINGO-1 antagonists can promote long-term RGC survival after ocular hypertension. In this study, intraocular pressure was elevated in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. BDNF alone shows slight neuroprotection to RGCs after a long-term progress of 4 weeks following the induction of ocular hypertension. However, combination of BDNF and LINGO-1-Fc prevents RGC death in the same condition. We further identified that (1) LINGO-1 was co-expressed with BDNF receptor, TrkB in the RGCs, and (2) BDNF combined with LINGO-1-Fc activated more TrkB in the injured retina compared to BDNF alone. These results indicate that the combination of BDNF with LINGO-1 antagonist can provide long-term protection for RGCs in a chronic ocular hypertension model. TrkB may be the predominant mediator of this neuroprotection.

  5. Estimation of Stellate Ganglion Block Injection Point Using the Cricoid Cartilage as Landmark Through X-ray Review

    OpenAIRE

    Park, Jeong Soo; Kim, Ki Jun; Lee, Youn Woo; Yoon, Duck Mi; Yoon, Kyung Bong; Han, Min Young; Choi, Jong Bum

    2011-01-01

    Background Stellate ganglion block is usually performed at the transverse process of C6, because the vertebral artery is located anterior to the transverse process of C7. The purpose of this study is to estimate the location of the transverse process of C6 using the cricoid cartilage in the performance of stellate ganglion block. Methods We reviewed cervical lateral neutral-flexion-extension views of 48 patients who visited our pain clinic between January and June of 2010. We drew a horizonta...

  6. Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric

    Directory of Open Access Journals (Sweden)

    Janssen Katherine T

    2006-10-01

    Full Text Available Abstract Background Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the βGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice. Results Optic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of βGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal. Conclusion A comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is

  7. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  8. Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    David J. Margolis

    2011-01-01

    Full Text Available Here we review evidence that loss of photoreceptors due to degenerative retinal disease causes an increase in the rate of spontaneous ganglion spike discharge. Information about persistent spike activity is important since it is expected to add noise to the communication between the eye and the brain and thus impact the design and effective use of retinal prosthetics for restoring visual function in patients blinded by disease. Patch-clamp recordings from identified types of ON and OFF retinal ganglion cells in the adult (36–210 d old rd1 mouse show that the ongoing oscillatory spike activity in both cell types is driven by strong rhythmic synaptic input from presynaptic neurons that is blocked by CNQX. The recurrent synaptic activity may arise in a negative feedback loop between a bipolar cell and an amacrine cell that exhibits resonant behavior and oscillations in membrane potential when the normal balance between excitation and inhibition is disrupted by the absence of photoreceptor input.

  9. A Novel Retinal Ganglion Cell Promoter for Utility in AAV Vectors

    Directory of Open Access Journals (Sweden)

    Killian S. Hanlon

    2017-09-01

    Full Text Available Significant advances in gene therapy have enabled exploration of therapies for inherited retinal disorders, many of which are in preclinical development or clinical evaluation. Gene therapy for retinal conditions has led the way in this growing field. The loss of retinal ganglion cells (RGCs is a hallmark of a number of retinal disorders. As the field matures innovations that aid in refining therapies and optimizing efficacy are in demand. Gene therapies under development for RGC-related disorders, when delivered with recombinant adeno associated vectors (AAV, have typically been expressed from ubiquitous promoter sequences. Here we describe how a novel promoter from the murine Nefh gene was selected to drive transgene expression in RGCs. The Nefh promoter, in an AAV2/2 vector, was shown to drive preferential EGFP expression in murine RGCs in vivo following intravitreal injection. In contrast, EGFP expression from a CMV promoter was observed not only in RGCs, but throughout the inner nuclear layer and in amacrine cells located within the ganglion cell layer (GCL. Of note, the Nefh promoter sequence is sufficiently compact to be readily accommodated in AAV vectors, where transgene size represents a significant constraint. Moreover, this promoter should in principle provide a more targeted and potentially safer alternative for RGC-directed gene therapies.

  10. Implementing dynamic clamp with synaptic and artificial conductances in mouse retinal ganglion cells.

    Science.gov (United States)

    Huang, Jin Y; Stiefel, Klaus M; Protti, Dario A

    2013-05-16

    Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp (1, 2, 3) and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.

  11. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage.

    Science.gov (United States)

    Lampert, E J; Andorra, M; Torres-Torres, R; Ortiz-Pérez, S; Llufriu, S; Sepúlveda, M; Sola, N; Saiz, A; Sánchez-Dalmau, B; Villoslada, P; Martínez-Lapiscina, Elena H

    2015-11-01

    Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients' NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy-Rand-Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p dyschromatopsia [OR = 0.88 95 % CI (0.80-0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.

  12. Case report: intra-tendinous ganglion of the anterior cruciate ligament in a young footballer

    Directory of Open Access Journals (Sweden)

    Watson Thomas P

    2006-11-01

    Full Text Available Abstract A 20-year-old male medical student and keen rugby player presented with a 12-month history of progressively worsening right knee pain and stiffness with no history of trauma. Clinical examination revealed effusion and posterior knee pain exacerbated by end range movement and an extension lag of 15 degrees. Physiotherapy to improve the range of motion proved unsuccessful. Magnetic resonance imaging showed that the ACL was grossly thickened and displaced by material reported as mucoid in nature. There were also areas of focally high signal in relation to its tibial attachment and intra osseous small cysts. Arthroscopic examination revealed a ganglion related to the tibial attachment of the ACL and gross thickening and discoloration of the ACL. Biopsies were taken showing foci of mucoid degeneration in the ACL. A large intra-ACL mass of brownish coloured tissue was excised arthroscopically. Already at 2 weeks follow up the patient had greatly improved range of movement and was pain free. However, upon returning to rugby, joint instability was noticed and a tear of the ACL was confirmed. This rare clinical condition can be diagnosed with MRI and arthroscopic debridement effectively relieves symptoms. This case report illustrates that augmentation or reconstruction may end up being the definitive treatment for athletes. It may also offer some support to the argument that mucoid degeneration and ganglion cyst formation share a similar pathogenesis to intra-osseous cyst formation.

  13. Spatial relationship of organized rotational and focal sources in human atrial fibrillation to autonomic ganglionated plexi.

    Science.gov (United States)

    Baykaner, Tina; Zografos, Theodoros A; Zaman, Junaid A B; Pantos, Ioannis; Alhusseini, Mahmood; Navara, Rachita; Krummen, David E; Narayan, Sanjiv M; Katritsis, Demosthenes G

    2017-08-01

    One approach to improve ablation for atrial fibrillation (AF) is to focus on physiological targets including focal or rotational sources or ganglionic plexi (GP). However, the spatial relationship between these potential mechanisms has never been studied. We tested the hypothesis that rotors and focal sources for AF may co-localize with ganglionated plexi (GP). We prospectively identified locations of AF rotors and focal sources, and correlated these to GP sites in 97 consecutive patients (age 59.9±11.4, 73% persistent AF). AF was recorded with 64-pole catheters with activation/phase mapping, and related to anatomic GP sites on electroanatomic maps. AF sources arose in 96/97 (99%) patients for 2.6±1.4 sources per patient (left atrium: 1.7±0.9 right atrium: 1.1±0.8), each with an area of 2-3cm2. On area analyses, the probability of an AF source randomly overlapping a GP area was 26%. Left atrial sources were seen in 94 (97%) patients, in whom ≥1 source co-localized with GP in 75 patients (80%; psources were more likely to colocalize with left vs right GPs (p65, diabetes; psources in the left atrium often colocalize with regions of autonomic innervation. Studies should define if the role of AF sources differs by their anatomical location. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A novel astrovirus associated with encephalitis and ganglionitis in domestic sheep.

    Science.gov (United States)

    Pfaff, F; Schlottau, K; Scholes, S; Courtenay, A; Hoffmann, B; Höper, D; Beer, M

    2017-06-01

    In June 2013, a 4-year-old Welsh Mountain ewe and in March 2014 a 10-day-old lamb of the same breed and the same flock presented progressive neurological signs including depressed sensorium, tremor, and unusual behaviour. Neuropathological examination of the brain and spinal cord detected non-suppurative polioencephalomyelitis and dorsal root ganglionitis, characteristic of a neurotropic viral agent in both sheep. Metagenomic analysis of different tissue samples from both animals identified a novel Ovine Astrovirus (OvAstV). The presence of viral genome in the central nervous system was confirmed by RT-qPCR. Although the cases presented nine months apart, the identified OvAstV shared nearly identical sequences, differing in only three nucleotide positions across the complete genome. Phylogenetic analysis revealed a close relation of OvAstV to neurotropic bovine astroviruses and an enteric OvAstV. In conclusion, these are the first reported cases of astrovirus infection in domestic sheep that were associated with encephalitis and ganglionitis. © 2017 Blackwell Verlag GmbH.

  15. Retinal Ganglion Cell Loss in Children With Type 1 Diabetes Mellitus Without Diabetic Retinopathy.

    Science.gov (United States)

    Karti, Omer; Nalbantoglu, Ozlem; Abali, Saygin; Ayhan, Ziya; Tunc, Selma; Kusbeci, Tuncay; Ozkan, Behzat

    2017-06-01

    Early diabetic retinal changes in children with type 1 diabetes mellitus (T1DM) without diabetic retinopathy (DR) were examined using spectral-domain optical coherence tomography (SD-OCT). Sixty children with T1DM without DR and 60 normal children were enrolled in the study. SD-OCT was used to measure the ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber (RNFL) thicknesses in all participants. The GC-IPL thickness was significantly decreased in all quadrants except the superior-nasal quadrant in children with diabetes (P .05). There was a decreased GC-IPL thickness in children with T1DM without DR, suggesting that T1DM has an early neurodegenerative effect on retinal ganglion cells that occurs when the vascular component of DR is absent. SD-OCT may be more useful than ophthalmoscopic evaluation for detecting the earlier retinal structural changes of diabetes. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:473-477.]. Copyright 2017, SLACK Incorporated.

  16. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model.

    Directory of Open Access Journals (Sweden)

    Shuifeng Deng

    Full Text Available Primary open angle glaucoma (POAG is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs. In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi and late or degraded autophagic vacuoles (AVd accumulated in the ganglion cell layer (GCL and in the inner plexiform layer (IPL as determined by transmission electron microscopy (TEM analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1 and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.

  17. Arthroscopic versus open excision of dorsal ganglion cysts: a systematic review.

    Science.gov (United States)

    Crawford, Catherine; Keswani, Aakash; Lovy, Andrew J; Levy, Isaiah; Lutz, Kristina; Kim, Jaehon; Hausman, Michael

    2017-01-01

    We conducted a systematic review comparing recurrence and complication rate following open versus arthroscopic excision of ganglion cysts. Sixteen full-text articles were included. The pooled recurrence rate of open excision was 20% (range: 5.6-40.7%) with Q value of 27 and I2 of 82%. The pooled recurrence rate of arthroscopic excision was 9% (range: 0-17%) with Q value of 10 and I2 of 2%. Eleven of 16 studies were low quality or had a high risk of bias; however, excluding low quality studies or those with high risk of bias produced similar recurrence rates in arthroscopic and open excision (7.9% versus 9.8%). For the subset of studies with complete reporting of complications, rates were similar in open and arthroscopic excision (6% versus 4%). Our review suggests that arthroscopic and open approaches have comparable outcome profiles. Nevertheless, standardized study methods with adequate powering are required to collect high quality data, allowing for greater confidence in conclusions regarding these two approaches for existing ganglion cysts. II.

  18. Ganglion Cysts

    Science.gov (United States)

    ... de la base del pulgar Dedo en gatillo Quistes sinoviales Síndrome del túnel carpiano Epicondilitis lateral (codo ... de la base del pulgar Dedo en gatillo Quistes sinoviales Síndrome del túnel carpiano Resources All Topics ...

  19. Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway.

    Science.gov (United States)

    Koriyama, Yoshiki; Chiba, Kenzo; Yamazaki, Matsumi; Suzuki, Hirokazu; Muramoto, Ken-ichiro; Kato, Satoru

    2010-10-01

    Previously, we reported that genipin, a herbal iridoid, had neuritogenic and neuroprotective actions on PC12 cells. Although nitric oxide (NO)-activated signalings were proposed to be neuritogenic, the neuroprotective action of genipin remains to be elucidated. From the standpoint of NO activation, we tested a possible protective mechanism through the nitrosative Kelch-like ECH-associated protein (Keap1)/NF-E2-related factor 2 (Nrf2)-antioxidant response element pathway in rat retinal ganglion cells (RGC-5 cells) in culture, and in vivo, against hydrogen peroxide and optic nerve injury (ONI), respectively, using a long-acting (1R)-isoPropyloxygenipin (IPRG001). IPRG001 induced NO generation and the expressions of antioxidative enzymes, such as heme oxygenase-1 (HO-1), in RGC-5 cells. The protective action of IPRG001 depended on HO-1 and NO induction. We found that S-nitrosylation of Keap1 by IPRG001 may contribute to translocation of Nrf2 to the nucleus and triggered transcriptional activation of antioxidative enzymes. Furthermore, apoptotic cells were increased and 4-hydroxy-2-nonenal was accumulated in rat retina following ONI. Pre-treatment with IPRG001 almost completely suppressed apoptosis and accumulation of 4-hydroxy-2-nonenal in RGCs following ONI accompanied by HO-1 induction. These data demonstrate for the first time that IPRG001 exerts neuroprotective action in RGCs in vitro and in vivo, through the Nrf2/antioxidant response element pathway by S-nitrosylation against oxidative stress. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  20. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain.

    Directory of Open Access Journals (Sweden)

    Xianxun Chi

    Full Text Available The vast majority of people living with human immunodeficiency virus type 1 (HIV-1 have pain syndrome, which has a significant impact on their quality of life. The underlying causes of HIV-1-associated pain are not likely attributable to direct viral infection of the nervous system due to the lack of evidence of neuronal infection by HIV-1. However, HIV-1 proteins are possibly involved as they have been implicated in neuronal damage and death. The current study assesses the direct effects of HIV-1 Tat, one of potent neurotoxic viral proteins released from HIV-1-infected cells, on the excitability and survival of rat primary dorsal root ganglion (DRG neurons. We demonstrated that HIV-1 Tat triggered rapid and sustained enhancement of the excitability of small-diameter rat primary DRG neurons, which was accompanied by marked reductions in the rheobase and resting membrane potential (RMP, and an increase in the resistance at threshold (R(Th. Such Tat-induced DRG hyperexcitability may be a consequence of the inhibition of cyclin-dependent kinase 5 (Cdk5 activity. Tat rapidly inhibited Cdk5 kinase activity and mRNA production, and roscovitine, a well-known Cdk5 inhibitor, induced a very similar pattern of DRG hyperexcitability. Indeed, pre-application of Tat prevented roscovitine from having additional effects on the RMP and action potentials (APs of DRGs. However, Tat-mediated actions on the rheobase and R(Th were accelerated by roscovitine. These results suggest that Tat-mediated changes in DRG excitability are partly facilitated by Cdk5 inhibition. In addition, Cdk5 is most abundant in DRG neurons and participates in the regulation of pain signaling. We also demonstrated that HIV-1 Tat markedly induced apoptosis of primary DRG neurons after exposure for longer than 48 h. Together, this work indicates that HIV-1 proteins are capable of producing pain signaling through direct actions on excitability and survival of sensory neurons.